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Overview

Trees in Hyperbolic Space
Riemannian Gradient Descent
Shallow hyperbolic ML

Hyperbolic Deep ML



Euclidean, spherical and hyperbolic geometry

TABLE I: Characteristic properties of Euclidean, spherical,
and hyperbolic geometries. Parallel lines is the number of

lines that are parallel to a line and that go through a point
not belonging to this line, and ¢ = /| K]|.

Property Fuclidean |Spherical Hyperbolic
Curvature K 0 > 0 <0

Parallel lines 1 0 00

Triangles are normal |thick thin

Shape of triangles A O A

Sum of A angles |x > T <7

Circle length 2mr 2mwsin(r 2m sinh (r

Disk area 2rr? /2 |2m(1 — cos (r)|2n(cosh {r — 1)

Hyperbolic Geometry of Complex Networks, Krioukov, ..., Bogufia



Equivalent models

:

Fig. 5.6: Geodesics of K"(R) Fig. 5.7: Geodesics of B"(R) Fig. 5.8: Geodesics of U”(R)

Fig. 5.5: A great hyperbola

Introduction to Riemannian Manifolds, Lee, Springer



Trees in hyperbolic space

“hyperbolic space is a continuous analogue of trees;
trees are a discretised hyperbolic space”

hyperbolic space has “more space” than Euclidean space

not enough space for tree with constant

: . . Area grows exponentially and can
branching factor in euclidean space fi th b hi
http://bjlkeng.github.io/posts/hyperbolic-geometry-and- 1t a tree with constant branching
poincare-embeddings/ factor

Poincaré Embeddings for Learning Hierarchical
Representations, Nickel, Kiela Neurips’17



Trees in hyperbolic space

Theorem:

Given € > 0 and a positively weighted tree T = (V, E, w), then there is some n1 > 0 such
that V can be embedded into the Poincaré disk such that nT is the MST of the
embedded points and the distortion (product of max distance contraction and

elongation) is at most 1 + ¢.
Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane, Sarkar, 2012



Hierarchical data is everywhere

Language: Hypernymys, Entailment of sentences, Translation...
Images: Tracking of dividing cells, different resolutions, crops
Biology: Developmental processes

Many graphs are rather tree-like than flat



Representation learning

Representing data in a way that makes downstream tasks easy, e.g.

Input Image Magnitude Spectrum

Phase




Representation learning

Representing data in a way that makes downstream tasks easy, e.g.
Embedding data points in a metric space
Use distance for clustering, retrieving similar data points, ...

More compact than relational information

Deep Neural Networks
sequence of transformed representation

Often representation as point in Euclidean space, but not well suited for hierarchies.
— Learn representations in hyperbolic space instead



Riemannian Stochastic Gradient Descent

Gradient descent is ubiquitous in Machine Learning

W(;m g(e)
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Riemannian Stochastic Gradient Descent

Gradient descent is ubiquitous in Machine Learning
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Riemannian Stochastic Gradient Descent

Theorem (Bonnabel):
Given a cost function f: M — R on a Riemannian Manifold, (an approximation of)

Riemannian Stochastic Gradient Descent converges almost surely to a critical point of
fand grad f to 0 under mild conditions.

Stochastic gradient descent on Riemannian manifolds, Bonnabel 2013



Shallow hyperbolic ML

Embed a graph G=(V, E) (representing a hierarchy) into hyperbolic space.
Letv.is embedded as p, in hyperbolic space.

Perform Riemannian gradient descent on loss function L(p, E).



Poincare Embeddings for Learning Hierarchical
Representations Nickel, Kiela NeurPs'17

Data: Undirected version of transitive closure of directed WordNet dataset

e—d(u,v)

Loss: L(©) = Z log

—d RIAN
(u,v)€D Z’U'GN(U) e i)

| . . (1—116:]1%)°
No exponential, but approximation 0111 < proj | 0 — 1 1 VE

. 0/l6] —= if o] > 1
Q) =
proj(6) {0 otherwise ,



Poincare Embeddings for Learning Hierarchical
Representations Nickel, Kiela NeurPs'17
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http://building-babylon.net/2018/04/10/gradient-optimisation-on-the-poincare-disc/



Poincare Embeddings for Learning Hierarchical
Representations Nickel, Kiela NeurIPS'17

loss:3.93
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Poincare Embeddings for Learning Hierarchical
Representations Nickel, Kiela NeurPs'17

Dimensionality
5 10 20 50 100 200

— Rank 35423 22869 16859 12817 11873 11573
uchdea MAP  0.024 0059 0087 0.140 0.162 0.168

Rank 4.9 4.02 3.84 3.98 3:9 3.83

WORDNET
Reconstruction

Poincare MAP 0823 0851 0855 086 0857 087
— Rank 3311.1 21995 9523 3514 1907 815
o MAP 0024 0059 0176 0286 0428  0.490
aa -5}
-
S8
= 3 P Rank 5.7 4.3 4.9 4.6 4.6 4.6
CINCATE MAP 0825 0852 0861 0.863 0.856  0.855

Clemens Frubose improved this with a clever initialisation.



Poincaré Maps for Analyzing Complex Hierarchies in
Bottou, Nickel, 2020

Single-Cell Data Klimovskaia, ...,
Application to scRNA data of developing cell population

Poincaré map

pairwise

Gene expression measurements for cells
Euclidean space B carve

Local
Proximities)

Similarities

a Waddington's epigenetic b Hyperbolic space
landscape
. . ﬁ\, distances
Poincaré
d genes cells cells cells coordinates
Minimize
REA Symmetric KL
2| (Global 2 e 2
8 s “ 8 | similarities 8

cells
cells

_ exp(—d,(¥;,;)/7)
T = e exp(—d, v, 70)/7)

pij=random forest accessibility index
on kernel-transformed connected

mutual kNN graph



Poincaré Maps for Analyzing Complex Hierarchies in

Single-Cell Data Klimovskaia, ..., Bottou, Nickel, 2020

Versatile embedding:

agglomerative clustering for lineage detection

pseudotime inference
visualisation
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Poincaré Maps for Analyzing Complex Hierarchies in
Single-Cell Data Klimovskaia, ..., Bottou, Nickel, 2020
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Distance distortion in Poincaré disk

Distance from (0.0, 0.0) to the rest of the space Distance from (0.99, 0.0) to the rest of the space

11.88
16.56

10.56

14.72

-12.88

r11.04

r9.20

r7.36

5.52

3.68

184

0.00

https://github.com/dwright37/lorentz_embeddings_recreation



Gyrovectors

Hyperbolic space is not a vector space.
But carries more complicated structure of “gyrovector space”.

Addition r D Y scalar multiplication ¢ Re T

Geodesics, translation, exponential, logarithm can be expressed in terms of
gyrovector operations.

Parameter c is negative curvature ¢ — 0 give normal real vector space.



Hyperbolic Deep Learning

Remember: Simple fully connected neural network

is sequence of affine maps and non-linear maps:

https://victorzhou.com/series/neural-networks-from-scratch/

£(X) = @ (W (o 0,(W,( @, (W, x+b ) )+b,).)+b)

With Euclidean input x, Euclidean parameter matrices W. and biases b, learnt by
Gradient descent.

Hyperbolic Neural Network:
Neural network with hidden representation and / or parameters in hyperbolic space.



HyperbOliC Neural NetWOFkS Ganea, ..., Hofmann, NeurIPS’18

Define
multinomial logistic regression
linear layer

for hyperbolic activations.

Map between Euclidean space input and hyperbolic activations via exponential at
origin.



Hyperbolic Neural Networks canea, .., Hofmann, Neurips'18

Linear layer:

For f : R — R™, we define f®<(z) := exp§(f(logg(x)))
— do map in tangent space of the origin, which is isomorphic to R".
BiasbinD" ¢ 2@ b= expg(Fy,.(logy(h)))

Non-linearity also in tangent space of origin

— defines fully connected feed-forward hyperbolic network

— Euclidean gradient descent wrt Euclidean weight matrix,
Riemannian GD wrt hyperbolic bias parameter



Hyperbolic Neural Networks canea, .., Hofmann, Neurips'18

Euclidean multinomial logistic regression
Simple classifier method, for each input x, probability distribution over K outputs

p(y = k|z) < exp (({(ar,x) — bx)), whereby € R, x,ar € R"
i.e. single layer neural network with output dimension K and softmax non-linearity:
p(Y| x) = softmax((a,, ..., a,)"'x -b)

but hyperbolic modelling is different than hyperbolic feed-forward layer



HyperbOliC Neural NetWOI‘kS Ganea, ..., Hofmann, NeurIPS’18

Define hyperplane and rewrite linear map as signed distance to hyperplane:
Hop ={x€R": (a,z) —b=0}

p(y = k|x) oc exp(sign({ax, ) — bk)||a’k’|d($7Hak,bk))7 bp € R,z,ar € R".

Choose point p, on hyperplane and rewrite again:

p(y = klz) o< exp(sign({(—pk, + , ax))||ax||d(x, Ha, p,)), With pg,z,ar € R”



Hyperbolic Neural Networks canea, ... Hofmann, Neurips'18

This definition carries over to hyperbolic space

ﬁg,p ={x eD]: (log;(x),a)p =0} = exp;({a}L)

p(y = k|x) o< exp(sign( (logg(a:),ak>p)\/g§k(ak, ai)da(z, ﬁgk,pk)), Ve e D7,

[nput x and parameter p, in D" but parameters a_in TpDn = R"and output in R.

k

— Gradients wrt a, are Euclidean,
Gradients wrt x, p, are Riemannian.



HyperbOliC Neural NetWOI‘kS Ganea, ..., Hofmann, NeurIPS’18

Figure 1: An example of a hyper-
bolic hyperplane in D3 plotted us-
ing sampling. The red point is p.
The shown normal axis to the hy-
perplane through p is parallel to a.



Hyperbolic Neural Networks++ shimiz, ..., Harada 2020

Reformulate several parts of the Hyperbolic Neural Network, in particular
unify fully connected layer with multinomial logistic regression



Hyperbolic Neural Networks++ shimiz, ... Harada 2020

Old MLR (Ganea et al):

p(y = k|z) oc exp(sign( (log, () \/gp ak, ax)d.(z, ak,pk)) Vr € D7,

is overparametrized

(a) Reformulation in R™  (b) Generalization to B

Figure 2: Whichever pair of a and p is chosen, a
determined discriminative hyperplane is the same.
Considering one bias point g ,- per one discrimina-
tive hyperplane solves this over-parameterization.



Hyperbolic Neural Networks++ shimizu, .., Harada 2020




Hyperbolic Neural Networks++ shimiz, ... Harada 2020

New MLR:

Geodesic from origin to hyperplane is orthogonal.
— use direction of this geodesic and scalar to define the point
— parallel transport direction from origin to tangent space of point on hyperplane

Instead of p, in D" and a,_ in T D"=R"onlyz in T D"=R"andr inR



Hyperbolic Neural Networks++ shimiz, ... Harada 2020

Fully connected layer in Euclidean space is stack of translated scalar products
y = Ax — b
Yr = (ak,x) — by

In MLR, we would do  vi(x) = sign({ax, O¢ gay,r, Decx))d. (x, HS, ,.) laxllga, ..

But in FC layer Ganeaetaldo Yy = expg (A logg(x)) B b
— use hyperplane method everywhere to get scores and map back to hyperbolic
space by using them as distance to axis orthogonal hyperplanes at the origin.



Hyperbolic Neural Networks++ shimiz, ... Harada 2020

CQLe00E

(a) expg (A logg(x)) B b (b) F°(x; Z,r) (ours)

Figure 3: Comparison of FC layers in input spaces B!'. The values at a certain dimension of output
spaces are illustrated as contour plots. Black arrows depict the orientation parameters, and they are
fixed for the comparison. Their orthogonal curves show discriminative hyperplanes where the values
are zeros. As a bias parameter b or r; changes, the outline of the contour landscape in|(a){remains
unchanged, whereas in|(b)|the focused regions are dynamically squeezed according to the geodesics.




Application of Hyperbolic Neural Networks

Chami, ..., Leskovec NeurIPS'19

HNN + Graph Convolution Network + Attention + trainable curvature
link prediction and node classification in various transductive /
inductive graph settings

Dataset DISEASE DISEASE-M HUMAN PPI AIRPORT PUBMED CORA

Hyperbolicity & 6=0 d=0 d=1 =1 §=235 d=11

Method LP NC LP NC LP NC LP NC LP NC LP NC
2 Euc 598+20 325+1.1 - - - - 920+ 00 609+34 833+0.1 482+07 825+03 238+0.7
2 Hye 63.5+06 455+33 - - - - 945+00 702+0.1 875+01 685+03 87602 220x£1.5
E Euc-MIXED 496+ 1.1 352+34 - - - - 91.5+0.1 683+23 860+13 63.0+03 844+02 46104
v HYP-MIXED 551+13 569+15 - - - - 933+00 69.6+0.1 838+03 739+02 856+05 459+03
Zz MLP 726+06 288+25 553+£05 559+03 678+0.2 553+04 898+05 68606 84.1+09 724102 83.1+05 515£1.0
Z HNN 751+03 41018 609+04 562+03 729+03 593+04 908+02 805+05 949+0.1 69804 89.0+0.1 546=04

GCN|21 64.7+0.5 69.7+04 660+£08 594+34 770+£05 69.7+03 893+04 81406 91.1+05 78102 904+02 81.3£03
% GAT |4 69.8 +0.3 704+04 695+04 625+07 768+04 705+04 905+03 815£03 91.2+0.1 79.0+03 93.7+0.1 83.0=0.7
© SAGE 15 659+03 69.1+06 674+05 613+04 781+06 69.1+03 904+05 821+05 86.2+10 77422 855+06 77924

SGC 44 65102 695+02 662+02 605+03 76.1+02 71301 898+03 806+0.1 941+00 78900 91.5+0.1 81.0+0.1
» HGCN 908 +03 745+09 781+04 722405 845+04 74603 964+01 90602 963+00 80303 929401 79902
8 (%) ERR RED -63.1% -13.8% -28.2% -25.9% -29.2% -11.5% -60.9% -47.5% -27.5% -6.2% +12.7% +18.2%

Table 1: ROC AUC for Link Prediction (LP) and F1 score for Node Classification (NC) tasks. For
inductive datasets, we only evaluate inductive methods since shallow methods cannot generalize to
unseen nodes/graphs. We report graph hyperbolicity values ¢ (lower is more hyperbolic).



Application of Hyperbolic Neural Networks

Chami, ..., Leskovec NeurIPS'19

1. Citation networks. CORA and PUBMED [27] are standard benchmarks describing citation
networks where nodes represent scientific papers, edges are citations between them, and node
labels are academic (sub)areas. CORA contains 2,708 machine learning papers divided into 7
classes while PUBMED has 19,717 publications in the area of medicine grouped in 3 classes.

2. Disease propagation tree. We simulate the SIR disease spreading model [2], where the label of a
node is whether the node was infected or not. Based on the model, we build tree networks, where
node features indicate the susceptibility to the disease. We build transductive and inductive variants
of this dataset, namely DISEASE and DISEASE-M (which contains multiple tree components).

3. Protein-protein interactions (PPI) networks. PPI is a dataset of human PPI networks [37].
Each human tissue has a PPI network, and the dataset is a union of PPI networks for human tissues.
Each protein has a label indicating the stem cell growth rate after 19 days [40], which we use
for the node classification task. The 16-dimensional feature for each node represents the RNA
expression levels of the corresponding proteins, and we perform log transform on the features.

4. Flight networks. AIRPORT is a transductive dataset where nodes represent airports and edges
represent the airline routes as from OpenFlights.org] Compared to previous compilations [49], our
dataset has larger size (2,236 nodes). We also augment the graph with geographic information
(longitude, latitude and altitude), and GDP of the country where the airport belongs to. We use the
population of the country where the airport belongs to as the label for node classification.



Application of Hyperbolic Neural Networks

Chami, ..., Leskovec NeurIPS'19

Name Nodes Edges Classes Node features

CorA 2708 5429 74 1433

PUBMED 19717 88651 S 500
HUMAN PPI 17598 5429 4 17

AIRPORT 3188 18631 4 4

DISEASE 1044 1043 2 1000
DISEASE-M 43193 43102 2 1000

Table 3: Benchmarks’ statistics

Citation network features: Word frequencies
Airport



Application of Hyperbolic Neural Networks

Chami, ..., Leskovec NeurIPS'19
HNN + Graph Convolution Network (Chami, ..., Leskovec NeurIPS’19)

. evde g 2
R Y e S, , .
Ly S RO P o Ao o .%o ‘
Al X ; Ry %l
(R 'y H A )

(a) GCN layers. (b) HGCN layers. (c) GCN (left), HGCN (right).

Figure 3: Visualization of embeddings for LP on DISEASE and NC on CORA (visualization on the
Poincaré disk for HGCN). (a) GCN embeddings in first and last layers for DISEASE LP hardly
capture hierarchy (depth indicated by color). (b) In contrast, HGCN preserves node hierarchies. (c)
On CORA NC, HGCN leads to better class separation (indicated by different colors).



Not enough time ...

More hyperbolic neural networks

Hyperbolic Graph Neural Networks; Liu, Nickel, Kiela NeurIPS’19

Hyperbolic Graph Convolutional Neural Networks; Chami, ..., Leskovec NeurIPS'19
Hyperbolic Attention Networks; Gulcehre, ..., Pascanu, de Freitas ICLR'19

Hyperbolic Autoencoder

Mixed-Curvature Variational Autoencoders; Skopek, Ganea, Bécigneul ICLR’20

Adversarial Autoencoders with Constant-Curvature Latent Manifolds; Grattarola, Livi, Alippi '20

A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning; Nagano, ..., Koyama ICML'19
Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders; Mathieu, ..., Teh NeurIPS’19

Learning Hierarchies

Hyperbolic Entailment Cones for Learning Hierarchical Embeddings; Ganea, ..., Hofmann ICML'18
Hyperbolic Disk Embeddings for Directed Acyclic Graphs; Suzuki, ..., Onoda ICML'18

Hierarchical Image Classification Using Entailment Cone Embeddings; Dhall, ..., Krause CVPR’20
Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry; Nickel, Kiela ICML'18
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