

TACKLING THE LAST EFFICIENCY FRONTIER IN STEEL MANUFACTURING THROUGH AI

Dr. Jan Daldrop Team Lead Machine Learning Smart Steel Technologies GmbH Am Treptower Park 75 12435 Berlin, Germany Phone: +49 30 403 673 720E-Mail: request@smart-steel-technologies.comWeb: www.smart-steel-technologies.com

Smart Steel Technologies Company Profile

BUSINESS

TEAM

EXPERIENCE

Blending AI and metallurgical expertise in one team

- Improving the performance of steel manufacturing operations through the deployment of ready-to-use AI software
- Enabling steelmakers to achieve superior quality levels
- Achieving superior energy consumption, CO2 production standards
- Interdisciplinary integrated team of 20 associates with ...
- ... world-class AI and steel know-how ...
- … PhDs in metallurgy, math, physics.
- Languages: English, German, Russian
- Commissioning and optimizing steel production lines: 20 years
- Data transformation, industrial AI applications: 10 years
- Building up steel focus: 4 years
- ArcelorMittal (3 production sites)
- Buderus Edelstahl
- Ternium, British Steel

Steel Manufacturing: More Than 10 Shops / Site

- 3500 steel grades, from low carbon up to grain oriented electrical steel
- 4 major processing steps up to casting
- 4 to 6 thermo-mechanic processing steps after casting

E.g., 920 continuous casting lines (1.9 Mt each) worldwide

Secondary Metallurgy and Casting

Basic Oxygen Furnace

- hot metal to steel
- decarburization
- de-Si, de-P

Ladle Furnace

- temperature
- chemical composition

Ruhrstahl Heraeus

- vacuum degassing
- H, O

Continuous Casting

- solidification
- shaping

A SOPHISTICATED PROCESS CHAIN FOR HIGH QUALITY PRODUCTS

Rolling and Galvanizing

Hot Rolling

- thickness reduction
- above recrystallization temperature
- mechanical properties

Pickling

- acid bath
- remove oxides, scale

Cold Rolling

- thickness reduction
- mechanical properties
- surface finishing

Galvanizing

- zinc coating to prevent corrosion
- liquid zinc bath

Surface Inspection

 automated visual inspection

Steel Plant Impressions

Basic Oxygen Furnace

Hot Strip Mill

Galvanized Coils

SST Surface Inspection AI Project

Building Blocks

- 1 CNN Surface Defect Classification
- 2 Training Data Optimization
- 3 SST Image Search
- 4 Online Integration

CNN Surface Defect classification

- Existing ASIS systems typically based on classical image features
- SST uses advanced CNN ensembles optimized for steel surface defect classification
- Steel-specific image augmentation, problem-specific class weights + losses
- Transfer learning + Semi-supervised learning

GOOD TRAINING DATA IS THE KEY FACTOR FOR MOST AI APPLICATIONS

SMART STEEL

28035

23012

5023

774

701

276

203

1.32

Grade A

Grade B Grade C

Grade D

Grade F Grade G

Other

SST Defect Image Search for QUICK Classifier Tuning

Upload image			Browse		
liters					
roduction per rom	iod			То	
2016-09-30 00	0:00		8	2019-09-01 23:59	â
leat ID / Slab II	D / Coil ID			Number of images to return	(a)
Advanced fil	lters				
Defect width (mm)				
\leftrightarrow	2.00			1000.00	Enable
Defectionatio	(mm)				
1	15.00			1000.00	Enable
+	15.00	_		1000.00	
Cross position	from operator si	de (BS) (mm)			Enable
÷	10.00			500.00	
Cross position	n from drive side (AS) (mm)			
\rightarrow	10.00			500.00	Enable
Longitudinal p	position from hea	id (m)			
\mathbf{V}	10.00			500.00	Enable
Longitudinal p	position from tail	(m)			
$\mathbf{\Lambda}$	10.00			500.00	Enable
Recipe					
neepe					Enable

In_3	In_4	ln_1	ln_5
*		· .	
Distance: 0.00	Distance: 0.06	Distance: 0.06	Distance: 0.07
ASIS: inclusion	ASIS: inclusion	ASIS: inclusion	ASIS: inclusion
Date: 2019-06-02 00:00	Date: 2019-06-01 00:00	Date: 2019-06-02 00:00	Date: 2019-06-01 00:00
Add to query	Add to query	Add to query	Add to query
In_10	ln_2	in_140	ln_175
1			
1 i	1 1		1,
Distance: 0.08	Distance: 0.09	Distance: 0.10	Distance: 0.11
ASIS: inclusion	ASIS: inclusion	ASIS: inclusion	ASIS: inclusion
Date: 2019-06-04 00:00	Date: 2019-06-01 00:00	Date: 2019-06-03 00:00	Date: 2019-05-31 00:00
Add to query	Add to query	Add to guery	Add to guery

Search through 100,000,000 defect images within 100 ms

SST Image Search Technology

Image features / embedding

- Images are indexed by CNN features (cosine distance in Euclidean space)
- Imagenet pre-training
- Select CNN architecture by class-based image retrieval on a test set (MAP, truncated VGG16)
- Dimensionality reduction: Transfer learning (of cosine distance) to a smaller CNN with less outputs + PCA
- Image augmentation during transfer learning improves MAP

Fast approximate nearest neighbor search

 Fast image retrieval with Hierarchical Navigable Small World graphs

UMAP Projection of Feature Vectors

Colors: different defect types

SST Casting Optimization AI Project

Building Blocks

- 1 Centralized Coil Map
- 2 Defect Classification
- 3 Caster Data, Model Tuning
- 4 Automatic Casting Parameter Optimization
- 5 Testing in Production

Installing Deep CNN Classifiers and Centralized Coil Map

SMART STEEL TECHNOLOG	IES Change View					
Coil options Target	time 01:13:43	2	Path of Current Coil: HSM -> PL -> TCM -> CGL			
Coil Selection With Auto Completion	Top a	at ISA	Bottom at			
	0 250 50 3 599.1	sition in cross direction (mm) 0 750 1000 0	defect position in cross direction (mm) 0 250 500 750 1000 0			
Update plot	10					
Red = H Green = Blue = 0	SM • PL • GL •	Deep CNN				
	20	classifiers for all Lines				
	30	•	30			
	570		570			

Matching of defect positions across all routes: HSM, PL, TCM, CGL, inspection lines

Merging Quality, Caster, Melt Shop Data, Model Tuning

Mapping defect rates onto strand position Merging caster and melt shop data

Explainable AI:

Inspecting arbitrary subspaces of caster settings

SST Casting Optimization AI: Significantly Reduce Defects

Applicable to manufacturing of both, flat and long products

Permanently reduced rate of casting defects without installation of new equipment

SST Temperature Optimization AI Project

Building Blocks

- 1 Live Data Transformation
- 2 Live Integration in Melt Shop OT
- 3 Model Tuning
- 4 Testing in Production

Conventional Temperature Optimization (This is *NOT*** the SST Approach)**

SST Uses 100 % of Production Data

SST Process Timeline View

SST covers all melt shop configurations from BOF / EAF to caster

SST Temperature Guidance For BOF Steelmaking

Live Predictions:

- Expected tapping temperature of current heat based on local BOF model
- Optimal target tapping temperature of current heat based on global temperature model
- Recommendation to operator (e.g., set-point for blow-end)
- Chemical composition

SST Temperature Optimization AI – Reduce Temperature Levels By 10 Kelvin

LIVE TEMPERATURE MODEL FOR ALL CIRCULATING LADLES

Based on ladle / tundish histories, all possible steel grades / treatments. Data visualization in web interface. API for HMI integration

SST covers all melt shop configurations and processes No cloud and no supercomputing needed

SST Builds On Future Proof IT Architecture

Live integration of machine learning applications is a lot of work!

Thank you for your attention.