Towards Graph Embedding in Symmetric Spaces

Seminar Presentation

Clemens Fruböse

June 9, 2020

Clemens Fruböse

Motivational Example

- Adjacency matrix is hard to grasp
- link- & node prediction is a combinatorial task

Motivational Example

- Assign coordinates to the vertices (embed the graph)
- Predict links according to spatial layout of data

Why choose curved spaces?

- Graphs have *natural* curvature
- Choosing the right embedding space results in more successful embedding

Clemens Fruböse

4

Content

Motivational Example

link prediction for an embedded graph intrinsic geometry of graphs

- 1) Applications of meaningful embeddings
- 2) Mixed-curvature of graphs
- 3) Choosing symmetric spaces for graph embeddings
- 4) Experiments in constant-curvature spaces
- 5) Discussion/ Outlook / Summary

1) Application of meaningful embeddings

Map of the Internet in hyperbolic space

Clemens Fruböse

Map of the Internet in hyperbolic space

- Hierarchy becomes evident from embedding
- Greedy rooting is successful

Clemens Fruböse

Motivation for INN

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

[2]

8

Towards Graph Embedding in Symmetric Spaces

Heidelberg University

2) Mixed-curvature of graphs

Clemens Fruböse Towards Graph Embedding in Symmetric Spaces Heidelberg University

Interpreting Data

Graph with different structures (tree-like, cyclical)

- Real-world graphs do not fit perfectly to uniformly curved space
- Graphs express structures of different fashion

Embed on curved spaces

 Adapt the curvature of the embedding space to the graph

→ Interpretation and computations within embedding space become difficult

Graph embedded on surface of non-constant curvature

Computationally "easy" approach to mixed-curvature

[Gu et al, 2019]: Products of spaces of mixed-curvatures Data may have varying structure, in some regions tree-like, in others cyclical Combine hyperbolic, spherical and Euclidean spaces 0 Gcycle G_{tree} $\mathcal{P} = \mathbb{S}^{s_1} \times \mathbb{S}^{s_2} \times \cdots \times \mathbb{S}^{s_m} \times \mathbb{H}^{h_1} \times \mathbb{H}^{h_2} \times \cdots \times \mathbb{H}^{h_n} \times \mathbb{E}^e$ $X = [s_{11}, s_{12}, ..., s_{1n}, s_{21}, ..., s_{2k}, ..., s_{m1}, ..., s_{mm}, h_{11}, h_{12}, ..., h_{1n}, h_{21}, ..., h_{2k}, ..., h_{n1}, ..., h_{nn}, e_1, e_2, ..., e_e]$ Hyperbolic Euclidean Spheric space Hyperbolic Spheric space space space space Exponential maps, distances, gradient calculations and gradient projections are decomposed per space: $\operatorname{Exp}_p(v) = (\operatorname{Exp}_{p_1}(v_1), \dots, \operatorname{Exp}_{p_k}(v_k)), \qquad d_{\mathcal{P}}^2(x, y) = \sum d_i^2(x_i, y_i).$ Loss function: $\mathcal{L}(x) = \sum_{1 \le i \le j \le n} \left| \left(\frac{d_{\mathcal{P}}(x_i, x_j)}{d_G(X_i, X_j)} \right)^2 - 1 \right|$ 13

Clemens Fruböse

[4]

12

3) Choosing symmetric spaces for graph embeddings

Clemens Fruböse Towards Graph Embedding in Symmetric Spaces

Subspaces of product spaces – Example: $H^2 \times R$

• $H^2 \times R$ has 2-dim. flat and hyperbolic subspaces

Constant curvature subspaces of $H^2 \times R$

Clemens Fruböse

14

Subspaces of mixed-curvature

• There are subspaces of nonconstant curvature

• The shortest path does not lie on that subspace

Non-constant curvature subspaces of $H^2 \times R$

Totally geodesic submanifolds

 A structure corresponding to a particular curvature has to be contained as totally geodesic submanifold

→ Embedding space has to have correct totally geodesic subspaces

Illustration of the concept of totally geodesic submanifolds

What are these symmetric spaces?

- Posses a high degree of symmetry, i.e. fit to computational requirements
- Have subspaces of constant curvature as tot. geodesic subspaces
- Example:
- Matrix version of hyperbolic space: Siegel upper half space
 Sp(2n,R) / SpO(2n,R)

4) Experiments in spaces of constant curvature

- mAP is acceptable
- Intrinsic geometry not detectable

Perfect tree embedded in 3-dim hyperbolic space with distortion indicated by color

Code from [5] modified

Clemens Fruböse

- mAP is bad
- Intrinsic geometry not detectable

Perfect lattice embedded in 3-dim Euclidean space with distortion indicated by color

- mAP is good
- Intrinsic geometry clearly detectable

Perfect tree embedded in 3-dim hyperbolic space with distortion indicated by color

Clemens Fruböse

- mAP is very good
- Intrinsic geometry clearly detectable

Perfect lattice embedded in 3-dim Euclidean space with distortion indicated by color

Clemens Fruböse

Best results of current code

Very small graph #V=80
 → Do not expect to much from current code

Clemens Fruböse Towards Graph Embedding in Symmetric Spaces

Overview of results

Dataset	fidelity measure	expanding loss function	expanding loss function (FR)	distance-preserving loss function	distance-preserving loss function (FR)
Tree graph	$egin{array}{c} D_{avg}\ RD_{avg}\ { m mAP} \end{array}$	$0.455 \\ 1.450 \\ 0.652$	0.092 0.960 0.851	$0.143 \\ 0.992 \\ 0.620$	0.039 0.995 0.798
Lattice graph	$egin{array}{c} D_{avg} \ RD_{avg} \ { m mAP} \end{array}$	0.329 0.754 0.191	$0.293 \\ 0.757 \\ 0.473$	$0.770 \\ 0.234 \\ 0.151$	0.090 1.034 0.982

 Meaningful embedding highly dependent on starting point
 → Current code reaches local minima

5) Discussion / Outlook / Summary

Summary

- Graph embedding has numerous applications
- "meaningful" embeddings require suiting geometry (curvature)
- mixed-curvature properties can be represented in symmetric spaces (totally geodesic submanifolds)
- Problem: Embedding requires decent starting embedding
- Solution (?) :
 - 1. Adapting the optimization
 - 2. Suitable preprocessing

Images

[1] taken from Boguná, M., Papadopoulos, F. and Krioukov, D., 2010. Sustaining the internet with hyperbolic mapping. Nature communications, 1, p.62., available at <u>https://www.nature.com/articles/ncomms1063</u>

[2] taken from https://upload.wikimedia.org/wikipedia/commons/2/27/MnistExamples.png

[3] taken from <u>https://projector.tensorflow.org/preview.png</u>

[4] taken from presentation by Federico Lopez: "The shortest history of geometric deep learning", 26.05.2020

[5] code modified from <u>https://papers.nips.cc/paper/7213-poincare-embeddings-for-learning-hierarchical-representations</u>, 23.05.19

[6] taken from https://openreview.net/pdf?id=HJxeWnCcF7