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Motivational Example

• Adjacency matrix is hard to grasp
• link- & node prediction is a 

combinatorial task 
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Motivational Example

• Assign coordinates to the vertices (embed the 
graph)

• Predict links according to spatial layout of data
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Why choose curved spaces?
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• Graphs have natural 
curvature

• Choosing the right 
embedding space 
results in more 
successful embedding
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1) Application of meaningful 
embeddings
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Map of the Internet in 
hyperbolic space

[1]
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Map of the Internet in 
hyperbolic space

[1]
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• Hierarchy becomes evident 
from embedding

• Greedy rooting is successful
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Motivation for INN
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n-dim Data

n-dim 
Euclidean 

embedding
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Motivation for INN
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n-dim Data

d-dim 
“relevant” 

Data

intrinsic 
embedding 

space

n-dim 
Euclidean 

embedding
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2) Mixed-curvature of graphs
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Interpreting Data

• Real-world graphs do not 
fit perfectly to uniformly 
curved space

• Graphs express structures 
of different fashion
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Graph with different structures (tree-like, cyclical) 

Towards Graph Embedding in Symmetric Spaces 



Embed on curved spaces
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• Adapt the curvature of the 
embedding space to the 
graph

→ Interpretation and 
computations within 
embedding space become 
difficult

Graph embedded on surface of non-constant curvature
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Computationally “easy” approach to mixed-curvature
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3) Choosing symmetric spaces for 
graph embeddings
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Subspaces of product spaces – Example: 𝐻2 × 𝑅
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• 𝐻2 × 𝑅 has 2-dim. flat 
and hyperbolic
subspaces

Constant curvature subspaces of 𝐻2 × 𝑅
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Subspaces of mixed-curvature
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• There are 
subspaces of non-
constant curvature 

• The shortest path 
does not lie on that 
subspace 

Non-constant curvature subspaces of 𝐻2 × 𝑅
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Totally geodesic submanifolds
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• A structure corresponding to a 
particular curvature has to be 
contained as totally geodesic 
submanifold
→ Embedding space has to have 
correct totally geodesic 
subspaces

Illustration of the concept of totally geodesic submanifolds
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What are these symmetric spaces?
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• Posses a high degree of symmetry, i.e. fit to computational 
requirements

• Have subspaces of constant curvature as tot. geodesic 
subspaces

• Example: 

−Matrix version of hyperbolic space: Siegel upper half space 
Sp(2n,R) / SpO(2n,R)
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4) Experiments in spaces of 
constant curvature 
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Experiments in simple setting
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• mAP is acceptable

• Intrinsic geometry not 
detectable 

Perfect tree embedded in 3-dim hyperbolic space 
with distortion indicated by color

Code from [5] modified
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Experiments in simple setting
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• mAP is bad

• Intrinsic geometry not 
detectable 

Perfect lattice embedded in 3-dim Euclidean space 
with distortion indicated by color
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Experiments in simple setting

Clemens Fruböse Heidelberg University21

• mAP is good

• Intrinsic geometry 
clearly detectable 

Perfect tree embedded in 3-dim hyperbolic space 
with distortion indicated by color
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Experiments in simple setting
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• mAP is very good

• Intrinsic geometry 
clearly detectable 

Perfect lattice embedded in 3-dim Euclidean space 
with distortion indicated by color
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Best results of current code
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• Very small graph #V=80

→ Do not expect to much 
from current code

[6]
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Overview of results
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• Meaningful embedding highly 
dependent on starting point

→ Current code reaches local minima
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5) Discussion / Outlook / Summary
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Summary 

• Graph embedding has numerous applications

• “meaningful” embeddings require suiting geometry (curvature)

• mixed-curvature properties can be represented in symmetric spaces
(totally geodesic submanifolds)

• Problem: Embedding requires decent starting embedding

• Solution (?) : 
1. Adapting the optimization

2. Suitable preprocessing
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