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Directed Sets and Nets

Definition (directed set)

A set A with a relation ≤ is directed, if

1 α ≤ α, ∀α ∈ A (reflexive),

2 if α ≤ β and β ≤ γ, then α ≤ γ (transitive),

3 ∀α, β ∃γ, s.t. α ≤ γ and β ≤ γ.

Examples : N and R.

Definition (net)

A net in X is a map x from a directed set A on another set X .
We write x(α) = xα.

Example : if A = N and X = R, then we get the sequences in R.
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Filters

Definition (filter)

A filter in X F is a non-empty collection of subsets of X , s.t.

1 if F ∈ F and F ⊂ G , then G ∈ F ,

2 if F1,F2 ∈ F , then F1 ∩ F2 ∈ F ,

3 ∅ /∈ F .

Example

The collection of subsets of R containing 0,

the collection of neighbourhoods of a point p in any space.

Thomas Wieber (University of Leeds) Filters, Nets and Tychnoff’s Theorem February 17, 2010 4 / 10



Equivalence of the Theories derived from Filters and Nets

Lemma

We can construct a filter from a net and vice versa.

Proof.

For (xα)α∈A define F (α) := {xβ : β ≥ α} and hence F
(
(xα)α∈A

)
are

the sets containing an F (α),

For F , just pick xF in F ∈ F .

Theorem

The theories derived from filters and nets are equivalent.
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Ultrafilters

Lemma (Existence of ultrafilters)

Every filter in X is contained in a maximal filter, called ultrafilter.

Proof.

Apply Zorn’s Lemma on the collection of all filters X with the
relation ⊂.
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Subbases and the Product Topology

Definition (Subbase)

A collection of sets (Si )i∈I is called a subbase, if any open set is the union
of such sets Si1 ∩ · · · ∩ Sin .

Example : The collection of sets (−∞, b) and (a,∞) with arbitrary a and
b in R.

Definition (product topology)

The product topology on X =
∏

i∈I Xi has as subbase the collection{
pr−1

i (U) : U open in Xi

}
.

Sorry there aren’t any good examples !
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Alexander Subbase Theorem and Tychonoff’s Theorem

Theorem (Alexander subbase theorem)

A set X is compact, if for one subbase every cover of its elements has got
a finite subcover.

Proof.

Only important point : we use ultrafilters!

Theorem (Tychonoff’s theorem, proven by E. Čech in 1937)

The product of compact sets over an arbitrary indexset is again compact
in the product topology.
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Applications

Applications

Banach Alaoglu uses that
∏

x∈X B̄‖x‖(0) is compact,

the p-adic integers are compact Zp ⊂
∏

k
Z/pkZ.
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Further Ideas

Further ideas

Tychnoff’s Theorem is equivalent to Zorn’ Lemma and the Axiom of
Choice,

we proved X =
∏

i∈I Xi is compact, but
⋃

i∈I Ki isn’t !
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