Filters, Nets and Tychnoff's Theorem

Thomas Wieber

University of Leeds

February 17, 2010

's Theorem February 17, 2010 1 / 10

NIVERSITY OF LEEDS

Outline

Our problem

 $X = \prod X_i$ i∈I

Our solution

- Nets
- Filters
- Equivalence of the theories derived from filters and nets
- Ultrafilters
- Subbases and the product topology
- Alexander subbase theorem
- Corollary Tychnoff's theorem

∃ → < ∃</p>

A 🖓 h

NIVERSITY OF LEED

Outline

Our problem

$$X=\prod_{i\in I}X_i$$

Our solution

- Nets
- Filters
- Equivalence of the theories derived from filters and nets
- Ultrafilters
- Subbases and the product topology
- Alexander subbase theorem
- Corollary Tychnoff's theorem

VERSITY OF I

Definition (directed set)

A set A with a relation \leq is directed, if

- $\alpha \leq \alpha, \ \forall \alpha \in A \ (reflexive),$
- 2 if $\alpha \leq \beta$ and $\beta \leq \gamma$, then $\alpha \leq \gamma$ (transitive),

$$\ \, {\bf 0} \ \, \forall \alpha,\beta \ \, \exists \gamma, \ \, {\rm s.t.} \ \, \alpha \leq \gamma \ \, {\rm and} \ \, \beta \leq \gamma.$$

Examples : \mathbb{N} and \mathbb{R} .

Definition (net)

A **net in** X is a map x from a directed set A on another set X. We write $x(\alpha) = x_{\alpha}$.

Example : if $A = \mathbb{N}$ and $X = \mathbb{R}$, then we get the sequences in \mathbb{R} .

UNIVERSITY OF LEEDS

Definition (directed set)

A set A with a relation \leq is directed, if

- $\alpha \leq \alpha, \ \forall \alpha \in A \ (reflexive),$
- 2 if $\alpha \leq \beta$ and $\beta \leq \gamma$, then $\alpha \leq \gamma$ (transitive),

$$\ \, {\bf 0} \ \, \forall \alpha,\beta \ \, \exists \gamma, \ \, {\rm s.t.} \ \, \alpha \leq \gamma \ \, {\rm and} \ \, \beta \leq \gamma.$$

Examples : \mathbb{N} and \mathbb{R} .

Definition (net)

A net in X is a map x from a directed set A on another set X. We write $x(\alpha) = x_{\alpha}$.

Example : if $A = \mathbb{N}$ and $X = \mathbb{R}$, then we get the sequences in \mathbb{R} .

UNIVERSITY OF LEED

3 / 10

February 17, 2010

Definition (filter)

A filter in $X \mathcal{F}$ is a non-empty collection of subsets of X, s.t.

- if $F \in \mathcal{F}$ and $F \subset G$, then $G \in \mathcal{F}$,
- 2) if $F_1, F_2 \in \mathcal{F}$, then $F_1 \cap F_2 \in \mathcal{F}$,

Example

- The collection of subsets of ${\mathbb R}$ containing 0,
- the collection of neighbourhoods of a point p in any space.

Lemma

We can construct a filter from a net and vice versa.

Proof.

• For $(x_{\alpha})_{\alpha \in A}$ define $F(\alpha) := \{x_{\beta} : \beta \ge \alpha\}$ and hence $\mathcal{F}((x_{\alpha})_{\alpha \in A})$ are the sets containing an $F(\alpha)$,

February 17, 2010

5 / 10

• For \mathcal{F} , just pick x_F in $F \in \mathcal{F}$.

Theorem

The theories derived from filters and nets are equivalent.

Lemma

We can construct a filter from a net and vice versa.

Proof.

- For $(x_{\alpha})_{\alpha \in A}$ define $F(\alpha) := \{x_{\beta} : \beta \ge \alpha\}$ and hence $\mathcal{F}((x_{\alpha})_{\alpha \in A})$ are the sets containing an $F(\alpha)$,
- For \mathcal{F} , just pick x_F in $F \in \mathcal{F}$.

Theorem

The theories derived from filters and nets are equivalent.

Lemma

We can construct a filter from a net and vice versa.

Proof.

- For $(x_{\alpha})_{\alpha \in A}$ define $F(\alpha) := \{x_{\beta} : \beta \ge \alpha\}$ and hence $\mathcal{F}((x_{\alpha})_{\alpha \in A})$ are the sets containing an $F(\alpha)$,
- For \mathcal{F} , just pick x_F in $F \in \mathcal{F}$.

Theorem

The theories derived from filters and nets are equivalent.

Lemma (Existence of ultrafilters)

Every filter in X is contained in a maximal filter, called ultrafilter.

Proof.

Apply Zorn's Lemma on the collection of all filters X with the relation \subset .

6 / 10

February 17, 2010

Definition (Subbase)

A collection of sets $(S_i)_{i \in I}$ is called a subbase, if any open set is the union of such sets $S_{i_1} \cap \cdots \cap S_{i_n}$.

Example : The collection of sets $(-\infty, b)$ and (a, ∞) with arbitrary a and b in \mathbb{R} .

Definition (product topology)

The product topology on $X = \prod_{i \in I} X_i$ has as subbase the collection $\{pr_i^{-1}(U) : U \text{ open in } X_i\}.$

Sorry there aren't any good examples !

Definition (Subbase)

A collection of sets $(S_i)_{i \in I}$ is called a subbase, if any open set is the union of such sets $S_{i_1} \cap \cdots \cap S_{i_n}$.

Example : The collection of sets $(-\infty, b)$ and (a, ∞) with arbitrary a and b in \mathbb{R} .

Definition (product topology)

The product topology on $X = \prod_{i \in I} X_i$ has as subbase the collection $\{pr_i^{-1}(U) : U \text{ open in } X_i\}.$

Sorry there aren't any good examples !

・ロト ・同ト ・ヨト ・ヨ

Theorem (Alexander subbase theorem)

A set X is compact, if for one subbase every cover of its elements has got a finite subcover.

Proof.

Only important point : we use ultrafilters!

Theorem (Tychonoff's theorem, proven by E. Čech in 1937)

The product of compact sets over an arbitrary indexset is again compact in the product topology.

Applications

- Banach Alaoglu uses that $\prod_{x \in X} \overline{B}_{||x||}(0)$ is compact,
- the p-adic integers are compact $\mathbb{Z}_p \subset \prod_k \mathbb{Z}/p^k \mathbb{Z}$.

< ロ > < 同 > < 三 > < 三

UNIVERSITY OF LEED

Further ideas

- Tychnoff's Theorem is equivalent to Zorn' Lemma and the Axiom of Choice,
- we proved $X = \prod_{i \in I} X_i$ is compact, but $\bigcup_{i \in I} K_i$ isn't !

