1 Sheaves of smooth functions

As we make extensive usage of connected subsets of the manifold X during this subsection we may assume without loss of generality that X is connected.

Definition 1 (Sheaf of smooth functions \mathcal{C}_{U}^{∞})

The **sheaf of smooth functions** \mathcal{C}_U^{∞} of an open subset U of X is the collection of all smooth functions mapping a domain contained in U to the real numbers, i.e. $\mathcal{C}_U^{\infty} = \bigcup_{\mathcal{D} \subset U} C^{\infty}(\mathcal{D})$

For the sake of simplicity I sometimes write $f \in \mathcal{C}_U^{\infty}$, if $f \in C^{\infty}(\mathcal{D})$ with $\mathcal{D} \subset U$ was 100 percent correct.

Definition 2 (Smooth germ)

Given a point p in $V \stackrel{\text{open}}{\subset} U$ and a smooth function $f: V \to \mathbb{R}$ in \mathcal{C}_U^{∞} we define f's **germ** in p as $[f] = \left\{ g \in \mathcal{C}_U^{\infty} \ (g \in C^{\infty}(\mathcal{D}), \mathcal{D} \stackrel{\text{open}}{\subset} U) : \exists W : p \in W \stackrel{\text{open}}{\subset} (V \cap \mathcal{D} \subset) U \& f|_W = g|_W \right\}$. Two functions out of one germ are also sometimes referred to as being equivalent in signs $f \sim g$. The set of these equivalence classes is the **stalk of** \mathcal{C}_U^{∞} **at p** denoted by $\mathcal{C}_{U,p}^{\infty}$.



Figure 1: example for definition 2 : the parabola and an equivalent function

Lemma 3

 $C_{U,p}^{\infty}$ possesses an \mathbb{R} -algebra structure with addition [f] + [g] := [f + g] and multiplication $[f] \cdot [g] := [fg]$.

Proof

These binary operations are well defined, as for $f_1|_{W_f} = f_2|_{W_f}$ and $g_1|_{W_g} = g_2|_{W_g}$ we conclude $f_1|_W = f_2|_W$ and $g_1|_W = g_2|_W$ with $p \in W = W_f \cap W_g$. Therefore $(f_1 + g_1)|_W = (f_2 + g_2)|_W$ and $(f_1g_1)|_W = (f_2g_2)|_W$. So all the algebra axioms for $\mathcal{C}^{\infty}_{U,p}$ can be deduced from the algebras $C^{\infty}(W)$.

Corollary 4

The above lemma induces an algebra homomorphism

$$\begin{array}{rccc} \pi: & C^{\infty}(V) & \longrightarrow & \mathcal{C}^{\infty}_U \\ & f & \longmapsto & [f] \end{array}$$

for $V \subset U$. We can actually prove that π is surjective.

Remark 5

Furthermore we can evaluate [f] at p, as f coincides with every other representative g on an open neighbourhood of p and hence especially on p.