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Nomenclature

dxe ceiling function min {n ∈ Z | n ≥ x}, page 53

bxc floor function max {m ∈ Z | m ≤ x}, page 53

[f]OU,p germ of the holomorphic function f in OU,p, page 22

∧
k (V ) vector space of alternating tensors on V , page 10

V ⊗n k times tensor product of the C-vector space V , page 10

v1 ⊗K · · · ⊗K vk tensor product of the vectors v1, . . . , vk, page 9

A−t the transposed inverse matrix of A, i.e. A−t = (At)−1 = (A−1)t, page 12

At the transposed matrix of A, page 12

Aα α-th affine space, page 21

Adj(A) the adjugate matrix of A, page 12

Bihol (U) the group of biholomorphic functions on U , page 15

Cd[X1, . . . , Xn] vector space of polynomials homogeneous of degree d, page 8

codimY codimension of an analytic variety Y in a complex manifold M , i.e. codimY =
dimM − dimY , page 43

E the unit disc B1(0) in C, page 44
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En unit polycylinder or polydisc in Cn, page 46

Ep fibre over p, page 30

G\S orbit space, page 11

Gx stabiliser subgroup, page 11

H left half plane, i.e. {z ∈ C : Re(z) < 0}, page 48

M (M)⊗O Γ(T ∗M⊗q) vector space of meromorphic tensors such that their associated
holomorphic tensors belong to Γ(T ∗M⊗q), page 38

M (M) algebra of meromorphic functions on a manifold M , page 37

OU sheaf of holomorphic functions, page 22

OU,p stalk of holomorphic functions at the point p, page 22

(Ω•)⊗k (M,D) vector space of generalised logarithmic tensors, page 54

Ωq(M) vector space of q-forms, page 34

O(M,N) the set of holomorphic functions between the manifolds M and N , page 20

ord (f, Y, p) order of the singularity of f along Y in p, page 49

O(U) the algebra of complex valued holomorphic functions, page 15

O(U,Cm) the vector space of holomorphic functions, page 15

O(U, Y ) restriction of O(U,Cm), page 15

P (f) pole locus of f , page 37
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PnC n-dimensional projective space, page 21

pkn k-th n-dimensional standard element, page 46

pkn,Q k-th n-dimensional Q-standard element, page 46

Yreg regular locus of an analytic subvariety Y , page 42

Ysing singular locus of an analytic subvariety Y , page 42

suppD support of the divisor D, page 43

A−t the transposed inverse matrix of A, i.e. A−t = (At)−1 = (A−1)t, page 12

At the transposed matrix of A, page 12

TpM tangent space of M at p, page 23

wj j-th coordinate for a second chart on PnC, page 37

Z∗(f) zero locus of f without zero, page 7

Z(f) zero locus of f , page 7

Z((fi)i∈I) common zero locus of (fi)i∈I , page 7

z point in PnC, without loss of generality in A0, page 22

zi i-th coordinate of z, page 22
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1 Introduction

This is an excerpt of my unsubmitted diploma thesis. The broad presentation of differen-
tial geometry could and hopefully should be useful for students.

June 2014, Heidelberg
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2 Algebraic preliminaries

2.1 Polynomials

[Zero locus of a function]We denote by Z (f) the zero locus of f : X → Cn. For a family
of functions (fi)i∈I Z((fi)i∈I) denotes the common zero locus of them, i.e.

⋂
i∈I Z(fi).

If X is a vector space, then we are sometimes interested in Z∗(f) := Z(f)\ {0} .

2.1.0. Z∗(f)
really necessary
?

As we need a Corollary of Hilbert’s Nullstellensatz we begin with

[Hilbert’s Nullstellensatz] Let P1, . . . , Pk ∈ C[X1, . . . , Xn]. If a = a(Z(P1, . . . , Pk)) is the
ideal of polynomials vanishing on Z(P1, . . . , Pk), i.e. a =

{
P ∈ C[X1, . . . , Xn] : P (z) = 0 ∀z ∈ Z(P1, . . . , Pk)

}
,

then a = rad(P1, . . . , Pk) :=
{
P ∈ C[X1, . . . , Xn] : ∃ m > 0 : Pm ∈ (P1, . . . , Pk)

}
. For a

proof please have a look in [Lan02, Theorem 1.5., p.380].

If the zero locus of a polynomial Q is a subset of the zero locus of another polyno-
mial P , then Q divides a power of P . We just have to observe that P lies in
a(Z(Q)) and hence there exists an element A of C[X1, . . . , Xn] such that Pm = AQ.

In a unique factorization domain(UFD) we denote by (fi)i∈IP the collection of represen-
tatives of equivalence classes of prime elements.

An isomorphism between UFDs φ : R→ S maps primes onto primes and leaves prime fac-
torizations invariant, i.e. φ(εR·

∏
i∈IP f

νi
i ) = εS ·

∏
i∈IP g

νi
i .

2.1.0. prove
this.

[Square-free element]In a unique factorization domain an element x with a factorization
x = ε ·

∏
i∈IP f

νi
i is square-free if νi ≤ 1 ∀ i ∈ IP .

If the zero locus of a square-free polynomial Q is a subset of the zero locus of an-
other polynomial P , then Q divides P . We deduce from section 2.1 on this page that

11



2 Algebraic preliminaries June 1, 2014

Pm = AQ. Expressing P and Q by εP ·
∏
i∈IP f

νi(P )
i and εQ ·

∏
i∈IP f

νi(Q)
i , respec-

tively, leads to m · νi(P ) ≥ νi(Q) ∀ i ∈ IP . Hence νi(Q) = 1 implies νi(P ) ≥ 1 =
νi(Q).

[Homogeneous function] Let C be a complex cone, i.e. for all t in C∗ z ∈ C implies tz ∈ C.
We call a function f : C → C homogeneous of degree d if it holds f(tz) = tdf(z) for
every z in Cn and t in C∗.

[Homogeneous polynomials] The set of polynomials homogeneous of degree d in n
variables is denoted by Cd[X1, . . . , Xn]. As 0 lies in each of these Cd[X1, . . . , Xn]s they
become vector spaces collapsing for negative ds.

For positive d Cd[X1, . . . , Xn] is a vector space of dimension (d+n−1)!
d!(n−1)! .

2.1.0. Add
reference.

If the product of two non-zero polynomials P andQ is homogeneous, then so are P andQ.
Let n = deg(P ) and m = deg(Q), then it holds tm+nP (z)Q(z) = P (tz)Q(tz) for any z ∈
Cn and t ∈ C. Expressing P (tz) and Q(tz) as a power series in t with coefficients equaling
the homogenous parts of P and Q, respectively, gives tm+nP (z)Q(z) = aαt

αbβt
β =∑n+m

k=0 tk
∑k

l=0 albk−l. Comparing the coefficients leads to
∑k

l=0 albk−l = 0 for k < m+n
especially a0 = 0 or b0 = 0. We prove this lemma algorithmically and denote by Ai the
index for which we have already calculated after the i-th step that aj = 0 ∀j ≤ Ai < n.∑k

l=0 albk−l =
∑Ai

l=0 albk−l + aAibk−Bi +
∑k

l=k−Bi albk−l = aAibk−Bi . Hence either Ai or
Bi can be increased.

2.1.0.
smoothen proof

The factorization of a homogeneous polynomial Q consists of homogeneous polynomi-
als.

2.2 Tensor products

[Lan02, Chapter XVI]

[Tensor product of modules] The tensor product M1 ⊗R · · · ⊗R Mk of the modules
M1, . . . ,Mk over a commutative ring R is the module uniquely determined (up to iso-
morphisms) by the universal property, i.e. there is a multilinear map ten : M1 × · · · ×
Mk −→ M1 ⊗R · · · ⊗R Mk and for each multilinear map f : M1 × · · · × Mk −→ N
exists exactly one linear map f∗ : M1 ⊗R · · · ⊗R Mk −→ N satisfying f = f∗ ◦
ten.

12



June 1, 2014 2.2 Tensor products

M1 ⊗R · · · ⊗RMk

M1 × · · · ×Mk

N

ten

f

∃! f∗

1. We denote by v1⊗R · · · ⊗R vk the image of (v1, . . . , vk) ∈M1× · · · ×Mk under the
map ten.

2. When it is clear which ring is used v1⊗R · · · ⊗R vk and even M1⊗R · · · ⊗RMk can
be abbreviated by v1 ⊗ · · · ⊗ vk and M1 ⊗ · · · ⊗Mk, respectively.

In order to present the first example of a tensor product we fix some further nota-
tion.

[Dual space and basis]Let V be a finite dimensional vector space over field K of charac-
teristic 0. We denote by V ∗ its dual space HomK (V,K). The dual basis

{
e1∗, . . . , en∗

}
is the basis of V ∗ specified with respect to a basis {e1, . . . , en} of V by ei∗(ej) = δij ∀i, j.

[Tensor product of vector spaces] If R equals C (or any other field of characteristic 0)
then C-modules are C-vector spaces and the tensor product V1 ⊗C · · · ⊗C Vk coincides
with the multilinear maps from V ∗1 × · · · × V ∗k to C, i.e. Mult (V ∗1 × · · · × V ∗k ,C). And
ten maps (v1, . . . , vk) to

v1 ⊗K · · · ⊗K vk : V ∗1 × · · · × V ∗k −→ K
(φ1, . . . , φk) 7−→

∏
φi(vi).

We deduce from the universal property :

1. There is a natural isomorphism between (M1 ⊗R · · · ⊗RMl)⊗R(Ml+1 ⊗R · · · ⊗RMk)
and M1 ⊗R · · · ⊗RMk.

2. The modules M ⊗R N and N ⊗RM are naturally isomorphic.

3. A tuple of linear maps Ψi : Mi → Ni induces
Ψ = Ψ1 ⊗ . . .⊗Ψk : (M1 ⊗R · · · ⊗RMk)→ (N1 ⊗R · · · ⊗R Nk).

13



2 Algebraic preliminaries June 1, 2014

From now on we concentrate on vector spaces over the complex numbers C.

Given the tensor product V1 ⊗C · · · ⊗C Vk then the vector spaces’ basis
(
ejij

)
1≤ij≤dimVj

induce a basis
(
e1
i1
⊗ · · · ⊗ ekik

)
1≤ij≤dimVj

of V1⊗C· · ·⊗CVk.

We shorten V1 ⊗C · · · ⊗C Vk to V ⊗n when V equals each Vi. In this case we also shorten
the basis elements e1

j1
⊗C · · · ⊗C e

n
jn

to ej1,...,jn .

[Group of permutations Sn] The group of permutations on {1, . . . , n} is denoted by
Sn.

[Alternating tensor] We call a tensor T alternating if it holds for all permutations σ in
Sn and all vectors in V T (v1, . . . , vn) = sgn (σ)T (vσ(1), . . . , vσ(n)) ≡ sgn (σ)T σ(v1, . . . , vn).

[The vector space of alternating tensors
∧
n (V ) ] The set of alternating tensors

∧
n (V )

is a vector space giving rise to a vector space epimorphism

alt : V ⊗n −�
∧
n (V )

T 7−→ 1
|Sn|

∑
σ∈Sn sgn (σ)T σ

that equals the identity map on
∧
n (V ).∧

k (V ) has got the basis (alt (ej1,...,jk))1≤j1<j2<···<jk−1<jk≤n and consequently dimension(
n
k

)
.

We fix further notations. alt (v1 ⊗ . . .⊗ vk) is shortened to v1 ∧ · · · ∧ vk. If j1 <
j2 < · · · < jk−1 < jk then alt (ej1 ⊗ . . .⊗ ejk) is abbreviated by e{j1,...,jk} ≡ eJ .

[Exterior algebra] We denote by Alt • (V ) the direct sum
⊕∞

k=0

∧
k (V ) which is finite

due to item 3, i.e.
⊕n

k=0

∧
k (V ).

A linear map Ψ : V → W induces a map
∧k Ψ :

∧
k (V ) →

∧
k (W ) satisfying(∧k Ψ

)
(vIeVI ) = vI det(ΨJ

I )eWJ .
2.2.0. finish

this section.
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June 1, 2014 2.3 Group actions

2.3 Group actions

[Group action] A group action of a group G on a set S is a group homomorphism
ρ : G → (Aut(S), ◦) of G into the group of automorphisms, i.e. bijective self-maps.

We normally denote ρ(g)(x) by gx or g(x).
The natural questions arising from definition 2.3 are which elements of G leave an element
x of S unchanged and where is xmapped by all different g inG ?

[Stabiliser subgroup Gx] For a given point x ∈ S and a group G acting on S the group
Gx := {g ∈ G : g(x) = x} is called stabiliser subgroup Gx of x.

[Orbit space G\S ] The orbit Gx of x under G is an equivalence class in S of the form
{y ∈ S : ∃ g ∈ G : y = gx} =

⋃
g∈G {gx}. The orbit space G\S is the collection of all

orbits.

We characterize group actions by their stabiliser subgroups, similarly as [BBI01, p.83].

[Free group action] If each stabiliser subgroup Gx only consists of the identity element
in G then the group action is free.

If the group is acting on a set with an additional structure, then we focus on the auto-
morphisms of this structure. We do this twice, once in section 3.1 with topological spaces
and now with vector spaces.

absichtlich
drin gelassen

2.4 Group representations

[Group representation] A representation of a group G on a vector space V is a group ho-
momorphism ρ : G→ GL(V ). IfG is equipped with an additional structure then sharper
definitions are possible, e.g. GL(n,C) is a linear algebraic group.

[Polynomial map] A map ϕ : GL(n,C) → C is polynomial if there exists a polyno-
mial P ∈ C[X1, . . . , Xn2

] such that it holds ϕ(A) = P (a1
1, . . . , a

n
n) for all A = (aij) in

GL(n,C).

[Vector valued polynomial map] A map ϕ from GL(n,C) to a finite dimensional vector

15



2 Algebraic preliminaries June 1, 2014

space V is called polynomial if for a given basis (ei) the associated coordinate functions
ϕi are polynomial. This definition is independent of the chosen basis because coordinate
functions belonging to different basis transform linearly by the corresponding basis change
matrix. According to [Spr77, definition 1.4.8, p.7] we pick as vector space the set of
endomorphisms W = End (V ) and define

[Rational representation of GL(n,C)] A representation of GL(n,C) on a vector space
V is rational, if there is a natural number k for which detAk · ρ(A) is polynomial.

[Weight of a rational group representation] Due to the fact that C
[
X1, . . . , Xn2

]
is a

UFD there is a minimal integer for which detAk · ρ(A) is still polynomial. It is referred
to as the weight of ρ.

[Reduced group representation] A rational representation ρ is called reduced if it has
got zero weight.

1. Building blocks for a lot of representations are the standard ρe(A) = A, contragra-
dient ρc(A) = A−t and the determinant representation det(A).

2. The representation defined by

ρe⊗ρe : GL(n,C) −→ Aut (M(n,C))
A 7−→

{
X 7→ AXAt

}
is reduced.

3. The representation defined by

ρc⊗ρc : GL(n,C) −→ Aut (M(n,C)))
A 7−→

{
X 7→ A−tXA−1

}
is rational of weight 2. Indeed Cramer’s rule yields that A−1 is 1

det(A) Adj(A) where
Adj denotes the polynomial map sending a matrix to its adjugate. Therefore ρ has
got a weight of at most 2 . But observing det(c · In)ρ(c · In) = 1

c · IM(n,C) shows
that the weight has to be strictly greater than 1.

4. Both representations given above can be restricted to the vector space of symmetric

16



June 1, 2014 2.4 Group representations

matrices (Cn)�2, i.e.

ρe�ρe : GL(n,C) −→ Aut
(

(Cn)�2
)

A 7−→
{
X 7→ AXAt

}
and ρc�ρc analogously.

17





3 Analytic preliminaries

[Proper map]A map p : X → Y between two locally compact Hausdorff spaces is proper,
if the preimage of a compact subset in Y is compact in X.

[Complex differentiable function]Let U be an open subset of Cn. A function f : U →
Cm is complex differentiable, if it is Fréchet differentiable, i.e there is an associated
function Df : U → L(Cn,Cm) satisfying

f(z) = f(z0) +Df (z0) (z − z0) + o(‖z − z0‖)

in every z0 ∈ U , where o(‖z − z0‖) is the Landau Small O symbol.

In honour of Oka Kiyoshi we denote the algebra of complex differentiable functions
byO(U,Cm). Complex differentiable functions are usually called holomorphic.

Given a subset Y of Cm we define O(U, Y ) to be {f ∈ O(U,Cm) : f(U) ⊂ Y } and pro-
ceed similarly with Cm = C, i.e. O(U) := O(U,C).
The partial derivative Djf(z0) and the transformation matrix of Df(z0) are denoted by
∂f
∂zj

(z0) and Jac(f, z0) =
(
∂f i

∂zj
(z0)

)
1≤i≤m, 1≤j≤n

respectively.

[Biholomorphic function]We call a bijective holomorphic function f : U → V with holo-
morphic inverse f−1 : V → U biholomorphic. If U and V coincide then the biholomor-
phic functions form the group Bihol (U) ( O(U,U).

We shall show in section 3.9 on page 40 that it is redundant to claim separately that f−1 is
holomorphic, because it follows from the two other properties.

3.1 Continuous group actions

[Topological group] A topological group is a group with a topology on the ensem-

19



3 Analytic preliminaries June 1, 2014

ble of its elements such that the functions (g, h) 7→ g · h and g 7→ g−1 are continu-
ous.

It is worthwhile to mention that we can equip every group with the discrete topology
making it a topological group.

[Continuous group action] The action of a topological group G on a topological space X
is continuous, if

ρ : G×X −→ X
(g, x) 7−→ gx

is continuous with respect to the product topology.

Consider a group G with discrete topology and a topological space X. Then any homo-
morphism from G into the group of X’s homeomorphisms is a continuous group action.
It follows immediately that {g} × g−1(Ω) is open in the product topology for any open
subset Ω of X.

[Topology on the orbit space G\X ] Suppose G acts continuously on a topological space
X. Then the projection

πG : X −� G\X

x 7−→ Gx

induces the quotient topology on G\X , i.e. U is open in G\X iff π−1
G (U) is open in X.

A useful fact is that any A ⊂ G\X equals
⋃
x∈π−1

G (A) {Gx}.
3.1.0. really

useful ?

[Totally discontinuously group action] A group G acts totally discontinuously on a
locally compact Hausdorff space, if

• for any two compact subsets K1 and K2 the set {g ∈ G : g ◦K1 ∩K2 6= ∅} is finite

• and G is acting continuously.

?? on page ?? displays an example for a totally discontinuously group action.

Totally discontinuously group actions have pleasant properties as stated in the following
lemma.

20



June 1, 2014 3.1 Continuous group actions

If G acts totally discontinuously on X then

1. for every p in X there exists a neighbourhood Ũ such that
{
g ∈ G : g ◦ Ũ ∩ Ũ 6= ∅

}
equals Gp,

2. the orbit space G\X is Hausdorff,

3. it holds Gq ⊂ Gp for all q in the aforementioned Ũ = Ũp,

4. Gp is finite for every p in X,

5. therefore it exists a neighbourhood U of p, such that Gp is acting on U and Gp\U

is homeomorphic to an open neighbourhood of Gp in G\X ,

6. if the action of G is also free, then the induced projection X → G\X is locally a
homeomorphism.

i.&ii. The first two statements are proven in Proposition 1.7 and 1.8 of [Shi71][p.3] re-
spectively.

iii. All elements g of Gq satisfy g ◦ Ũ ∩ Ũ ⊃ {q} 6= ∅ per definitionem.

iv. Setting {p} = K1 = K2 leads to the third statement.

v. We refine Ũ from 1) by setting U :=
⋂
g∈Gp g ◦ Ũ ⊂ Ũ and hence it still satisfies

(3.1) Gp = {g ∈ G : g ◦ U ∩ U 6= ∅} .

Even more U is Gp-invariant by construction implying that the action of Gp on U
is well defined, leading to

ι : Gp\U −� πG(U) ⊂ G\X

Gpx 7−→ Gx.

This map is bijective, because Gx = Gy implies x = h(y) for a certain h ∈ G
and therefore h ◦ U ∩ U 6= ∅ . We deduce from eq. (3.1) that h lies in Gp and so
Gpx = Gpy.
In order to prove that ι is open it suffices to show that π−1

G (ι(Ω)) is open for an
arbitrary open set Ω ⊂ Gp\U with V = π−1

Gp
(Ω). Indeed this preimage equals

π−1
G

(⋃
x∈V Gx

)
=
⋃
x∈V π

−1
G (Gx) =

⋃
x∈V

⋃
h∈G {hx}. As G is acting continuously

21



3 Analytic preliminaries June 1, 2014

this is the union of the open sets h(V ) for h ∈ G.
ι is continuous because π−1

Gp
(ι−1(Ω)) is {x ∈ U : Gx ∈ Ω} = U ∩ π−1

G (Ω).

vi. As G is acting freely Gx\U
∼=−−→ πG(U) can be extended to U

∼=−−→ {id}\U = Gx\U
∼=−−→

πG(U).

3.2 Topological and complex manifolds

The aim of this subsection - an adaption of [Wie10, Section 2.1] - is to introduce the
concept of a complex manifold.

[C0-atlas] A C0-atlas on a topological space X consists of an open cover (Ui)i∈I of X
and a family (also over I) of homeomorphisms φi : Ui → Vi

open
⊂ Rni . The maps are known

as charts or coordinate functions of the specific atlas.

[Topological manifold] A topological manifold M is a second countable Hausdorff
space admitting a C0-atlas on it.

[Transition functions] The change of coordinates as visualised in fig. 3.1 on the next page
is described by the transition function

τj→i : φj(Ui ∩ Uj)︸ ︷︷ ︸
⊂Rnj

−→ φi(Ui ∩ Uj)︸ ︷︷ ︸
⊂Rni

x 7−→ φi ◦ φ−1
j (x).

As the transition functions are homeomorphisms, [Bro12] implies, that their domain and
image both lie in the same Rk if non-void. Hence if one chart maps in Ck any other chart
does so too.

This allows us to specify certain atlases.

[Holomorphic atlas] We call an C0-atlas holomorphic atlas, if every transition function
τj→i is a holomorphic map between two open subsets of Ck.

As τ−1
j→i = τi→j the above implies that the transition functions of holomorphic atlases

are biholomorphic functions.
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June 1, 2014 3.2 Topological and complex manifolds

Figure 3.1: the charts and the transition function, picture retrieved from [For77]

[Equivalent atlases] Two holomorphic atlases (Ui, φi)i∈I and (Ωj , ψj)j∈J are equiva-
lent if their union is still a holomorphic atlas or equivalently every transition func-
tion

τj→i : ψj(Ui ∩ Ωj) −→ φi(Ui ∩ Ωj)

z 7−→ φi ◦ ψ−1
j (z)

is holomorphic, cf. [GHL87, Def 1.7, p.5].

[Holomorphic structure] A holomorphic structure on a topological manifold M is an
equivalence class of holomorphic atlases.

Every holomorphic atlas is contained in an equivalence class and induces a holomorphic
structure in this way.

[Complex manifold] A complex manifold is a topological manifold with a holomorphic
structure on it.

1. Any open subset U of Cn is a complex manifold because id : U = M −→ U ⊂ Cn is
a homeomorphism. And as A = {idU} only consists of this chart, the compatibility
condition is trivially satisfied giving rise to a holomorphic structure.

2. Every open subset Ω of a complex manifoldM is a complex manifold. We just have
to restrict a holomorphic atlas ofM A = (Ui, φi)i∈I to the family

(
Ui ∩ Ω, φi|Ui∩Ω

)
i∈I

which is still satisfying the properties of a holomorphic atlas. Obviously any other
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holomorphic atlas of A’s equivalence class would have induced an equivalent holo-
morphic atlas on Ω.

3. We dedicate the whole section 3.3 to an important example the projective space
which is extensively used in chapter 5.

[Charts of complex manifolds] A chart of a complex manifold is a map that is a chart
in one of the holomorphic structure’s atlases.

[Dimension of a manifold] Consider a point p on a topological or complex manifoldM and
two charts (U1, φ1) and (U2, φ2) with p ∈ U1 ∩ U2. We shall use the notation K for C or
R if it is clear from the context (topological vs. complex manifolfd) which one is meant.
Then we conclude that φ1 and φ2 map into Euclidean spaces Kni of the same dimension
because of fig. 3.1 on page 22. Therefore the map

dimK : M −→ N
p 7−→ ni for p ∈ Ui

is well-defined. Furthermore it is constant on each Ui and hence locally constant. So
we assign a distinct number to every connected component Mi, the dimension of Mi

dimKMi . The dimension of M is the supremum over the dimensions of the connected
components of M . We only observe manifolds of finite dimension. If all connected com-
ponents have got the same dimension n we say M is of pure dimension. A (complex)
n-dimensional manifold is denoted by M = Mn.

[Holomorphic functions between manifolds] A continuous function f between two topo-
logical manifolds M and N is called holomorphic, if for any charts (z, U) and (w, V )
of M and N , respectively, satisfying f(U) ⊂ V w ◦ f ◦ z−1 lies in O(U, V ). We denote
the set of all these functions by O(M,N).

1. Here we used z and w as symbols for the charts of manifoldsM = Mn andN = Nm.
We do this if we are only working with 2 or 3 different charts. Especially if we
want to use the coordinates in z(U) and w(V ) which we denote by (z1, . . . , zn) and
(w1, . . . , wm) respectively.

2. The charts (φi, Ui) of a complex manifold M = Mn are inO(Ui,Cn) with Ui and Cn
considered as complex manifolds. Indeed cocatenating φ with charts from Ui, i.e.
φi|Ui∩Ω, and Cn, i.e. id, as presented in item 3 gives id◦φi◦φ−1

j = τj→i ∈ O(Ui,Cn).
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The construction undertaken in fig. 3.1 to item 3 can be adjusted to similar cases like
smooth, k-times differentiable, etc. transition functions giving rise to smooth or Ck-
manifolds.

3.3 The n-dimensional projective space

The topic of this subsection is the n-dimensional projective space, the manifold we are us-
ing in chapter 5 in order to prove the results for certain modular forms.

[The n-dimensional projective space PnC] We define the n-dimensional projective
space PnC to be the collection of lines in Cn+1 through the origin. Each of these lines
can be viewed as an equivalence class on Cn+1\{0} for the relation x ∼ y ⇐⇒ ∃ λ ∈
C∗ : x = λy.

The n-dimensional projective space PnC is a complex manifold. Sticking with the
notation of [GH78, Examples, 0 Foundational material, 2. Compl. Mfds, p.15] the
map

π : Cn+1\{0} −→ PnC = (Cn+1\{0})/∼
z =

(
z0, . . . , zn

)
7−→ [z] =

[
z0, . . . , zn

]
induces the quotient topology on PnC. In [FG02, p. 209] it is shown that PnC is actually
a Hausdorff space.
There are homeomorphisms between the α-th affine space Aα = {[z] : zα 6= 0} and
Cn

φα : Aα −→ Cn[
z0, . . . , zn

]
7−→

(
z0

zα , . . . ,
zα−1

zα , z
α+1

zα , . . . z
n

zα

)
.

These maps and open sets form the compatible holomorphic charts of PnC because

ταβ : Cn\
{
wβ = 0

}
−→ Cn\

{
wβ = 0

}
(w0, . . . , ŵα, . . . , wn) 7−→ 1

wβ
(w0, . . . , ŵβ, . . . , wα−1, 1, wα+1, . . . , wn)

is holomorphic and π−1(Aα) =
(
Cn+1\

(
Cα−1 × {0} × Cn−α

))
.
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In computations and proofs we assume without loss of generality that the current chart is
(A0, φ0), so we introduce a special notation for this case : the coordinates of

[
z0, . . . , zn

]
=:

z are denoted by
(
z1

z0
, . . . z

n

z0

)
=: (z1, . . . , zn).

It holds Z∗(Q) = π−1π(Z∗(Q)) for every homogeneous polynomial in n + 1 variables.
The inclusion of the left hand side in the right hand side is obviously true for any
map. As π is just the projection onto the equivalence classes π−1π(z) coincides with{
w ∈ Cn+1 : ∃ t ∈ C∗ : w = t · z

}
. As Q is homogenous z in Z∗(Q) implies π−1π(z) ⊂

Z∗(Q) and hence π−1π(Z∗(Q)) ⊂ Z∗(Q).

3.4 Stalks of holomorphic functions

The concept of sheaves, stalks and germs equips the tangent space with a chart inde-
pendent vector space structure and is even easily extendable to varieties, as mentioned
in [Ser65, page LG 3.8]. As we make extensive usage of connected subsets of M during
this subsection and consequently in the sections 3.5 to 3.8 we may assume without loss
of generality that M is connected.

The classical foundation for the definitions of germs and stalks in section 3.4 is the subse-
quent [Sheaf of holomorphic functions OU ] The (pre-)sheaf of holomorphic functions

3.4.0. remove
this definition ?

OU of an open subset U of M is the collection of all holomorphic functions mapping an
open subset contained in U to the complex numbers, i.e. OU = (O(V ))

V
open
⊂ U

.

We shall write f ∈ OU if we mean ∃ V
open
⊂ U : f ∈ O(V ).

Taking direct limits on the family OU = (O(V ))
V

open
⊂ U

can be formulated in an easily
understandable way.

[Holomorphic germ] Given a point p in V
open
⊂ U and a holomorphic function f : V → C in

OU we define f ’s germ in p as [f]OU,p =
{
g ∈ OU : ∃ W : p ∈W

open
⊂ U & f |W = g|W

}
.

The set of these equivalence classes is the stalk of OU at p denoted by OU,p.

OU,p possesses an C-algebra structure with addition [f]OU,p + [g]OU,p := [f + g]OU,p
and multiplication [f]OU,p · [g]OU,p := [fg]OU,p . These binary operations are well
defined, as for f1|Wf

= f2|Wf
and g1|Wg

= g2|Wg
we conclude f1|W = f2|W and

g1|W = g2|W with p ∈ W = Wf ∩ Wg. Therefore (f1 + g1)|W = (f2 + g2)|W and
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(f1g1)|W = (f2g2)|W . So all the algebra axioms for OU,p can be deduced from the
algebras O(W ).

Furthermore we can evaluate [f]OU,p at p, as f coincides with every other representative
g on an open neighbourhood of p and hence especially on p.
A consequence of the definition of a germ is the isomorphy of the restriction π : OM,p �
OU,p.

3.5 Tangent spaces

[Tangent vector] A tangent vector or derivation at a point p is a C-linear map v :
OM,p → C also satisfying Leibniz’s law v([fg]OU,p) = v([f]OU,p) [g]OU,p (p)+v([g]OU,p) [f]OU,p (p).

[Tangent space] The collection of tangent vectors at a point p is called the holomorphic
tangent space TpM . It is actually a vector space, if viewed with pointwise scalar
multiplication and addition, i.e. (αv + βw)([f]OU,p) := α(v([f]OU,p)) + β(w([f]OU,p)).
The interested reader may have already observed that TpM is a subspace of the dual
vector space of OM,p.

1. For a given smooth curve γ from an open interval I containing zero into M with
γ(0) = p we define vγ by [f]OU,p 7→

d
dt(f ◦ γ)(0). This is welldefined as f ∼ g

implies f |D = g|D, f ◦ γ|γ−1(D) = g ◦ γ|γ−1(D) and so d
dt(f ◦ γ)(0) = d

dt(g ◦ γ)(0).
Furthermore

vγ([fg]OU,p) =
d

dt
((fg) ◦ γ)(0) =

d

dt
((f ◦ γ) · (g ◦ γ))(0)

=
d

dt
(f ◦ γ)(0) · (g ◦ γ)(0) +

d

dt
(g ◦ γ)(0) · (f ◦ γ)(0)

= vγ([f ]OU,p) · [g]OU,p (p) + vγ([g]OU,p) · [f]OU,p (p)

proves that vγ satisfies Leibniz’s law and

vγ([αf + βg]OU,p) =
d

dt
((αf + βg) ◦ γ)(0) =

d

dt
(α(f ◦ γ) + β(g ◦ γ))(0)

= α · d
dt

(f ◦ γ)(0) + β · d
dt

(g ◦ γ)(0)

= α · vγ([f ]OU,p) + β · vγ([g]OU,p).

the linearity.
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2. The partial differential operators ∂ ·
∂zi

∣∣
z0

are elements of Tz0Cn. Let us first observe
that ∂ ·

∂zi

∣∣
z0

: OCn,z0 −→ C is welldefined as f ∼ g implies f |W = g|W on an open

subset W and hence ∂f
∂zi

∣∣∣
z0

= ∂g
∂zi

∣∣∣
z0
. The algebraic properties of a derivation are

clearly satisfied.

In order to verify that the partial differential operators ∂ ·
∂zi

∣∣
z0

form a basis we need to
state first a lemma.

It holds v([c]OU,p) = 0 for every c ∈ C and v ∈ TpM .

We start by showing that v([1]OU,p) = 0, because v([1 · 1]OU,p) = 2·v([1]OU,p)·[1]OU,p (p) =

2·v([1]OU,p). v([c]OU,p) = c·v([1]OU,p) completes the proof.

We prove the following lemma in a little bit bulky version so that it is easily adaptable
to the real case. Furthermore the rather deep fact that every holomorphic function can
be written as a power series (cf. section 3.9 on page 39) can be avoided at this stage of
the thesis.

The partial differential operators ∂ ·
∂zi

∣∣
z0

form a basis of Tz0Cn. We use the idea pre-
sented in [Ger06, p.262] but with a deeper look into the details. In order to trans-
form f(z) = f(z0) + f(z) − f(z0) we define zt(z) := zt := z0 + t(z − z0) and ob-
serve

f(z)− f(z0) = [f(zt)]
1
0 =

∫ 1

0

d

dt
(f(zt)) dt =

∫ 1

0
∇f(zt)

d

dt
(zt) dt

=

∫ 1

0

∂f

∂zi
(zt)(z

i − zi0) dt

Here we used Einstein’s summation convention(section 3.6 on page 33) for the first
time.

=

∫ 1

0

∂f

∂zi
(z0 + t(z − z0)) dt · (zi − zi0) ≡ Si(z)∆i(z)

Both Si(z) and ∆i(z) are holomorphic functions in z by Leibniz’s rule for differen-
tiation under the integral sign. This can be found in [Ger06, lemma 9.4.3 on page
144] or derived from [FB09, lemma II.3.3., p.94]. So we deduce that v([f ]OU,p) equals
v(
[
f(z0) + Si∆

i
]
OU,p

) and hence

v([f ]OU,p) =0 + v([Si]OU,p ·
[
∆i
]
OU,p

)
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=v([Si]OU,p) ·
[
∆i
]
OU,p

(z0) + [Si]OU,p (z0) · v(
[
∆i
]
OU,p

)

=v([Si]OU,p)(z
i
0 − zi0) + [Si]OU,p (z0) · v(

[
zi
]
OU,p
−
[
zi0
]
OU,p

)

=0 + [Si]OU,p (z0) · v(
[
zi
]
OU,p
−
[
zi0
]
OU,p

).

Combining

[Si]OU,p (z0) =

∫ 1

0

∂f

∂zi
(z0 + t(z0 − z0)) dt =

∫ 1

0

∂f

∂zi
(z0) dt =

∂f

∂zi

∣∣∣∣
z0

with v(
[
zi
]
OU,p

−
[
zi0
]
OU,p

) = v(
[
zi
]
OU,p

) =: vi ∈ C establishes the desired formula

v([f ]OU,p) = vi ∂f
∂zi

∣∣∣
z0
.

We want to transport this result to an arbitrary complex manifold. Therefore we need
two further lemmas. We anticipate the notations from item 2 and section 3.6 on pages 30–
32.

Given a holomorphic function φ : M → N then there is an algebra homomorphism

φ∗ : OV,φ(p) −→ OU,p
[f ]OV,φ(p) 7−→ [f ◦ φ]OU,p

for U and V open sets in M and N , respectively. If φ is a biholomorphic function then
φ∗ is an isomorphism.

1. φ∗ is well-defined as f ∼ g implies f |W = g|W for an open subset W of V and
hence f ◦ φ = g ◦ φ in the open subset φ−1(W ).

We have already observed in example 3.5 i) on page 27 that the algebra structure of
germs is preserved by hitting the functions with one single differentiable function.

2. By evaluating (φ−1)∗ at [0]OU,p = φ∗([f ]OV,φ(p)) = [f ◦ φ]OU,p we get
[0]OV,φ(p) = (φ−1)∗([0]OU,p) =

[
f ◦ φ ◦ φ−1

]
OV,φ(p)

= [f ]OV,φ(p) and see how to con-
struct the preimage for an arbitrary element of OU,p.

An algebra homomorphism φ∗ : ON,q −→ OM,p, satisfying φ∗([f ]ON,q)(p) = [f ]ON,q (q)
for all f , is inducing a vector space homomorphism

φ∗ : TpM −→ TqN
v 7−→ v ◦ φ∗.
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If φ∗ is an isomorphism, then so is φ∗.

1. We observe that φ∗ maps into TqN because φ∗ and v are both linear and Leibniz’s
law is satisfied

φ∗(v)([fg]ON,q) = v ◦ φ∗ ([fg]ON,q) = v(φ∗([f ]ON,q)φ
∗([g]ON,q))

= v(φ∗([f ]ON,q)) · φ
∗([g]ON,q)(p) + v(φ∗([g]ON,q)) · φ

∗([f ]ON,q)(p)

= φ∗(v)([f ]ON,q) · [g]ON,q (q) + φ∗(v)([g]ON,q) · [f ]ON,q (q).

φ∗ is linear as an operator concatenating φ∗ to its input.

2. By hitting 0 = φ∗(v) = v◦φ∗ with (φ∗)−1 we get 0 = 0◦(φ∗)−1 = v◦φ∗◦(φ∗)−1 = v.
The image of w ◦ (φ∗)−1 is w ◦ (φ∗)−1 ◦ φ∗ and hence φ∗ is surjective.

The restriction isomorphism ΨM
U : OM,p ↪→�OU,p induces an isomorphism

(ΨM
U )∗ : TpU ↪→�TpM .

[Pushforward] The above constructed vector space homomorphism φ∗ : TpM → Tφ(p)N
associated with a holomorphic function φ : M → N is called the pushforward along
φ.

An immediate consequence is

[Chain rule for pushforwards] For any two holomorphic functions φ : M −→ N and
ψ : N −→ P it holds (ψ ◦φ)∗ = ψ∗ ◦φ∗. Evaluating (ψ ◦φ)∗(v)(h) for arbitrary tangent
vectors v and holomorphic functions h : P → C leads to v((h ◦ ψ) ◦ φ) = (φ∗v)(h ◦ ψ) =
(ψ∗(φ∗v))(h).

We note for the interested reader that there is a functor from the category of complex
manifolds with a single distinguished point to the category of vector spaces assigning
to a manifold (M,p) its tangent space at the distinguished point TpM and to a holo-
morphic function its pushforward between the distinguished tangent spaces TpM and
TqN .

Let TpM be the tangent space of a point p on a manifold M = Mn. Then there is a
canonical isomorphism Φ∗ between TpM and Tz(p)Cn where z is a chart around p. We
have already seen that there are isomorphisms ΨM

U : OM,p → OU,p and ΨCn
V : OCn,z(p) →

OV,z(p). So we conclude from item 2 on the preceding page that we can map functions in
OM,p to functions in OCn,z(p) by Φ :=

(
ΨCn
V

)−1◦( z−1)∗◦ΨM
U . Combining this result with
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item 2 on page 29 leads to the desired isomorphism and each element v in TpM equals
w◦Φ = wi ∂

∂zi

∣∣
z(p)
◦Φ in Einstein’s summation convention.

[Canonical basis of TpM ] Let Φ be the isomorphism from item 2. Then the image of(
∂
∂zi

∣∣
z(p)

)
1≤i≤n

under Φ is
(
∂( (·)|U ◦ z−1)

∂zi
(z(p))

)
1≤i≤n

or shortened to
(
∂ ·
∂zi

∣∣
p

)
1≤i≤n

and forms the canonical basis of TpM associated to the coordinate system (z1, . . . , zn).

We have constructed basis for the tangent spaces and defined a homomorphism between
them. So one question arises naturally. What is the transformation matrix ?

Given a holomorphic function φ : M → N and coordinates (z1, . . . , zn) and (w1, . . . , wm)
around p ∈M and φ(p) ∈ N , respectively, then the transformation matrix of the pushfor-
ward φ∗ : TpM → Tφ(p)N in terms of

(
∂ ·
∂zi

∣∣
p

)
1≤i≤n

and
(
∂ ·
∂wj

∣∣
φ(p)

)
1≤j≤m

is the Jacobian

matrix of w◦φ◦z−1. Writing φ∗(v)(g) = v(g◦φ) as a linear combination of the basis vec-
tors ∂ ·

∂zi

∣∣
p
gives vi ∂g◦φ

∂zi

∣∣∣
p
in Einstein’s summation convention. Expanding these differen-

tial operators explicitly with coordinate functions leads to

φ∗(v)(g) = vi
∂g ◦ w−1 ◦ w ◦ φ ◦ z−1

∂zi
(z(p))

= vi
∂g ◦ w−1

∂wj
(w(φ(p)))

∂(w ◦ φ ◦ z−1)j

∂zi
(z(p))

= vi
∂g

∂wj

∣∣∣∣
φ(p)

Jac(w ◦ φ ◦ z−1, z(p))ji .

As g can be chosen arbitrarily we deduce φ∗
(
vi ∂ ·

∂zi

∣∣
p

)
= Jac(w◦φ◦z−1, z(p))jiv

i ∂ ·
∂wj

∣∣
φ(p)

.

Sometimes we shorten this to vi ∂φ
j

∂zi
∂ ·
∂wj

∣∣
φ(p)

.

Taking φ = id leads to the following corollary.

[Change of the tangent space’s basis] Given coordinates (z1, . . . , zn) and (z̃1, . . . , z̃n)

around p and their associated basis
(
∂ ·
∂zi

∣∣
p

)
1≤i≤n

and
(
∂ ·
∂z̃j

∣∣
p

)
1≤j≤n

in TpM then the

change of basis matrix is the Jacobian matrix of the transition function z̃◦z−1.
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3.6 Cotangent spaces

[Cotangent space] The dual space of TpM is called the holomorphic cotangent space
and denoted by (TpM)∗ = T ∗pM .
We call the elements of the cotangent space co-vectors, 1-forms or covariant vectors.

We can associate to a holomorphic germ [f]OU,p its total differential at point p

dfp : TpM −→ C
v 7−→ v([f]OU,p).

For the advanced reader this is not totally surprising as (OM,p)
∗ can be written as the di-

rect sum TpM⊕V . This implies (OM,p)
∗∗ = T ∗pM⊕V ∗ ⊃ OM,p.

The single functions zi of a chart (z, U) are holomorphic functions on U and therefore
induce total differentials d(zi)p = dzip.

[Dual basis of the cotangent space] The above defined dzip form a dual basis to the

tangent vectors ∂ ·
∂zi

∣∣
p
associated to the same chart (z, U), i.e. dzip

(
∂ ·
∂zj

∣∣
p

)
= δij . It

suffices to prove dzip
(
∂ ·
∂zj

∣∣
p

)
= ∂zi

∂zj

∣∣∣
p

= ∂zi◦z−1

∂zj
(z(p)) = δij , because TpM is of finite

dimension.

Any total differential dfp can be represented as ∂f
∂zi

∣∣∣
p
· dzip. We can easily determine the

coefficients of dfp = fidz
i
p ( in ESC section 3.6 !) by evaluating it at ∂ ·

∂zj

∣∣
p
: dfp( ∂ ·

∂zj

∣∣
p
) =

∂f
∂zj

∣∣∣
p

= fidz
i
p(

∂ ·
∂zj

∣∣
p
) = fj .

[Pullback] A holomorphic function φ : M −→ N induces a linear map called the pull-
back

φ∗ : T ∗φ(p)N −→ T ∗pM

ω 7−→ ω ◦ φ∗.

An immediate consequence is
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[Chain rule for pullbacks]For any two holomorphic functions φ : M −→ N and ψ : N −→
P it holds (ψ ◦φ)∗ = φ∗ ◦ψ∗. Evaluating (ψ ◦φ)∗(ω) for arbitrary co-vectors ω leads to
ω ◦ ψ∗ ◦ φ∗ = (ψ∗ω) ◦ φ∗ = φ∗ψ∗ω.

Given a holomorphic function φ : M → N and coordinates (z1, . . . , zn) and (w1, . . . , wm)
around p ∈ M and φ(p) ∈ N , respectively, then the transformation matrix of the
pullback φ∗ : T ∗φ(p)N → T ∗pM in terms of

(
dzip
)

1≤i≤n and
(
dwjφ(p)

)
1≤j≤m

is the Ja-

cobian matrix of w ◦ φ ◦ z−1. This can be seen by evaluating φ∗ω = (φ∗ω)idz
i
p at

∂ ·
∂zi

∣∣
p
:

(φ∗ω)i = (φ∗ω)

(
∂ ·
∂zi

∣∣∣∣
p

)
= ω

(
φ∗

(
∂ ·
∂zi

∣∣∣∣
p

))
= ω

(
∂φj

∂zi
∂ ·
∂wj

∣∣∣∣
φ(p)

)
=
∂φj

∂zi
ωj

and deducing ((φ∗ω)1, . . . , (φ
∗ω)n) = (ω1, . . . , ωn) Jac(w◦φ◦z−1, z(p)) for the row vectors

((φ∗ω)1, . . . , (φ
∗ω)n) and (ω1, . . . , ωn).

Taking φ = id leads to the following corollary.

[Change of the cotangent space’s basis] Given coordinates (z1, . . . , zn) and (z̃1, . . . , z̃n)

around p and their associated basis
(
dzip
)

1≤i≤n and
(
dz̃jp
)

1≤j≤n
in T ∗pM then the change

of basis matrix is the Jacobian matrix of the transition function z̃◦z−1.

[Einstein summation convention]Evaluating a co-vector ω = (ω1, . . . , ωn) at the tangent
vector v = (v1, . . . , vn) leads to ω(v) =

∑n
i=1 ωidz

i
p(
∑n

j=1 v
j ∂ ·
∂zj

∣∣
p
) =

∑n
i=1 ωiv

i. As the
product ωkvk for only one single index k ∈ {1, . . . , n} is extremely rarely used we stick to
the Einstein summation convention(ESC) from differential geometry. This means when
summing over all products of the before mentioned coefficients we omit the summation
sign and write ωivi. The super- and subscript indices indicate when we are facing the
above case.
Since under the summation sign we saw whether an index started at 0 or 1 we use from
now on α and β if we want to stress that the summation index ranges from 0 to the
obvious upper end say n and latin indices for ranges {1, . . . , n}.
Additionally we write component indices of entities in superscript, if the entities trans-
form under a change of coordinates like tangent vetors (cf. item 2) and in subscript if
they transform like covectors.
An example is the gradient ∇f =

(
∂f
∂z1

, . . . , ∂f∂zn
)

= (g1, . . . , gn) as ∂f
∂zi

= ∂f◦z̃−1◦z̃
∂zi

=

∂f◦z̃−1

∂z̃j
∂z̃j

∂zi
.
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Furthermore we extend the usage of the summation convention to multiindices and even
to subsets of {1, . . . , n}, cf. section 3.8 on page 38.

3.7 Vector bundles

We define now vector bundles improving our understanding of the tangent spaces and
vectors of a manifold. We generalize [GHL87, chapter I differential manifolds B Tangent
bundle definition 1.32 , p. 15] and [Lee03, chapter 5 Vector Bundles, p. 103] with an eye
on [GH78, Chapter 0, Sec 5 Vector bundles, pp.66].

[Holomorphic vector bundle] The triple (π,E,B) of a holomorphic surjection π : E −→ B
together with its domain E and its codomain B is a holomorphic vector bundle of
rank k, if

1. E and B are complex manifolds,

2. there is an open cover (Ui)i∈I ofB with biholomorphic functions hi, s.t. the diagram
fig. 3.2 on the current page commutes

π−1(Ui) Ui × Ck

Ui

∼=
hi

π
pr1

Figure 3.2: the commuting maps for the vector bundle

3. for i, j ∈ I with Ui ∩Uj 6= ∅ there exists a holomorphic function gj→i : Ui ∩Uj −→
GL(k,C) satisfying hi ◦ h−1

j (p, v) = (p, gj→i(p)(v)).

Let us fix some notations. E is called the total space and B the base space. We
call the preimage of p in B under π the fibre of p, denote it by Ep . We refer to the
biholomorphic maps hi as trivilizations. If the base space and the surjection are obvious
we identify the vector bundle with the total space.

[Manifold construction lemma] A setM with the following properties possesses the struc-
ture of a complex manifold,

1. M equals
⋃
i∈I Ui,
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2. a countable subset J of I ’covers’ M , i.e.
⋃
i∈J Ui,

3. there are bijections φi : Ui ↪→�Vi
open
⊂ Cn,

4. furthermore it holds φi(Ui ∩ Uj)
open
⊂ Cn for all i and j in I ,

5. whenever Ui ∩ Uj 6= ∅ the map τj→i : φj(Ui ∩ Uj) ↪→�φi(Ui ∩ Uj) is biholomorphic,

6. for 2 distinct points there exist either 2 disjoint subsets including one point each
or a set containing both.

We refer to [Lee03, Lemma 1.23, p.21].

In the following example we shall investigate the prototype of a vector bundle.

[Tangent bundle] The tangent bundle TM over a manifold M is the collection of pairs
of the form (p, v) with p a point in M and v a tangent vector in TpM . We generalize
[Lee03, p. 81] to show that the tangent bundle is a complex manifold of dimension 2n.
In order to simplify notations while checking the assumptions of manifold construction
lemma(p.34) we define the following map

π : TM −→ M
(p, v) 7−→ p.

For a given chart (z, U) ofM we can define a chart on TM by

z̃ : π−1(U) −→ z(U)× Cn
(p, v) 7−→ (z1(p), . . . , zn(p), v1, . . . , vn),

with v = vi ∂ ·
∂zi

∣∣
p
in ESC.

Let us stress that π−1(U) is just {(p, v) ∈ TM : p ∈ U & v ∈ TpM} =: TU . So for the
chart compatibility of (z̃, U1) and (w̃, U2) we have to observe

π−1(U1) ∩ π−1(U2) = {(p, v) ∈ TM : p ∈ U1 & p ∈ U2 & v ∈ TpM} = π−1(U1 ∩ U2).

τ : z̃(π−1(U1 ∩ U2)) −→ w̃(π−1(U1 ∩ U2))
(z1, . . . , zn, v1, . . . , vn) 7−→ w̃ ◦ z̃−1((z1, . . . , zn, v1, . . . , vn)).
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With the help of item 2 on page 31 and its way of notation we can simplify the last term
w̃ ◦ z̃−1((z1, . . . , zn, v1, . . . , vn)) to

(w(z), Jac(τz→w, z)v ) =

(
w1(z), . . . , wn(z), vk

∂w1

∂zk
, . . . , vk

∂wn

∂zk

)
.

Hence TM is a complex manifold. In order to get the trivialization hz we just have to
adjust the above chart (z̃1, . . . , z̃n) slightly to

hz : π−1(U) −→ U × Cn
(p, v) 7−→ (p, v1, . . . , vn).

The needed linear transformation gz̃→w̃ is the Jacobian of the transition function τz→w.

[Cotangent bundle] In a very similar way we can construct the cotangent bundle T ∗M
consisting of the pairs (p, ω) for p in M and ω in T ∗pM .

[Section of a vector bundle] A holomorphic map f from the base B of a vector bundle
into its total space E, s.t. any point p gets mapped into its own fibre, i.e π ◦ f = id, is
called a section. We denote the set of all sections by Γ(E).

The next definition forms the foundation of the next section.

[Tensorial operations on vector bundles] We define the tensor product of two vector
bundlesE and F over the same base spaceB in the following way

E ⊗ F := {e⊗ f := (p, v ⊗C u) : e = (p, v) ∈ Ep and f = (p, u) ∈ Fp}

and their direct sum as

E ⊕ F := {e⊕ f := (p, v ⊕ u) : e = (p, v) ∈ Ep and f = (p, u) ∈ Fp} .

Furthermore we define the wedge product of E as∧
m (E) := {e1 ∧ . . . ∧ em := (p, v1 ∧ . . . ∧ vm) : ej = (p, vj) ∈ Ep ∀ 1 ≤ j ≤ m} .

and closing with Alt • (E) :=
⊕k

m=0

∧
m (E) for rank(E) = k.
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Before applying manifold construction lemma(p.34) we refine the atlases used in the defin-
tions of (πE , E,B) and (πF , F,B). This gives two trivializations

hE,i : E|Ui −→ Ui × Ck
e 7−→ (h1

E,i(e), h
2
E,i(e)) = (p, v)

and

hF,i : F |Ui −→ Ui × Cl
f 7−→ (h1

F,i(f), h2
F,i(f)) = (p, u).

Eventually we define the new trivializations

• hE,i ⊗ hF,i : (E ⊗ F )|Ui −→ Ui × Ck ⊗C Cl = Ui × Ckl
e⊗ f 7−→ (h1

E,i(e), h
2
E,i(e)⊗C h

2
F,i(f)) = (p, v ⊗C u)

for E ⊗ F with associated linear transformations gE⊗F,ij(p) = gE,ij(p) ⊗C gF,ij(p)
and induced charts (E ⊗ F )|Ui → z(Ui)× Ckl.

• hE,i ⊕ hF,i : (E ⊕ F )|Ui −→ Ui × Ck ⊕ Cl = Ui × Ck+l

e⊕ f 7−→ (h1
E,i(e), h

2
E,i(e)⊕ h2

F,i(f)) = (p, v ⊕ u)

for E ⊕ F with associated linear transformations gE⊕F,ij(p) = gE,ij(p) ⊕ gF,ij(p)
and induced charts (E ⊕ F )|Ui → z(Ui)× Ck+l.

•
∧
m (hi) : (

∧
m (E))|Ui −→ Ui ×

(
Ck ∧ . . . ∧ Ck

)
= Ui × C( km)

e1 ∧ . . . ∧ em 7−→ (h1
i (e1), h2

i (e1) ∧ . . . ∧ h2
i (em)) = (p, v1 ∧ . . . ∧ vm)

for
∧
m (E) with associated linear transformations g∧m(E),ij(p) =

∧
m (gE,ij(p))

and induced charts (
∧
m (E))|Ui → z(Ui)× C( km).

3.8 Tensor bundles

We have defined in items 6 and 6 the (co-)tangent bundles of a manifold.
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[Covariant tensor fields] By T ∗M⊗q we denote the q times tensor product of T ∗M ,
i.e. T ∗M⊗q = T ∗M ⊗ . . .⊗ T ∗M︸ ︷︷ ︸

q-times

. We call sections of T ∗M⊗q covariant tensor

fields.

[q-form] The sections of Ωq(M) :=
∧
q (T ∗M) are called q-forms.

The image of p under ω is commonly denoted by ωp = (p,Ψ), because usually the authors
are far more interested in the linear operator Ψ than in holomorphic change of ω under
p.
As the dzis form a local basis of T ∗M we deduce that (dzν1 ⊗ · · · ⊗ dzνq)1≤νi≤n is a
local basis of T ∗M⊗q. We shorten dzν1 ⊗ · · · ⊗ dzνq to dzν with ν = (ν1, . . . , νq).

[Pullback of covariant tensor fields] We define the pullback of a covariant tensor
field ω associated with a holomorphic function φ : M −→ N between two manifolds as
(φ∗ω)p(·, . . . , ·) = (φ∗)pωφ(p)(·, . . . , ·) = ωφ(p)(φ∗, . . . , φ∗) according to [Lee03, chapter 11
Tensors ,p. 270].

[Invariant tensors] A covariant tensor field ω ∈ Γ(T ∗M⊗q) is called invariant under a
subset S of O(M,M) if it holds φ∗ω = ω for all φ in S. The collection of these covariant
tensorfields is (Γ(T ∗M⊗q))

S .

Writing the above condition more explicitely gives ωp = ωφ(p)(φ∗, . . . , φ∗).

3.9 Holomorphic functions

In this subsection we go deeper into the theory of holomorphic functions started in section
3.4.

[Implicit function theorem] Let U be an open subset of Cnand f ∈ O(U,Cm) withm ≤ n.
Suppose the leading principal minor (Jac(f, z0)ij)1≤i,j≤m is invertible for a root z0. Then
the zero set of f can be expressed as the graph of a holomorphic function g between open
subsets U1 and U2 of Cn−m and Cm, respectively, i.e. for z in U1 × U2 f(z) vanishes
iff (z1, . . . , zm) equals g(zm+1, . . . , zn). The best reference here is [Huy05, Prop 1.11,
p.11].
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[Liouville’s theorem] A bounded holomorphic function f on Cn is constant. We de-
duce from the one dimensional case that w 7→ f(z1, · · · , zi−1, w, zi+1, · · · , zn) is constant,
henceDf ≡ 0. The mean value theorem leads to the desired result.

[Identity theorem] Two holomorphic functions from a domainD into the complex numbers
are equal if they coincide on a nonvoid open subset of D. It is a nice exercise for the

3.9.0. Identity
theorem also for
meromorphic
functions and
meromorphic
tensors ?

reader to prove this theorem by using the one dimensional case. A solution is presented
in [Fre09, p. 309].

[Open mapping theorem] A non-constant holomorphic function from a domain D into the
complex numbers is open. This is also a simple generalization of the one dimensional
case, cf. [KK83, Theorem 6.3, p. 19].

[Power series] Every holomorphic function from an open subset U ⊂ Cn possesses a
unique power series expansion

∑
ν∈Nn aν(z − z0)ν ≡ aν(z − z0)ν around each point z0 in

U . This is proven on page 5 of [Huy05].

For certain open subsets there exist other series assigned to holomorphic functions.

[Laurent series] On the cartesian product of an (n − 1)-dimensional domain D and an
annulus A := {z ∈ C : r < |z| < R} every holomorphic function f : D×A → C coincides
with the converging series

∑∞
k=−∞ ak(z

1, . . . , zn−1) ·(zn)k ≡ ak(z1, . . . , zn−1) ·(zn)k. The
uniquely determined aks are elements of O(D). For a proof we refer to [KK83, p.25]. 3.9.0.

rephrase this.

The above section 3.9 gives rise to the next theorems which cannot be deduced in the
case of smooth functions on Rn!

Let be p a point in the open set U , then OU,p is a unique factorization domain. A proof
can be found in [Huy05, Prop 1.1.15, p.14].

The germ [zn]OU,0 is irreducible in OU,p. Assume that [zn]OU,0 equals [f ]OU,0 · [g]OU,0 .
Comparing the coefficients gives that one of them is a unit.

Hilbert’s Nullstellensatz section 2.1 on page 11 can be generalized to germs as done in
[Huy05, Proposition 1.1.29, p. 19]. [Rückert’s Nullstellensatz] Let be p a point in the
open set U and [f1]OU,p , . . . , [fk]OU,p ∈ OU,p . Suppose a is the ideal of germs "vanishing
on Z(f1, . . . , fk)", i.e.

a =
{

[f]OU,p ∈ OU,p : ∃ Dn
r (p) : f, f1, . . . , fk ∈ O(Dn

r (p)) : f(z) = 0 ∀z ∈ Z(f1, . . . , fk)
}
.
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Then a equals the radical ideal rad([f1]OU,p , . . . , [fk]OU,p) being defined by

{
[f]OU,p ∈ OU,p : ∃ m > 0 : [f]mOU,p ∈ ([f1]OU,p , . . . , [fk]OU,p)

}
.

The above mentioned generalization implies that there is also a corollary analogous to
section 2.1 on page 11, which we shall call Rückert’s Corollary. [Rückert’s Corollary]
Given a square-free germ [f]OU,p and another germ [g]OU,p in OU,p such that their
representatives satisfy Z (f) ⊂ Z (g) in a polydisc Dn

r (p), then [f]OU,p divides [g]OU,p
in OU,p.

If [f]OU,p and [g]OU,p are coprime in OU,p then also in OU,q for q in a small neighbourhood
of p. This fact is shown in [Huy05, Prop 1.1.35, p.21].

Any bijective holomorphic function is biholomorphic. See for instance [GR65, Prop,
p.19].

[Riemann extension theorem] If we denote U\Z (f) by V for a given holomorphic func-
tion f : U → C then g ∈ O(V,C) is holomorphic on the whole of U if g is lo-
cally bounded around Z (f). A proof can be retrieved from [Huy05, Prop 1.1.7,
p.9].

3.10 Meromorphic functions and tensors

We follow [Fre09, p. 427]. [m-property of holomorphic functions] Let f be a holomorphic
function on an open and dense subset D of a manifoldM . f has got the m-property on
M if for any p ∈M there are 2 holomorphic functions g and h on an open neighbourhood
U ⊂M of p satisfying f(z) = g(z)

h(z) for every z in U∩Z (h)C .

The functions f : U = C2\{0} → C; (z1, z2) 7→ z1

z2

and f : U = C2\ {0, 1} → C; (z1, z2) 7→ z1

z2

have got the m-property on C2. The both above mentioned holomorphic functions
describe (intuitively) the same ’function’ on the whole plane C2. This impels us to make
the following definition.

[Meromorphic function] We call two holomorphic functions with the m-property on M
(m-)equivalent if they coincide on a dense subset of M . Such an equivalence class is a
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meromorphic function.

Meromorphic functions have the subsequent properties.

1. The set of meromorphic functions on a manifold M M (M) is a ring. If M is
connected thenM (M) is a field.

2. If f equals g
h on U ∩Z (h)C and p

q on V ∩Z (q)C . Suppose that U and V intersect
then g · q coincides with p · h on U ∩ V ∩ Z (q)C ∩ Z (h)C .

3. Section 3.9 on the preceding page allows us to choose U , g and h in section 3.10
such that [g]OU,q and [h]OU,q are coprime in every OU,q with q in U .

4. As the manifold M is second countable there is a countable open cover (Ui)i∈I of
M consisting of sets having the above mentioned properties.

3.10.0. Warum ist das folgende unzulaessig ?

So we can characterize the equivalence class of f by (Ui, gi, hi)i∈I .

[Zero and pole locus of a meromorphic function] The zero locus of a meromorphic func-
tion f = (Ui, gi, hi)i∈I is the union

⋃
i∈I Z (gi). This definition is independent of the local

representations of f . Indeed given an other representation r
q we have g ·q = r ·h impliying

Z (g) ⊂ Z (r · h). As [g]OU,p and [h]OU,p are coprime Rückert’s Corollary(p.40) yields
that all prime factors of [g]OU,p divide [r]OU,p . Therefore the zero sets of r and g

locally coincide. Similarly the pole locus is
⋃
i∈I Z (hi). The sets are denoted by Z (f)

and P (f) respectively.

Now we extend the definitions from above to arbitrary tensors.

[m-property of holomorphic tensors] Let ω be a holomorphic tensor on an open and dense
subset D of a manifold M . ω has got the m-property on M if for any p ∈M there are
a holomorphic tensor η and a holomorphic function h on an open neighbourhood U ⊂M
of p satisfying ωz = 1

h(z)ηz for every z in U ∩ Z (h)C .

[dzi has got m-property on PnC] Firstly dzi is holomorphic on A0 which is a dense and
open subset of PnC. Secondly for an arbitrary point outside A0, say p ∈ A1, we can
find a holomorphic tensor η and a holomorphic function h on A1, s.t. ω = η

h . Indeed
denoting the coordinates in A1 by (w1, . . . ,wn) leads to dzi =

∑
j
∂zi

∂wj
dwj in A0 ∩ A1.
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Section 3.3 on page 25 yields that ∂zi

∂wj
equals Pj(w)

(w0)2
with Pj in C[X1, . . . , Xn] therefore

it holds

dziq =
∑
j

1

(w0(q))2
(Pj(w(q))dwj

q) ≡
1

(w0(q))2
ηq

for every q in A1 ∩ Z
(
w0
)C .

[Meromorphic tensor]We call two holomorphic tensors with the m-property onM equiva-
lent if they coincide on a dense subset ofM . Such an equivalence class is ameromorphic
tensor.

[Vector space of meromorphic tensors M (M) ⊗O Γ(T ∗M⊗q)] We denote the C-vector
space of meromorphic tensors such that their associated holomorphic tensors belong
to Γ(T ∗M⊗q) by M (M) ⊗O Γ(T ∗M⊗q). This awkward seeming notation is derived
from a more elaborate definition of meromorphic tensors, cf. [GH78][p. 135]. The
holomorphic tensor occurring in the definitions of a meromorphic tensor can be pulled
back along a holomorphic function. So the question arises when is this also possible forn
the meromorphic tensor.

[Pullback of covariant meromorphic tensor fields] A covariant meromorphic tensor field
ω on a manifold N being holomorphic on Dω can be transported to another manifold M
by a holomorphic function φ : M → N if φ−1(Dω) becomes a dense subset in M . Indeed
the equation ωz = 1

h(z)ηz is preserved.

A holomorphic function φ : M → N pulls back any meromorphic tensor on N to M if
φ−1(D) is dense for each open and dense subset of N . Examples of such maps are open
functions.

i. Obviously φ−1(Dω) is dense for each meromorphic tensor ω.

ii. Take φ to be an open function and let p be a point with an arbitrary neighbourhood
U in M . Then φ(U) possesses a point d lying in Dω. As φ−1({d}) ∩ U is non void
φ−1(Dω) is dense in M .

As meromorphic tensors are hardly described in the literature we prove some lemmas
quite explicitly.

Given a meromorphic tensor ω on PnC with representation ω =
∑

ν ωνdz
ν1⊗· · ·⊗dzνq on

Aα then the coefficient functions ων are meromorphic functions on Aα and consequently
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on PnC.

i. ω is holomorphic on D
dense
⊂ PnC and hence on D ∩ Aα

dense
⊂ Aα ∼= Cn. On D ∩ Aα

holomorphic sections coincide with holomorphic functions D∩Aα → (Cn)⊗q = Cn·q.
Analogously η can be considered as η : U∩Aα → Cn·q. So ων equals (U∩Aα, ην , h).

ii. ων(z) transforms to
∑

µ
∂zµ1
∂wν1 · · ·

∂zµq

∂wνq ωµ(w) ≡
∑

µ
Pµ(w)
(w0)2q

ωµ(w) ≡ fω(w) on A0 ∩A1

with Pµ ∈ C[X1, . . . , Xn]. fω(w) can be considered as a meromorphic function on
A1, because the sum’s components are of the form Pµ(w)

(w0)2q
and ωµ(w) lie inM (A1).

The holomorphic functions ων and fω coincide on Dων ∩Dfω
dense
⊂ A0 ∩A1

dense
⊂ PnC

and hence represent the same equivalence class, i.e. meromorphic function, in
M (PnC).

3.10.0.
rephrase this.

The product of a meromorphic function f and a meromorphic tensor ω is again a mero-
morphic tensor. Obviously we can multiply f with ω on their common holomorphicity
locus Df ∩ Dω. For each p we have f = g

hf
and ω = 1

hω
η on Up ∩ (Z (hf ))C ∩ (Z (hω))C

and hence f · ω = g
hf ·hω · η.

In order to push certain meromorphic functions from Cn+1 to PnC we have to observe
how to treat polynomials on PnC.

The algebra epimorphism

πA0
∗ : C[X0, . . . , Xn] −→ C[X1, . . . , Xn]

P 7−→ P (1, ·, . . . , ·)

can be restricted to a vector space isomorphism Cd[X0, . . . , Xn]→
⊕

i≤dCi[X1, . . . , Xn].
It should be clear that πA0

∗ is an algebra epimorphism.
We denote the inverse map by π∗ which just homogenizes the polynomials and multiplies
with an appropriate power of X0.

The just defined map πA0
∗ commutes with the differential operators ∂

∂zi
for 0 < i ≤ n.

We may assume without loss of generality that i = n. After writing P as∑d
k=0(zn)kPk(z

0, . . . , zn−1) the proof is trivial.
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Consider P and Q 6= 0 in Cd[X1, . . . , Xn+1]. Then the rational function f = P
Q is

meromorphic on Cn+1 and induces the meromorphic function π∗f on PnC. Obviously f =

3.10.0.
rephrase this.

P
Q is meromorphic on Cn+1. The map π∗f completing the following commutative diagram
is well defined because P and Q have got the same degree.

Cn+1\Z (Q) PnC\π (Z (Q))

C

π

f = P
Q

π∗f

In order to show that π∗f is meromorphic around p ∈ A0 we observe the rational function

g
(
z1, . . . , zn

)
=

π
A0
∗ P(z1,...,zn)
π
A0
∗ Q(z1,...,zn)

=
P(1,z1,...,zn)
Q(1,z1,...,zn)

on A0. It coincides with π∗f because it
holds

f ◦ π−1(z) = f(z) =
P
(
z0, . . . , zn

)
Q (z0, . . . , zn)

=

(
z0
)d · P (1, z

1

z0
, . . . , z

n

z0

)
(z0)d ·Q

(
1, z

1

z0
, . . . , z

n

z0

) = g
(
z1, . . . , zn

)

for all z in A0 ∩ π(Z (Q))C .

The holomorphic tensor dzI ⊗
(
dz1 ∧ . . . ∧ dzn

)⊗k in Ωq⊗O (Ωn)⊗k(A0) is a meromorphic
tensor on PnC with a pole locus in π

({
z0 = 0

})
. We argue analougsly to item 4 on

page 41. dzI ⊗
(
dz1 ∧ . . . ∧ dzn

)⊗k is holomorphic on A0 and changing to A1 gives for its
different parts

•
⊗k

l=1 det
(
∂zi

∂wj

) (
dw1 ∧ . . . ∧ dwn

)
=
(

1
w0

)k(n+1)⊗k
l=1

(
dw1 ∧ . . . ∧ dwn

)
• dz1 = −1

(w0)2
dw0

• dzi = 1
(w0)2

(w0dwi −widw0) for i 6= 1

• dzI = −1
(w0)q+1dw

I\{1}∪{0} for 1 ∈ I, cf. item 3 on page 14, |I| = q,

• dzI = 1
(w0)q

dwI −
∑

i∈I(−1)n+i wi

(w0)q+1dw
I\{i}∪{0} for 1 /∈ I

and for the whole tensor
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• dz1 ⊗
(
dz1 ∧ . . . ∧ dzn

)⊗k
= −

(
1
w0

)k(n+1)+2
dw0 ⊗

⊗k
l=1

(
dw1 ∧ . . . ∧ dwn

)
• dzi⊗

(
dz1 ∧ . . . ∧ dzn

)⊗k
=
(

1
w0

)k(n+1)+2
(w0dwi−widw0)⊗

⊗k
l=1

(
dw1 ∧ . . . ∧ dwn

)
for i 6= 1.

[Chow’s corollary] Every meromorphic function on PnC is rational, i.e. π∗f = f ◦ π = P
Q

with P,Q 6= 0 in Cd[X1, . . . , Xn+1]. For a proof please have a look in [GH78, p.
168].

Any holomorphic rational function f = P
Q is polynomial.

3.10.0. Add
reference.

3.11 Complex submanifolds and analytic subvarieties

[Complex submanifold] A subset N of a complex manifold M is called a complex sub-
manifold if for every point p ∈ N there exist natural numbers k and n with k ≤ n and
a chart φ : U → V ⊂ Cn of M around p, such that

N ∩ U ∼= φ(U) ∩
{
z ∈ Cn : zj = 0, k + 1 ≤ j ≤ n

}
.

Each complex submanifold possesses the structure of a complex manifold.

We can generalize the concept of a submanifold.

[Analytic subvariety] Suppose Y is a subset of a complex manifold M . If for every point
p ∈ Y there is a neighbourhood U and finitely many holomorphic functions in O(U)
satisfying

U ∩ Y =
⋂

1≤i≤mp

Z (fi) ,

then Y is an analytic subvariety. The functions f1, . . . , fmp are called local defining
functions for Y .

The union and intersection of the closed subvarieties Y1 and Y2 are again analytic sub-
varieties.

[Regular and singular points of an analytic subvariety] A point of an analytic subva-
riety Y ⊂ M is a regular point if there is an open neighbourhood U ⊂ M such
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that Y ∩ U is a complex submanifold of U . A point that is not regular is singular.

We denote the regular and singular points of an analytic subvariety by Yreg and Ysing,
respectively.

[Irreducible analytic subvariety] An analytic subvariety Y is irreducible if there are no
analytic subvarieties Y1 and Y2 such that

Yi
closed
( Y and Y = Y1 ∪ Y2.

Irreducible polynomials produce irreducible varieties in the following manner.

Let P be an irreducible polynomial then its zero set Z (P ) is an irreducible analytic
variety.

We need the three subsequent deep theorems. Their proofs can be found in [GR65] on
pages 116 and 141, respectively.

The regular locus Yreg is an open dense subset of Y and Ysing is an analytic subvari-
ety.

If Y is irreducible, then Yreg is connected and vice versa.

Let Y be an analytic subvariety. Then, the closures of Yreg’s connected components are
irreducible analytic subvarieties. The above mentioned irreducible subvarieties are called
the irreducible components of Y . It is also possible to characterize the components
as maximal closed subvarieties of Y .

The preimage of an analytic subvariety Y ⊂ N under a holomorphic function f : M → N
is an analytic subvariety in M .

[Dimension of irreducible analytic varieties] The dimension of an irreducible analytic
variety is the dimension of its regular locus.

An analytic subvariety’s dimension is the supremum of its irreducible components’
dimensions. An analytic subvariety is pure dimensional if all irreducible components
have got the same dimension.
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Let Y and M be an analytic variety and a complex manifold, respectively, of pure
dimensions. If Y is a subvariety of M , then its codimension is the natural number
codimY = dimM − dimY .

[Hypersurface] A hypersurface is an analytic subvariety of codimension 1.

[Negligible set] We call a analytic subvariety A ⊂ M of a connected complex manifold
analytically negligible if all irreducible components have codimension greater or equal
2.

Given a chain Y1 ( Y2 (M of irreducible subvarieties of a connected manifold M , then
Y1 is negligible. Hence, the common zero set of two holomorphic functions f, g : M → C
is negligible iff the germs of f and g are coprime at each point p ∈M . A consequence is
the subsequent lemma.

Suppose Q is an irreducible polynomial, then the analytic variety Z
(
Q, ∂Q

∂zi

)
is neg-

ligible. Since ∂Q
∂zi

has a smaller degree than Q, the derivative ∂Q
∂zi

cannot divide
Q.

[Levi’s extension theorem] Given a negligible set A, any meromorphic function f :
M\A→ C extends to a meromorphic function on M .

Consequently, we can also continue meromorphic tensors over a negligible set.

[Weil-divisor] AWeil-divisor D on a connected complex manifoldM is a mapping from
the collection of irreducible hypersurfaces into the integers. Furthermore, we require it
to be locally finite, i.e. every point has got an open neighbourhood U such that only
finitely many hypersurfaces with D(Y ) 6= 0 intersect U . D(Y ) is called multiplicity of
Y . Sometimes, the divisor is denoted by the formal sum∑

Y

D(Y ) · Y.

The support of D is the analytic subvariety

suppD =
⋃

D(Y )6=0

Y.

Therefore, we can define the singular locus of suppD and denote it byDsing.
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3.12 Covering maps and spaces

We start this subsection with the most general definition of a covering as seen in [For77,
Definition 4.1, p.18] (not to mix with [For99] !) differing from the topological and hence
stricter ones in [Fre09], [For99],[Jos06] or [Bre05].

[Covering] We call a map p : Y → X between two topological spaces covering map, if
it is open, continous and discrete, i.e. p−1(x) is discrete in Y for every x in X. The
reason for this unconventional nomenclature of domain and codomain is, that we want to
classify functions f : X → Z with the help of p. Obviously the properties of a covering
are local ones.

Let us illustrate this definition by the classical example which lead to the development
of the theory of Riemann surfaces.

The function sending a complex number of modulus less than 1 to its square

p : E −→ E = B1(0)
z 7−→ z2

is obviously holomorphic and so by the Open Mapping Theorem open [FB09, p.128]. The
preimage for a given w = ρeiθ is just

(√
ρ ei(

1
2
θ+mπ)

)
0≤m≤1

= ±√ρ e
1
2
θi.

Please have a look at the visualisation of this example fig. 3.3 on the current page.

clascovering2.pdf

Figure 3.3: Here we tried to visualise the classical section 3.12 on the current page in
only three dimensions. In polar coordinates p has the nice appearance p :
[0, 1) × R/2πZ → [0, 1) × R/2πZ , (r, φ) 7→ (r2, 2φ) = (p1(r), p2(φ)). As p1 is
bijective on [0, 1), only p2 distributes to the special character of a covering
map. Hence we use the set

{
(ρ, θ, φ) ∈ [0, 1)× R/2πZ× R/2πZ : θ = p2(φ)

}
=

pr(ρ,θ,φ)

{
(w, z) = (ρeiθ, reiφ) ∈ E× E : w = z2

}
.

[Ramification point] Let p : Y → X be a covering then we call a point in Y hav-
ing no open neighbourhood on which p is injective a ramification or branch point.
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June 1, 2014 3.12 Covering maps and spaces

[Ramification locus] There are three closely related sets we call the ramification locus
of a covering p

1. the collection of all branch points Ram (p),

2. its image p (Ram (p))

3.12.0. p (Ram (p)) koennte man auch double point set nennen, vgl
http://en.wikipedia.org/wiki/Ramification

3. and p (Ram (p))’s preimage R̃am (p) := p−1(p (Ram (p)))

From the context it should be clear which one we are currently using.

[Unbranched covering] We call a covering without any branch points unbranched cov-
ering or local homeomorphism.

For a given covering p : Y → X there is an associated local homeomorphism p̂ :=
p|Y \Ram(p). Later when properness of covering maps shall become important it can be

preserved by restricting p̂ further to p̃ : Y \R̃am (p) → X\p (Ram (p)). The following
counterexample illustrates this.

Given the proper covering

p : B1(0) ∪B1(2) −→ B1(0) = E

z 7−→ p(z) =

{
z2 z ∈ B1(0)

z − 2 z ∈ B1(2)

then its ramification loci are Ram (p) = {0} and R̃am (p) = {0, 2}. So the preimage of
B 1

4
(0) under p̂ is the non-compact set (B 1

2
(0)\{0})∪B 1

4
(2) contradicting the properness

of p̂.

As we want to obtain good results about p (Ram (p)) and R̃am (p), we compound a stricter
definition from them. [Standard covering] We call a covering map f : M → N between
two n dimensional complex manifolds standard covering map, if

• f is holomorphic, proper and surjective,
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• M is connected,

• R̃am (p) = Ram (p),

• p (Ram (p)) and R̃am (p) are connected smooth hypersurfaces.

For example [Standard element pkn] We call the map

pkn : En −→ En

(z1, . . . , zn) 7−→ (z1, . . . , zn−1, (zn)k)

the k-th n-dimensional standard element, with n, k > 0.

The standard elements are standard coverings. Clearly each standard element p is holo-
morphic and surjective. The ramification loci are just the zero set of the projection onto
the n-th coordinate. Decomposing a polydisc Dn

r (z0) and p into their open components
Bri(z

i
0) and pi, respectively, implies that p(Dr(z0)) = (pi(Bri(z

i
0)))i is open. As the

preimage of Dn
(r1,...,rn)

(0) under p is

Dn−1
(r1,...,rn−1)

(0) × B k√rn (0) the preimages of bounded sets are bounded . The equation
p−1(z1, . . . , zn−1, ρeiθ) =

(
z1, . . . , zn−1, k

√
ρ exp

(
i
k (θ + 2mπ)

))
0≤m≤k−1

shows that p is
discrete.

A basic fact about standard coverings is the following lemma

Biholomorphic functions φ and ψ preserve the properties of an standard coveringp, i.e.
p ◦ φ, ψ ◦ p and ψ ◦ p ◦ φ are standard coverings. The main argument was given in ?? on
page ??.

This paves the way for a generalization of the standard element

[Q-standard element pkn,Q] Let U1 and U2 be open in Cn−1 and C, respectively. For
the holomorphic function Q : U1 × U2 → C and its holomorphic auxillarily function
ϕ : U1 → C uniquely determined by Q(z) = 0 ⇐⇒ zn = ϕ(z1, . . . , zn−1) we define

3.12.0. cor-
rect definition
of Q-standard
element ?

pkn,Q : U1 × U2 −→ C
(z1, . . . , zn) 7−→ (z1, . . . , zn−1, (zn)k + ϕ(z1, . . . , zn−1)).
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June 1, 2014 3.12 Covering maps and spaces

implicit function theorem(p.38)

Q-standard elements pkn,Q satisfy

1. if Q = zn then pkn,zn = pkn,

2. each pkn,Q can decomposed pkn,Q = p1
n,Q ◦ pkn,

3. the pure straighenting p1
n,Q is biholomorphic,

4. any Q-standard element pkn,Q is a standard covering,

5. for a Q-standard element pkn,Q Z (Q) is irreducible.

We start with showing that the holomorphic and injective function p1
n,Q is biholomorphic

on its image. It is open because p1
n,Q(Ω1×Ω2) = Ω1× (Ω2 +ϕ(Ω1)) and prn, ϕ are open

functions by section 3.9 on page 39.
The last two properties can be deduced from item 3 and ?? on pages 50 and ??, respec-
tively.

A more interesting fact is Let f : M → N be a standard covering then we can deduce
from A being negligible in N , that f−1(A) ⊂M is also negligible. The fact that f−1(A)
is an analytic subvariety was shown in ?? on page ??. Assuming that f−1(A) would have
an irreducible component of codimension 1, say Y , would lead to a contradiction. Firstly
take Y to be a subset of the analytic hypersurface R̃am (f). Hence f ’s image f(Y ) has to
coincide with the analytic hypersurface f (Ram (f)), a contradiction. Secondly Y is not
a subset of R̃am (f) and possesses a point p outside of R̃am (f) that is without loss of
generality regular due to section 3.11 on page 46. Therefore f is a local homeomorphism
around p implying that Ysing has got the same codimension as (f(Y ))sing, i.e greater or
equal than 2.

[Isomorphic functions] Two holomorphic functions f : M → N and f ′ : M ′ → N ′ are
isomorphic ( in the category of holomorphic mappings between complex manifolds),
if there are biholomorphic functions φ and ψ, such that we get a commutative dia-
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gram

M
φ−−−−→ M ′yf yf ′

N
ψ−−−−→ N ′.

[Ramification element]By a ramification element we mean a standard covering f :
M → En such that the ramification locus in En equals zn = 0.

[Uniqueness of the ramification element] Let f be a ramification element, then there
exists a standard element pkn and a biholomorphic mapping φ completing the following
diagram

M
φ−−−−→ Enyf ypkn

En id−−−−→ En.

So f is determined uniquely up to isomorphy.

[Sketch] We shall sketch the proof here by referring to parts of [For99] and generalis-
ing them if needed. We denote by H the left half plane {z ∈ C : Re(z) < 0} yielding
that

Exp : En−1 ×H −→ En−1 × E∗
(z1, . . . , zn) 7−→ (z1, . . . , zn−1, exp(zn))

is the universal covering of En−1×E∗ with deck transformations τm(z1, . . . , zn) = (z1, . . . , zn+
2πim) analogous to Exs. 4.12, 5.7 and Thm. 5.2 . There exists a biholomorphic function
φ completing the commutative diagram

M\Ram (f) En−1 × E∗

En−1 × E∗

∼=
φ

f

pkn

52



June 1, 2014 3.13 Orders of singularities

because of Thms. 5.9 and 5.10 (altered by section 3.9 on page 40 of this thesis). Fol-
lowing Thm. 5.11 we can show that the preimage of each point in f (Ram (f)) =
En−1 × {0} has just one element consequently φ can be extended to a bijection φ :
M → En. Even more φ is continuous because a sequence bm → b ∈ Ram (f) is
getting mapped to f(bm) = (a1

m, . . . , a
n
m) → (c1, . . . , cn−1, 0) and further to φ(bm) =

(a1
m, . . . , a

n−1
m , ξm) with |ξm| = k

√
|anm| → 0. As φ is continuous the Riemann exten-

sion theorem(p.40) and then section 3.9 on page 40 can be applied to prove that φ is
biholomorphic.

3.13 Orders of singularities

We generalize the order of a singularity known for one dimension in one single point from
[FB09] the way it is done in [GH78, pp.130].

[Order of a holomorphic function along a hypersurface] Let p be a regular point on an
irreducible analytic hypersurface Y of a complex manifoldM . Suppose U is a neighbour-
hood of p, f a holomorphic function on U and ψ locally defines Y on U then we define
the order of f along Y at p as

sup
{
k ∈ N : [ψ]kOU,p | [f]OU,p in OU,p

}
=: ord (f, Y, p) ∈ N ∪ {∞} .

The order of holomorphic functions has got the following properties

1. ord (f, Y, ·) is a locally constant function on Yreg ∩ U ,

2. if f is defined on the whole manifold M then ord (f, Y, ·) is a constant function on
M ’s irreducible subvariety Y ,

3. ord (f, Y ) equals ∞ iff f is the zero function,

4. ord (fg, Y ) = ord (f, Y ) + ord (g, Y ),

5. ord (f, Y, p) = ord (f ◦ φ, φ(Y ), φ(p)) for a biholomorphism φ,

i. If k is the order of f along Y in a point p then there is a decomposition of [f]OU,p
into coprime elements [ψ]kOU,p and [g]OU,p in OU,p. Section 3.9 on page 40 implies
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that there is a neighbourhood V of p such that [ψ]kOU,q and [g]OU,q are coprime in
every OU,q for q in V . Hence [ψ]OU,q does not divide [g]OU,q in these OU,q and
ord (f, Y, q) = k for q in V ∩ Yreg.

ii. As f lies in O(M) ord (f, Y, ·) is locally constant on Yreg∩M . Sections 3.11 and 3.11
on pages 46 and 46, respectively, yield that Yreg is connected and dense in Y .

iii. Clearly units have got order zero and non-zero non-units are assigned the exponent
associated to [ψ]OU,p in their prime factorization. Additionally it holds 0 =

[ψ]kOU,p · 0 for all k in N.

iv. Let k and l be the orders of f and g respectively. Once again we use the in-
duced decompositions [f]OU,p = [ψ]kOU,p [f0]OU,p and [g]OU,p = [ψ]lOU,p [g0]OU,p in-

ducing [fg]OU,p = [ψ]k+l
OU,p [f0]OU,p [g0]OU,p . As [ψ]OU,p is irreducible this implies

ord (fg, Y ) = ord (f, Y ) + ord (g, Y ).

v. Firstly ?? on page ?? secures that φ(Y ) is an irreducible analytic subvariety.
Secondly we have seen in item 2 on page 29, that φ∗ : OU,p → OV,φ(p) is an
isomorphism of UFDs. Finally applying section 2.1 on page 11 establishes the
desired formula.

We generalize the above definition and lemma to

[Order of a meromorphic function along a hypersurface] Suppose p is a regular point
of an irreducible analytic hypersurface Y . Then the order of a meromorphic func-
tion f with local -not necessarily coprime-representation (U, g, h) in p is well defined
by

ord (f, Y, p) := ord (g, Y, p)− ord (h, Y, p) ∈ Z ∪ {∞}

and has got the following properties

1. if f is meromorphic on M then ord (f, Y ) is also well defined,

2. the orders of a meromorphic function f with coprime representation (U, g, h) are
related by ord (f, Yi, p) ≥ 0 ⇐⇒ ord (h, Yi, p) = 0 and ord (f, Yi, p) ≤ 0 ⇐⇒
ord (g, Yi, p) = 0,

3. the properties stated in section 3.13 can be generalized,
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4. the order of a sum of functions is greater than the smallest single order, i.e.
ord (

∑m
i=1 fi, Y ) ≥ min1≤i≤m {ord (fi, Y )}, with equality if there is an index j with

ord (fj , Y ) < ord (fi, Y ) for all i 6= j.

0. We have to show that it holds

ord (gi, Y, p)− ord (hi, Y, p) = ord (gj , Y, p)− ord (hj , Y, p)

for any pair of local representations (Ui, gi, hi) and (Uj , gj , hj) with p ∈ Ui ∩
Uj . Indeed gihj = gjhi implies by section 3.13,4 ord (gi, Y, p) + ord (hj , Y, p) =
ord (gj , Y, p) + ord (hi, Y, p).

i. ord (f, Y, ·) assigns to each p in Yreg an integer or∞. As ord (gi, Y, ·) and ord (hi, Y, ·)
are locally constant so is ord (f, Y, ·). As seen in section 3.13 this makes ord (f, Y, ·)
constant on Y .

ii. ord (f, Yi, p) ≥ 0 implies ord (g, Yi, p) ≥ ord (h, Yi, p). But ord (hj , Yi, p) ≥ 1 would
contradict that [gj ]OU,p and [hj ]OU,p are coprime, hence ord (hj , Y, p) = 0.

iv. Clearly if [ψ]kOU,p divides each holomorphic [fi]OU,p then also [
∑

i fi]OU,p . Con-

versely if [ψ]kOU,p divides all [fi]OU,p s except for [fj ]OU,p then neither [
∑

i fi]OU,p
. Inded assuming [ψ]kOU,p [h]OU,p = [

∑
i fi]OU,p leads to [fj ]OU,p = [

∑
i fi]OU,p −[∑

i 6=j fi

]
OU,p

= [ψ]kOU,p ([h]OU,p −
[∑

i 6=j hi

]
OU,p

), a contradiction!

For meromorphic functions fi = gi
ψkhi

their sum is
∑
i gi

∏
j 6=i hj

ψk
∏
i hi

the divisor of which
has got order k = −min1≤i≤m {ord (fi, Y )}. So the total order can only be al-
tered by the nominator’s positive order ord

(∑
i gi
∏
j 6=i hj , Y

)
, i.e. more than one

summand with order zero.

Let P be a polynomial and Q a prime polynomial then Qk divides P in C[X1, . . . , Xn] iff
ord (P,Z(Q)) ≥ k. In fact the maximal of these ks is just ord (P,Z(Q)). If P = Qk ·R
in C[X1, . . . , Xn] then obviously also in OU,p and so ord (P,Z(Q)) ≥ k. Conversely we
define for m = ord (P,Z(Q)) the rational function P

Qm that is everywhere holomorphic.
Indeed it locally coincides with [g]OU,p for [Qm]OU,p · [g]OU,p = [P ]OU,p . We conclude
from item ii on page 45 that f is a polynomial.

3.13.0. prove
this.
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The Laurent series of a holomorphic function f on D × E∗ has got a lower bound on
the index set of non-zero coefficients iff f is meromorphic on D × E. It turns out that
this lower bound coincides with the order of f along {zn = 0}. Additionally f is holo-
morphic iff the lower bound is 0. If f has got such a lower bound, say −m, then f
equals

∞∑
k=−m

ak(z
1, . . . , zn−1) · (zn)k = (zn)−m ·

∞∑
l=0

a−m+l(z
1, . . . , zn−1) · (zn)l ≡ (zn)−m · g(z).

The Riemann extension theorem(p.40) allows us to analytically continue g ∈ O(D×E∗)
onto D×E leading to the equality f = (D×E, g, (zn)m). We conclude from the identity
theorem(p.39) that a−m(z1, . . . , zn−1) does not vanish in most points of {zn = 0}. It
holds −m = ord (f, p, {zn = 0}) = ord (f, {zn = 0}) for all such points. Analogously

3.13.0.
Rephrase the
proof of −m =
ord (f, p, {zn = 0}) =
ord (f, {zn = 0})

m = 0 implies f ∈ O(D × E).
Conversely for a local representation (U, g, h) around a point p ∈ {zn = 0} we decompose
h’s germ in OU,p into its prime factors [ψ1]OU,p , . . . ,

[
ψrp
]
OU,p

. As f is holomorphic
outside of {zn = 0} it holds Z (ψi) ⊂ Z (h) ⊂ {zn = 0} for all i. We deduce from
Rückert’s Corollary(p.40) that [ψi]OU,p divides [zn]OU,p in OU,p. Due to section 3.9 on
page 39 [zn]OU,p is irreducible in OU,p hence it equals [εi]OU,p · [ψi]OU,p for all i. Therefore
[h]OU,p equals [ε]OU,p · [z

n]
rp
OU,p leading to rp = ord (h, p, {zn = 0}), h = ε · (zn)rp and

eventually

f = g/h = ε−1 · g · (zn)−rp =

∞∑
k=−rp

ak(z
1, . . . , zn−1) · (zn)k.

rp is a global lower bound because the order ord (h, p, {zn = 0}) is constant on {zn = 0}.

Let Y be a hypersurface of M with irreducible components Yi and fa meromorphic
function on M that is holomorphic on M\Y . Then f is holomorphically extendable
on M iff it holds ord (f, Yi) ≥ 0 for all i. By Levi’s extension theorem and sec-
tion 3.11 on pages 47 and 46, respectively, holomorphic functions can be analytically
continued over Ysing. Consequently it is sufficient to observe the holomorphicity in Yreg.
As f ’s order is invariant under charts, cf. item v, the proof is completed by applying
item iv.

Let pkn,Q : En → En be the Q-standard element and f : En → C a non-zero mero-

morphic function. Then the order of f along the ramification locus pkn,Q
(

Ram
(
pkn,Q

))
and the order of f ◦ pkn,Q along the ramification locus R̃am

(
pkn,Q

)
vary directly, i.e.
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(3.2) ord
(
f ◦ pkn,Q, R̃am

(
pkn,Q

))
= k · ord

(
f, pkn,Q

(
Ram

(
pkn,Q

)))
.

i. For Q = zn and f being holomorphic we prove the following auxiliary inequalities

ord
(
f, pkn

(
Ram

(
pkn

)))
= l =⇒ ord

(
f ◦ pkn, R̃am

(
pkn

))
= l · k,

(3.3)

ord
(
f ◦ pkn, R̃am

(
pkn

))
= m ≥ 0 =⇒ ord

(
f, pkn

(
Ram

(
pkn

)))
=
⌈m
k

⌉
.

(3.4)

This is done by writing down the explicit definitions of the orders

ord
(
f ◦ pkn, R̃am

(
pkn

))
= max

{
l ∈ N : (zn)l | f(z1, . . . , (zn)k)

}
ord

(
f, pkn

(
Ram

(
pkn

)))
= max

{
l ∈ N : (zn)l | f(z1, . . . , zn)

}
.

As f is holomorphic we can extend it and f ◦ pkn in a power series f = aνz
ν ≡

αm (zn)m and f ◦ pkn = αm(zn)km, respectively.

a) The first step to prove eq. (3.3) is concluding that ord
(
f ◦ pkn,Q, R̃am

(
pkn,Q

))
lies in kN. Furthermore let lmax be the order of f along pkn

(
Ram

(
pkn
))

then
f(z) equals (zn)lmax g(z) and hence αlmax is the first coefficient not to vanish.
Therefore (zn)k·lmax | f ◦ pkn and consequently ord

(
f ◦ pkn,Q, R̃am

(
pkn,Q

))
=

l · k .

b) Equation (3.4) is proven indirectly. Assume that l = ord
(
f, pkn

(
Ram

(
pkn
)))

lies in N\
{⌈

m
k

⌉
,
⌊
m
k

⌋}
, then eq. (3.3) implies

ord
(
f ◦ pkn, R̃am

(
pkn

))
= l · k >

⌈m
k

⌉
· k ≥ m

or

ord
(
f ◦ pkn, R̃am

(
pkn

))
= l · k <

⌊m
k

⌋
· k ≤ m, a contradiction !

The case ord
(
f, pkn

(
Ram

(
pkn
)))

=
⌊
m
k

⌋
<
⌈
m
k

⌉
also returns ord

(
f ◦ pkn, R̃am

(
pkn
))

<

m, because the difference of
⌊
m
k

⌋
and

⌈
m
k

⌉
shows that

⌊
m
k

⌋
< m

k and further-

more by eq. (3.3) ord
(
f ◦ pkn,Q, R̃am

(
pkn,Q

))
=
⌊
m
k

⌋
· k < m

k · k = m.
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Applying eqs. (3.3) and (3.4) to ord
(
f ◦ pkn, R̃am

(
pkn
))

= m yields m =
⌈
m
k

⌉
k

or equivalently m
k =

⌈
m
k

⌉
. Consequently eqs. (3.3) and (3.4) can be merged to

eq. (3.2).

ii. We have seen in items 2 and 3 on pages 29 and 51, respectively, that (p1
n,Q)∗ :

OU,p → OV,f(p) is an isomorphism of UFDs. Applying section 2.1 on page 11
completes the proof for p1

n,Q and holomorphic f .

iii. Any pkn,Q can be written as pkn,Q = p1
n,Q ◦ pkn.

iv. For a meromorphic functionf with local representation (U, g, h) ord
(
f ◦ pkn,Q, R̃am

(
pkn,Q

))
equals ord

(
g ◦ pkn,Q, R̃am

(
pkn,Q

))
−ord

(
h ◦ pkn,Q, R̃am

(
pkn,Q

))
reducing the prob-

lem to the above discussed cases.

3.14 The (Ω•)⊗k (M,D) spaces

[(Ω•)⊗k (M,D) or generalised logarithmic tensors] Let D be a divisor on a n-dimensional
complex manifoldM , we define (Ω•)⊗k (M,D) as the space of tensors ω ∈ (Ω•)⊗k (M\ suppD)

with the supplementary property : If p : X � U
open
⊂ M\Dsing is a holomorphic and sur-

jective covering satisfying

1. X is connected,

2. U just intersects one irreducible component of supp(D), say Y ,

3. the ramification locus in U equals U ∩ Y ,

4. given a chart φ transforming V
open
⊂ U or V ∩ Y , respectively, to W

open
⊂ Cn or

W ∩
(
Cn−1 × {0}

)
, respectively, then φ ◦ p is isomorphic to the standard element

pD(Y )+1
n , i.e. φ ◦ p = pD(Y )+1

n ◦ ψ or equivalently p = φ−1 ◦ pD(Y )+1
n ◦ ψ

then ω’s pullback p∗
(
ω|V \Y

)
is holomorphically extendable to the whole ofX.

We can show that the space of generalised logarithmic tensors (Ω•)⊗k (M,D) is a subset
of the vector space of meromorphic tensorsM (M)⊗O (Ω•)⊗k (M) and in particular of
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(
Ω1 ⊗O (Ωn)⊗k

)
(M\ suppD) ∩M (M)⊗O (Ω•)⊗k (M).

Every element ω of (Ω•)⊗k (M,D) is a meromorphic tensor on M . By Levi’s extension
theorem for meromorphic tensors(p.??) it is sufficient to show that ω is meromorphic in
suppD\Dsing. Using the notations of section 3.14 φ−1 ◦ pD(Y )+1

n is certainly one of the
observed coverings. It is sufficient to check whether (φ−1)∗ω is meromorphic because we
could apply φ’s pullback to (φ−1)∗ω and deduce that ω is meromorphic, cf. item 4 on
page 42.
The coefficient functions of

ω =
∑

I=I11×···×I1l1×I
2
1×···×Inln

Iij⊂{1,...,n} & |Iij|=i

ωI dz
I11 ⊗ · · · ⊗ dzI

1
l1 ⊗ dzI21 ⊗ · · · ⊗ dzI

n
ln ,

transform in the following manner

(
pD(Y )+1
n

)∗
ωI(z) = ωI(p

D(Y )+1
n (z)) ·

(
(D(Y ) + 1)(zn)D(Y )

)N
where N is the amount of ns in I due to the diagonal form of pD(Y )+1

n ’s Jacobian matrix.
But they are also holomorphic on the annulus En−1 × E∗ and consequently possess a
Laurent series

ωI(z) =
∑
m∈Z

am · (zn)m .

Therefore
(
pD(Y )+1
n

)∗
ωI(z) can be rewritten to

(
(D(Y ) + 1)(zn)D(Y )

)N ∑
m∈Z

am · (zn)m(D(Y )+1) ≡
∑
l∈Z

bl (z
n)l

which is holomorphic by definition of (Ω•)⊗k (M,D). It holds bl ≡ 0 for all l < 0 by
item iv on page 56, and so am ≡ 0 for all −D(Y )

D(Y )+1N > m. The desired result can be
deduced from item iv on page 55.

The above proof could have given you an idea of the line of arguments in chapter 5 or
?? on page ??, respectively.

1. Given a meromorphic tensor ω and two entire coverings p and q with p = q ◦φ. We
conclude that if q∗ω is holomorphic, then also p∗ω, because p∗ω equals φ∗(q∗ω).
Therefore the uniqueness of the ramification element, item 5 on page 52, allows us
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to prove the extension property of ω’s pullback in x for one chosen p with pleasant
properties. In chapter 5 it is the ramification element defined in item 3 on page 51.
The aforementioned property is equivalent to ω to lie in (Ω•)⊗k (M,D).

2. D1 ≤ D2 implies (Ω•)⊗k (M,D1) ⊂ (Ω•)⊗k (M,D2).

3. The space of generalised logarithmic tensors to the zero divisor coincides with the
holomorphic tensors of the same type, i.e. (Ω•)⊗k (M, 0) = (Ω•)⊗k (M).

4. We specify certain subspaces such as(
Ωi ⊗O (Ωn)⊗k

)
(M,D) := (Ω•)⊗k+1 (M,D) ∩

(
Ωi ⊗O (Ωn)⊗k

)
(M\ suppD).

5. The space of generalised logarithmic 0-forms to any divisor D equals the vector
space of holomorphic functions on M , i.e. Ω0(M,D) = O(M).
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