On the Existence of certain Vector Valued Siegel Modular Forms

Thomas Wieber

June 1, 2014

Contents

Nomenclature 5
1 Introduction 9
2 Algebraic preliminaries 11
2.1 Polynomials 11
2.2 Tensor products 12
2.3 Group actions 15
2.4 Group representations 15
3 Analytic preliminaries 19
3.1 Continuous group actions 19
3.2 Topological and complex manifolds 22
3.3 The n-dimensional projective space 25
3.4 Stalks of holomorphic functions 26
3.5 Tangent spaces 27
3.6 Cotangent spaces 32
3.7 Vector bundles 34
3.8 Tensor bundles 37
3.9 Holomorphic functions 38
3.10 Meromorphic functions and tensors 40
3.11 Complex submanifolds and analytic subvarieties 45
3.12 Covering maps and spaces 48
3.13 Orders of singularities 53
3.14 The $\left(\Omega^{\bullet}\right)^{\otimes k}(M, D)$ spaces 58
4 Modular functions 61
5 Existence results 63
6 Bibliography 65
Index 6767

Nomenclature

$\lceil x\rceil$ ceiling function $\min \{n \in \mathbb{Z} \mid n \geq x\}$, page 53
$\lfloor x\rfloor \quad$ floor function $\max \{m \in \mathbb{Z} \mid m \leq x\}$, page 53
$[f]_{\mathcal{O}_{U, p}}$ germ of the holomorphic function f in $\mathcal{O}_{U, p}$, page 22
$\bigwedge^{k}(V)$ vector space of alternating tensors on V, page 10
$V^{\otimes n} \quad k$ times tensor product of the C-vector space V, page 10
$v_{1} \otimes_{K} \cdots \otimes_{K} v_{k}$ tensor product of the vectors v_{1}, \ldots, v_{k}, page 9
$A^{-t} \quad$ the transposed inverse matrix of A, i.e. $A^{-t}=\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$, page 12
$A^{t} \quad$ the transposed matrix of A, page 12
$\mathbb{A}_{\alpha} \quad \alpha$-th affine space, page 21
$\operatorname{Adj}(A)$ the adjugate matrix of A, page 12
$\operatorname{Bihol}(U)$ the group of biholomorphic functions on U, page 15
$\mathbb{C}_{d}\left[X^{1}, \ldots, X^{n}\right]$ vector space of polynomials homogeneous of degree d, page 8
codim Y codimension of an analytic variety Y in a complex manifold M, i.e. codim $Y=$ $\operatorname{dim} M-\operatorname{dim} Y$, page 43
$\mathbb{E} \quad$ the unit disc $B_{1}(0)$ in \mathbb{C}, page 44
$\mathbb{E}^{n} \quad$ unit polycylinder or polydisc in \mathbb{C}^{n}, page 46
$E_{p} \quad$ fibre over p, page 30
$G^{S} \quad$ orbit space, page 11
$G_{x} \quad$ stabiliser subgroup, page 11
$\mathcal{H} \quad$ left half plane, i.e. $\{z \in \mathbb{C}: \operatorname{Re}(z)<0\}$, page 48
$\mathcal{M}(M) \otimes_{\mathcal{O}} \Gamma\left(T^{*} M^{\otimes q}\right)$ vector space of meromorphic tensors such that their associated holomorphic tensors belong to $\Gamma\left(T^{*} M^{\otimes q}\right)$, page 38
$\mathcal{M}(M)$ algebra of meromorphic functions on a manifold M, page 37
$\mathcal{O}_{U} \quad$ sheaf of holomorphic functions, page 22
$\mathcal{O}_{U, p}$ stalk of holomorphic functions at the point p, page 22
$\left(\Omega^{\bullet}\right)^{\otimes k}(M, D)$ vector space of generalised logarithmic tensors, page 54
$\Omega^{q}(M)$ vector space of q-forms, page 34
$\mathcal{O}(M, N)$ the set of holomorphic functions between the manifolds M and N, page 20
ord (f, Y, p) order of the singularity of f along Y in p, page 49
$\mathcal{O}(U)$ the algebra of complex valued holomorphic functions, page 15
$\mathcal{O}\left(U, \mathbb{C}^{m}\right)$ the vector space of holomorphic functions, page 15
$\mathcal{O}(U, Y)$ restriction of $\mathcal{O}\left(U, \mathbb{C}^{m}\right)$, page 15
$P(f)$ pole locus of f, page 37
$\mathbb{P}^{n} \mathbb{C} \quad n$-dimensional projective space, page 21
$p_{n}^{k} \quad k$-th n-dimensional standard element, page 46
$p_{n, Q}^{k} \quad k$-th n-dimensional Q-standard element, page 46
$Y_{\text {reg }} \quad$ regular locus of an analytic subvariety Y, page 42
$Y_{\text {sing }}$ singular locus of an analytic subvariety Y, page 42
$\operatorname{supp} D$ support of the divisor D, page 43
$A^{-t} \quad$ the transposed inverse matrix of A, i.e. $A^{-t}=\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$, page 12
$A^{t} \quad$ the transposed matrix of A, page 12
$T_{p} M$ tangent space of M at p, page 23
$\mathfrak{w}^{j} \quad j$-th coordinate for a second chart on $\mathbb{P}^{n} \mathbb{C}$, page 37
$Z^{*}(f)$ zero locus of f without zero, page 7
$Z(f) \quad$ zero locus of f, page 7
$Z\left(\left(f_{i}\right)_{i \in I}\right)$ common zero locus of $\left(f_{i}\right)_{i \in I}$, page 7
$\mathfrak{z} \quad$ point in $\mathbb{P}^{n} \mathbb{C}$, without loss of generality in \mathbb{A}_{0}, page 22
$\mathfrak{z}^{i} \quad i$-th coordinate of \mathfrak{z}, page 22

1 Introduction

This is an excerpt of my unsubmitted diploma thesis. The broad presentation of differential geometry could and hopefully should be useful for students.

June 2014, Heidelberg

2 Algebraic preliminaries

2.1 Polynomials

[Zero locus of a function]We denote by $Z(f)$ the zero locus of $f: X \rightarrow \mathbb{C}^{n}$. For a family of functions $\left(f_{i}\right)_{i \in I} Z\left(\left(f_{i}\right)_{i \in I}\right)$ denotes the common zero locus of them, i.e. $\bigcap_{i \in I} Z\left(f_{i}\right)$. If X is a vector space, then we are sometimes interested in $Z^{*}(f):=Z(f) \backslash\{0\}$.
2.1.0. $Z^{*}(f)$ really necessary ?

As we need a Corollary of Hilbert's Nullstellensatz we begin with
[Hilbert's Nullstellensatz] Let $P_{1}, \ldots, P_{k} \in \mathbb{C}\left[X^{1}, \ldots, X^{n}\right]$. If $\mathfrak{a}=\mathfrak{a}\left(Z\left(P_{1}, \ldots, P_{k}\right)\right)$ is the ideal of polynomials vanishing on $Z\left(P_{1}, \ldots, P_{k}\right)$, i.e. $\mathfrak{a}=\left\{P \in \mathbb{C}\left[X^{1}, \ldots, X^{n}\right]: P(z)=0 \forall z \in Z\left(P_{1}, \ldots, P_{k}\right)\right\}$, then $\mathfrak{a}=\operatorname{rad}\left(P_{1}, \ldots, P_{k}\right):=\left\{P \in \mathbb{C}\left[X^{1}, \ldots, X^{n}\right]: \exists m>0: P^{m} \in\left(P_{1}, \ldots, P_{k}\right)\right\}$. For a proof please have a look in Lan02, Theorem 1.5., p.380].

If the zero locus of a polynomial Q is a subset of the zero locus of another polynomial P, then Q divides a power of P. We just have to observe that P lies in $\mathfrak{a}(Z(Q))$ and hence there exists an element A of $\mathbb{C}\left[X^{1}, \ldots, X^{n}\right]$ such that $P^{m}=A Q$.

In a unique factorization domain(UFD) we denote by $\left(f_{i}\right)_{i \in I_{\mathcal{P}}}$ the collection of representatives of equivalence classes of prime elements.

An isomorphism between UFDs $\phi: R \rightarrow S$ maps primes onto primes and leaves prime factorizations invariant, i.e. $\phi\left(\epsilon_{R} \cdot \prod_{i \in I_{\mathcal{P}}} f_{i}^{\nu_{i}}\right)=\epsilon_{S} \cdot \prod_{i \in I_{\mathcal{P}}} g_{i}^{\nu_{i}}$.
2.1.0. prove this.
[Square-free element]In a unique factorization domain an element x with a factorization $x=\epsilon \cdot \prod_{i \in I_{\mathcal{P}}} f_{i}^{\nu_{i}}$ is square-free if $\nu_{i} \leq 1 \forall i \in I_{\mathcal{P}}$.

If the zero locus of a square-free polynomial Q is a subset of the zero locus of another polynomial P, then Q divides P. We deduce from section 2.1 on this page that
$P^{m}=A Q$. Expressing P and Q by $\epsilon_{P} \cdot \prod_{i \in I_{\mathcal{P}}} f_{i}^{\nu_{i}(P)}$ and $\epsilon_{Q} \cdot \prod_{i \in I_{\mathcal{P}}} f_{i}^{\nu_{i}(Q)}$, respectively, leads to $m \cdot \nu_{i}(P) \geq \nu_{i}(Q) \forall i \in I_{\mathcal{P}}$. Hence $\nu_{i}(Q)=1$ implies $\nu_{i}(P) \geq 1=$ $\nu_{i}(Q)$.
[Homogeneous function] Let C be a complex cone, i.e. for all t in $\mathbb{C}^{*} z \in C$ implies $t z \in C$. We call a function $f: C \rightarrow \mathbb{C}$ homogeneous of degree d if it holds $f(t z)=t^{d} f(z)$ for every z in \mathbb{C}^{n} and t in \mathbb{C}^{*}.
[Homogeneous polynomials] The set of polynomials homogeneous of degree d in n variables is denoted by $\mathbb{C}_{d}\left[X^{1}, \ldots, X^{n}\right]$. As 0 lies in each of these $\mathbb{C}_{d}\left[X^{1}, \ldots, X^{n}\right]$ s they become vector spaces collapsing for negative d s.

2.1.0. Add

reference.

2.1.0.

 smoothen proofFor positive $d \mathbb{C}_{d}\left[X^{1}, \ldots, X^{n}\right]$ is a vector space of dimension $\frac{(d+n-1)!}{d!(n-1)!}$.
If the product of two non-zero polynomials P and Q is homogeneous, then so are P and Q. Let $n=\operatorname{deg}(P)$ and $m=\operatorname{deg}(Q)$, then it holds $t^{m+n} P(z) Q(z)=P(t z) Q(t z)$ for any $z \in$ \mathbb{C}^{n} and $t \in \mathbb{C}$. Expressing $P(t z)$ and $Q(t z)$ as a power series in t with coefficients equaling the homogenous parts of P and Q, respectively, gives $t^{m+n} P(z) Q(z)=a_{\alpha} t^{\alpha} b_{\beta} t^{\beta}=$ $\sum_{k=0}^{n+m} t^{k} \sum_{l=0}^{k} a_{l} b_{k-l}$. Comparing the coefficients leads to $\sum_{l=0}^{k} a_{l} b_{k-l}=0$ for $k<m+n$ especially $a_{0}=0$ or $b_{0}=0$. We prove this lemma algorithmically and denote by A_{i} the index for which we have already calculated after the i-th step that $a_{j}=0 \forall j \leq A_{i}<n$. $\sum_{l=0}^{k} a_{l} b_{k-l}=\sum_{l=0}^{A_{i}} a_{l} b_{k-l}+a_{A_{i}} b_{k-B_{i}}+\sum_{l=k-B_{i}}^{k} a_{l} b_{k-l}=a_{A_{i}} b_{k-B_{i}}$. Hence either A_{i} or B_{i} can be increased.

The factorization of a homogeneous polynomial Q consists of homogeneous polynomials.

2.2 Tensor products

Lan02, Chapter XVI]
[Tensor product of modules] The tensor product $M_{1} \otimes_{R} \cdots \otimes_{R} M_{k}$ of the modules M_{1}, \ldots, M_{k} over a commutative ring R is the module uniquely determined (up to isomorphisms) by the universal property, i.e. there is a multilinear map ten : $M_{1} \times \cdots \times$ $M_{k} \longrightarrow M_{1} \otimes_{R} \cdots \otimes_{R} M_{k}$ and for each multilinear map $f: M_{1} \times \cdots \times M_{k} \longrightarrow N$ exists exactly one linear map $f_{*}: M_{1} \otimes_{R} \cdots \otimes_{R} M_{k} \longrightarrow N$ satisfying $f=f_{*} \circ$ ten.

1. We denote by $v_{1} \otimes_{R} \cdots \otimes_{R} v_{k}$ the image of $\left(v_{1}, \ldots, v_{k}\right) \in M_{1} \times \cdots \times M_{k}$ under the map ten.
2. When it is clear which ring is used $v_{1} \otimes_{R} \cdots \otimes_{R} v_{k}$ and even $M_{1} \otimes_{R} \cdots \otimes_{R} M_{k}$ can be abbreviated by $v_{1} \otimes \cdots \otimes v_{k}$ and $M_{1} \otimes \cdots \otimes M_{k}$, respectively.

In order to present the first example of a tensor product we fix some further notation.
[Dual space and basis]Let V be a finite dimensional vector space over field K of characteristic 0 . We denote by V^{*} its dual space $\operatorname{Hom}_{K}(V, K)$. The dual basis $\left\{e^{1 *}, \ldots, e^{n *}\right\}$ is the basis of V^{*} specified with respect to a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V by $e^{i *}\left(e_{j}\right)=\delta_{j}^{i} \forall i, j$.
[Tensor product of vector spaces] If R equals \mathbb{C} (or any other field of characteristic 0) then \mathbb{C}-modules are \mathbb{C}-vector spaces and the tensor product $V_{1} \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} V_{k}$ coincides with the multilinear maps from $V_{1}^{*} \times \cdots \times V_{k}^{*}$ to \mathbb{C}, i.e. Mult $\left(V_{1}^{*} \times \cdots \times V_{k}^{*}, \mathbb{C}\right)$. And ten maps $\left(v_{1}, \ldots, v_{k}\right)$ to

$$
\begin{aligned}
v_{1} \otimes_{K} \cdots \otimes_{K} v_{k}: \quad V_{1}^{*} \times \cdots \times V_{k}^{*} & \longrightarrow K \\
\left(\phi_{1}, \cdots, \phi_{k}\right) & \longmapsto \prod \phi_{i}\left(v_{i}\right) .
\end{aligned}
$$

We deduce from the universal property :

1. There is a natural isomorphism between $\left(M_{1} \otimes_{R} \cdots \otimes_{R} M_{l}\right) \otimes_{R}\left(M_{l+1} \otimes_{R} \cdots \otimes_{R} M_{k}\right)$ and $M_{1} \otimes_{R} \cdots \otimes_{R} M_{k}$.
2. The modules $M \otimes_{R} N$ and $N \otimes_{R} M$ are naturally isomorphic.
3. A tuple of linear maps $\Psi_{i}: M_{i} \rightarrow N_{i}$ induces $\Psi=\Psi_{1} \otimes \ldots \otimes \Psi_{k}:\left(M_{1} \otimes_{R} \cdots \otimes_{R} M_{k}\right) \rightarrow\left(N_{1} \otimes_{R} \cdots \otimes_{R} N_{k}\right)$.

From now on we concentrate on vector spaces over the complex numbers \mathbb{C}.
Given the tensor product $V_{1} \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} V_{k}$ then the vector spaces' basis $\left(e_{i_{j}}^{j}\right)_{1 \leq i_{j} \leq \operatorname{dim} V_{j}}$ induce a basis $\left(e_{i_{1}}^{1} \otimes \cdots \otimes e_{i_{k}}^{k}\right)_{1 \leq i_{j} \leq \operatorname{dim} V_{j}}$ of $V_{1} \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} V_{k}$.

We shorten $V_{1} \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} V_{k}$ to $V^{\otimes n}$ when V equals each V_{i}. In this case we also shorten the basis elements $e_{j_{1}}^{1} \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} e_{j_{n}}^{n}$ to $e_{j_{1}, \ldots, j_{n}}$.
[Group of permutations \mathfrak{S}_{n}] The group of permutations on $\{1, \ldots, n\}$ is denoted by \mathfrak{S}_{n}.
[Alternating tensor] We call a tensor T alternating if it holds for all permutations σ in \mathfrak{S}_{n} and all vectors in $V T\left(v_{1}, \ldots, v_{n}\right)=\operatorname{sgn}(\sigma) T\left(v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right) \equiv \operatorname{sgn}(\sigma) T^{\sigma}\left(v_{1}, \ldots, v_{n}\right)$.
[The vector space of alternating tensors $\bigwedge^{n}(V)$] The set of alternating tensors $\bigwedge^{n}(V)$ is a vector space giving rise to a vector space epimorphism

$$
\text { alt : } \begin{aligned}
V^{\otimes n} & \longrightarrow \bigwedge_{n}^{n}(V) \\
T & \longmapsto \frac{1}{\left|\mathfrak{S}_{n}\right|} \sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) T^{\sigma}
\end{aligned}
$$

that equals the identity map on $\bigwedge^{n}(V)$.
$\bigwedge^{k}(V)$ has got the basis $\left(\text { alt }\left(e_{j_{1}, \ldots, j_{k}}\right)\right)_{1 \leq j_{1}<j_{2}<\cdots<j_{k-1}<j_{k} \leq n}$ and consequently dimension $\binom{n}{k}$.

We fix further notations. alt $\left(v_{1} \otimes \ldots \otimes v_{k}\right)$ is shortened to $v_{1} \wedge \cdots \wedge v_{k}$. If $j_{1}<$ $j_{2}<\cdots<j_{k-1}<j_{k}$ then $\operatorname{alt}\left(e_{j_{1}} \otimes \ldots \otimes e_{j_{k}}\right)$ is abbreviated by $e_{\left\{j_{1}, \ldots, j_{k}\right\}} \equiv e_{J}$.
[Exterior algebra] We denote by $\operatorname{Alt} \bullet(V)$ the direct sum $\bigoplus_{k=0}^{\infty} \Lambda^{k}(V)$ which is finite due to item 3, i.e. $\bigoplus_{k=0}^{n} \wedge^{k}(V)$.

A linear map $\Psi: V \rightarrow W$ induces a map $\bigwedge^{k} \Psi: \bigwedge^{k}(V) \rightarrow \bigwedge^{k}(W)$ satisfying $\left(\bigwedge^{k} \Psi\right)\left(v^{I} e_{I}^{V}\right)=v^{I} \operatorname{det}\left(\Psi_{I}^{J}\right) e_{J}^{W}$.

2.3 Group actions

[Group action] A group action of a group G on a set S is a group homomorphism $\rho: G \rightarrow(\operatorname{Aut}(S), \circ)$ of G into the group of automorphisms, i.e. bijective self-maps.

We normally denote $\rho(g)(x)$ by $g x$ or $g(x)$.
The natural questions arising from definition 2.3 are which elements of G leave an element x of S unchanged and where is x mapped by all different g in G ?
[Stabiliser subgroup G_{x}] For a given point $x \in S$ and a group G acting on S the group $G_{x}:=\{g \in G: g(x)=x\}$ is called stabiliser subgroup G_{x} of x.
[Orbit space G^{S}] The orbit $G x$ of x under G is an equivalence class in S of the form $\{y \in S: \exists g \in G: y=g x\}=\bigcup_{g \in G}\{g x\}$. The orbit space ${ }_{G}{ }^{S}$ is the collection of all orbits.

We characterize group actions by their stabiliser subgroups, similarly as [BBI01, p.83].
[Free group action] If each stabiliser subgroup G_{x} only consists of the identity element in G then the group action is free.

If the group is acting on a set with an additional structure, then we focus on the automorphisms of this structure. We do this twice, once in section 3.1 with topological spaces and now with vector spaces.

absichtlich drin gelassen

2.4 Group representations

[Group representation] A representation of a group G on a vector space V is a group homomorphism $\rho: G \rightarrow G L(V)$. If G is equipped with an additional structure then sharper definitions are possible, e.g. $\operatorname{GL}(n, \mathbb{C})$ is a linear algebraic group.
[Polynomial map] A map $\varphi: \operatorname{GL}(n, \mathbb{C}) \rightarrow \mathbb{C}$ is polynomial if there exists a polynomial $P \in \mathbb{C}\left[X^{1}, \ldots, X^{n^{2}}\right]$ such that it holds $\varphi(A)=P\left(a_{1}^{1}, \ldots, a_{n}^{n}\right)$ for all $A=\left(a_{j}^{i}\right)$ in $\operatorname{GL}(n, \mathbb{C})$.
[Vector valued polynomial map] $\mathrm{A} \operatorname{map} \varphi$ from $\operatorname{GL}(n, \mathbb{C})$ to a finite dimensional vector
space V is called polynomial if for a given basis $\left(e_{i}\right)$ the associated coordinate functions φ^{i} are polynomial. This definition is independent of the chosen basis because coordinate functions belonging to different basis transform linearly by the corresponding basis change matrix. According to [Spr77, definition 1.4.8, p.7] we pick as vector space the set of endomorphisms $W=\operatorname{End}(V)$ and define
[Rational representation of $\mathrm{GL}(n, \mathbb{C})$] A representation of $\mathrm{GL}(n, \mathbb{C})$ on a vector space V is rational, if there is a natural number k for which $\operatorname{det} A^{k} \cdot \rho(A)$ is polynomial.
[Weight of a rational group representation] Due to the fact that $\mathbb{C}\left[X^{1}, \ldots, X^{n^{2}}\right]$ is a UFD there is a minimal integer for which $\operatorname{det} A^{k} \cdot \rho(A)$ is still polynomial. It is referred to as the weight of ρ.
[Reduced group representation] A rational representation ρ is called reduced if it has got zero weight.

1. Building blocks for a lot of representations are the standard $\rho_{e}(A)=A$, contragradient $\rho_{c}(A)=A^{-t}$ and the determinant representation $\operatorname{det}(A)$.
2. The representation defined by

$$
\begin{array}{rll}
\rho_{e} \otimes \rho_{e}: \operatorname{GL}(n, \mathbb{C}) & \longrightarrow \operatorname{Aut}(\mathrm{M}(n, \mathbb{C})) \\
A & \longmapsto\left\{X \mapsto A X A^{t}\right\}
\end{array}
$$

is reduced.
3. The representation defined by

$$
\begin{aligned}
\rho_{c} \otimes \rho_{c}: \mathrm{GL}(n, \mathbb{C}) & \longrightarrow \operatorname{Aut}(\mathrm{M}(n, \mathbb{C}))) \\
A & \longmapsto\left\{X \mapsto A^{-t} X A^{-1}\right\}
\end{aligned}
$$

is rational of weight 2. Indeed Cramer's rule yields that A^{-1} is $\frac{1}{\operatorname{det}(A)} \operatorname{Adj}(A)$ where Adj denotes the polynomial map sending a matrix to its adjugate. Therefore ρ has got a weight of at most 2 . But observing $\operatorname{det}\left(c \cdot I_{n}\right) \rho\left(c \cdot I_{n}\right)=\frac{1}{c} \cdot I_{M(n, \mathbb{C})}$ shows that the weight has to be strictly greater than 1.
4. Both representations given above can be restricted to the vector space of symmetric
matrices $\left(\mathbb{C}^{n}\right)^{\odot}$, i.e.

$$
\begin{aligned}
\rho_{e} \odot \rho_{e}: \quad \operatorname{GL}(n, \mathbb{C}) & \longrightarrow \operatorname{Aut}\left(\left(\mathbb{C}^{n}\right)^{\odot 2}\right) \\
A & \longmapsto\left\{X \mapsto A X A^{t}\right\}
\end{aligned}
$$

and $\rho_{c} \odot \rho_{c}$ analogously.

3 Analytic preliminaries

[Proper map]A map $p: X \rightarrow Y$ between two locally compact Hausdorff spaces is proper, if the preimage of a compact subset in Y is compact in X.
[Complex differentiable function]Let U be an open subset of \mathbb{C}^{n}. A function $f: U \rightarrow$ \mathbb{C}^{m} is complex differentiable, if it is Fréchet differentiable, i.e there is an associated function $D f: U \rightarrow L\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$ satisfying

$$
f(z)=f\left(z_{0}\right)+D f\left(z_{0}\right)\left(z-z_{0}\right)+o\left(\left\|z-z_{0}\right\|\right)
$$

in every $z_{0} \in U$, where $o\left(\left\|z-z_{0}\right\|\right)$ is the Landau Small O symbol.
In honour of Oka Kiyoshi we denote the algebra of complex differentiable functions by $\mathcal{O}\left(U, \mathbb{C}^{m}\right)$. Complex differentiable functions are usually called holomorphic.

Given a subset Y of \mathbb{C}^{m} we define $\mathcal{O}(U, Y)$ to be $\left\{f \in \mathcal{O}\left(U, \mathbb{C}^{m}\right): f(U) \subset Y\right\}$ and proceed similarly with $\mathbb{C}^{m}=\mathbb{C}$, i.e. $\mathcal{O}(U):=\mathcal{O}(U, \mathbb{C})$.
The partial derivative $D_{j} f\left(z_{0}\right)$ and the transformation matrix of $D f\left(z_{0}\right)$ are denoted by $\frac{\partial f}{\partial z^{j}}\left(z_{0}\right)$ and $\operatorname{Jac}\left(f, z_{0}\right)=\left(\frac{\partial f^{i}}{\partial z^{j}}\left(z_{0}\right)\right)_{1 \leq i \leq m, 1 \leq j \leq n}$ respectively.
[Biholomorphic function]We call a bijective holomorphic function $f: U \rightarrow V$ with holomorphic inverse $f^{-1}: V \rightarrow U$ biholomorphic. If U and V coincide then the biholomorphic functions form the group $\operatorname{Bihol}(U) \subsetneq \mathcal{O}(U, U)$.

We shall show in section 3.9 on page 40 that it is redundant to claim separately that f^{-1} is holomorphic, because it follows from the two other properties.

3.1 Continuous group actions

[Topological group] A topological group is a group with a topology on the ensem-
ble of its elements such that the functions $(g, h) \mapsto g \cdot h$ and $g \mapsto g^{-1}$ are continuous.

It is worthwhile to mention that we can equip every group with the discrete topology making it a topological group.
[Continuous group action] The action of a topological group G on a topological space X is continuous, if

$$
\begin{aligned}
\rho: \quad G \times X & \longrightarrow \\
(g, x) & \longmapsto \\
& \longmapsto x
\end{aligned}
$$

is continuous with respect to the product topology.
Consider a group G with discrete topology and a topological space X. Then any homomorphism from G into the group of X 's homeomorphisms is a continuous group action. It follows immediately that $\{g\} \times g^{-1}(\Omega)$ is open in the product topology for any open subset Ω of X.
[Topology on the orbit space G^{X}] Suppose G acts continuously on a topological space X. Then the projection

$$
\begin{aligned}
\pi_{G}: & \longrightarrow \\
x & \left.\longmapsto G\right|^{X} \\
& \longmapsto G x
\end{aligned}
$$

induces the quotient topology on $G^{\backslash X}$, i.e. U is open in G^{X} iff $\pi_{G}^{-1}(U)$ is open in X. A useful fact is that any $A \subset{ }_{G} \backslash^{X}$ equals $\bigcup_{x \in \pi_{G}^{-1}(A)}\{G x\}$.
[Totally discontinuously group action] A group G acts totally discontinuously on a locally compact Hausdorff space, if

- for any two compact subsets K_{1} and K_{2} the set $\left\{g \in G: g \circ K_{1} \cap K_{2} \neq \emptyset\right\}$ is finite
- and G is acting continuously.
?? on page?? displays an example for a totally discontinuously group action.

Totally discontinuously group actions have pleasant properties as stated in the following lemma.

If G acts totally discontinuously on X then

1. for every p in X there exists a neighbourhood \tilde{U} such that $\{g \in G: g \circ \tilde{U} \cap \tilde{U} \neq \emptyset\}$ equals G_{p},
2. the orbit space G^{X} is Hausdorff,
3. it holds $G_{q} \subset G_{p}$ for all q in the aforementioned $\tilde{U}=\tilde{U}_{p}$,
4. G_{p} is finite for every p in X,
5. therefore it exists a neighbourhood U of p, such that G_{p} is acting on U and $G_{p} \backslash U$ is homeomorphic to an open neighbourhood of $G p$ in $G \backslash^{X}$,
6. if the action of G is also free, then the induced projection $X \rightarrow G^{X}$ is locally a homeomorphism.
i.\&ii. The first two statements are proven in Proposition 1.7 and 1.8 of [Shi71][p.3] respectively.
iii. All elements g of G_{q} satisfy $g \circ \tilde{U} \cap \tilde{U} \supset\{q\} \neq \emptyset$ per definitionem.
iv. Setting $\{p\}=K_{1}=K_{2}$ leads to the third statement.
v. We refine \tilde{U} from 1) by setting $U:=\bigcap_{g \in G_{p}} g \circ \tilde{U} \subset \tilde{U}$ and hence it still satisfies
(3.1) $G_{p}=\{g \in G: g \circ U \cap U \neq \emptyset\}$.

Even more U is G_{p}-invariant by construction implying that the action of G_{p} on U is well defined, leading to

$$
\begin{aligned}
\iota:\left.\quad G_{p}\right|^{U} & \longrightarrow \pi_{G}(U) \subset G^{X} \\
G_{p} x & \longmapsto G x .
\end{aligned}
$$

This map is bijective, because $G x=G y$ implies $x=h(y)$ for a certain $h \in G$ and therefore $h \circ U \cap U \neq \emptyset$. We deduce from eq. (3.1) that h lies in G_{p} and so $G_{p} x=G_{p} y$.
In order to prove that ι is open it suffices to show that $\pi_{G}^{-1}(\iota(\Omega))$ is open for an arbitrary open set $\Omega \subset G_{p} \backslash^{U}$ with $V=\pi_{G_{p}}^{-1}(\Omega)$. Indeed this preimage equals $\pi_{G}^{-1}\left(\bigcup_{x \in V} G x\right)=\bigcup_{x \in V} \pi_{G}^{-1}(G x)=\bigcup_{x \in V} \bigcup_{h \in G}\{h x\}$. As G is acting continuously
this is the union of the open sets $h(V)$ for $h \in G$.
ι is continuous because $\pi_{G_{p}}^{-1}\left(\iota^{-1}(\Omega)\right)$ is $\{x \in U: G x \in \Omega\}=U \cap \pi_{G}^{-1}(\Omega)$.
vi. As G is acting freely $G_{x} x^{U} \xrightarrow{\cong} \pi_{G}(U)$ can be extended to $U \xrightarrow{\cong}\{i d\} U^{U}=G_{x} U \xrightarrow{\cong}$ $\pi_{G}(U)$.

3.2 Topological and complex manifolds

The aim of this subsection - an adaption of Wie10, Section 2.1] - is to introduce the concept of a complex manifold.
[C C^{0}-atlas] A C^{0}-atlas on a topological space X consists of an open cover $\left(U_{i}\right)_{i \in I}$ of X and a family (also over I) of homeomorphisms $\phi_{i}: U_{i} \rightarrow V_{i} \stackrel{\text { open }}{\subset} \mathbb{R}^{n_{i}}$. The maps are known as charts or coordinate functions of the specific atlas.
[Topological manifold] A topological manifold M is a second countable Hausdorff space admitting a C^{0}-atlas on it.
[Transition functions] The change of coordinates as visualised in fig. 3.1] on the next page is described by the transition function

$$
\begin{aligned}
\tau_{j \rightarrow i}: \underbrace{\phi_{j}\left(U_{i} \cap U_{j}\right)}_{\subset \mathbb{R}^{n_{j}}} & \longrightarrow \underbrace{\phi_{i}\left(U_{i} \cap U_{j}\right)}_{\subset \mathbb{R}^{n_{i}}} \\
x & \longmapsto \phi_{i} \circ \phi_{j}^{-1}(x) .
\end{aligned}
$$

As the transition functions are homeomorphisms, Bro12 implies, that their domain and image both lie in the same \mathbb{R}^{k} if non-void. Hence if one chart maps in \mathbb{C}^{k} any other chart does so too.

This allows us to specify certain atlases.
[Holomorphic atlas] We call an C^{0}-atlas holomorphic atlas, if every transition function $\tau_{j \rightarrow i}$ is a holomorphic map between two open subsets of \mathbb{C}^{k}.

As $\tau_{j \rightarrow i}^{-1}=\tau_{i \rightarrow j}$ the above implies that the transition functions of holomorphic atlases are biholomorphic functions.

Figure 3.1: the charts and the transition function, picture retrieved from For77]
[Equivalent atlases] Two holomorphic atlases $\left(U_{i}, \phi_{i}\right)_{i \in I}$ and $\left(\Omega_{j}, \psi_{j}\right)_{j \in J}$ are equivalent if their union is still a holomorphic atlas or equivalently every transition function

$$
\begin{array}{cc}
\tau_{j \rightarrow i}: \psi_{j}\left(U_{i} \cap \Omega_{j}\right) & \longrightarrow \phi_{i}\left(U_{i} \cap \Omega_{j}\right) \\
z & \longmapsto \phi_{i} \circ \psi_{j}^{-1}(z)
\end{array}
$$

is holomorphic, cf. GHL87, Def 1.7, p.5].
[Holomorphic structure] A holomorphic structure on a topological manifold M is an equivalence class of holomorphic atlases.

Every holomorphic atlas is contained in an equivalence class and induces a holomorphic structure in this way.
[Complex manifold] A complex manifold is a topological manifold with a holomorphic structure on it.

1. Any open subset U of \mathbb{C}^{n} is a complex manifold because $i d: U=M \longrightarrow U \subset \mathbb{C}^{n}$ is a homeomorphism. And as $\mathcal{A}=\left\{i d_{U}\right\}$ only consists of this chart, the compatibility condition is trivially satisfied giving rise to a holomorphic structure.
2. Every open subset Ω of a complex manifold M is a complex manifold. We just have to restrict a holomorphic atlas of $M \mathcal{A}=\left(U_{i}, \phi_{i}\right)_{i \in I}$ to the family $\left(U_{i} \cap \Omega,\left.\phi_{i}\right|_{U_{i} \cap \Omega}\right)_{i \in I}$ which is still satisfying the properties of a holomorphic atlas. Obviously any other
holomorphic atlas of \mathcal{A} 's equivalence class would have induced an equivalent holomorphic atlas on Ω.
3. We dedicate the whole section 3.3 to an important example the projective space which is extensively used in chapter 5 .
[Charts of complex manifolds] A chart of a complex manifold is a map that is a chart in one of the holomorphic structure's atlases.
[Dimension of a manifold] Consider a point p on a topological or complex manifold M and two charts $\left(U_{1}, \phi_{1}\right)$ and $\left(U_{2}, \phi_{2}\right)$ with $p \in U_{1} \cap U_{2}$. We shall use the notation \mathbb{K} for \mathbb{C} or \mathbb{R} if it is clear from the context (topological vs. complex manifolfd) which one is meant. Then we conclude that ϕ_{1} and ϕ_{2} map into Euclidean spaces $\mathbb{K}^{n_{i}}$ of the same dimension because of fig. 3.1 on page 22. Therefore the map

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{K}}: M & \longrightarrow \mathbb{N} \\
p & \longmapsto n_{i} \text { for } p \in U_{i}
\end{aligned}
$$

is well-defined. Furthermore it is constant on each U_{i} and hence locally constant. So we assign a distinct number to every connected component M_{i}, the dimension of M_{i} $\operatorname{dim}_{\mathbb{K}} M_{i}$. The dimension of M is the supremum over the dimensions of the connected components of M. We only observe manifolds of finite dimension. If all connected components have got the same dimension n we say M is of pure dimension. A (complex) n-dimensional manifold is denoted by $M=M^{n}$.
[Holomorphic functions between manifolds] A continuous function f between two topological manifolds M and N is called holomorphic, if for any charts (z, U) and (w, V) of M and N, respectively, satisfying $f(U) \subset V w \circ f \circ z^{-1}$ lies in $\mathcal{O}(U, V)$. We denote the set of all these functions by $\mathcal{O}(M, N)$.

1. Here we used z and w as symbols for the charts of manifolds $M=M^{n}$ and $N=N^{m}$. We do this if we are only working with 2 or 3 different charts. Especially if we want to use the coordinates in $z(U)$ and $w(V)$ which we denote by $\left(z^{1}, \ldots, z^{n}\right)$ and $\left(w^{1}, \ldots, w^{m}\right)$ respectively.
2. The charts $\left(\phi_{i}, U_{i}\right)$ of a complex manifold $M=M^{n}$ are in $\mathcal{O}\left(U_{i}, \mathbb{C}^{n}\right)$ with U_{i} and \mathbb{C}^{n} considered as complex manifolds. Indeed cocatenating ϕ with charts from U_{i}, i.e. $\left.\phi_{i}\right|_{U_{i} \cap \Omega}$, and \mathbb{C}^{n}, i.e. $i d$, as presented in item 3 gives $i d \circ \phi_{i} \circ \phi_{j}^{-1}=\tau_{j \rightarrow i} \in \mathcal{O}\left(U_{i}, \mathbb{C}^{n}\right)$.

The construction undertaken in fig. 3.1 to item 3 can be adjusted to similar cases like smooth, k-times differentiable, etc. transition functions giving rise to smooth or $C^{k}{ }_{-}$ manifolds.

3.3 The n-dimensional projective space

The topic of this subsection is the n-dimensional projective space, the manifold we are using in chapter 5 in order to prove the results for certain modular forms.
[The n-dimensional projective space $\mathbb{P}^{n} \mathbb{C}$] We define the n-dimensional projective space $\mathbb{P}^{n} \mathbb{C}$ to be the collection of lines in \mathbb{C}^{n+1} through the origin. Each of these lines can be viewed as an equivalence class on $\mathbb{C}^{n+1} \backslash\{0\}$ for the relation $x \sim y \Longleftrightarrow \exists \lambda \in$ $\mathbb{C}^{*}: x=\lambda y$.

The n-dimensional projective space $\mathbb{P}^{n} \mathbb{C}$ is a complex manifold. Sticking with the notation of GH78, Examples, 0 Foundational material, 2. Compl. Mfds, p.15] the map

$$
\begin{array}{ccc}
\pi: & \mathbb{C}^{n+1} \backslash\{0\} & \longrightarrow \mathbb{P}^{n} \mathbb{C}=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \sim \\
& z=\left(z^{0}, \ldots, z^{n}\right) & \longmapsto
\end{array}
$$

induces the quotient topology on $\mathbb{P}^{n} \mathbb{C}$. In [FG02, p. 209] it is shown that $\mathbb{P}^{n} \mathbb{C}$ is actually a Hausdorff space.
There are homeomorphisms between the α-th affine space $\mathbb{A}_{\alpha}=\left\{[z]: z^{\alpha} \neq 0\right\}$ and \mathbb{C}^{n}

$$
\begin{aligned}
& \phi_{\alpha}: \quad \mathbb{A}_{\alpha} \quad \longrightarrow \mathbb{C}^{n} \\
& {\left[z^{0}, \ldots, z^{n}\right] \longmapsto\left(\frac{z^{0}}{z^{\alpha}}, \ldots, \frac{z^{\alpha-1}}{z^{\alpha}}, \frac{z^{\alpha+1}}{z^{\alpha}}, \ldots \frac{z^{n}}{z^{\alpha}}\right) .}
\end{aligned}
$$

These maps and open sets form the compatible holomorphic charts of $\mathbb{P}^{n} \mathbb{C}$ because

$$
\begin{array}{ccc}
\tau_{\alpha \beta}: & \mathbb{C}^{n} \backslash\left\{w^{\beta}=0\right\} & \longrightarrow \mathbb{C}^{n} \backslash\left\{w^{\beta}=0\right\} \\
& \left(w^{0}, \ldots, \widehat{w^{\alpha}}, \ldots, w^{n}\right) & \longmapsto \\
& \frac{1}{w^{\beta}}\left(w^{0}, \ldots, \widehat{w^{\beta}}, \ldots, w^{\alpha-1}, 1, w^{\alpha+1}, \ldots, w^{n}\right)
\end{array}
$$

is holomorphic and $\pi^{-1}\left(\mathbb{A}_{\alpha}\right)=\left(\mathbb{C}^{n+1} \backslash\left(\mathbb{C}^{\alpha-1} \times\{0\} \times \mathbb{C}^{n-\alpha}\right)\right)$.

In computations and proofs we assume without loss of generality that the current chart is (\mathbb{A}_{0}, ϕ_{0}), so we introduce a special notation for this case : the coordinates of $\left[z^{0}, \ldots, z^{n}\right]=$: \mathfrak{z} are denoted by $\left(\frac{z^{1}}{z^{0}}, \ldots \frac{z^{n}}{z^{0}}\right)=:\left(\mathfrak{z}^{1}, \ldots, \mathfrak{z}^{n}\right)$.

It holds $Z^{*}(Q)=\pi^{-1} \pi\left(Z^{*}(Q)\right)$ for every homogeneous polynomial in $n+1$ variables. The inclusion of the left hand side in the right hand side is obviously true for any map. As π is just the projection onto the equivalence classes $\pi^{-1} \pi(z)$ coincides with $\left\{w \in \mathbb{C}^{n+1}: \exists t \in \mathbb{C}^{*}: w=t \cdot z\right\}$. As Q is homogenous z in $Z^{*}(Q)$ implies $\pi^{-1} \pi(z) \subset$ $Z^{*}(Q)$ and hence $\pi^{-1} \pi\left(Z^{*}(Q)\right) \subset Z^{*}(Q)$.

3.4 Stalks of holomorphic functions

The concept of sheaves, stalks and germs equips the tangent space with a chart independent vector space structure and is even easily extendable to varieties, as mentioned in [Ser65, page LG 3.8]. As we make extensive usage of connected subsets of M during this subsection and consequently in the sections 3.5 to 3.8 we may assume without loss of generality that M is connected.
3.4.0. remove this definition?

The classical foundation for the definitions of germs and stalks in section 3.4 is the subsequent [Sheaf of holomorphic functions \mathcal{O}_{U}] The (pre-)sheaf of holomorphic functions \mathcal{O}_{U} of an open subset U of M is the collection of all holomorphic functions mapping an open subset contained in U to the complex numbers, i.e. $\mathcal{O}_{U}=(\mathcal{O}(V))_{V} V^{\text {open }} U$.
We shall write $f \in \mathcal{O}_{U}$ if we mean $\exists V \stackrel{\text { open }}{\subset} U: f \in \mathcal{O}(V)$.
Taking direct limits on the family $\mathcal{O}_{U}=(\mathcal{O}(V))_{V}{ }_{V}^{\text {open }}{ }_{U}$ can be formulated in an easily understandable way.
[Holomorphic germ] Given a point p in $V \stackrel{\text { open }}{\subset} U$ and a holomorphic function $f: V \rightarrow \mathbb{C}$ in \mathcal{O}_{U} we define f^{\prime} 's germ in p as $[f]_{\mathcal{O}_{U, p}}=\left\{g \in \mathcal{O}_{U}: \exists W:\left.p \in W \stackrel{\text { open }}{\subset} U \& f\right|_{W}=\left.g\right|_{W}\right\}$. The set of these equivalence classes is the stalk of \mathcal{O}_{U} at \mathbf{p} denoted by $\mathcal{O}_{U, p}$.
$\mathcal{O}_{U, p}$ possesses an \mathbb{C}-algebra structure with addition $[f]_{\mathcal{O}_{U, p}}+[g]_{\mathcal{O}_{U, p}}:=[f+g]_{\mathcal{O}_{U, p}}$ and multiplication $[f]_{\mathcal{O}_{U, p}} \cdot[g]_{\mathcal{O}_{U, p}}:=[f g]_{\mathcal{O}_{U, p}}$. These binary operations are well defined, as for $\left.f_{1}\right|_{W_{f}}=\left.f_{2}\right|_{W_{f}}$ and $\left.g_{1}\right|_{W_{g}}=\left.g_{2}\right|_{W_{g}}$ we conclude $\left.f_{1}\right|_{W}=\left.f_{2}\right|_{W}$ and $\left.g_{1}\right|_{W}=\left.g_{2}\right|_{W}$ with $p \in W=W_{f} \cap W_{g}$. Therefore $\left.\left(f_{1}+g_{1}\right)\right|_{W}=\left.\left(f_{2}+g_{2}\right)\right|_{W}$ and
$\left.\left(f_{1} g_{1}\right)\right|_{W}=\left.\left(f_{2} g_{2}\right)\right|_{W}$. So all the algebra axioms for $\mathcal{O}_{U, p}$ can be deduced from the algebras $\mathcal{O}(W)$.

Furthermore we can evaluate $[f]_{\mathcal{O}_{U, p}}$ at p, as f coincides with every other representative g on an open neighbourhood of p and hence especially on p.
A consequence of the definition of a germ is the isomorphy of the restriction $\pi: \mathcal{O}_{M, p} \rightarrow$ $\mathcal{O}_{U, p}$.

3.5 Tangent spaces

[Tangent vector] A tangent vector or derivation at a point p is a \mathbb{C}-linear map v : $\mathcal{O}_{M, p} \rightarrow \mathbb{C}$ also satisfying Leibniz's law $v\left([f g]_{\mathcal{O}_{U, p}}\right)=v\left([f]_{\mathcal{O}_{U, p}}\right)[g]_{\mathcal{O}_{U, p}}(p)+v\left([g]_{\mathcal{O}_{U, p}}\right)[f]_{\mathcal{O}_{U, p}}(p)$.
[Tangent space] The collection of tangent vectors at a point p is called the holomorphic tangent space $T_{p} M$. It is actually a vector space, if viewed with pointwise scalar multiplication and addition, i.e. $(\alpha v+\beta w)\left([f]_{\mathcal{O}_{U, p}}\right):=\alpha\left(v\left([f]_{\mathcal{O}_{U, p}}\right)\right)+\beta\left(w\left([f]_{\mathcal{O}_{U, p}}\right)\right)$. The interested reader may have already observed that $T_{p} M$ is a subspace of the dual vector space of $\mathcal{O}_{M, p}$.

1. For a given smooth curve γ from an open interval I containing zero into M with $\gamma(0)=p$ we define v_{γ} by $[f]_{\mathcal{O}_{U, p}} \mapsto \frac{d}{d t}(f \circ \gamma)(0)$. This is welldefined as $f \sim g$ implies $\left.f\right|_{\mathcal{D}}=\left.g\right|_{\mathcal{D}},\left.f \circ \gamma\right|_{\gamma^{-1}(\mathcal{D})}=\left.g \circ \gamma\right|_{\gamma^{-1}(\mathcal{D})}$ and so $\frac{d}{d t}(f \circ \gamma)(0)=\frac{d}{d t}(g \circ \gamma)(0)$. Furthermore

$$
\begin{aligned}
v_{\gamma}\left([f g]_{\mathcal{O}_{U, p}}\right) & =\frac{d}{d t}((f g) \circ \gamma)(0)=\frac{d}{d t}((f \circ \gamma) \cdot(g \circ \gamma))(0) \\
& =\frac{d}{d t}(f \circ \gamma)(0) \cdot(g \circ \gamma)(0)+\frac{d}{d t}(g \circ \gamma)(0) \cdot(f \circ \gamma)(0) \\
& =v_{\gamma}\left([f]_{\mathcal{O}_{U, p}}\right) \cdot[g]_{\mathcal{O}_{U, p}}(p)+v_{\gamma}\left([g]_{\mathcal{O}_{U, p}}\right) \cdot[f]_{\mathcal{O}_{U, p}}(p)
\end{aligned}
$$

proves that v_{γ} satisfies Leibniz's law and

$$
\begin{aligned}
v_{\gamma}\left([\alpha f+\beta g]_{\mathcal{O}_{U, p}}\right) & =\frac{d}{d t}((\alpha f+\beta g) \circ \gamma)(0)=\frac{d}{d t}(\alpha(f \circ \gamma)+\beta(g \circ \gamma))(0) \\
& =\alpha \cdot \frac{d}{d t}(f \circ \gamma)(0)+\beta \cdot \frac{d}{d t}(g \circ \gamma)(0) \\
& =\alpha \cdot v_{\gamma}\left([f]_{\mathcal{O}_{U, p}}\right)+\beta \cdot v_{\gamma}\left([g]_{\mathcal{O}_{U, p}}\right) .
\end{aligned}
$$

the linearity.
2. The partial differential operators $\left.\frac{\partial \cdot}{\partial z^{i}}\right|_{z_{0}}$ are elements of $T_{z_{0}} \mathbb{C}^{n}$. Let us first observe that $\left.\frac{\partial \cdot}{\partial z^{i}}\right|_{z_{0}}: \mathcal{O}_{\mathbb{C}^{n}, z_{0}} \longrightarrow \mathbb{C}$ is welldefined as $f \sim g$ implies $\left.f\right|_{W}=\left.g\right|_{W}$ on an open subset W and hence $\left.\frac{\partial f}{\partial z^{i}}\right|_{z_{0}}=\left.\frac{\partial g}{\partial z^{i}}\right|_{z_{0}}$. The algebraic properties of a derivation are clearly satisfied.

In order to verify that the partial differential operators $\left.\frac{\partial}{\partial z^{i}}\right|_{z_{0}}$ form a basis we need to state first a lemma.

It holds $v\left([c]_{\mathcal{O}_{U, p}}\right)=0$ for every $c \in \mathbb{C}$ and $v \in T_{p} M$.
We start by showing that $v\left([1]_{\mathcal{O}_{U, p}}\right)=0$, because $v\left([1 \cdot 1]_{\mathcal{O}_{U, p}}\right)=2 \cdot v\left([1]_{\mathcal{O}_{U, p}}\right) \cdot[1]_{\mathcal{O}_{U, p}}(p)=$ $2 \cdot v\left([1]_{\mathcal{O}_{U, p}}\right) \cdot v\left([c]_{\mathcal{O}_{U, p}}\right)=c \cdot v\left([1]_{\mathcal{O}_{U, p}}\right)$ completes the proof.

We prove the following lemma in a little bit bulky version so that it is easily adaptable to the real case. Furthermore the rather deep fact that every holomorphic function can be written as a power series (cf. section 3.9 on page 39) can be avoided at this stage of the thesis.

The partial differential operators $\left.\frac{\partial \cdot}{\partial z^{i}}\right|_{z_{0}}$ form a basis of $T_{z_{0}} \mathbb{C}^{n}$. We use the idea presented in Ger06, p.262] but with a deeper look into the details. In order to transform $f(z)=f\left(z_{0}\right)+f(z)-f\left(z_{0}\right)$ we define $z_{t}(z):=z_{t}:=z_{0}+t\left(z-z_{0}\right)$ and observe

$$
\begin{aligned}
f(z)-f\left(z_{0}\right) & =\left[f\left(z_{t}\right)\right]_{0}^{1}=\int_{0}^{1} \frac{d}{d t}\left(f\left(z_{t}\right)\right) d t=\int_{0}^{1} \nabla f\left(z_{t}\right) \frac{d}{d t}\left(z_{t}\right) d t \\
& =\int_{0}^{1} \frac{\partial f}{\partial z^{i}}\left(z_{t}\right)\left(z^{i}-z_{0}^{i}\right) d t
\end{aligned}
$$

Here we used Einstein's summation convention(section 3.6 on page 33) for the first time.

$$
=\int_{0}^{1} \frac{\partial f}{\partial z^{i}}\left(z_{0}+t\left(z-z_{0}\right)\right) d t \cdot\left(z^{i}-z_{0}^{i}\right) \equiv S_{i}(z) \Delta^{i}(z)
$$

Both $S_{i}(z)$ and $\Delta^{i}(z)$ are holomorphic functions in z by Leibniz's rule for differentiation under the integral sign. This can be found in Ger06, lemma 9.4.3 on page 144] or derived from [FB09, lemma II.3.3., p.94]. So we deduce that $v\left([f]_{\mathcal{O}_{U, p}}\right)$ equals $v\left(\left[f\left(z_{0}\right)+S_{i} \Delta^{i}\right]_{\mathcal{O}_{U, p}}\right)$ and hence

$$
v\left([f]_{\mathcal{O}_{U, p}}\right)=0+v\left(\left[S_{i}\right]_{\mathcal{O}_{U, p}} \cdot\left[\Delta^{i}\right]_{\mathcal{O}_{U, p}}\right)
$$

$$
\begin{aligned}
& =v\left(\left[S_{i}\right]_{\mathcal{O}_{U, p}}\right) \cdot\left[\Delta^{i}\right]_{\mathcal{O}_{U, p}}\left(z_{0}\right)+\left[S_{i}\right]_{\mathcal{O}_{U, p}}\left(z_{0}\right) \cdot v\left(\left[\Delta^{i}\right]_{\mathcal{O}_{U, p}}\right) \\
& =v\left(\left[S_{i}\right]_{\mathcal{O}_{U, p}}\right)\left(z_{0}^{i}-z_{0}^{i}\right)+\left[S_{i}\right]_{\mathcal{O}_{U, p}}\left(z_{0}\right) \cdot v\left(\left[z^{i}\right]_{\mathcal{O}_{U, p}}-\left[z_{0}^{i}\right]_{\mathcal{O}_{U, p}}\right) \\
& =0+\left[S_{i}\right]_{\mathcal{O}_{U, p}}\left(z_{0}\right) \cdot v\left(\left[z^{i}\right]_{\mathcal{O}_{U, p}}-\left[z_{0}^{i}\right]_{\mathcal{O}_{U, p}}\right)
\end{aligned}
$$

Combining

$$
\left[S_{i}\right]_{\mathcal{O}_{U, p}}\left(z_{0}\right)=\int_{0}^{1} \frac{\partial f}{\partial z^{i}}\left(z_{0}+t\left(z_{0}-z_{0}\right)\right) d t=\int_{0}^{1} \frac{\partial f}{\partial z^{i}}\left(z_{0}\right) d t=\left.\frac{\partial f}{\partial z^{i}}\right|_{z_{0}}
$$

with $v\left(\left[z^{i}\right]_{\mathcal{O}_{U, p}}-\left[z_{0}^{i}\right]_{\mathcal{O}_{U, p}}\right)=v\left(\left[z^{i}\right]_{\mathcal{O}_{U, p}}\right)=: v^{i} \in \mathbb{C}$ establishes the desired formula $v\left([f]_{\mathcal{O}_{U, p}}\right)=\left.v^{i} \frac{\partial f}{\partial z^{i}}\right|_{z_{0}}$.

We want to transport this result to an arbitrary complex manifold. Therefore we need two further lemmas. We anticipate the notations from item 2 and section 3.6 on pages 30 32.

Given a holomorphic function $\phi: M \rightarrow N$ then there is an algebra homomorphism

$$
\left.\begin{array}{lll}
\phi^{*}: & \mathcal{O}_{V, \phi(p)} & \longrightarrow \mathcal{O}_{U, p} \\
& {[f]_{\mathcal{O}_{V, \phi(p)}}} & \longmapsto
\end{array}\right][f \circ \phi]_{\mathcal{O}_{U, p}}
$$

for U and V open sets in M and N, respectively. If ϕ is a biholomorphic function then ϕ^{*} is an isomorphism.

1. ϕ^{*} is well-defined as $f \sim g$ implies $\left.f\right|_{W}=\left.g\right|_{W}$ for an open subset W of V and hence $f \circ \phi=g \circ \phi$ in the open subset $\phi^{-1}(W)$.

We have already observed in example 3.5 i) on page 27 that the algebra structure of germs is preserved by hitting the functions with one single differentiable function.
2. By evaluating $\left(\phi^{-1}\right)^{*}$ at $[0]_{\mathcal{O}_{U, p}}=\phi^{*}\left([f]_{\mathcal{O}_{V, \phi(p)}}\right)=[f \circ \phi]_{\mathcal{O}_{U, p}}$ we get $[0]_{\mathcal{O}_{V, \phi(p)}}=\left(\phi^{-1}\right)^{*}\left([0]_{\mathcal{O}_{U, p}}\right)=\left[f \circ \phi \circ \phi^{-1}\right]_{\mathcal{O}_{V, \phi(p)}}=[f]_{\mathcal{O}_{V, \phi(p)}}$ and see how to construct the preimage for an arbitrary element of $\mathcal{O}_{U, p}$.

An algebra homomorphism $\phi^{*}: \mathcal{O}_{N, q} \longrightarrow \mathcal{O}_{M, p}$, satisfying $\phi^{*}\left([f]_{\mathcal{O}_{N, q}}\right)(p)=[f]_{\mathcal{O}_{N, q}}(q)$ for all f, is inducing a vector space homomorphism

$$
\begin{aligned}
\phi_{*}: T_{p} M & \longrightarrow T_{q} N \\
v & \longmapsto v \circ \phi^{*} .
\end{aligned}
$$

If ϕ^{*} is an isomorphism, then so is ϕ_{*}.

1. We observe that ϕ_{*} maps into $T_{q} N$ because ϕ^{*} and v are both linear and Leibniz's law is satisfied

$$
\begin{aligned}
\phi_{*}(v)\left([f g]_{\mathcal{O}_{N, q}}\right) & =v \circ \phi^{*}\left([f g]_{\mathcal{O}_{N, q}}\right)=v\left(\phi^{*}\left([f]_{\mathcal{O}_{N, q}}\right) \phi^{*}\left([g]_{\mathcal{O}_{N, q}}\right)\right) \\
& =v\left(\phi^{*}\left([f]_{\mathcal{O}_{N, q}}\right)\right) \cdot \phi^{*}\left([g]_{\mathcal{O}_{N, q}}\right)(p)+v\left(\phi^{*}\left([g]_{\mathcal{O}_{N, q}}\right)\right) \cdot \phi^{*}\left([f]_{\mathcal{O}_{N, q}}\right)(p) \\
& =\phi_{*}(v)\left([f]_{\mathcal{O}_{N, q}}\right) \cdot[g]_{\mathcal{O}_{N, q}}(q)+\phi_{*}(v)\left([g]_{\mathcal{O}_{N, q}}\right) \cdot[f]_{\mathcal{O}_{N, q}}(q) .
\end{aligned}
$$

ϕ_{*} is linear as an operator concatenating ϕ^{*} to its input.
2. By hitting $0=\phi_{*}(v)=v \circ \phi^{*}$ with $\left(\phi^{*}\right)^{-1}$ we get $0=0 \circ\left(\phi^{*}\right)^{-1}=v \circ \phi^{*} \circ\left(\phi^{*}\right)^{-1}=v$. The image of $w \circ\left(\phi^{*}\right)^{-1}$ is $w \circ\left(\phi^{*}\right)^{-1} \circ \phi^{*}$ and hence ϕ_{*} is surjective.

The restriction isomorphism $\Psi_{U}^{M}: \mathcal{O}_{M, p} \hookrightarrow \mathcal{O}_{U, p}$ induces an isomorphism $\left(\Psi_{U}^{M}\right)_{*}: T_{p} U \hookrightarrow T_{p} M$.
[Pushforward] The above constructed vector space homomorphism $\phi_{*}: T_{p} M \rightarrow T_{\phi(p)} N$ associated with a holomorphic function $\phi: M \rightarrow N$ is called the pushforward along ϕ.

An immediate consequence is
[Chain rule for pushforwards] For any two holomorphic functions $\phi: M \longrightarrow N$ and $\psi: N \longrightarrow P$ it holds $(\psi \circ \phi)_{*}=\psi_{*} \circ \phi_{*}$. Evaluating $(\psi \circ \phi)_{*}(v)(h)$ for arbitrary tangent vectors v and holomorphic functions $h: P \rightarrow \mathbb{C}$ leads to $v((h \circ \psi) \circ \phi)=\left(\phi_{*} v\right)(h \circ \psi)=$ $\left(\psi_{*}\left(\phi_{*} v\right)\right)(h)$.

We note for the interested reader that there is a functor from the category of complex manifolds with a single distinguished point to the category of vector spaces assigning to a manifold (M, p) its tangent space at the distinguished point $T_{p} M$ and to a holomorphic function its pushforward between the distinguished tangent spaces $T_{p} M$ and $T_{q} N$.

Let $T_{p} M$ be the tangent space of a point p on a manifold $M=M^{n}$. Then there is a canonical isomorphism Φ_{*} between $T_{p} M$ and $T_{z(p)} \mathbb{C}^{n}$ where z is a chart around p. We have already seen that there are isomorphisms $\Psi_{U}^{M}: \mathcal{O}_{M, p} \rightarrow \mathcal{O}_{U, p}$ and $\Psi_{V}^{\mathbb{C}_{V}^{n}}: \mathcal{O}_{\mathbb{C}^{n}, z(p)} \rightarrow$ $\mathcal{O}_{V, z(p)}$. So we conclude from item 2 on the preceding page that we can map functions in $\mathcal{O}_{M, p}$ to functions in $\mathcal{O}_{\mathbb{C}^{n}, z(p)}$ by $\Phi:=\left(\Psi_{V}^{\mathbb{C}^{n}}\right)^{-1} \circ\left(z^{-1}\right)^{*} \circ \Psi_{U}^{M}$. Combining this result with
item 2 on page 29 leads to the desired isomorphism and each element v in $T_{p} M$ equals $w \circ \Phi=\left.w^{i} \frac{\partial}{\partial z^{i}}\right|_{z(p)} \circ \Phi$ in Einstein's summation convention.
[Canonical basis of $T_{p} M$] Let Φ be the isomorphism from item 2. Then the image of $\left(\left.\frac{\partial}{\partial z^{i}}\right|_{z(p)}\right)_{1 \leq i \leq n}$ under Φ is $\left(\frac{\partial\left(\left.(\cdot)\right|_{U} \circ z^{-1}\right)}{\partial z^{i}}(z(p))\right)_{1 \leq i \leq n}$ or shortened to $\left(\left.\frac{\partial \cdot}{\partial z^{i}}\right|_{p}\right)_{1 \leq i \leq n}$ and forms the canonical basis of $T_{p} M$ associated to the coordinate system $\left(z^{1}, \ldots, z^{n}\right)$.

We have constructed basis for the tangent spaces and defined a homomorphism between them. So one question arises naturally. What is the transformation matrix?

Given a holomorphic function $\phi: M \rightarrow N$ and coordinates $\left(z^{1}, \ldots, z^{n}\right)$ and $\left(w^{1}, \ldots, w^{m}\right)$ around $p \in M$ and $\phi(p) \in N$, respectively, then the transformation matrix of the pushforward $\phi_{*}: T_{p} M \rightarrow T_{\phi(p)} N$ in terms of $\left(\left.\frac{\partial \cdot}{\partial z^{i}}\right|_{p}\right)_{1 \leq i \leq n}$ and $\left(\left.\frac{\partial \cdot}{\partial w^{j}}\right|_{\phi(p)}\right)_{1 \leq j \leq m}$ is the Jacobian matrix of $w \circ \phi \circ z^{-1}$. Writing $\phi_{*}(v)(g)=v(g \circ \phi)$ as a linear combination of the basis vectors $\left.\frac{\partial \cdot}{\partial z^{i}}\right|_{p}$ gives $\left.v^{i} \frac{\partial g \circ \phi}{\partial z^{i}}\right|_{p}$ in Einstein's summation convention. Expanding these differential operators explicitly with coordinate functions leads to

$$
\begin{aligned}
\phi_{*}(v)(g) & =v^{i} \frac{\partial g \circ w^{-1} \circ w \circ \phi \circ z^{-1}}{\partial z^{i}}(z(p)) \\
& =v^{i} \frac{\partial g \circ w^{-1}}{\partial w^{j}}(w(\phi(p))) \frac{\partial\left(w \circ \phi \circ z^{-1}\right)^{j}}{\partial z^{i}}(z(p)) \\
& =\left.v^{i} \frac{\partial g}{\partial w^{j}}\right|_{\phi(p)} \operatorname{Jac}\left(w \circ \phi \circ z^{-1}, z(p)\right)_{i}^{j} .
\end{aligned}
$$

As g can be chosen arbitrarily we deduce $\phi_{*}\left(\left.v^{i} \frac{\partial \cdot}{\partial z^{i}}\right|_{p}\right)=\left.\operatorname{Jac}\left(w \circ \phi \circ z^{-1}, z(p)\right)_{i}^{j} v^{i} \frac{\partial \cdot}{\partial w^{j}}\right|_{\phi(p)}$. Sometimes we shorten this to $\left.v^{i} \frac{\partial \phi^{j}}{\partial z^{i}} \frac{\partial \cdot}{\partial w^{j}}\right|_{\phi(p)}$.

Taking $\phi=i d$ leads to the following corollary.
[Change of the tangent space's basis] Given coordinates $\left(z^{1}, \ldots, z^{n}\right)$ and $\left(\tilde{z}^{1}, \ldots, \tilde{z}^{n}\right)$ around p and their associated basis $\left(\left.\frac{\partial \cdot}{\partial z^{i}}\right|_{p}\right)_{1 \leq i \leq n}$ and $\left(\left.\frac{\partial \cdot}{\partial \tilde{z}^{j}}\right|_{p}\right)_{1 \leq j \leq n}$ in $T_{p} M$ then the change of basis matrix is the Jacobian matrix of the transition function $\tilde{z} \circ z^{-1}$.

3.6 Cotangent spaces

[Cotangent space] The dual space of $T_{p} M$ is called the holomorphic cotangent space and denoted by $\left(T_{p} M\right)^{*}=T_{p}^{*} M$.
We call the elements of the cotangent space co-vectors, 1-forms or covariant vectors.

We can associate to a holomorphic germ $[f]_{\mathcal{O}_{U, p}}$ its total differential at point p

$$
\begin{aligned}
d f_{p}: T_{p} M & \longrightarrow \mathbb{C} \\
v & \longmapsto v\left([f]_{\mathcal{O}_{U, p}}\right) .
\end{aligned}
$$

For the advanced reader this is not totally surprising as $\left(\mathcal{O}_{M, p}\right)^{*}$ can be written as the direct sum $T_{p} M \oplus V$. This implies $\left(\mathcal{O}_{M, p}\right)^{* *}=T_{p}^{*} M \oplus V^{*} \supset \mathcal{O}_{M, p}$.

The single functions z^{i} of a chart (z, U) are holomorphic functions on U and therefore induce total differentials $d\left(z^{i}\right)_{p}=d z_{p}^{i}$.
[Dual basis of the cotangent space] The above defined $d z_{p}^{i}$ form a dual basis to the tangent vectors $\left.\frac{\partial}{\partial z^{i}}\right|_{p}$ associated to the same chart (z, U), i.e. $d z_{p}^{i}\left(\left.\frac{\partial}{\partial z^{j}}\right|_{p}\right)=\delta_{j}^{i}$. It suffices to prove $d z_{p}^{i}\left(\left.\frac{\partial \cdot}{\partial z^{j}}\right|_{p}\right)=\left.\frac{\partial z^{i}}{\partial z^{j}}\right|_{p}=\frac{\partial z^{i} \circ z^{-1}}{\partial z^{j}}(z(p))=\delta_{j}^{i}$, because $T_{p} M$ is of finite dimension.

Any total differential $d f_{p}$ can be represented as $\left.\frac{\partial f}{\partial z^{i}}\right|_{p} \cdot d z_{p}^{i}$. We can easily determine the coefficients of $d f_{p}=f_{i} d z_{p}^{i}$ (in ESC section 3.6!) by evaluating it at $\left.\frac{\partial \cdot}{\partial z^{j}}\right|_{p}: d f_{p}\left(\left.\frac{\partial \cdot}{\partial z^{j}}\right|_{p}\right)=$ $\left.\frac{\partial f}{\partial z^{j}}\right|_{p}=f_{i} d z_{p}^{i}\left(\left.\frac{\partial}{\partial z j}\right|_{p}\right)=f_{j}$.
[Pullback] A holomorphic function $\phi: M \longrightarrow N$ induces a linear map called the pullback

$$
\begin{aligned}
\phi^{*}: T_{\phi(p)}^{*} N & \longrightarrow T_{p}^{*} M \\
\omega & \longmapsto \omega \circ \phi_{*} .
\end{aligned}
$$

An immediate consequence is
[Chain rule for pullbacks]For any two holomorphic functions $\phi: M \longrightarrow N$ and $\psi: N \longrightarrow$ P it holds $(\psi \circ \phi)^{*}=\phi^{*} \circ \psi^{*}$. Evaluating $(\psi \circ \phi)^{*}(\omega)$ for arbitrary co-vectors ω leads to $\omega \circ \psi_{*} \circ \phi_{*}=\left(\psi^{*} \omega\right) \circ \phi_{*}=\phi^{*} \psi^{*} \omega$.

Given a holomorphic function $\phi: M \rightarrow N$ and coordinates $\left(z^{1}, \ldots, z^{n}\right)$ and $\left(w^{1}, \ldots, w^{m}\right)$ around $p \in M$ and $\phi(p) \in N$, respectively, then the transformation matrix of the pullback $\phi^{*}: T_{\phi(p)}^{*} N \rightarrow T_{p}^{*} M$ in terms of $\left(d z_{p}^{i}\right)_{1 \leq i \leq n}$ and $\left(d w_{\phi(p)}^{j}\right)_{1 \leq j \leq m}$ is the Jacobian matrix of $w \circ \phi \circ z^{-1}$. This can be seen by evaluating $\phi^{*} \omega=\left(\phi^{*} \omega\right)_{i} d z_{p}^{i}$ at $\left.\frac{\partial \cdot}{\partial z^{i}}\right|_{p}:$

$$
\left(\phi^{*} \omega\right)_{i}=\left(\phi^{*} \omega\right)\left(\left.\frac{\partial \cdot}{\partial z^{i}}\right|_{p}\right)=\omega\left(\phi_{*}\left(\left.\frac{\partial \cdot}{\partial z^{i}}\right|_{p}\right)\right)=\omega\left(\left.\frac{\partial \phi^{j}}{\partial z^{i}} \frac{\partial \cdot}{\partial w^{j}}\right|_{\phi(p)}\right)=\frac{\partial \phi^{j}}{\partial z^{i}} \omega_{j}
$$

and deducing $\left(\left(\phi^{*} \omega\right)_{1}, \ldots,\left(\phi^{*} \omega\right)_{n}\right)=\left(\omega_{1}, \ldots, \omega_{n}\right) \operatorname{Jac}\left(w \circ \phi \circ z^{-1}, z(p)\right)$ for the row vectors $\left(\left(\phi^{*} \omega\right)_{1}, \ldots,\left(\phi^{*} \omega\right)_{n}\right)$ and $\left(\omega_{1}, \ldots, \omega_{n}\right)$.

Taking $\phi=i d$ leads to the following corollary.
[Change of the cotangent space's basis] Given coordinates $\left(z^{1}, \ldots, z^{n}\right)$ and $\left(\tilde{z}^{1}, \ldots, \tilde{z}^{n}\right)$ around p and their associated basis $\left(d z_{p}^{i}\right)_{1 \leq i \leq n}$ and $\left(d \tilde{z}_{p}^{j}\right)_{1 \leq j \leq n}$ in $T_{p}^{*} M$ then the change of basis matrix is the Jacobian matrix of the transition function $\tilde{z} \circ z^{-1}$.
[Einstein summation convention]Evaluating a co-vector $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ at the tangent vector $v=\left(v^{1}, \ldots, v^{n}\right)$ leads to $\omega(v)=\sum_{i=1}^{n} \omega_{i} d z_{p}^{i}\left(\left.\sum_{j=1}^{n} v^{j} \frac{\partial \cdot}{\partial z^{j}}\right|_{p}\right)=\sum_{i=1}^{n} \omega_{i} v^{i}$. As the product $\omega_{k} v^{k}$ for only one single index $k \in\{1, \ldots, n\}$ is extremely rarely used we stick to the Einstein summation convention(ESC) from differential geometry. This means when summing over all products of the before mentioned coefficients we omit the summation sign and write $\omega_{i} v^{i}$. The super- and subscript indices indicate when we are facing the above case.
Since under the summation sign we saw whether an index started at 0 or 1 we use from now on α and β if we want to stress that the summation index ranges from 0 to the obvious upper end say n and latin indices for ranges $\{1, \ldots, n\}$.
Additionally we write component indices of entities in superscript, if the entities transform under a change of coordinates like tangent vetors (cf. item 2) and in subscript if they transform like covectors.
An example is the gradient $\nabla f=\left(\frac{\partial f}{\partial z^{1}}, \ldots, \frac{\partial f}{\partial z^{n}}\right)=\left(g_{1}, \ldots, g_{n}\right)$ as $\frac{\partial f}{\partial z^{i}}=\frac{\partial f \circ \tilde{z}^{-1} \circ \tilde{z}}{\partial z^{i}}=$ $\frac{\partial f \circ \tilde{z}^{-1}}{\partial \tilde{z}^{j}} \frac{\partial z^{j}}{\partial z^{i}}$.

Furthermore we extend the usage of the summation convention to multiindices and even to subsets of $\{1, \ldots, n\}$, cf. section 3.8 on page 38 .

3.7 Vector bundles

We define now vector bundles improving our understanding of the tangent spaces and vectors of a manifold. We generalize GHL87, chapter I differential manifolds B Tangent bundle definition 1.32 , p. 15] and [Lee03, chapter 5 Vector Bundles, p. 103] with an eye on GH78, Chapter 0, Sec 5 Vector bundles, pp.66].
[Holomorphic vector bundle] The triple (π, E, B) of a holomorphic surjection $\pi: E \longrightarrow B$ together with its domain E and its codomain B is a holomorphic vector bundle of rank k, if

1. E and B are complex manifolds,
2. there is an open cover $\left(U_{i}\right)_{i \in I}$ of B with biholomorphic functions h_{i}, s.t. the diagram fig. 3.2 on the current page commutes

Figure 3.2: the commuting maps for the vector bundle
3. for $i, j \in I$ with $U_{i} \cap U_{j} \neq \emptyset$ there exists a holomorphic function $g_{j \rightarrow i}: U_{i} \cap U_{j} \longrightarrow$ $\mathrm{GL}(k, \mathbb{C})$ satisfying $h_{i} \circ h_{j}^{-1}(p, v)=\left(p, g_{j \rightarrow i}(p)(v)\right)$.

Let us fix some notations. E is called the total space and B the base space. We call the preimage of p in B under π the fibre of p, denote it by E_{p}. We refer to the biholomorphic maps h_{i} as trivilizations. If the base space and the surjection are obvious we identify the vector bundle with the total space.
[Manifold construction lemma] A set M with the following properties possesses the structure of a complex manifold,

1. M equals $\bigcup_{i \in I} U_{i}$,
2. a countable subset J of I 'covers' M, i.e. $\bigcup_{i \in J} U_{i}$,
3. there are bijections $\phi_{i}: U_{i} \hookrightarrow V_{i} \stackrel{\text { open }}{\subset} \mathbb{C}^{n}$,
4. furthermore it holds $\phi_{i}\left(U_{i} \cap U_{j}\right) \stackrel{\text { open }}{\subset} \mathbb{C}^{n}$ for all i and j in I,
5. whenever $U_{i} \cap U_{j} \neq \emptyset$ the map $\tau_{j \rightarrow i}: \phi_{j}\left(U_{i} \cap U_{j}\right) \hookrightarrow \phi_{i}\left(U_{i} \cap U_{j}\right)$ is biholomorphic,
6. for 2 distinct points there exist either 2 disjoint subsets including one point each or a set containing both.

We refer to [Lee03, Lemma 1.23, p.21].

In the following example we shall investigate the prototype of a vector bundle.
[Tangent bundle] The tangent bundle $T M$ over a manifold M is the collection of pairs of the form (p, v) with p a point in M and v a tangent vector in $T_{p} M$. We generalize Lee03, p. 81] to show that the tangent bundle is a complex manifold of dimension $2 n$. In order to simplify notations while checking the assumptions of manifold construction lemma($\mathrm{p}, 34$) we define the following map

$$
\begin{array}{llll}
\pi: & T M & \longrightarrow & M \\
& (p, v) & \longmapsto p
\end{array}
$$

For a given chart (z, U) of M we can define a chart on $T M$ by

$$
\begin{aligned}
\tilde{z}: \pi^{-1}(U) & \longrightarrow z(U) \times \mathbb{C}^{n} \\
(p, v) & \longmapsto\left(z^{1}(p), \ldots, z^{n}(p), v^{1}, \ldots, v^{n}\right),
\end{aligned}
$$

with $v=\left.v^{i} \frac{\partial}{\partial z^{i}}\right|_{p}$ in ESC.
Let us stress that $\pi^{-1}(U)$ is just $\left\{(p, v) \in T M: p \in U \& v \in T_{p} M\right\}=: T U$. So for the chart compatibility of $\left(\tilde{z}, U_{1}\right)$ and $\left(\tilde{w}, U_{2}\right)$ we have to observe

$$
\begin{aligned}
& \pi^{-1}\left(U_{1}\right) \cap \pi^{-1}\left(U_{2}\right)=\left\{(p, v) \in T M: p \in U_{1} \& p \in U_{2} \& v \in T_{p} M\right\}=\pi^{-1}\left(U_{1} \cap U_{2}\right) . \\
& \tau: \quad \tilde{z}\left(\pi^{-1}\left(U_{1} \cap U_{2}\right)\right) \longrightarrow \tilde{w}\left(\pi^{-1}\left(U_{1} \cap U_{2}\right)\right) \\
&\left(z^{1}, \ldots, z^{n}, v^{1}, \ldots, v^{n}\right) \longmapsto \tilde{w} \circ \tilde{z}^{-1}\left(\left(z^{1}, \ldots, z^{n}, v^{1}, \ldots, v^{n}\right)\right) .
\end{aligned}
$$

With the help of item 2 on page 31 and its way of notation we can simplify the last term $\tilde{w} \circ \tilde{z}^{-1}\left(\left(z^{1}, \ldots, z^{n}, v^{1}, \ldots, v^{n}\right)\right)$ to

$$
\left(w(z), \operatorname{Jac}\left(\tau_{z \rightarrow w}, z\right) v\right)=\left(w^{1}(z), \ldots, w^{n}(z), v^{k} \frac{\partial w^{1}}{\partial z^{k}}, \ldots, v^{k} \frac{\partial w^{n}}{\partial z^{k}}\right)
$$

Hence $T M$ is a complex manifold. In order to get the trivialization h_{z} we just have to adjust the above chart $\left(\tilde{z}^{1}, \ldots, \tilde{z}^{n}\right)$ slightly to

$$
\begin{aligned}
h_{z}: \pi^{-1}(U) & \longrightarrow U \times \mathbb{C}^{n} \\
(p, v) & \longmapsto\left(p, v^{1}, \ldots, v^{n}\right)
\end{aligned}
$$

The needed linear transformation $g_{\tilde{z} \rightarrow \tilde{w}}$ is the Jacobian of the transition function $\tau_{z \rightarrow w}$.
[Cotangent bundle] In a very similar way we can construct the cotangent bundle $T^{*} M$ consisting of the pairs (p, ω) for p in M and ω in $T_{p}^{*} M$.
[Section of a vector bundle] A holomorphic map f from the base B of a vector bundle into its total space E, s.t. any point p gets mapped into its own fibre, i.e $\pi \circ f=i d$, is called a section. We denote the set of all sections by $\Gamma(E)$.

The next definition forms the foundation of the next section.
[Tensorial operations on vector bundles] We define the tensor product of two vector bundles E and F over the same base space B in the following way

$$
E \otimes F:=\left\{e \otimes f:=\left(p, v \otimes_{\mathbb{C}} u\right): e=(p, v) \in E_{p} \text { and } f=(p, u) \in F_{p}\right\}
$$

and their direct sum as

$$
E \oplus F:=\left\{e \oplus f:=(p, v \oplus u): e=(p, v) \in E_{p} \text { and } f=(p, u) \in F_{p}\right\}
$$

Furthermore we define the wedge product of E as

$$
\bigwedge^{m}(E):=\left\{e_{1} \wedge \ldots \wedge e_{m}:=\left(p, v_{1} \wedge \ldots \wedge v_{m}\right): e_{j}=\left(p, v_{j}\right) \in E_{p} \forall 1 \leq j \leq m\right\}
$$

and closing with Alt $\bullet(E):=\bigoplus_{m=0}^{k} \bigwedge^{m}(E)$ for $\operatorname{rank}(E)=k$.

Before applying manifold construction lemma($\mathrm{p}, 34$) we refine the atlases used in the defintions of $\left(\pi_{E}, E, B\right)$ and $\left(\pi_{F}, F, B\right)$. This gives two trivializations

$$
\begin{aligned}
h_{E, i}:\left.\quad E\right|_{U_{i}} & \longrightarrow U_{i} \times \mathbb{C}^{k} \\
e & \longmapsto\left(h_{E, i}^{1}(e), h_{E, i}^{2}(e)\right)=(p, v)
\end{aligned}
$$

and

$$
\begin{aligned}
h_{F, i}:\left.\quad F\right|_{U_{i}} & \longrightarrow U_{i} \times \mathbb{C}^{l} \\
f & \longmapsto\left(h_{F, i}^{1}(f), h_{F, i}^{2}(f)\right)=(p, u)
\end{aligned}
$$

Eventually we define the new trivializations

- $\quad h_{E, i} \otimes h_{F, i}:\left.\quad(E \otimes F)\right|_{U_{i}} \quad \longrightarrow \quad U_{i} \times \mathbb{C}^{k} \otimes_{\mathbb{C}} \mathbb{C}^{l}=U_{i} \times \mathbb{C}^{k l}$

$$
e \otimes f \quad \longmapsto\left(h_{E, i}^{1}(e), h_{E, i}^{2}(e) \otimes_{\mathbb{C}} h_{F, i}^{2}(f)\right)=\left(p, v \otimes_{\mathbb{C}} u\right)
$$

for $E \otimes F$ with associated linear transformations $g_{E \otimes F, i j}(p)=g_{E, i j}(p) \otimes_{\mathbb{C}} g_{F, i j}(p)$ and induced charts $\left.(E \otimes F)\right|_{U_{i}} \rightarrow z\left(U_{i}\right) \times \mathbb{C}^{k l}$.

- $\quad h_{E, i} \oplus h_{F, i}:\left.\quad(E \oplus F)\right|_{U_{i}} \longrightarrow U_{i} \times \mathbb{C}^{k} \oplus \mathbb{C}^{l}=U_{i} \times \mathbb{C}^{k+l}$

$$
e \oplus f \quad \longmapsto\left(h_{E, i}^{1}(e), h_{E, i}^{2}(e) \oplus h_{F, i}^{2}(f)\right)=(p, v \oplus u)
$$

for $E \oplus F$ with associated linear transformations $g_{E \oplus F, i j}(p)=g_{E, i j}(p) \oplus g_{F, i j}(p)$ and induced charts $\left.(E \oplus F)\right|_{U_{i}} \rightarrow z\left(U_{i}\right) \times \mathbb{C}^{k+l}$.

- $\left.\bigwedge^{m}\left(h_{i}\right):\left.\left(\bigwedge^{m}(E)\right)\right|_{U_{i}} \longrightarrow U_{i} \times\left(\mathbb{C}^{k} \wedge \ldots \wedge \mathbb{C}^{k}\right)=U_{i} \times \mathbb{C}^{(k} \begin{array}{l}k\end{array}\right)$

$$
e_{1} \wedge \ldots \wedge e_{m} \longmapsto\left(h_{i}^{1}\left(e_{1}\right), h_{i}^{2}\left(e_{1}\right) \wedge \ldots \wedge h_{i}^{2}\left(e_{m}\right)\right)=\left(p, v_{1} \wedge \ldots \wedge v_{m}\right)
$$

for $\bigwedge^{m}(E)$ with associated linear transformations $g_{\bigwedge^{m}(E), i j}(p)=\bigwedge^{m}\left(g_{E, i j}(p)\right)$ and induced charts $\left.\left(\bigwedge^{m}(E)\right)\right|_{U_{i}} \rightarrow z\left(U_{i}\right) \times \mathbb{C}\binom{k}{m}$.

3.8 Tensor bundles

We have defined in items $\sqrt{6}$ and 6 the (co-)tangent bundles of a manifold.
[Covariant tensor fields] By $T^{*} M^{\otimes q}$ we denote the q times tensor product of $T^{*} M$, i.e. $\quad T^{*} M^{\otimes q}=\underbrace{T^{*} M \otimes \ldots \otimes T^{*} M}_{q \text {-times }}$. We call sections of $T^{*} M^{\otimes q}$ covariant tensor

fields.

[q-form] The sections of $\Omega^{q}(M):=\bigwedge^{q}\left(T^{*} M\right)$ are called q-forms.
The image of p under ω is commonly denoted by $\omega_{p}=(p, \Psi)$, because usually the authors are far more interested in the linear operator Ψ than in holomorphic change of ω under p.
As the $d z^{i}$ s form a local basis of $T^{*} M$ we deduce that $\left(d z^{\nu_{1}} \otimes \cdots \otimes d z^{\nu_{q}}\right)_{1 \leq \nu_{i} \leq n}$ is a local basis of $T^{*} M^{\otimes q}$. We shorten $d z^{\nu_{1}} \otimes \cdots \otimes d z^{\nu_{q}}$ to $d z^{\nu}$ with $\nu=\left(\nu_{1}, \ldots, \nu_{q}\right)$.
[Pullback of covariant tensor fields] We define the pullback of a covariant tensor field ω associated with a holomorphic function $\phi: M \longrightarrow N$ between two manifolds as $\left(\phi^{*} \omega\right)_{p}(\cdot, \ldots, \cdot)=\left(\phi^{*}\right)_{p} \omega_{\phi(p)}(\cdot, \ldots, \cdot)=\omega_{\phi(p)}\left(\phi_{*}, \ldots, \phi_{*}\right)$ according to [Lee03, chapter 11 Tensors ,p. 270].
[Invariant tensors] A covariant tensor field $\omega \in \Gamma\left(T^{*} M^{\otimes q}\right)$ is called invariant under a subset S of $\mathcal{O}(M, M)$ if it holds $\phi^{*} \omega=\omega$ for all ϕ in S. The collection of these covariant tensorfields is $\left(\Gamma\left(T^{*} M^{\otimes q}\right)\right)^{S}$.

Writing the above condition more explicitely gives $\omega_{p}=\omega_{\phi(p)}\left(\phi_{*}, \ldots, \phi_{*}\right)$.

3.9 Holomorphic functions

In this subsection we go deeper into the theory of holomorphic functions started in section 3.4
[Implicit function theorem] Let U be an open subset of \mathbb{C}^{n} and $f \in \mathcal{O}\left(U, \mathbb{C}^{m}\right)$ with $m \leq n$. Suppose the leading principal minor $\left(\operatorname{Jac}\left(f, z_{0}\right)_{j}^{i}\right)_{1 \leq i, j \leq m}$ is invertible for a root z_{0}. Then the zero set of f can be expressed as the graph of a holomorphic function g between open subsets U_{1} and U_{2} of \mathbb{C}^{n-m} and \mathbb{C}^{m}, respectively, i.e. for z in $U_{1} \times U_{2} f(z)$ vanishes iff $\left(z^{1}, \ldots, z^{m}\right)$ equals $g\left(z^{m+1}, \ldots, z^{n}\right)$. The best reference here is Huy05, Prop 1.11, p.11].
[Liouville's theorem] A bounded holomorphic function f on \mathbb{C}^{n} is constant. We deduce from the one dimensional case that $w \mapsto f\left(z^{1}, \cdots, z^{i-1}, w, z^{i+1}, \cdots, z^{n}\right)$ is constant, hence $D f \equiv 0$. The mean value theorem leads to the desired result.
[Identity theorem] Two holomorphic functions from a domain \mathcal{D} into the complex numbers are equal if they coincide on a nonvoid open subset of \mathcal{D}. It is a nice exercise for the reader to prove this theorem by using the one dimensional case. A solution is presented in [Fre09, p. 309].
[Open mapping theorem] A non-constant holomorphic function from a domain \mathcal{D} into the complex numbers is open. This is also a simple generalization of the one dimensional case, cf. KK83, Theorem 6.3, p. 19].
[Power series] Every holomorphic function from an open subset $U \subset \mathbb{C}^{n}$ possesses a unique power series expansion $\sum_{\nu \in \mathbb{N}^{n}} a_{\nu}\left(z-z_{0}\right)^{\nu} \equiv a_{\nu}\left(z-z_{0}\right)^{\nu}$ around each point z_{0} in U. This is proven on page 5 of Huy05.

For certain open subsets there exist other series assigned to holomorphic functions.
[Laurent series] On the cartesian product of an $(n-1)$-dimensional domain \mathcal{D} and an annulus $\mathcal{A}:=\{z \in C: r<|z|<R\}$ every holomorphic function $f: \mathcal{D} \times \mathcal{A} \rightarrow \mathbb{C}$ coincides with the converging series $\sum_{k=-\infty}^{\infty} a_{k}\left(z^{1}, \ldots, z^{n-1}\right) \cdot\left(z^{n}\right)^{k} \equiv a_{k}\left(z^{1}, \ldots, z^{n-1}\right) \cdot\left(z^{n}\right)^{k}$. The uniquely determined $a_{k} \mathrm{~s}$ are elements of $\mathcal{O}(\mathcal{D})$. For a proof we refer to [KK83, p.25].
3.9.0. Identity theorem also for meromorphic functions and meromorphic tensors?
3.9.0.
rephrase this.

The above section 3.9 gives rise to the next theorems which cannot be deduced in the case of smooth functions on \mathbb{R}^{n} !

Let be p a point in the open set U, then $\mathcal{O}_{U, p}$ is a unique factorization domain. A proof can be found in Huy05, Prop 1.1.15, p.14.

The germ $\left[z^{n}\right]_{\mathcal{O}_{U, 0}}$ is irreducible in $\mathcal{O}_{U, p}$. Assume that $\left[z^{n}\right]_{\mathcal{O}_{U, 0}}$ equals $[f]_{\mathcal{O}_{U, 0}} \cdot[g]_{\mathcal{O}_{U, 0}}$. Comparing the coefficients gives that one of them is a unit.

Hilbert's Nullstellensatz section 2.1 on page 11 can be generalized to germs as done in Huy05, Proposition 1.1.29, p. 19]. [Rückert's Nullstellensatz] Let be p a point in the open set U and $\left[f_{1}\right]_{\mathcal{O}_{U, p}}, \ldots,\left[f_{k}\right]_{\mathcal{O}_{U, p}} \in \mathcal{O}_{U, p}$. Suppose \mathfrak{a} is the ideal of germs "vanishing on $Z\left(f_{1}, \ldots, f_{k}\right)^{\prime \prime}$, i.e.
$\mathfrak{a}=\left\{[f]_{\mathcal{O}_{U, p}} \in \mathcal{O}_{U, p}: \exists D_{r}^{n}(p): f, f_{1}, \ldots, f_{k} \in \mathcal{O}\left(D_{r}^{n}(p)\right): f(z)=0 \forall z \in Z\left(f_{1}, \ldots, f_{k}\right)\right\}$.

Then \mathfrak{a} equals the radical ideal $\operatorname{rad}\left(\left[f_{1}\right]_{\mathcal{O}_{U, p}}, \ldots,\left[f_{k}\right]_{\mathcal{O}_{U, p}}\right)$ being defined by

$$
\left\{[f]_{\mathcal{O}_{U, p}} \in \mathcal{O}_{U, p}: \exists m>0:[f]_{\mathcal{O}_{U, p}}^{m} \in\left(\left[f_{1}\right]_{\mathcal{O}_{U, p}}, \ldots,\left[f_{k}\right]_{\mathcal{O}_{U, p}}\right)\right\} .
$$

The above mentioned generalization implies that there is also a corollary analogous to section 2.1 on page 11, which we shall call Rückert's Corollary. [Rückert's Corollary] Given a square-free germ $[f]_{\mathcal{O}_{U, p}}$ and another germ $[g]_{\mathcal{O}_{U, p}}$ in $\mathcal{O}_{U, p}$ such that their representatives satisfy $Z(f) \subset Z(g)$ in a polydisc $D_{r}^{n}(p)$, then $[f]_{\mathcal{O}_{U, p}}$ divides $[g]_{\mathcal{O}_{U, p}}$ in $\mathcal{O}_{U, p}$.

If $[f]_{\mathcal{O}_{U, p}}$ and $[g]_{\mathcal{O}_{U, p}}$ are coprime in $\mathcal{O}_{U, p}$ then also in $\mathcal{O}_{U, q}$ for q in a small neighbourhood of p. This fact is shown in Huy05, Prop 1.1.35, p.21].

Any bijective holomorphic function is biholomorphic. See for instance GR65, Prop, p.19].
[Riemann extension theorem] If we denote $U \backslash Z(f)$ by V for a given holomorphic function $f: U \rightarrow \mathbb{C}$ then $g \in \mathcal{O}(V, \mathbb{C})$ is holomorphic on the whole of U if g is locally bounded around $Z(f)$. A proof can be retrieved from Huy05, Prop 1.1.7, p.9].

3.10 Meromorphic functions and tensors

We follow [Fre09, p. 427]. [m-property of holomorphic functions] Let f be a holomorphic function on an open and dense subset \mathcal{D} of a manifold $M . f$ has got the m-property on M if for any $p \in M$ there are 2 holomorphic functions g and h on an open neighbourhood $U \subset M$ of p satisfying $f(z)=\frac{g(z)}{h(z)}$ for every z in $U \cap Z(h)^{C}$.

The functions

$$
f: U=\mathbb{C}^{2} \backslash\{0\} \rightarrow \mathbb{C} ; \quad\left(z^{1}, z^{2}\right) \mapsto \frac{z^{1}}{z^{2}}
$$

and $\quad f: U=\mathbb{C}^{2} \backslash\{0,1\} \rightarrow \mathbb{C} ; \quad\left(z^{1}, z^{2}\right) \mapsto \frac{z^{1}}{z^{2}}$
have got the m-property on \mathbb{C}^{2}. The both above mentioned holomorphic functions describe (intuitively) the same 'function' on the whole plane \mathbb{C}^{2}. This impels us to make the following definition.
[Meromorphic function] We call two holomorphic functions with the m-property on M (m-)equivalent if they coincide on a dense subset of M. Such an equivalence class is a

meromorphic function.

Meromorphic functions have the subsequent properties.

1. The set of meromorphic functions on a manifold $M \mathcal{M}(M)$ is a ring. If M is connected then $\mathcal{M}(M)$ is a field.
2. If f equals $\frac{g}{h}$ on $U \cap Z(h)^{C}$ and $\frac{p}{q}$ on $V \cap Z(q)^{C}$. Suppose that U and V intersect then $g \cdot q$ coincides with $p \cdot h$ on $U \cap V \cap Z(q)^{C} \cap Z(h)^{C}$.
3. Section 3.9 on the preceding page allows us to choose U, g and h in section 3.10 such that $[g]_{\mathcal{O}_{U, q}}$ and $[h]_{\mathcal{O}_{U, q}}$ are coprime in every $\mathcal{O}_{U, q}$ with q in U.
4. As the manifold M is second countable there is a countable open cover $\left(U_{i}\right)_{i \in I}$ of M consisting of sets having the above mentioned properties.

3.10.0. Warum ist das folgende unzulaessig ?

So we can characterize the equivalence class of f by $\left(U_{i}, g_{i}, h_{i}\right)_{i \in I}$.
[Zero and pole locus of a meromorphic function] The zero locus of a meromorphic function $f=\left(U_{i}, g_{i}, h_{i}\right)_{i \in I}$ is the union $\bigcup_{i \in I} Z\left(g_{i}\right)$. This definition is independent of the local representations of f. Indeed given an other representation $\frac{r}{q}$ we have $g \cdot q=r \cdot h$ impliying $Z(g) \subset Z(r \cdot h)$. As $[g]_{\mathcal{O}_{U, p}}$ and $[h]_{\mathcal{O}_{U, p}}$ are coprime Rückert's Corollary(p,40) yields that all prime factors of $[g]_{\mathcal{O}_{U, p}}$ divide $[r]_{\mathcal{O}_{U, p}}$. Therefore the zero sets of r and g locally coincide. Similarly the pole locus is $\bigcup_{i \in I} Z\left(h_{i}\right)$. The sets are denoted by $Z(f)$ and $P(f)$ respectively.

Now we extend the definitions from above to arbitrary tensors.
[m-property of holomorphic tensors] Let ω be a holomorphic tensor on an open and dense subset \mathcal{D} of a manifold $M . \omega$ has got the m-property on M if for any $p \in M$ there are a holomorphic tensor η and a holomorphic function h on an open neighbourhood $U \subset M$ of p satisfying $\omega_{z}=\frac{1}{h(z)} \eta_{z}$ for every z in $U \cap Z(h)^{C}$.
$\left[d \mathfrak{z}^{i}\right.$ has got m-property on $\left.\mathbb{P}^{n} \mathbb{C}\right]$ Firstly $d_{\mathfrak{z}}{ }^{i}$ is holomorphic on \mathbb{A}_{0} which is a dense and open subset of $\mathbb{P}^{n} \mathbb{C}$. Secondly for an arbitrary point outside \mathbb{A}_{0}, say $p \in \mathbb{A}_{1}$, we can find a holomorphic tensor η and a holomorphic function h on \mathbb{A}_{1}, s.t. $\omega=\frac{\eta}{h}$. Indeed denoting the coordinates in \mathbb{A}_{1} by $\left(\mathfrak{w}^{1}, \ldots, \mathfrak{w}^{n}\right)$ leads to $d \mathfrak{z}^{i}=\sum_{j} \frac{\partial \mathfrak{z}^{i}}{\partial \mathfrak{w}^{j}} d \mathfrak{w}^{j}$ in $\mathbb{A}_{0} \cap \mathbb{A}_{1}$.

Section 3.3 on page 25 yields that $\frac{\partial i^{i}}{\partial \mathfrak{w}^{j}}$ equals $\frac{P_{j}(\mathfrak{w})}{\left(\mathfrak{w}^{0}\right)^{2}}$ with P_{j} in $\mathbb{C}\left[X^{1}, \ldots, X^{n}\right]$ therefore
it holds

$$
d \mathfrak{z}_{q}^{i}=\sum_{j} \frac{1}{\left(\mathfrak{w}^{0}(q)\right)^{2}}\left(P_{j}(\mathfrak{w}(q)) d \mathfrak{w}_{q}^{j}\right) \equiv \frac{1}{\left(\mathfrak{w}^{0}(q)\right)^{2}} \eta_{q}
$$

for every q in $\mathbb{A}_{1} \cap Z\left(\mathfrak{w}^{0}\right)^{C}$.
[Meromorphic tensor]We call two holomorphic tensors with the m-property on M equivalent if they coincide on a dense subset of M. Such an equivalence class is a meromorphic tensor.
[Vector space of meromorphic tensors $\left.\mathcal{M}(M) \otimes_{\mathcal{O}} \Gamma\left(T^{*} M^{\otimes q}\right)\right]$ We denote the \mathbb{C}-vector space of meromorphic tensors such that their associated holomorphic tensors belong to $\Gamma\left(T^{*} M^{\otimes q}\right)$ by $\mathcal{M}(M) \otimes_{\mathcal{O}} \Gamma\left(T^{*} M^{\otimes q}\right)$. This awkward seeming notation is derived from a more elaborate definition of meromorphic tensors, cf. [GH78][p. 135]. The holomorphic tensor occurring in the definitions of a meromorphic tensor can be pulled back along a holomorphic function. So the question arises when is this also possible forn the meromorphic tensor.
[Pullback of covariant meromorphic tensor fields] A covariant meromorphic tensor field ω on a manifold N being holomorphic on \mathcal{D}_{ω} can be transported to another manifold M by a holomorphic function $\phi: M \rightarrow N$ if $\phi^{-1}\left(\mathcal{D}_{\omega}\right)$ becomes a dense subset in M. Indeed the equation $\omega_{z}=\frac{1}{h(z)} \eta_{z}$ is preserved.

A holomorphic function $\phi: M \rightarrow N$ pulls back any meromorphic tensor on N to M if $\phi^{-1}(\mathcal{D})$ is dense for each open and dense subset of N. Examples of such maps are open functions.
i. Obviously $\phi^{-1}\left(\mathcal{D}_{\omega}\right)$ is dense for each meromorphic tensor ω.
ii. Take ϕ to be an open function and let p be a point with an arbitrary neighbourhood U in M. Then $\phi(U)$ possesses a point d lying in \mathcal{D}_{ω}. As $\phi^{-1}(\{d\}) \cap U$ is non void $\phi^{-1}\left(\mathcal{D}_{\omega}\right)$ is dense in M.

As meromorphic tensors are hardly described in the literature we prove some lemmas quite explicitly.

Given a meromorphic tensor ω on $\mathbb{P}^{n} \mathbb{C}$ with representation $\omega=\sum_{\nu} \omega_{\nu} d_{\mathfrak{\mathfrak { b }}}{ }^{\nu_{1}} \otimes \cdots \otimes d_{\mathfrak{\mathfrak { b }}}{ }^{\nu_{q}}$ on \mathbb{A}_{α} then the coefficient functions ω_{ν} are meromorphic functions on \mathbb{A}_{α} and consequently
on $\mathbb{P}^{n} \mathbb{C}$.
i. ω is holomorphic on $\mathcal{D} \stackrel{\text { dense }}{\subset} \mathbb{P}^{n} \mathbb{C}$ and hence on $\mathcal{D} \cap \mathbb{A}_{\alpha} \stackrel{\text { dense }}{\subset} \mathbb{A}_{\alpha} \cong \mathbb{C}^{n}$. On $\mathcal{D} \cap \mathbb{A}_{\alpha}$ holomorphic sections coincide with holomorphic functions $\mathcal{D} \cap \mathbb{A}_{\alpha} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes q}=\mathbb{C}^{n \cdot q}$. Analogously η can be considered as $\eta: U \cap \mathbb{A}_{\alpha} \rightarrow \mathbb{C}^{n \cdot q}$. So ω_{ν} equals $\left(U \cap \mathbb{A}_{\alpha}, \eta_{\nu}, h\right)$.
ii. $\omega_{\nu}(\mathfrak{z})$ transforms to $\sum_{\mu} \frac{\partial^{\mu_{1}}}{\partial \mathfrak{w}^{\nu 1}} \cdots \frac{\partial^{\mu^{\mu}}}{\partial \mathfrak{w}^{\nu q}} \omega_{\mu}(\mathfrak{w}) \equiv \sum_{\mu} \frac{P_{\mu}(\mathfrak{w})}{\left(\mathfrak{w}^{0}\right)^{2 q}} \omega_{\mu}(\mathfrak{w}) \equiv f_{\omega}(\mathfrak{w})$ on $\mathbb{A}_{0} \cap \mathbb{A}_{1}$ with $P_{\mu} \in \mathbb{C}\left[X^{1}, \ldots, X^{n}\right] . f_{\omega}(\mathfrak{w})$ can be considered as a meromorphic function on \mathbb{A}_{1}, because the sum's components are of the form $\frac{P_{\mu}(\mathfrak{w})}{\left(\mathfrak{w}^{0}\right)^{2 q}}$ and $\omega_{\mu}(\mathfrak{w})$ lie in $\mathcal{M}\left(\mathbb{A}_{1}\right)$. The holomorphic functions ω_{ν} and f_{ω} coincide on $\mathcal{D}_{\omega_{\nu}} \cap \mathcal{D}_{f_{\omega}} \stackrel{\text { dense }}{\subset} \mathbb{A}_{0} \cap \mathbb{A}_{1} \stackrel{\text { dense }}{\subset} \mathbb{P} n \mathbb{C}$ and hence represent the same equivalence class, i.e. meromorphic function, in $\mathcal{M}\left(\mathbb{P}^{n} \mathbb{C}\right)$.
3.10.0.
rephrase this.

The product of a meromorphic function f and a meromorphic tensor ω is again a meromorphic tensor. Obviously we can multiply f with ω on their common holomorphicity locus $\mathcal{D}_{f} \cap \mathcal{D}_{\omega}$. For each p we have $f=\frac{g}{h_{f}}$ and $\omega=\frac{1}{h_{\omega}} \eta$ on $U_{p} \cap\left(Z\left(h_{f}\right)\right)^{C} \cap\left(Z\left(h_{\omega}\right)\right)^{C}$ and hence $f \cdot \omega=\frac{g}{h_{f} \cdot h_{\omega}} \cdot \eta$.

In order to push certain meromorphic functions from \mathbb{C}^{n+1} to $\mathbb{P}^{n} \mathbb{C}$ we have to observe how to treat polynomials on $\mathbb{P}^{n} \mathbb{C}$.

The algebra epimorphism

$$
\begin{aligned}
\pi_{*}^{\mathbb{A}_{0}}: \mathbb{C}\left[X^{0}, \ldots, X^{n}\right] & \longrightarrow \mathbb{C}\left[X^{1}, \ldots, X^{n}\right] \\
P & \longmapsto P(1, \cdot, \ldots, \cdot)
\end{aligned}
$$

can be restricted to a vector space isomorphism $\mathbb{C}_{d}\left[X^{0}, \ldots, X^{n}\right] \rightarrow \bigoplus_{i \leq d} \mathbb{C}_{i}\left[X^{1}, \ldots, X^{n}\right]$. It should be clear that $\pi_{*}^{\mathbb{A}_{0}}$ is an algebra epimorphism.
We denote the inverse map by π^{*} which just homogenizes the polynomials and multiplies with an appropriate power of X^{0}.

The just defined map $\pi_{*}^{\mathbb{A}_{0}}$ commutes with the differential operators $\frac{\partial}{\partial z^{i}}$ for $0<i \leq n$. We may assume without loss of generality that $i=n$. After writing P as $\sum_{k=0}^{d}\left(z^{n}\right)^{k} P_{k}\left(z^{0}, \ldots, z^{n-1}\right)$ the proof is trivial.
3.10.0.
rephrase this.

Consider P and $Q \neq 0$ in $\mathbb{C}_{d}\left[X^{1}, \ldots, X^{n+1}\right]$. Then the rational function $f=\frac{P}{Q}$ is meromorphic on \mathbb{C}^{n+1} and induces the meromorphic function $\pi_{*} f$ on $\mathbb{P}^{n} \mathbb{C}$. Obviously $f=$ $\frac{P}{Q}$ is meromorphic on \mathbb{C}^{n+1}. The map $\pi_{*} f$ completing the following commutative diagram is well defined because P and Q have got the same degree.

$$
\begin{gathered}
\mathbb{C}^{n+1} \backslash Z(\underbrace{Q)} \xrightarrow{\pi} \underset{\frac{P}{Q}}{\longrightarrow} \mathbb{C}^{-} \mathbb{P}^{n} \mathbb{C} \backslash \pi(Z(Q)) \\
\pi_{*} f
\end{gathered}
$$

In order to show that $\pi_{*} f$ is meromorphic around $p \in \mathbb{A}_{0}$ we observe the rational function $g\left(\mathfrak{z}^{1}, \ldots, \mathfrak{z}^{n}\right)=\frac{\pi_{*}^{A_{0}} P\left(\mathfrak{z}^{1}, \ldots, \mathfrak{z}^{n}\right)}{\pi_{*}^{\pi_{0}^{0}} Q\left(\mathfrak{z}^{1}, \ldots, \mathfrak{z}^{n}\right)}=\frac{P\left(1, \mathfrak{z}^{1}, \ldots, \mathfrak{z}^{n}\right)}{Q\left(1, \mathfrak{z}^{1}, \ldots, \mathfrak{z}^{n}\right)}$ on \mathbb{A}_{0}. It coincides with $\pi_{*} f$ because it holds

$$
f \circ \pi^{-1}(\mathfrak{z})=f(z)=\frac{P\left(z^{0}, \ldots, z^{n}\right)}{Q\left(z^{0}, \ldots, z^{n}\right)}=\frac{\left(z^{0}\right)^{d} \cdot P\left(1, \frac{z^{1}}{z^{0}}, \ldots, \frac{z^{n}}{z^{0}}\right)}{\left(z^{0}\right)^{d} \cdot Q\left(1, \frac{z^{1}}{z^{0}}, \ldots, \frac{z^{n}}{z^{0}}\right)}=g\left(\mathfrak{z}^{1}, \ldots, \mathfrak{z}^{n}\right)
$$

for all \mathfrak{z} in $\mathbb{A}_{0} \cap \pi(Z(Q))^{C}$.
The holomorphic tensor $d_{\mathfrak{z}}{ }^{I} \otimes\left(d_{\mathfrak{z}}{ }^{1} \wedge \ldots \wedge d_{\mathfrak{z}}{ }^{n}\right)^{\otimes k}$ in $\Omega^{q} \otimes_{\mathcal{O}}\left(\Omega^{n}\right)^{\otimes k}\left(\mathbb{A}_{0}\right)$ is a meromorphic tensor on $\mathbb{P}^{n} \mathbb{C}$ with a pole locus in $\pi\left(\left\{z^{0}=0\right\}\right)$. We argue analougsly to item 4 on page $41 d \mathfrak{z}^{I} \otimes\left(d_{\mathfrak{z}}{ }^{1} \wedge \ldots \wedge d_{\mathfrak{z}}{ }^{n}\right)^{\otimes k}$ is holomorphic on \mathbb{A}_{0} and changing to \mathbb{A}_{1} gives for its different parts

- $\otimes_{l=1}^{k} \operatorname{det}\left(\frac{\partial \dot{b}^{i}}{\partial \mathfrak{w}^{j}}\right)\left(d \mathfrak{w}^{1} \wedge \ldots \wedge d \mathfrak{w}^{n}\right)=\left(\frac{1}{\mathfrak{w}^{0}}\right)^{k(n+1)} \bigotimes_{l=1}^{k}\left(d \mathfrak{w}^{1} \wedge \ldots \wedge d \mathfrak{w}^{n}\right)$
- $d \mathfrak{z}^{1}=\frac{-1}{\left(\mathfrak{w}^{0}\right)^{2}} d \mathfrak{w}^{0}$
- $d \mathfrak{z}^{i}=\frac{1}{\left(\mathfrak{w}^{0}\right)^{2}}\left(\mathfrak{w}^{0} d \mathfrak{w}^{i}-\mathfrak{w}^{i} d \mathfrak{w}^{0}\right)$ for $i \neq 1$
- $d \mathfrak{z}^{I}=\frac{-1}{\left(\mathfrak{w}^{0}\right)^{q+1}} d \mathfrak{w}^{I \backslash\{1\} \cup\{0\}}$ for $1 \in I$, cf. item 3 on page $14,|I|=q$,
- $d \mathfrak{z}^{I}=\frac{1}{\left(\mathfrak{w}^{0}\right)^{q}} d \mathfrak{w}^{I}-\sum_{i \in I}(-1)^{n+i} \frac{\mathfrak{w}^{i}}{\left(\mathfrak{w}^{0}\right)^{q+1}} d \mathfrak{w}^{I \backslash\{i\} \cup\{0\}}$ for $1 \notin I$
and for the whole tensor
- $d \mathfrak{z}^{1} \otimes\left(d \mathfrak{z}^{1} \wedge \ldots \wedge d \mathfrak{z}^{n}\right)^{\otimes k}=-\left(\frac{1}{\mathfrak{w}^{0}}\right)^{k(n+1)+2} d \mathfrak{w}^{0} \otimes \bigotimes_{l=1}^{k}\left(d \mathfrak{w}^{1} \wedge \ldots \wedge d \mathfrak{w}^{n}\right)$
- $d \mathfrak{z}^{i} \otimes\left(d \mathfrak{z}^{1} \wedge \ldots \wedge d \mathfrak{z}^{n}\right)^{\otimes k}=\left(\frac{1}{\mathfrak{w}^{0}}\right)^{k(n+1)+2}\left(\mathfrak{w}^{0} d \mathfrak{w}^{i}-\mathfrak{w}^{i} d \mathfrak{w}^{0}\right) \otimes \bigotimes_{l=1}^{k}\left(d \mathfrak{w}^{1} \wedge \ldots \wedge d \mathfrak{w}^{n}\right)$ for $i \neq 1$.
[Chow's corollary] Every meromorphic function on $\mathbb{P}^{n} \mathbb{C}$ is rational, i.e. $\pi^{*} f=f \circ \pi=\frac{P}{Q}$ with $P, Q \neq 0$ in $\mathbb{C}_{d}\left[X^{1}, \ldots, X^{n+1}\right]$. For a proof please have a look in GH78, p. 168].

Any holomorphic rational function $f=\frac{P}{Q}$ is polynomial.

3.11 Complex submanifolds and analytic subvarieties

[Complex submanifold] A subset N of a complex manifold M is called a complex submanifold if for every point $p \in N$ there exist natural numbers k and n with $k \leq n$ and a chart $\phi: U \rightarrow V \subset \mathbb{C}^{n}$ of M around p, such that

$$
N \cap U \cong \phi(U) \cap\left\{z \in \mathbb{C}^{n}: z^{j}=0, k+1 \leq j \leq n\right\} .
$$

Each complex submanifold possesses the structure of a complex manifold.
We can generalize the concept of a submanifold.
[Analytic subvariety] Suppose Y is a subset of a complex manifold M. If for every point $p \in Y$ there is a neighbourhood U and finitely many holomorphic functions in $\mathcal{O}(U)$ satisfying

$$
U \cap Y=\bigcap_{1 \leq i \leq m_{p}} Z\left(f_{i}\right),
$$

then Y is an analytic subvariety. The functions $f_{1}, \ldots, f_{m_{p}}$ are called local defining functions for Y.

The union and intersection of the closed subvarieties Y_{1} and Y_{2} are again analytic subvarieties.
[Regular and singular points of an analytic subvariety] A point of an analytic subvariety $Y \subset M$ is a regular point if there is an open neighbourhood $U \subset M$ such
that $Y \cap U$ is a complex submanifold of U. A point that is not regular is singular.

We denote the regular and singular points of an analytic subvariety by $Y_{\text {reg }}$ and $Y_{\text {sing }}$, respectively.
[Irreducible analytic subvariety] An analytic subvariety Y is irreducible if there are no analytic subvarieties Y_{1} and Y_{2} such that

$$
Y_{i} \stackrel{\text { closed }}{\subsetneq} Y \quad \text { and } \quad Y=Y_{1} \cup Y_{2} .
$$

Irreducible polynomials produce irreducible varieties in the following manner.

Let P be an irreducible polynomial then its zero set $Z(P)$ is an irreducible analytic variety.

We need the three subsequent deep theorems. Their proofs can be found in GR65 on pages 116 and 141, respectively.

The regular locus $Y_{\text {reg }}$ is an open dense subset of Y and $Y_{\text {sing }}$ is an analytic subvariety.

If Y is irreducible, then $Y_{\text {reg }}$ is connected and vice versa.

Let Y be an analytic subvariety. Then, the closures of $Y_{\text {reg's }}$ s connected components are irreducible analytic subvarieties. The above mentioned irreducible subvarieties are called the irreducible components of Y. It is also possible to characterize the components as maximal closed subvarieties of Y.

The preimage of an analytic subvariety $Y \subset N$ under a holomorphic function $f: M \rightarrow N$ is an analytic subvariety in M.
[Dimension of irreducible analytic varieties] The dimension of an irreducible analytic variety is the dimension of its regular locus.

An analytic subvariety's dimension is the supremum of its irreducible components' dimensions. An analytic subvariety is pure dimensional if all irreducible components have got the same dimension.

Let Y and M be an analytic variety and a complex manifold, respectively, of pure dimensions. If Y is a subvariety of M, then its codimension is the natural number $\operatorname{codim} Y=\operatorname{dim} M-\operatorname{dim} Y$.
[Hypersurface] A hypersurface is an analytic subvariety of codimension 1.
[Negligible set] We call a analytic subvariety $A \subset M$ of a connected complex manifold analytically negligible if all irreducible components have codimension greater or equal 2.

Given a chain $Y_{1} \subsetneq Y_{2} \subsetneq M$ of irreducible subvarieties of a connected manifold M, then Y_{1} is negligible. Hence, the common zero set of two holomorphic functions $f, g: M \rightarrow \mathbb{C}$ is negligible iff the germs of f and g are coprime at each point $p \in M$. A consequence is the subsequent lemma.

Suppose Q is an irreducible polynomial, then the analytic variety $Z\left(Q, \frac{\partial Q}{\partial z^{i}}\right)$ is negligible. Since $\frac{\partial Q}{\partial z^{i}}$ has a smaller degree than Q, the derivative $\frac{\partial Q}{\partial z^{i}}$ cannot divide Q.
[Levi's extension theorem] Given a negligible set A, any meromorphic function f : $M \backslash A \rightarrow \mathbb{C}$ extends to a meromorphic function on M.

Consequently, we can also continue meromorphic tensors over a negligible set.
[Weil-divisor] A Weil-divisor D on a connected complex manifold M is a mapping from the collection of irreducible hypersurfaces into the integers. Furthermore, we require it to be locally finite, i.e. every point has got an open neighbourhood U such that only finitely many hypersurfaces with $D(Y) \neq 0$ intersect $U . D(Y)$ is called multiplicity of Y. Sometimes, the divisor is denoted by the formal sum

$$
\sum_{Y} D(Y) \cdot Y
$$

The support of D is the analytic subvariety

$$
\operatorname{supp} D=\bigcup_{D(Y) \neq 0} Y
$$

Therefore, we can define the singular locus of $\operatorname{supp} D$ and denote it by $D_{\text {sing }}$.

3.12 Covering maps and spaces

We start this subsection with the most general definition of a covering as seen in For77, Definition 4.1, p.18] (not to mix with [For99] !) differing from the topological and hence stricter ones in [Fre09], [For99], Jos06] or [Bre05].
[Covering] We call a map $p: Y \rightarrow X$ between two topological spaces covering map, if it is open, continous and discrete, i.e. $p^{-1}(x)$ is discrete in Y for every x in X. The reason for this unconventional nomenclature of domain and codomain is, that we want to classify functions $f: X \rightarrow Z$ with the help of p. Obviously the properties of a covering are local ones.

Let us illustrate this definition by the classical example which lead to the development of the theory of Riemann surfaces.

The function sending a complex number of modulus less than 1 to its square

$$
\begin{aligned}
p: & \mathbb{E} \\
& \longrightarrow \mathbb{E}=B_{1}(0) \\
& \longmapsto z^{2}
\end{aligned}
$$

is obviously holomorphic and so by the Open Mapping Theorem open [FB09, p.128]. The preimage for a given $w=\rho e^{i \theta}$ is just $\left(\sqrt{\rho} e^{i\left(\frac{1}{2} \theta+m \pi\right)}\right)_{0 \leq m \leq 1}= \pm \sqrt{\rho} e^{\frac{1}{2} \theta i}$.

Please have a look at the visualisation of this example fig. 3.3 on the current page.

Figure 3.3: Here we tried to visualise the classical section 3.12 on the current page in only three dimensions. In polar coordinates p has the nice appearance p : $[0,1) \times \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow[0,1) \times \mathbb{R} / 2 \pi \mathbb{Z},(r, \phi) \mapsto\left(r^{2}, 2 \phi\right)=\left(p^{1}(r), p^{2}(\phi)\right)$. As p^{1} is bijective on $[0,1)$, only p^{2} distributes to the special character of a covering map. Hence we use the set $\left\{(\rho, \theta, \phi) \in[0,1) \times \mathbb{R} / 2 \pi \mathbb{Z} \times \mathbb{R} / 2 \pi \mathbb{Z}: \theta=p^{2}(\phi)\right\}=$ $\operatorname{pr}_{(\rho, \theta, \phi)}\left\{(w, z)=\left(\rho e^{i \theta}, r e^{i \phi}\right) \in \mathbb{E} \times \mathbb{E}: w=z^{2}\right\}$.
[Ramification point] Let $p: Y \rightarrow X$ be a covering then we call a point in Y having no open neighbourhood on which p is injective a ramification or branch point.
[Ramification locus] There are three closely related sets we call the ramification locus of a covering p

1. the collection of all branch points $\operatorname{Ram}(p)$,
2. its image $p(\operatorname{Ram}(p))$
3.12.0. $p(\operatorname{Ram}(p))$ koennte man auch double point set nennen, vgl http://en.wikipedia.org/wiki/Ramification
3. and $p(\operatorname{Ram}(p))$'s preimage $\widetilde{\operatorname{Ram}}(p):=p^{-1}(p(\operatorname{Ram}(p)))$

From the context it should be clear which one we are currently using.
[Unbranched covering] We call a covering without any branch points unbranched covering or local homeomorphism.

For a given covering $p: Y \rightarrow X$ there is an associated local homeomorphism $\hat{p}:=$ $\left.p\right|_{Y \backslash \operatorname{Ram}(p)}$. Later when properness of covering maps shall become important it can be preserved by restricting \hat{p} further to $\tilde{p}: Y \backslash \widetilde{\operatorname{Ram}}(p) \rightarrow X \backslash p(\operatorname{Ram}(p))$. The following counterexample illustrates this.

Given the proper covering

$$
\begin{aligned}
p: \quad B_{1}(0) \cup B_{1}(2) & \longrightarrow B_{1}(0)=\mathbb{E} \\
z & \longmapsto p(z)= \begin{cases}z^{2} & z \in B_{1}(0) \\
z-2 & z \in B_{1}(2)\end{cases}
\end{aligned}
$$

then its ramification loci are $\operatorname{Ram}(p)=\{0\}$ and $\widetilde{\operatorname{Ram}}(p)=\{0,2\}$. So the preimage of $\overline{B_{\frac{1}{4}}(0)}$ under \hat{p} is the non-compact set $\left(\overline{B_{\frac{1}{2}}(0)} \backslash\{0\}\right) \cup \overline{B_{\frac{1}{4}}(2)}$ contradicting the properness of \hat{p}.

As we want to obtain good results about $p(\operatorname{Ram}(p))$ and $\widetilde{\operatorname{Ram}}(p)$, we compound a stricter definition from them. [Standard covering] We call a covering map $f: M \rightarrow N$ between two n dimensional complex manifolds standard covering map, if

- f is holomorphic, proper and surjective,
- M is connected,
- $\widetilde{\operatorname{Ram}}(p)=\operatorname{Ram}(p)$,
- $p(\operatorname{Ram}(p))$ and $\widetilde{\operatorname{Ram}}(p)$ are connected smooth hypersurfaces.

For example [Standard element p_{n}^{k}] We call the map

$$
\begin{array}{rcc}
p_{n}^{k}: & \mathbb{E}^{n} & \longrightarrow \mathbb{E}^{n} \\
\left(z^{1}, \ldots, z^{n}\right) & \longmapsto & \left(z^{1}, \ldots, z^{n-1},\left(z^{n}\right)^{k}\right)
\end{array}
$$

the k-th n-dimensional standard element, with $n, k>0$.

The standard elements are standard coverings. Clearly each standard element p is holomorphic and surjective. The ramification loci are just the zero set of the projection onto the n-th coordinate. Decomposing a polydisc $D_{r}^{n}\left(z_{0}\right)$ and p into their open components $B_{r^{i}}\left(z_{0}^{i}\right)$ and p^{i}, respectively, implies that $p\left(D_{r}\left(z_{0}\right)\right)=\left(p^{i}\left(B_{r^{i}}\left(z_{0}^{i}\right)\right)\right)_{i}$ is open. As the preimage of $\overline{D_{\left(r^{1}, \ldots, r^{n}\right)}^{n}(0)}$ under p is
$\overline{D_{\left(r^{1}, \ldots, r^{n-1}\right)}^{n-1}}(0) \times \overline{B_{\sqrt[k]{r^{n}}}(0)}$ the preimages of bounded sets are bounded. The equation $p^{-1}\left(z^{1}, \ldots, z^{n-1}, \rho e^{i \theta}\right)=\left(z^{1}, \ldots, z^{n-1}, \sqrt[k]{\rho} \exp \left(\frac{i}{k}(\theta+2 m \pi)\right)\right)_{0 \leq m \leq k-1}$ shows that p is discrete.

A basic fact about standard coverings is the following lemma

Biholomorphic functions ϕ and ψ preserve the properties of an standard covering p, i.e. $p \circ \phi, \psi \circ p$ and $\psi \circ p \circ \phi$ are standard coverings. The main argument was given in ?? on page ??

This paves the way for a generalization of the standard element
3.12.0. correct definition of Q-standard element?
[Q-standard element $p_{n, Q}^{k}$] Let U_{1} and U_{2} be open in \mathbb{C}^{n-1} and \mathbb{C}, respectively. For the holomorphic function $Q: U_{1} \times U_{2} \rightarrow \mathbb{C}$ and its holomorphic auxillarily function $\varphi: U_{1} \rightarrow \mathbb{C}$ uniquely determined by $Q(z)=0 \Longleftrightarrow z^{n}=\varphi\left(z^{1}, \ldots, z^{n-1}\right)$ we define

$$
\begin{array}{ccc}
p_{n, Q}^{k}: & U_{1} \times U_{2} & \longrightarrow \mathbb{C} \\
\left(z^{1}, \ldots, z^{n}\right) & \longmapsto\left(z^{1}, \ldots, z^{n-1},\left(z^{n}\right)^{k}+\varphi\left(z^{1}, \ldots, z^{n-1}\right)\right) .
\end{array}
$$

implicit function theorem $(\mathrm{p}, 38)$
Q-standard elements $p_{n, Q}^{k}$ satisfy

1. if $Q=z^{n}$ then $p_{n, z^{n}}^{k}=p_{n}^{k}$,
2. each $p_{n, Q}^{k}$ can decomposed $p_{n, Q}^{k}=p_{n, Q}^{1} \circ p_{n}^{k}$,
3. the pure straighenting $p_{n, Q}^{1}$ is biholomorphic,
4. any Q-standard element $p_{n, Q}^{k}$ is a standard covering,
5. for a Q-standard element $p_{n, Q}^{k} Z(Q)$ is irreducible.

We start with showing that the holomorphic and injective function $p_{n, Q}^{1}$ is biholomorphic on its image. It is open because $p_{n, Q}^{1}\left(\Omega_{1} \times \Omega_{2}\right)=\Omega_{1} \times\left(\Omega_{2}+\varphi\left(\Omega_{1}\right)\right)$ and $p r_{n}, \varphi$ are open functions by section 3.9 on page 39 .
The last two properties can be deduced from item 3 and ?? on pages 50 and ??, respectively.

A more interesting fact is Let $f: M \rightarrow N$ be a standard covering then we can deduce from A being negligible in N, that $f^{-1}(A) \subset M$ is also negligible. The fact that $f^{-1}(A)$ is an analytic subvariety was shown in ?? on page ??. Assuming that $f^{-1}(A)$ would have an irreducible component of codimension 1, say Y, would lead to a contradiction. Firstly take Y to be a subset of the analytic hypersurface $\widetilde{\operatorname{Ram}}(f)$. Hence f 's image $f(Y)$ has to coincide with the analytic hypersurface $f(\operatorname{Ram}(f))$, a contradiction. Secondly Y is not a subset of $\widetilde{\operatorname{Ram}}(f)$ and possesses a point p outside of $\widetilde{\operatorname{Ram}}(f)$ that is without loss of generality regular due to section 3.11 on page 46 . Therefore f is a local homeomorphism around p implying that $Y_{\text {sing }}$ has got the same codimension as $(f(Y))_{s i n g}$, i.e greater or equal than 2 .
[Isomorphic functions] Two holomorphic functions $f: M \rightarrow N$ and $f^{\prime}: M^{\prime} \rightarrow N^{\prime}$ are isomorphic (in the category of holomorphic mappings between complex manifolds), if there are biholomorphic functions ϕ and ψ, such that we get a commutative dia-
gram

[Ramification element]By a ramification element we mean a standard covering f : $M \rightarrow \mathbb{E}^{n}$ such that the ramification locus in \mathbb{E}^{n} equals $z^{n}=0$.
[Uniqueness of the ramification element] Let f be a ramification element, then there exists a standard element p_{n}^{k} and a biholomorphic mapping ϕ completing the following diagram

So f is determined uniquely up to isomorphy.
[Sketch] We shall sketch the proof here by referring to parts of [For99] and generalising them if needed. We denote by \mathcal{H} the left half plane $\{z \in \mathbb{C}: \operatorname{Re}(z)<0\}$ yielding that

$$
\begin{array}{llll}
\operatorname{Exp}: & \mathbb{E}^{n-1} \times \mathcal{H} & \longrightarrow \mathbb{E}^{n-1} \times \mathbb{E}^{*} \\
& \left(z^{1}, \ldots, z^{n}\right) & \longmapsto\left(z^{1}, \ldots, z^{n-1}, \exp \left(z^{n}\right)\right)
\end{array}
$$

is the universal covering of $\mathbb{E}^{n-1} \times \mathbb{E}^{*}$ with deck transformations $\tau_{m}\left(z^{1}, \ldots, z^{n}\right)=\left(z^{1}, \ldots, z^{n}+\right.$ $2 \pi i m)$ analogous to Exs. 4.12, 5.7 and Thm. 5.2 . There exists a biholomorphic function ϕ completing the commutative diagram

because of Thms. 5.9 and 5.10 (altered by section 3.9 on page 40 of this thesis). Following Thm. 5.11 we can show that the preimage of each point in $f(\operatorname{Ram}(f))=$ $\mathbb{E}^{n-1} \times\{0\}$ has just one element consequently ϕ can be extended to a bijection ϕ : $M \rightarrow \mathbb{E}^{n}$. Even more ϕ is continuous because a sequence $b_{m} \rightarrow b \in \operatorname{Ram}(f)$ is getting mapped to $f\left(b_{m}\right)=\left(a_{m}^{1}, \ldots, a_{m}^{n}\right) \rightarrow\left(c^{1}, \ldots, c^{n-1}, 0\right)$ and further to $\phi\left(b_{m}\right)=$ $\left(a_{m}^{1}, \ldots, a_{m}^{n-1}, \xi_{m}\right)$ with $\left|\xi_{m}\right|=\sqrt[k]{\left|a_{m}^{n}\right|} \rightarrow 0$. As ϕ is continuous the Riemann extension theorem (p,40) and then section 3.9 on page 40 can be applied to prove that ϕ is biholomorphic.

3.13 Orders of singularities

We generalize the order of a singularity known for one dimension in one single point from [FB09] the way it is done in GH78, pp.130].
[Order of a holomorphic function along a hypersurface] Let p be a regular point on an irreducible analytic hypersurface Y of a complex manifold M. Suppose U is a neighbourhood of p, f a holomorphic function on U and ψ locally defines Y on U then we define the order of f along Y at p as

$$
\sup \left\{k \in \mathbb{N}:[\psi]_{\mathcal{O}_{U, p}}^{k} \mid[f]_{\mathcal{O}_{U, p}} \text { in } \mathcal{O}_{U, p}\right\}=: \operatorname{ord}(f, Y, p) \in \mathbb{N} \cup\{\infty\}
$$

The order of holomorphic functions has got the following properties

1. ord (f, Y, \cdot) is a locally constant function on $Y_{\text {reg }} \cap U$,
2. if f is defined on the whole manifold M then $\operatorname{ord}(f, Y, \cdot)$ is a constant function on M 's irreducible subvariety Y,
3. ord (f, Y) equals ∞ iff f is the zero function,
4. $\operatorname{ord}(f g, Y)=\operatorname{ord}(f, Y)+\operatorname{ord}(g, Y)$,
5. ord $(f, Y, p)=\operatorname{ord}(f \circ \phi, \phi(Y), \phi(p))$ for a biholomorphism ϕ,
i. If k is the order of f along Y in a point p then there is a decomposition of $[f]_{\mathcal{O}_{U, p}}$ into coprime elements $[\psi]_{\mathcal{O}_{U, p}}^{k}$ and $[g]_{\mathcal{O}_{U, p}}$ in $\mathcal{O}_{U, p}$. Section 3.9 on page 40 implies
that there is a neighbourhood V of p such that $[\psi]_{\mathcal{O}_{U, q}}^{k}$ and $[g]_{\mathcal{O}_{U, q}}$ are coprime in every $\mathcal{O}_{U, q}$ for q in V. Hence $[\psi]_{\mathcal{O}_{U, q}}$ does not divide $[g]_{\mathcal{O}_{U, q}}$ in these $\mathcal{O}_{U, q}$ and ord $(f, Y, q)=k$ for q in $V \cap Y_{\text {reg }}$.
ii. As f lies in $\mathcal{O}(M)$ ord (f, Y, \cdot) is locally constant on $Y_{\text {reg }} \cap M$. Sections 3.11 and 3.11 on pages 46 and 46, respectively, yield that $Y_{\text {reg }}$ is connected and dense in Y.
iii. Clearly units have got order zero and non-zero non-units are assigned the exponent associated to $[\psi]_{\mathcal{O}_{U, p}}$ in their prime factorization. Additionally it holds $0=$ $[\psi]_{\mathcal{O}_{U, p}}^{k} \cdot 0$ for all k in \mathbb{N}.
iv. Let k and l be the orders of f and g respectively. Once again we use the induced decompositions $[f]_{\mathcal{O}_{U, p}}=[\psi]_{\mathcal{O}_{U, p}}^{k}\left[f_{0}\right]_{\mathcal{O}_{U, p}}$ and $[g]_{\mathcal{O}_{U, p}}=[\psi]_{\mathcal{O}_{U, p}}^{l}\left[g_{0}\right]_{\mathcal{O}_{U, p}}$ inducing $[f g]_{\mathcal{O}_{U, p}}=[\psi]_{\mathcal{O}_{U, p}}^{k+l}\left[f_{0}\right]_{\mathcal{O}_{U, p}}\left[g_{0}\right]_{\mathcal{O}_{U, p}}$. As $[\psi]_{\mathcal{O}_{U, p}}$ is irreducible this implies $\operatorname{ord}(f g, Y)=\operatorname{ord}(f, Y)+\operatorname{ord}(g, Y)$.
v. Firstly ?? on page ?? secures that $\phi(Y)$ is an irreducible analytic subvariety. Secondly we have seen in item 2 on page 29, that $\phi^{*}: \mathcal{O}_{U, p} \rightarrow \mathcal{O}_{V, \phi(p)}$ is an isomorphism of UFDs. Finally applying section 2.1 on page 11 establishes the desired formula.

We generalize the above definition and lemma to
[Order of a meromorphic function along a hypersurface] Suppose p is a regular point of an irreducible analytic hypersurface Y. Then the order of a meromorphic function f with local -not necessarily coprime-representation (U, g, h) in p is well defined by

$$
\operatorname{ord}(f, Y, p):=\operatorname{ord}(g, Y, p)-\operatorname{ord}(h, Y, p) \in \mathbb{Z} \cup\{\infty\}
$$

and has got the following properties

1. if f is meromorphic on M then $\operatorname{ord}(f, Y)$ is also well defined,
2. the orders of a meromorphic function f with coprime representation (U, g, h) are related by ord $\left(f, Y_{i}, p\right) \geq 0 \Longleftrightarrow \operatorname{ord}\left(h, Y_{i}, p\right)=0$ and $\operatorname{ord}\left(f, Y_{i}, p\right) \leq 0 \Longleftrightarrow$ ord $\left(g, Y_{i}, p\right)=0$,
3. the properties stated in section 3.13 can be generalized,
4. the order of a sum of functions is greater than the smallest single order, i.e. ord $\left(\sum_{i=1}^{m} f_{i}, Y\right) \geq \min _{1 \leq i \leq m}\left\{\operatorname{ord}\left(f_{i}, Y\right)\right\}$, with equality if there is an index j with ord $\left(f_{j}, Y\right)<\operatorname{ord}\left(f_{i}, Y\right)$ for all $i \neq j$.

0 . We have to show that it holds

$$
\operatorname{ord}\left(g_{i}, Y, p\right)-\operatorname{ord}\left(h_{i}, Y, p\right)=\operatorname{ord}\left(g_{j}, Y, p\right)-\operatorname{ord}\left(h_{j}, Y, p\right)
$$

for any pair of local representations $\left(U_{i}, g_{i}, h_{i}\right)$ and $\left(U_{j}, g_{j}, h_{j}\right)$ with $p \in U_{i} \cap$ U_{j}. Indeed $g_{i} h_{j}=g_{j} h_{i}$ implies by section $3.134 \operatorname{ord}\left(g_{i}, Y, p\right)+\operatorname{ord}\left(h_{j}, Y, p\right)=$ $\operatorname{ord}\left(g_{j}, Y, p\right)+\operatorname{ord}\left(h_{i}, Y, p\right)$.
i. ord (f, Y, \cdot) assigns to each p in $Y_{\text {reg }}$ an integer or ∞. As ord $\left(g_{i}, Y, \cdot\right)$ and ord $\left(h_{i}, Y, \cdot\right)$ are locally constant so is ord (f, Y, \cdot). As seen in section 3.13 this makes ord (f, Y, \cdot) constant on Y.
ii. $\operatorname{ord}\left(f, Y_{i}, p\right) \geq 0$ implies ord $\left(g, Y_{i}, p\right) \geq \operatorname{ord}\left(h, Y_{i}, p\right)$. But ord $\left(h_{j}, Y_{i}, p\right) \geq 1$ would contradict that $\left[g_{j}\right]_{\mathcal{O}_{U, p}}$ and $\left[h_{j}\right]_{\mathcal{O}_{U, p}}$ are coprime, hence ord $\left(h_{j}, Y, p\right)=0$.
iv. Clearly if $[\psi]_{\mathcal{O}_{U, p}}^{k}$ divides each holomorphic $\left[f_{i}\right]_{\mathcal{O}_{U, p}}$ then also $\left[\sum_{i} f_{i}\right]_{\mathcal{O}_{U, p}}$. Conversely if $[\psi]_{\mathcal{O}_{U, p}}^{k}$ divides all $\left[f_{i}\right]_{\mathcal{O}_{U, p}}$ s except for $\left[f_{j}\right]_{\mathcal{O}_{U, p}}$ then neither $\left[\sum_{i} f_{i}\right]_{\mathcal{O}_{U, p}}$. Inded assuming $[\psi]_{\mathcal{O}_{U, p}}^{k}[h]_{\mathcal{O}_{U, p}}=\left[\sum_{i} f_{i}\right]_{\mathcal{O}_{U, p}}$ leads to $\left[f_{j}\right]_{\mathcal{O}_{U, p}}=\left[\sum_{i} f_{i}\right]_{\mathcal{O}_{U, p}}-$ $\left[\sum_{i \neq j} f_{i}\right]_{\mathcal{O}_{U, p}}=[\psi]_{\mathcal{O}_{U, p}}^{k}\left([h]_{\mathcal{O}_{U, p}}-\left[\sum_{i \neq j} h_{i}\right]_{\mathcal{O}_{U, p}}\right)$, a contradiction!
For meromorphic functions $f_{i}=\frac{g_{i}}{\psi^{k} h_{i}}$ their sum is $\frac{\sum_{i} g_{i} \prod_{j \neq i} h_{j}}{\psi^{k} \prod_{i} h_{i}}$ the divisor of which has got order $k=-\min _{1 \leq i \leq m}\left\{\operatorname{ord}\left(f_{i}, Y\right)\right\}$. So the total order can only be altered by the nominator's positive order ord $\left(\sum_{i} g_{i} \prod_{j \neq i} h_{j}, Y\right)$, i.e. more than one summand with order zero.

Let P be a polynomial and Q a prime polynomial then Q^{k} divides P in $\mathbb{C}\left[X^{1}, \ldots, X^{n}\right]$ iff $\operatorname{ord}(P, Z(Q)) \geq k$. In fact the maximal of these k s is just $\operatorname{ord}(P, Z(Q))$. If $P=Q^{k} \cdot R$ in $\mathbb{C}\left[X^{1}, \ldots, X^{n}\right]$ then obviously also in $\mathcal{O}_{U, p}$ and so ord $(P, Z(Q)) \geq k$. Conversely we define for $m=\operatorname{ord}(P, Z(Q))$ the rational function $\frac{P}{Q^{m}}$ that is everywhere holomorphic. Indeed it locally coincides with $[g]_{\mathcal{O}_{U, p}}$ for $\left[Q^{m}\right]_{\mathcal{O}_{U, p}} \cdot[g]_{\mathcal{O}_{U, p}}=[P]_{\mathcal{O}_{U, p}}$. We conclude from item ii on page 45 that f is a polynomial.

[^0]The Laurent series of a holomorphic function f on $\mathcal{D} \times \mathbb{E}^{*}$ has got a lower bound on the index set of non-zero coefficients iff f is meromorphic on $\mathcal{D} \times \mathbb{E}$. It turns out that this lower bound coincides with the order of f along $\left\{z^{n}=0\right\}$. Additionally f is holomorphic iff the lower bound is 0 . If f has got such a lower bound, say $-m$, then f equals

$$
\sum_{k=-m}^{\infty} a_{k}\left(z^{1}, \ldots, z^{n-1}\right) \cdot\left(z^{n}\right)^{k}=\left(z^{n}\right)^{-m} \cdot \sum_{l=0}^{\infty} a_{-m+l}\left(z^{1}, \ldots, z^{n-1}\right) \cdot\left(z^{n}\right)^{l} \equiv\left(z^{n}\right)^{-m} \cdot g(z)
$$

The Riemann extension theorem($\mathrm{p}, 40$) allows us to analytically continue $g \in \mathcal{O}\left(\mathcal{D} \times \mathbb{E}^{*}\right)$ onto $\mathcal{D} \times \mathbb{E}$ leading to the equality $f=\left(\mathcal{D} \times \mathbb{E}, g,\left(z^{n}\right)^{m}\right)$. We conclude from the identity
= theorem(p) 39) that $a_{-m}\left(z^{1}, \ldots, z^{n-1}\right)$ does not vanish in most points of $\left\{z^{n}=0\right\}$. It holds $-m=\operatorname{ord}\left(f, p,\left\{z^{n}=0\right\}\right)=\operatorname{ord}\left(f,\left\{z^{n}=0\right\}\right)$ for all such points. Analogously $m=0$ implies $f \in \mathcal{O}(\mathcal{D} \times \mathbb{E})$.
Conversely for a local representation (U, g, h) around a point $p \in\left\{z^{n}=0\right\}$ we decompose h 's germ in $\mathcal{O}_{U, p}$ into its prime factors $\left[\psi_{1}\right]_{\mathcal{O}_{U, p}}, \ldots,\left[\psi_{r_{p}}\right]_{\mathcal{O}_{U, p}}$. As f is holomorphic outside of $\left\{z^{n}=0\right\}$ it holds $Z\left(\psi_{i}\right) \subset Z(h) \subset\left\{z^{n}=0\right\}$ for all i. We deduce from Rückert's Corollary(p 40) that $\left[\psi_{i}\right]_{\mathcal{O}_{U, p}}$ divides $\left[z^{n}\right]_{\mathcal{O}_{U, p}}$ in $\mathcal{O}_{U, p}$. Due to section 3.9 on page $39\left[z^{n}\right]_{\mathcal{O}_{U, p}}$ is irreducible in $\mathcal{O}_{U, p}$ hence it equals $\left[\epsilon_{i}\right]_{\mathcal{O}_{U, p}} \cdot\left[\psi_{i}\right]_{\mathcal{O}_{U, p}}$ for all i. Therefore $[h]_{\mathcal{O}_{U, p}}$ equals $[\epsilon]_{\mathcal{O}_{U, p}} \cdot\left[z^{n}\right]_{\mathcal{O}_{U, p}}^{r_{p}}$ leading to $r_{p}=\operatorname{ord}\left(h, p,\left\{z^{n}=0\right\}\right), h=\epsilon \cdot\left(z^{n}\right)^{r_{p}}$ and eventually

$$
f=g / h=\epsilon^{-1} \cdot g \cdot\left(z^{n}\right)^{-r_{p}}=\sum_{k=-r_{p}}^{\infty} a_{k}\left(z^{1}, \ldots, z^{n-1}\right) \cdot\left(z^{n}\right)^{k} .
$$

r_{p} is a global lower bound because the order ord $\left(h, p,\left\{z^{n}=0\right\}\right)$ is constant on $\left\{z^{n}=0\right\}$.
Let Y be a hypersurface of M with irreducible components Y_{i} and f a meromorphic function on M that is holomorphic on $M \backslash Y$. Then f is holomorphically extendable on M iff it holds ord $\left(f, Y_{i}\right) \geq 0$ for all i. By Levi's extension theorem and section 3.11 on pages 47 and 46, respectively, holomorphic functions can be analytically continued over $Y_{\text {sing }}$. Consequently it is sufficient to observe the holomorphicity in $Y_{\text {reg }}$. As f 's order is invariant under charts, cf. item v , the proof is completed by applying item iv.

Let $p_{n, Q}^{k}: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}$ be the Q-standard element and $f: \mathbb{E}^{n} \rightarrow \mathbb{C}$ a non-zero meromorphic function. Then the order of f along the ramification locus $p_{n, Q}^{k}\left(\operatorname{Ram}\left(p_{n, Q}^{k}\right)\right)$ and the order of $f \circ p_{n, Q}^{k}$ along the ramification locus $\widetilde{\operatorname{Ram}}\left(p_{n, Q}^{k}\right)$ vary directly, i.e.
(3.2) $\operatorname{ord}\left(f \circ p_{n, Q}^{k}, \widetilde{\operatorname{Ram}}\left(p_{n, Q}^{k}\right)\right)=k \cdot \operatorname{ord}\left(f, p_{n, Q}^{k}\left(\operatorname{Ram}\left(p_{n, Q}^{k}\right)\right)\right)$.
i. For $Q=z^{n}$ and f being holomorphic we prove the following auxiliary inequalities

$$
\begin{array}{ll}
\operatorname{ord}\left(f, p_{n}^{k}\left(\operatorname{Ram}\left(p_{n}^{k}\right)\right)\right)=l & \Longrightarrow \operatorname{ord}\left(f \circ p_{n}^{k}, \widetilde{\operatorname{Ram}}\left(p_{n}^{k}\right)\right)=l \cdot k, \tag{3.3}\\
\operatorname{ord}\left(f \circ p_{n}^{k}, \widetilde{\operatorname{Ram}}\left(p_{n}^{k}\right)\right)=m \geq 0 & \Longrightarrow \operatorname{ord}\left(f, p_{n}^{k}\left(\operatorname{Ram}\left(p_{n}^{k}\right)\right)\right)=\left\lceil\frac{m}{k}\right\rceil .
\end{array}
$$

This is done by writing down the explicit definitions of the orders

$$
\begin{aligned}
\operatorname{ord}\left(f \circ p_{n}^{k}, \widetilde{\operatorname{Ram}}\left(p_{n}^{k}\right)\right) & =\max \left\{l \in \mathbb{N}:\left(z^{n}\right)^{l} \mid f\left(z^{1}, \ldots,\left(z^{n}\right)^{k}\right)\right\} \\
\operatorname{ord}\left(f, p_{n}^{k}\left(\operatorname{Ram}\left(p_{n}^{k}\right)\right)\right) & =\max \left\{l \in \mathbb{N}:\left(z^{n}\right)^{l} \mid f\left(z^{1}, \ldots, z^{n}\right)\right\} .
\end{aligned}
$$

As f is holomorphic we can extend it and $f \circ p_{n}^{k}$ in a power series $f=a_{\nu} z^{\nu} \equiv$ $\alpha_{m}\left(z^{n}\right)^{m}$ and $f \circ p_{n}^{k}=\alpha_{m}\left(z^{n}\right)^{k m}$, respectively.
a) The first step to prove eq. 3.3 is concluding that ord $\left(f \circ p_{n, Q}^{k}, \widetilde{\operatorname{Ram}}\left(p_{n, Q}^{k}\right)\right)$ lies in $k \mathbb{N}$. Furthermore let $l_{\max }$ be the order of f along $p_{n}^{k}\left(\operatorname{Ram}\left(p_{n}^{k}\right)\right)$ then $f(z)$ equals $\left(z^{n}\right)^{l_{\text {max }}} g(z)$ and hence $\alpha_{l_{\max }}$ is the first coefficient not to vanish. Therefore $\left(z^{n}\right)^{k \cdot l_{\max }} \mid f \circ p_{n}^{k}$ and consequently ord $\left(f \circ p_{n, Q}^{k}, \widetilde{\operatorname{Ram}}\left(p_{n, Q}^{k}\right)\right)=$ $l \cdot k$.
b) Equation 3.4 is proven indirectly. Assume that $l=\operatorname{ord}\left(f, p_{n}^{k}\left(\operatorname{Ram}\left(p_{n}^{k}\right)\right)\right)$ lies in $\mathbb{N} \backslash\left\{\left\lceil\frac{m}{k}\right\rceil,\left\lfloor\frac{m}{k}\right\rfloor\right\}$, then eq. (3.3) implies

$$
\operatorname{ord}\left(f \circ p_{n}^{k}, \widetilde{\operatorname{Ram}}\left(p_{n}^{k}\right)\right)=l \cdot k>\left\lceil\frac{m}{k}\right\rceil \cdot k \geq m
$$

or

$$
\operatorname{ord}\left(f \circ p_{n}^{k}, \widetilde{\operatorname{Ram}}\left(p_{n}^{k}\right)\right)=l \cdot k<\left\lfloor\frac{m}{k}\right\rfloor \cdot k \leq m, \text { a contradiction ! }
$$

The case ord $\left(f, p_{n}^{k}\left(\operatorname{Ram}\left(p_{n}^{k}\right)\right)\right)=\left\lfloor\frac{m}{k}\right\rfloor<\left\lceil\frac{m}{k}\right\rceil$ also returns ord $\left(f \circ p_{n}^{k}, \widetilde{\operatorname{Ram}}\left(p_{n}^{k}\right)\right)<$ m, because the difference of $\left\lfloor\frac{m}{k}\right\rfloor$ and $\left\lceil\frac{m}{k}\right\rceil$ shows that $\left\lfloor\frac{m}{k}\right\rfloor<\frac{m}{k}$ and furthermore by eq. 3.3. ord $\left(f \circ p_{n, Q}^{k}, \widetilde{\operatorname{Ram}}\left(p_{n, Q}^{k}\right)\right)=\left\lfloor\frac{m}{k}\right\rfloor \cdot k<\frac{m}{k} \cdot k=m$.

Applying eqs. 3.3 and 3.4 to ord $\left(f \circ p_{n}^{k}, \widetilde{\operatorname{Ram}}\left(p_{n}^{k}\right)\right)=m$ yields $m=\left\lceil\frac{m}{k}\right\rceil k$ or equivalently $\frac{m}{k}=\left\lceil\frac{m}{k}\right\rceil$. Consequently eqs. (3.3) and (3.4 can be merged to eq. 3.2 .
ii. We have seen in items 2 and 3 on pages 29 and 51 , respectively, that $\left(p_{n, Q}^{1}\right)^{*}$: $\mathcal{O}_{U, p} \rightarrow \mathcal{O}_{V, f(p)}$ is an isomorphism of UFDs. Applying section 2.1 on page 11 completes the proof for $p_{n, Q}^{1}$ and holomorphic f.
iii. Any $p_{n, Q}^{k}$ can be written as $p_{n, Q}^{k}=p_{n, Q}^{1} \circ p_{n}^{k}$.
iv. For a meromorphic function f with local representation (U, g, h) ord $\left(f \circ p_{n, Q}^{k}, \widetilde{\operatorname{Ram}}\left(p_{n, Q}^{k}\right)\right)$ equals ord $\left(g \circ p_{n, Q}^{k}, \widetilde{\operatorname{Ram}}\left(p_{n, Q}^{k}\right)\right)-\operatorname{ord}\left(h \circ p_{n, Q}^{k}, \widetilde{\operatorname{Ram}}\left(p_{n, Q}^{k}\right)\right)$ reducing the problem to the above discussed cases.

3.14 The $\left(\Omega^{\bullet}\right)^{\otimes k}(M, D)$ spaces

$\left[\left(\Omega^{\bullet}\right)^{\otimes k}(M, D)\right.$ or generalised logarithmic tensors] Let D be a divisor on a n-dimensional complex manifold M, we define $\left(\Omega^{\bullet}\right)^{\otimes k}(M, D)$ as the space of tensors $\omega \in\left(\Omega^{\bullet}\right)^{\otimes k}(M \backslash \operatorname{supp} D)$ with the supplementary property : If $p: X \rightarrow U \stackrel{\text { open }}{\subset} M \backslash D_{\operatorname{sing}}$ is a holomorphic and surjective covering satisfying

1. X is connected,
2. U just intersects one irreducible component of $\operatorname{supp}(D)$, say Y,
3. the ramification locus in U equals $U \cap Y$,
4. given a chart ϕ transforming $V \stackrel{\text { open }}{\subset} U$ or $V \cap Y$, respectively, to $W \stackrel{\text { open }}{\subset} \mathbb{C} n$ or $W \cap\left(\mathbb{C}^{n-1} \times\{0\}\right)$, respectively, then $\phi \circ p$ is isomorphic to the standard element $p_{n}^{D(Y)+1}$, i.e. $\phi \circ p=p_{n}^{D(Y)+1} \circ \psi$ or equivalently $p=\phi^{-1} \circ p_{n}^{D(Y)+1} \circ \psi$
then ω 's pullback $p^{*}\left(\left.\omega\right|_{V \backslash Y}\right)$ is holomorphically extendable to the whole of X.
We can show that the space of generalised logarithmic tensors $\left(\Omega^{\bullet}\right)^{\otimes k}(M, D)$ is a subset of the vector space of meromorphic tensors $\mathcal{M}(M) \otimes_{\mathcal{O}}\left(\Omega^{\bullet}\right)^{\otimes k}(M)$ and in particular of

$$
\left(\Omega^{1} \otimes_{\mathcal{O}}\left(\Omega^{n}\right)^{\otimes k}\right)(M \backslash \operatorname{supp} D) \cap \mathcal{M}(M) \otimes_{\mathcal{O}}\left(\Omega^{\bullet}\right)^{\otimes k}(M)
$$

Every element ω of $\left(\Omega^{\bullet}\right)^{\otimes k}(M, D)$ is a meromorphic tensor on M. By Levi's extension theorem for meromorphic tensors(p.??) it is sufficient to show that ω is meromorphic in $\operatorname{supp} D \backslash D_{\operatorname{sing}}$. Using the notations of section $3.14 \phi^{-1} \circ p_{n}^{D(Y)+1}$ is certainly one of the observed coverings. It is sufficient to check whether $\left(\phi^{-1}\right)^{*} \omega$ is meromorphic because we could apply ϕ^{\prime} s pullback to $\left(\phi^{-1}\right)^{*} \omega$ and deduce that ω is meromorphic, cf. item 4 on page 42 .
The coefficient functions of

$$
\omega=\sum_{\substack{\mathcal{I}=\mathcal{I}_{1}^{1} \times \cdots \times \mathcal{I}_{l_{1}}^{1} \times \mathcal{I}_{1}^{2} \times \cdots \times \mathcal{I}_{l_{n}}^{n} \\ \mathcal{I}_{j}^{i} \subset\{1, \ldots, n\} \&\left|\mathcal{I}_{j}^{i}\right|=i}} \omega_{\mathcal{I}} d z^{\mathcal{I}_{1}^{1}} \otimes \cdots \otimes d z^{\mathcal{I}_{l_{1}}^{1}} \otimes d z^{\mathcal{I}_{1}^{2}} \otimes \cdots \otimes d z^{\mathcal{I}_{l_{n}}^{n}}
$$

transform in the following manner

$$
\left(p_{n}^{D(Y)+1}\right)^{*} \omega_{\mathcal{I}}(z)=\omega_{\mathcal{I}}\left(p_{n}^{D(Y)+1}(z)\right) \cdot\left((D(Y)+1)\left(z^{n}\right)^{D(Y)}\right)^{N}
$$

where N is the amount of $n \mathrm{~s}$ in \mathcal{I} due to the diagonal form of $p_{n}^{D(Y)+1}$, s Jacobian matrix. But they are also holomorphic on the annulus $\mathbb{E}^{n-1} \times \mathbb{E}^{*}$ and consequently possess a Laurent series

$$
\omega_{\mathcal{I}}(z)=\sum_{m \in \mathbb{Z}} a_{m} \cdot\left(z^{n}\right)^{m}
$$

Therefore $\left(p_{n}^{D(Y)+1}\right)^{*} \omega_{\mathcal{I}}(z)$ can be rewritten to

$$
\left((D(Y)+1)\left(z^{n}\right)^{D(Y)}\right)^{N} \sum_{m \in \mathbb{Z}} a_{m} \cdot\left(z^{n}\right)^{m(D(Y)+1)} \equiv \sum_{l \in \mathbb{Z}} b_{l}\left(z^{n}\right)^{l}
$$

which is holomorphic by definition of $\left(\Omega^{\bullet}\right)^{\otimes k}(M, D)$. It holds $b_{l} \equiv 0$ for all $l<0$ by item iv on page 56, and so $a_{m} \equiv 0$ for all $\frac{-D(Y)}{D(Y)+1} N>m$. The desired result can be deduced from item iv on page 55.

The above proof could have given you an idea of the line of arguments in chapter 5 or ?? on page ??, respectively.

1. Given a meromorphic tensor ω and two entire coverings p and q with $p=q \circ \phi$. We conclude that if $q^{*} \omega$ is holomorphic, then also $p^{*} \omega$, because $p^{*} \omega$ equals $\phi^{*}\left(q^{*} \omega\right)$. Therefore the uniqueness of the ramification element, item50n page 52, allows us
to prove the extension property of ω 's pullback in x for one chosen p with pleasant properties. In chapter 5 it is the ramification element defined in item 3 on page 51 . The aforementioned property is equivalent to ω to lie in $\left(\Omega^{\bullet}\right)^{\otimes k}(M, D)$.
2. $D_{1} \leq D_{2}$ implies $\left(\Omega^{\bullet}\right)^{\otimes k}\left(M, D_{1}\right) \subset\left(\Omega^{\bullet}\right)^{\otimes k}\left(M, D_{2}\right)$.
3. The space of generalised logarithmic tensors to the zero divisor coincides with the holomorphic tensors of the same type, i.e. $\left(\Omega^{\bullet}\right)^{\otimes k}(M, 0)=\left(\Omega^{\bullet}\right)^{\otimes k}(M)$.
4. We specify certain subspaces such as

$$
\left(\Omega^{i} \otimes_{\mathcal{O}}\left(\Omega^{n}\right)^{\otimes k}\right)(M, D):=\left(\Omega^{\bullet}\right)^{\otimes k+1}(M, D) \cap\left(\Omega^{i} \otimes_{\mathcal{O}}\left(\Omega^{n}\right)^{\otimes k}\right)(M \backslash \operatorname{supp} D)
$$

5. The space of generalised logarithmic 0-forms to any divisor D equals the vector space of holomorphic functions on M, i.e. $\Omega^{0}(M, D)=\mathcal{O}(M)$.

4 Modular functions

5 Existence results

6 Bibliography

[BBI01] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A Course in Metric Geometry. American Mathematical Society, 7 2001. (cited on page 15)
[Bre05] Glen Eugene Bredon. Topology and geometry. Graduate texts in mathematics; 139. Springer-Verlag Berlin Heidelberg, Germany, 2005. (cited on page 48)
[Bro12] Luitzen Egbertus Jan Brouwer. Beweis der Invarianz des n-dimensionalen Gebiets. Mathematische Annalen, 71:305-315, 1912. (cited on page 22)
[FB09] Eberhard Freitag and Rolf Busam. Complex analysis. Springer-Verlag Berlin Heidelberg, Germany, Berlin; Heidelberg, 2009. (cited on pages 28, 48, and 53)
[FG02] Klaus Fritzsche and Hans Grauert. From holomorphic functions to complex manifolds. Number 213 in Graduate texts in mathematics. Springer, New York; Berlin; Heidelberg, 2002. (cited on page 25)
[For77] Otto Forster. Riemannsche Flächen. Heidelberger Taschenbücher; 184. Springer-Verlag Berlin Heidelberg, Germany, 1977. (cited on pages 23 and 48)
[For99] Otto Forster. Lectures on Riemann surfaces. Graduate texts in mathematics; 81. Springer-Verlag Berlin Heidelberg, Germany, 1999. (cited on pages 48 and 52)
[Fre09] Eberhard Freitag. Funktionentheorie 2. Springer-Lehrbuch. Springer-Verlag Berlin Heidelberg, Germany, 2009. (cited on pages 39, 40, and 48)
[Ger06] Claus Gerhardt. Analysis. International Press, Somerville, MA, 2006. (cited on page 28)
[GH78] Phillip A. Griffiths and Joseph Harris. Principles of algebraic geometry. Pure and applied mathematics; A Wiley-Interscience publication. Wiley, New York [a.o.], 1978. (cited on pages 25, 34, 42, 45, and 53)
[GHL87] Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. Riemannian geometry. Universitext. Springer, Berlin; Heidelberg; New York; London; Paris; Tokyo, 1987. (cited on pages 23 and 34)
[GR65] Robert C. Gunning and Hugo Rossi. Analytic functions of several complex variables. Prentice-Hall series in modern analysis. Prentice-Hall, Englewood Cliffs, NJ, 1965. (cited on pages 40 and 46)
[Huy05] Daniel Huybrechts. Complex geometry, an introduction. Springer-Verlag Berlin Heidelberg, Germany, 2005. (cited on pages 38, 39, and 40)
[Jos06] Jürgen Jost. Compact Riemann surfaces. Universitext. Springer, Berlin; Heidelberg, 3. ed. edition, 2006. (cited on page 48)
[KK83] Ludger Kaup and Burchard Kaup. Holomorphic functions of several variables. Number 3 in De Gruyter studies in mathematics. De Gruyter, Berlin [a.o.], 1983. (cited on page 39)
[Lan02] Serge Lang. Algebra. Graduate texts in mathematics; 211. Springer-Verlag Berlin Heidelberg, Germany, 2002. (cited on pages 11 and 12)
[Lee03] John M. Lee. Introduction to smooth manifolds. Number 218 in Graduate texts in mathematics. Springer, New York; Heidelberg, 2003. Includes bibliographical references and index. (cited on pages 34, 35, and 38)
[Ser65] Jean-Pierre Serre. Lie algebras and Lie groups. Benjamin, New York, 1965. (cited on page 26)
[Shi71] Goro Shimura. Introduction to the arithmetic theory of automorphic functions. Number 11 in Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, New Jersey, Tokyo, 1971. (cited on page 21)
[Spr77] Tonny A. Springer. Invariant theory. Number 585 in Lecture notes in mathematics. Springer, Berlin, 1977. (cited on page 16)
[Wie10] Thomas Wieber. Symplectic geometry and hamiltonian group actions. Master's thesis, University of Leeds, United Kingdom, 2010. (cited on page 22)

Todo list

2.1.0. $Z^{*}(f)$ really necessary ? 11
2.1.0. prove this. 11
2.1.0. Add reference. 12
2.1.0. smoothen proof 12
2.2.0. finish this section. 14
absichtlich drin gelassen 15
3.1.0. really useful ? 20
3.4.0. remove this definition ? 26
3.9.0. Identity theorem also for meromorphic functions and meromorphic tensors ? 39
3.9.0. rephrase this. 39
3.10.0. Warum ist das folgende unzulaessig ? 41
3.10.0. rephrase this. 43
3.10.0. rephrase this. 44
3.10.0. Add reference. 45
3.12.0. $p(\operatorname{Ram}(p))$ koennte man auch double point set nennen, vgl http://en.wikipedia.org/wiki/Ramification
3.12.0. correct definition of Q-standard element ? 50
3.13.0. prove this. 55
3.13.0. Rephrase the proof of $-m=\operatorname{ord}\left(f, p,\left\{z^{n}=0\right\}\right)=\operatorname{ord}\left(f,\left\{z^{n}=0\right\}\right)$. 56

[^0]: 3.13.0. prove this.

