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5. The de-Rham complex

For a differentiable manifold the de-Rham complex is defined to be the sequence
of maps

· · · −→ A
p−1(X) −→ A

p(X) −→ A
p+1(X) −→ · · ·

We use the notation

C
p(X) : = kernel(d : A

p(X) −→ A
p+1(X)),

B
p(X) : = image(d : A

p(X) −→ A
p+1(X)).

The elements of C
p(X) are called closed (dω = 0) and the elements of B

p(X)
are called exact. They are of the form dω

�. Because of d◦d = 0 exact forms are
closed. The converse is not always true and it is important to understand this.
To measure the difference between exact and closed forms on introduces the
de-Rham cohomology groups. (One should better say “de-Rham cohomology
vector spaces”, but this is unusual.) They are defined as factor space of C

p(X)
by the subspace B

p(X).

H
p(X, R) = C

p(X)/B
p(X).

The elements of H
p(X, R) are classes of elements from C

p(X). The class [ω] of
an element ω ∈ C

p(X) consists of all elements of the form ω+dα, α ∈ A
p−1(X).

The set of all classes can be made to a vector space in a natural way. The vector
space structure is defined through the fact that the natural projection

C
p(X) −→ H

p(X), ω �−→ [ω],

is a linear map. This linear map is surjective and its kernel is B
p(X). Hence we

see: The group H
p(X, R) vanishes if and only of each closed p-form is exact.

Let X be a differentiable manifold of dimension n. (This means that all
charts land in Rn.) Then of course H

p(X, R) = 0 for p > n. Of course
H

p(X, R) = 0 for p < 0 is always true. Let’s consider the case p = 0. Clearly
B

0(X) = 0 since every form of degree −1 is zero. Hence H
0(X, R) = C

0(X).
The space C

0(X) consists of all functions with df = 0. Such functions are
locally constant. If we assume that X is connected then the are constant.
Hence H

0(X, R) for a connected differentiable manifold can be identified with
R.

5.1 Remark. For each connected differentiable manifold one has

H
0(X, R) = R.

A basic result is the
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5.2 Lemma of Poincaré. Let U ⊂ Rn be an open convex subset. Then

H
p(U, R) = 0 for p > 0.

Proof. Let ω be a closed form. We decompose it as

ω = α + β ∧ dxn,

where α doesn’t contain any term with dxn. We write

β =
�

fada

where a are subsets of {1, . . . , n − 1} that do nor contain n. Integrating with
respect to the last variable we find differentiable functions Fa such that ∂nFa =
fa. Now the difference ω− d

�
a Fadxa doesn’t contain any term in which dxn

occurs. Hence we can assume that in ω no term with dxn occurs. We write

ω =
�

a

gadxa,

where all a are subsets of {1, . . . , n − 1}. Now we use dω = 0. We obtain
∂nga = 0. Hence ga do not depend on xn. But now ω can be considered
as differential form in one dimension less (on the image of U with respect to
the projection map that cancels the last variable) and an induction argument
completes the proof. ��

Next we want to give an important class of examples for a non-vanishing
de-Rham cohomology groups. It rests on the theorem of Stokes and hence on
integration of differential forms. We just recall the basic concept.

First one has to introduce the concept of orientation: A differentiable man-
ifold X is called orientable, if there exists a defining atlas A such that all
chart transformations inside A have positive functional determinant every-
where. Two such atlases are called oriented equivalent if their union is oriented
as well. An orientation of a differentiable manifold is given by an equivalence
class of oriented equivalent atlases (consisting of differentiable charts with re-
spect to the given differentiable structure on X). In this equivalence class there
exists a unique maximal (oriented) atlas A+. The elements of this atlas are
called the oriented differentiable charts on X.

Let now X be of dimension n and ω a top form ω ∈ A
n(X). We assume

that ω has compact support. Then one can define
�

X

ω.


