Übungen zur Vorlesung Analysis auf Mannigfaltigkeiten Dr. Thomas Wieber, Sergej Trenkenschu

SS 2014 Blatt 10

http://www.mathi.uni-heidelberg.de/~twieber/ana4.html

Abgabe: bis Freitag, 18.7.2014, vor der Vorlesung

Aufgabe	1	2	3	\sum
Punkte				

Aufgabe 1 (Eigenwerte des de Rham-Laplace Operators, 1+1+2=4 Punkte) Sei X eine orientierte kompakte Riemannsche Mannigfaltigkeit.

- a) Sei λ ein Eigenwert des de Rham-Laplace Operators Δ^p_{dR} , es existiert also eine p-Form α für die gilt Δ^p_{dR} $\alpha = \lambda \cdot \alpha$. Bitte zeigen Sie, dass $\lambda \geq 0$ gilt.
- b) Wir bezeichnen mit $Eig(\lambda, \Delta_{dR}^p) = \{\alpha \in A^p(X) : \Delta_{dR}^p \ \alpha = \lambda \cdot \alpha \}$ den Eigenraum von λ für Δ_{dR}^p . Bitte zeigen Sie, dass $Eig(\lambda_i, \Delta_{dR}^p)$ und $Eig(\lambda_j, \Delta_{dR}^p)$ genau dann senkrecht aufeinander bezüglich des Skalarprodukts (\cdot, \cdot) stehen, falls gilt $\lambda_i \neq \lambda_j$.
- c) Bitte zeigen Sie, dass die Folge der paarweise verschiedenen Eigenwerte des de Rham-Laplace Operators Δ_{dR}^p (λ_k) $_k$ unbeschränkt ist. Hinweis: Wir haben etwas änhliches in Vorlesung bewiesen, was auch im Warner oder Godoy(http://www.uib.no/filearchive/noteshodge27sep.pdf) zu finden ist.

Aufgabe 2 (Sternoperator-Allerlei, 1,5+0,5+1+1+1 = 5 Punkte)

a) Sei (V, g) ein euklidischer Vektorraum mit einer beliebigen Basis e_1, \ldots, e_n . Sei e^{*1}, \ldots, e^{*n} weiterhin die duale Basis bezüglichdern symbols), then you can use the following se g. Bitte zeigen Sie, dass

$$*e^{*I} = \sum_{|J|=p} \sqrt{|g|} \cdot g^{*p}(e^{*I}, e^{*J}) \cdot \epsilon(J, \{1, \dots, n\} \setminus J) \cdot e^{*\{1, \dots, n\} \setminus J}$$

für $I = \{i_1, \dots, i_p\}$ und jeweils $J = \{j_1, \dots, j_p\}$ gilt.

- b) Bitte zeigen Sie, dass für den de Rham-Laplace Operator für 0-Formen gilt $\Delta^0_{dR}=\delta^1\circ d^0$, hierbei bezeichnet δ^1 die erste Kodifferentiation .
- c) Bitte zeigen Sie, dass für den de Rham-Laplace Operator für 0-Formen auf offenen Mengen des \mathbb{R}^n s, gilt

$$\Delta_{dR}^{0}f = -1 \cdot \frac{1}{\sqrt{|g|}} \sum_{1 \le i, j \le n} \frac{\partial}{\partial x^{j}} \left(g^{ij} \sqrt{|g|} \frac{\partial f}{\partial x^{i}} \right).$$

- d) Bitte zeigen Sie, dass für glatte p-Formen α und β auch die Funktion $g^{*p}(\alpha, \beta)$ glatt ist.
- e) Bitte zeigen Sie, dass für den de Rham-Laplace Operator Δ_{dR} mit dem Sternoperator *kommutiert, d.h. Δ_{dR}^{n-p} * = * Δ_{dR}^{p} .

Aufgabe 3 (Hodge-Zerlegung, 0,5+1+0,5+1=3 Punkte)

- a) Bitte zeigen Sie, dass $\delta^p \circ \delta^{p+1} = 0$ gilt für alle p.
- b) Bitte zeigen Sie, dass die Räume $\delta^{p+1}(A^{p+1})$, $d^{p-1}(A^{p-1})$ und $\mathcal{H}^p = \ker \Delta_{dR}^p$ jeweils senkrecht aufeinander stehen.
- c) Bitte zeigen Sie, dass die Räume $d^{p-1}\delta^p(A^p)$, $\delta^{p+1}d^p(A^p)$ und $\mathcal{H}^p = \ker \Delta^p_{dR}$ jeweils senkrecht aufeinander stehen.
- d) Bitte zeigen Sie, die im folgenden Gleichungssystem das 3. und 4. Gleichheitszeichen

$$\begin{split} A^p(X) &= A^p = \mathcal{H}^p \oplus \Delta^p_{dR} A^p \\ &= \mathcal{H}^p \oplus d^{p-1} \delta^p(A^p) \oplus \delta^{p+1} d^p(A^p) \\ &= \mathcal{H}^p \oplus \delta^{p+1}(A^{p+1}) \oplus d^{p-1}(A^{p-1}) \end{split}$$