Abgabetermin: Mittwoch, 02.05.2007

1. Es sei X ein topologischer Raum, Y eine Menge und F eine Familie von Abbildungen $f:X\to Y.$ Man zeige:

$$T := \{ U \subset Y | f^{-1}(U) \text{ offen in } X \forall f \in F \}$$

ist eine Topologie auf Y bezüglich derer alle $f \in F$ stetig werden, und zwar die feinste Topologie mit dieser Eigenschaft (d. h. die mit den meisten offenen Mengen).

Spezialfall: Ist \sim eine Äquivalenzrelation auf X, Y die Menge der Äquivalenzklassen und $F = \{p\}$, wobei $p: X \to Y$ die kanonische Projektion ist (p(x)) ist die Äquivalenzklasse von x, so heißt die entsprechende Topologie auf Y die Quotiententopologie von X bezüglich der Äquivalenzrelation.

2. Definition: Es seien X, Y topologische Räume und $p: X \to Y$ eine stetige Abbildung. Das Tripel (X, Y, p) heißt Überlagerung, wenn jeder Punkt $y \in Y$ eine offene Umgebung V besitzt, so dass gilt: $p^{-1}(V)$ ist disjunkte Vereinigung einer Familie \mathfrak{U} von offenen Mengen und $p: U \to V$ ist ein Homöomorphismus für alle $U \in \mathfrak{U}$.

Es sei sodann X eine n-dimensionale Mannigfaltigkeit und G eine Gruppe (bzgl. der Komposition von Abbildungen) von Homöomorphismen von X mit folgenden Eigenschaften:

- (i) Besitzt $q \in G$ einen Fixpunkt, so ist q = id.
- (ii) Sind $x_k \in X$, $g_k \in G$ $(k \in \mathbb{N})$ mit $x_k \to x \in X$, $g_k(x_k) \to y \in X$ $(k \to \infty)$, so existiert $k_0 \in \mathbb{N}$ und $g \in G$ mit $g_k = g$ für $k \ge k_0$.

Es sei Y der Quotientenraum von X bezüglich der Relation

$$x \sim y \Leftrightarrow \exists q \in G : q(x) = y$$

Man zeige:

- (a) Für endliche G folgt (ii) aus (i).
- (b) Zu $x \in X$ existiert eine offene Umgebung U von x mit

$$U \cap q(U) = \emptyset \forall \ q \in G \setminus \{id\}.$$

- (c) $p: X \to Y$ ist eine Überlagerung und Y ist eine n-dimensionale Mannigfaltigkeit.
- (d) Ist darüberhinaus X eine differenzierbare Mannigfaltigkeit, so besitzt Y genau einen maximalen differenzierbaren Atlas, so dass p ein lokaler Diffeomorphismus wird.

- (e) Man betrachte folgende Beispiele:
 - i. $X = \mathbb{S}^n = \{x \in \mathbb{R}^{n+1} \big| \ |x| = 1\}, G = \{id, x \mapsto -x\}.$ Y ist der projektive Raum \mathbb{P}^n .
 - ii. $X=\mathbb{R}^2,\,G$ die von den Translationen $(x^1,x^2)\mapsto (x^1+1,x^2)$ und $(x^1,x^2)\mapsto (x^1,x^2+1)$ erzeugte Gruppe. Geben Sie eine alternative Beschreibung von Y!
 - iii. $X=\mathbb{R}^2$, G die von Abbildungen $(x^1,x^2)\mapsto (x^1+1,x^2)$ und $(x^1,x^2)\mapsto (1-x^1,x^2+1)$ erzeugte Gruppe Y ist die "Kleinsche Flasche".