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Example, Manifold Assumption
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Fig. 4 Mapping functions
between two almost isometric
shapes via SGMDS (Color
figure online)

Fig. 5 Dense point-to-point
correspondence between six
almost isometric shapes of a
horse from the TOSCA dataset
(Color figure online)

produce symmetric flips, as shown in Fig. 3 (bottom), Fig. 4
(top), and Fig. 6 (bottom).

Figure 7 compares the accuracy of the proposed method
to other methods using the evaluation procedure proposed
in Kim et al. (2011). In these experiment we used 6 first
eigenvectors of the Laplace–Beltrami operator. The evalua-
tion protocol was applied to both TOSCA (Bronstein et al.
2008) and SCAPE (Anguelov et al. 2004) datasets. For the
other methods, we used the information provided in Kim
et al. (2011), and in Ovsjanikov et al. (2012); Pokrass et al.
(2013). Figure 6 demonstrates the robustness of the proposed
approach to typical types of noise.

In the benchmark protocol proposed by Kim et al. (Kim
et al. 2011), the ground-truth correspondence between shapes
is assumed to be given. Then, a script, provided by the

authors, computes the geodesic departure of each point,
mapped by the evaluatedmethod, fromwhat the authors refer
to as true location. The distortion curves describe the per-
centage of surface points falling within a relative geodesic
distance fromwhat are assumed to be their true locations. For
each shape, the geodesic distance is normalized with respect
to the shape’s squared root of the area.

Notice that “true location” here is actually a subjec-
tive measure. In fact, measuring the geodesic distortion of
the given correspondences demonstrates a substantial dis-
crepancy between corresponding pairs of points on most
surface pairs from the given datasets. The distortion curves
incorporate an intrinsic ambiguity of about 5–25 % due to
the lack of absolute isometry within seemingly identical
objects at different poses. In a favorable scenario, given a
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Fig. 9 SGMDS mapping:
Visualization of a Voronoi
diagram on one shape and its
corresponding map on a
different pose of the articulate
object as computed by the
propsoed method (Color figure
online)

Fig. 10 Top quantitative
evaluation presented as rate
distortion graphs of the SGMDS
applied to two human shapes
from the TOSCA dataset (shown
in red), using a different number
of eigenvectors in each
experiment. Bottom Zoom in
into the rate distortion graph for
geodesic errors in the range of
[0, 0.05]. The comparison
protocol is adopted from Kim
et al. (2011) (Color figure
online)
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large ears that we try to match to a large face with smaller
ears.

Moreover, when topological noise is present, a robust
matching that could gracefully handle cuts and holes, can
be achieved by using diffusion or commute time distances
(Coifman and Lafon 2006; Bronstein and Bronstein 2011;
Bronstein et al. 2010), instead of the geodesc distance, in the
proposed framework. In fact, when dealing with diffusion
distances, it is natural to approximate the distance matrices
in the spectral domain.
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(X, d) (X, d𝒯) dT dominates d, ∀T ∈ 𝒯

𝔼P[dT(u, v)] ≤ α d(u, v), ∀u, v ∈ X

M = {m1, …, mc} ⊂ X

E*∞ = min
M

E∞(M), E∞(M) = max
x∈X

d(x, M)

clustering
any metric 

global method

E∞(M) ≤ 2E*∞

“core set” 
initialization for more 
advanced techniques



Metric Embedding (II)
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Metric Embedding (II)

more data, noise, labels, priors/regularization/smoothness assumption, … 
complexity & learning: sample size vs. hypothesis space 
online learning 
….

manifold 
assumption
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Metric Embedding (II)

E( f ) =
1
l ∑

i∈[l]

L(xi, yi, f ) + λA∥f∥2
K + λI ∫ℳ

∥∇ℳ f∥2dμX

labels, loss: 
supervision

control: 
hypothesis space

intrinsic 
geometry

key problem: how do labels (symbols) emerge from raw data?

embedding 
quality
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Figure 6. Euclidean embeddings into R3 for several interaction potentials with four classes. Left to right:
Potts; linear metric; non-Euclidean truncated linear metric. The vertices correspond to the columns a1, . . . , al

of the embedding matrix A. For the truncated linear metric an optimal approximate embedding was computed
as outlined in section 4.4 with the matrix norm ∥X∥M := maxi,j |Xij |.

Assume that d is an arbitrary metric with squared matrix representation D ∈ Rl×l, i.e.,
Dij = d(i, j)2. Then it is known [9] that d is Euclidean iff for C := I − 1

l ee
⊤, the matrix

T := −1
2CDC is positive semidefinite. In this case D is called a Euclidean distance matrix

and A can be found by factorizing T = A⊤A. If T is not positive semidefinite, setting the
nonnegative eigenvalues in T to zero yields a Euclidean approximation. This method is known
as classical scaling [9] and does not necessarily give good absolute error bounds.

More generally, for some nonmetric, nonnegative d, we can formulate the problem of
finding the “closest” Euclidean distance matrix E as the minimization problem of a matrix
norm ∥E − D∥M over all E ∈ El, the set of l × l Euclidean distance matrices. Fortunately,
there is a linear bijection B : Pl−1 → El between El and the space of positive semidefinite
(l− 1)× (l− 1) matrices Pl−1 [30, 33]. This allows us to rewrite the problem as a semidefinite
program [70, pp. 534–541]

(4.50) inf
S∈Pl−1

∥B(S)−D∥M .

Problem (4.50) can be solved using available numerical solvers. Then E = B(S) ∈ El, and A
can be extracted by factorizing −1

2CEC. Since both E and D are explicitly known, εE :=

maxi,j |(Eij)1/2 − (Dij)1/2| can be explicitly computed and provides an a posteriori bound on
the maximum distance error. Figure 6 shows a visualization of some embeddings for a four-
class problem. In many cases, in particular when the number of classes is large, the Euclidean
embedding provides a good approximation for non-Euclidean metrics (Figure 7).

Based on the embedding matrices computed in this way, the Euclidean distance approach
can be used to solve approximations of the labeling problem with arbitrary metric interaction
potentials, with the advantage of having a closed expression for the regularizer.

5. Discretized problem.

5.1. Saddle point formulation. We now turn to solving the discretization of the relaxed
problem (4.6). In order to formulate generic algorithms, we study the bilinear saddle point
problem,

min
u∈C

max
v∈D

g (u, v) , g(u, v) := ⟨u, s⟩+ ⟨Lu, v⟩ − ⟨b, v⟩ .(5.1)

Example: Euclidean representation of label metrics  
                (        convex relaxation of variational approaches) ↔

Potts linear approx.: linear-truncated



Summing Up

data analysis: 20min brainstorming

• metric geometry

• geometric functional analysis

• differential geometry

• functional analysis, PDEs

• convex analysis

Yet, our understanding is quite limited 
including tools (deep networks) claimed to perform well

TDA may help!



Remark on TDA

TDA has a long history in computer vision and elsewhere

Blum’67: “grassfire transform” 
distance & medial axis transform, curvature-driven shape evolution, 
shock graphs, …

16 Siddiqi et al.

the evolutionary time of the deformation. The constant
α≥ 0 controls the regularizing effects of curvature κ .
When α is large, the equation becomes a geometric
heat equation; when α = 0, the equation is equiva-
lent to Blum’s grassfire transformation (Brockett and
Maragos, 1992; Kimia et al., 1995). In this paper, we
shall only be interested in the latter case, under which
the evolution equation is hyperbolic and shocks (Lax,
1971), or entropy-satisfying singularities can form.
Here we shall ignore the dynamics of the shock for-
mation process, and will consider only the static pic-
ture obtained in the limit: the locus of shock positions
givesBlum’smedial axis (Brockett andMaragos, 1992;
Kimia et al., 1995). However, even in this static limit,
the shocks provide additional information beyond that
available from their loci: consider a “coloring” of the
shocks according to the local variation of the radius
function along the medial axis (see Fig. 1). The col-
ored description provides a much richer foundation
for recognition than that obtained from an unlabeled
(Blum) skeleton.
To illustrate the coloring, imagine traversing a path

along the medial axis. At a 1-shock the radius function
varies monotonically, as is the case for a protrusion.
At a 2-shock the radius function achieves a strict lo-
cal minimum such that the medial axis is disconnected
when the shock is removed, e.g., at a neck. At a 3-shock
the radius function is constant along an interval, e.g.,
for a bend with parallel sides.1 Finally, at a 4-shock
the radius function achieves a strict local maximum, as
is the case when the evolving curve annihilates into a
single point or a seed.

Figure 1. A coloring of shocks into four types. A 1-shock derives
from a protrusion, and traces out a curve segment of 1-shocks. A
2-shock arises at aneck, and is immediately followedby two1-shocks
flowing away from it in opposite directions. 3-shocks correspond to
an annihilation into a curve segment due to a bend, and a 4-shock
an annihilation into a point or a seed. The loci of these shocks gives
Blum’s medial axis, while the coloring provides an organization of
the skeleton upon which our matching algorithm is based.

With the above picture in mind, the coloring can be
formalized as follows. Let X be the open interior of a
simple closed curve, andMe(X) its medial axis (the set
of points reached simultaneously by two or more fire
fronts). Let B(x, ϵ)be an open disk of radius ϵ centered
at x ∈ X , and let R(x) denote the radius of the largest
such disk contained in X . Let N (x, ϵ) = Me(X) ∩
B(x, ϵ)\{x} define a “punctured” ϵ-neighborhood of x ,
one that does not contain x itself. A medial axis point
x ∈ Me(X) is

1. type 4 if ∃ϵ > 0 s.t. R(x) > R(y) ∀y ∈ N (x, ϵ);
2. type 3 if ∃ϵ > 0 s.t. R(x) = R(y) ∀y ∈ N (x, ϵ)
and N (x, ϵ) ̸= ∅;

3. type 2 if ∃ϵ > 0 s.t. R(x) < R(y) ∀y ∈ N (x, ϵ)
and N (x, ϵ) ̸= ∅ and N (x, ϵ) is not connected; and

4. type 1 otherwise.

It should be clear that there is a relationship between
the above coloring and the velocity function dR/dx
along the medial axis (Serra, 1982). In Fig. 7 we
provide numerical examples of colored medial axis de-
scriptions. Aswe shall now show, the coloring coupled
with a measure of significance derived from the time
of shock formation, is the key to abstracting a repre-
sentation that supports generic shape matching.

2. The Shock Graph

We shall now abstract the system of shocks derived
from the curve evolution process into a graph, which
we call the shock graph, or SG. This construction is
inspired by Blum’s classic work on axis-morphologies,
in which he explored the use of directed graphs based
on the medial axis for defining equivalence classes of
objects (Blum, 1973). The shock types will label each
vertex in the graph and the shock formation times will
direct edges to provide an ordering for matching, and
a basis for subgraph approximation.
By the Jordan Curve Theorem, any simple closed

curve divides the plane R2 into exactly two compo-
nents, one bounded and the other unbounded. We are
interested in the bounded interiors of Jordan curves.

Definition 1. A 2-D shape O is the bounded interior
of a simple closed (Jordan) curve.

From the coloring of shocks into four types in the
previous section, it can be seen that 2-shocks and 4-
shocks are isolated points, whereas 1-shocks and 3-
shocks are neighbored by other shocks of the same

(Siddiqi et al. IJCV’99)



Remark on TDA

Shock Graphs and Shape Matching 23

(u′, v′)← minimum weight pair inM
!(G, H)← !(G, H) ∪ {(u′, v′)}
call match(u′,v′)
Gu ← Gu − {x |x ∈ VGu and (x, w) ∈ !(G, H)}
Hv ← Hv − {y|y ∈ VHv and (w, y) ∈ !(G, H)}
}

while (Gu ̸= ∅ and Hv ̸= ∅)

In terms of algorithmic complexity, observe that dur-
ing the depth-first construction of the matching chains,
each vertex in G or H will be matched at most once
in the forward procedure. Once a vertex is mapped, it
will never participate in another mapping again. The
total time complexity of constructing the matching
chains is therefore bounded by O(n2

√
n log log n), for

n = max(n1, n2) (Gabow et al., 1993). Moreover, the
construction of the χ(v) vectors will take O(n

√
nL)

time, implying that the overall complexity of the algo-
rithm is max(O(n2

√
n log log n), O(n2

√
nL).

Proposition 3. Procedure isomorphism (G, H) pro-
vides an approximate optimal solution to Problem (1),
in polynomial time better than O(n3).

The approximation has to dowith the use of a scaling
parameter to find the maximum cardinality, minimum
weight matching (Gabow et al., 1993); this parameter
determines a tradeoff between accuracy and the number
of iterations till convergence. The matching matrix M
in Eq. (2) can be constructed using the mapping set
!(G, H). The algorithm is particularly well-suited to
the task of matching two shock trees since it can find
the best correspondence in the presence of occlusion
and/or noise in the tree.

3.6. An Illustrative Example

To illustrate the matching algorithm, we consider the
two shock trees shown in Fig. 3 (top), each of which
describes a different view of a brush. The underlying
shocks, alongwith the final computed correspondences
between nodes, are depicted in Fig. 3 (bottom). The
sequence of steps in finding this best correspondence
(minimum-weightmaximumcardinalitymatching) be-
tween the two shock trees is shown in Fig. 4. We briefly
describe each step in the sequence:

• Steps 1–4
The algorithm finds the minimum weight matching
between the two shock trees, seeking to find the two

Figure 3. Top: the shock trees derived for two different views of
a brush. Bottom: the correspondences between nodes in the shock
trees computed by the matching algorithm.

subtrees which are maximally similar in terms of
their topological structure and the geometry of their
root nodes (shocks). In this example, the two sub-
trees rooted at 1-007 and 1-005 (denoted by bold cir-
cles in Fig. 4) are selected as most similar. In step 2,
this pair is added to the set of final correspondences
(denoted by short-dashed circles), and the algorithm
is recursively applied to the subtrees of 1-007 and 1-
005. In this manner, the correspondences (3-001,3-
002) and (1-003,1-001) are added to the set of final
correspondences.

• Steps 5–6
After descending to the bottom of the subtrees rooted
at (1-007,1-005), control is returned to (1-007,1-005)
and these two subtrees are removed from the original
shock graphs. From the resulting shock subtrees, we
repeat the process of finding the best corresponding
subtrees. In step 5, the subtree pair (1-006,1-004) is
selected and added to the final correspondences in
step 6.

• Steps 7–12
After removing the subgraphs originating at (1-
006,1-004), a new pair (3-002,3-001) is selected in
step 7, and added to the final correspondences in step
8.After removing this newpair, the process is applied
to the remaining shock forests in step 9, resulting in
the selection of the pair (1-004,1-002). This pair is
added to the final correspondences in step 10. In step
11, the pair (1-005,1-003) is selected and added to

Blum’67: “grassfire transform” 
distance & medial axis transform, curvature-driven shape evolution, 
shock graphs, … 
maximal subgraph isomophisms, shock trees & shape matching, etc.

(Siddiqi et al. IJCV’99)

Main objection:  lack of stability !
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(Boissonnat et al. 2018)

(X, d)compact space (“shape”) measure μX
supp sample

robust distance to measure

d2
μ,m0

(x) =
1

m0 ∫
m0

0
δ2

μ,mdm, m0 ∈ (0,1)

δμ,m(x) = inf {r > 0: μ(Br(x)) > m}

in terms of the empirical measure ̂μX =
1

|X | ∑
xi∈X

δxi

d2
μ,m0

(x) =
1
k0 ∑

xi∈k0NNX(x)

∥xi − x∥2, m0 =
k0

n

embedding matters !
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Consequently: embedding into the space of (prob.) measures !

dμ,m0
(x) = min { 1

m0
W2(m0δx, ν) : ν ∈ Subm0

(μ)}

• metric geometry

• geometric functional analysis

• differential geometry

• functional analysis, PDEs

• convex analysis

• optimal transport

• dynamical systems

• PDEs (W-geometry)

• information geometry

metric !W2
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Consequently: embedding into the space of (prob.) measures !

dμ,m0
(x) = min { 1

m0
W2(m0δx, ν) : ν ∈ Subm0

(μ)}
μx,m0

= ν*

dμ,m0
(x) = ( 1

m0 ∫ ∥x − h∥2dμx,m0
(h))

1/2

metric !W2

stability

dH(Subm0
(ν), Subm0

(ν′�)) ≤ W2(ν, ν′�) ⟹ stability of dμ,m0

fundamental task, mm-spaces, dGH ← dGW
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dX
H(A, B) = max { sup

a∈A
inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}

= inf
R

sup
(a,b)∈R

d(a, b) R ⊂ A × B

dGH(X, Y ) = inf
Z, f,g

dZ
H(f(X), g(Y )) f, g :

=
1
2

inf
R

sup
(x, y) ∈ R
(x′�, y′�) ∈ R

dX(x, x′�) − dY(y, y′�)

A, B :

dGW,p(X, Y ) =
1
2

inf
μ (∫ ∫ dX(x, x′�) − dY(y, y′�)

p
dμ(x, y)dμ(x′�, y′ �))

1/p

μ μX, μY

Hausdorff distance

shapes

correspondences

Gromov-Hausdorff distance

isometries

Gromov-Wasserstein distance

couples


