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Outline

• Motivation for multidimensional persistence.

• Elaboration of the algebraic objects that naturally arise from the study of

multifiltrations: multigraded modules over a polynomial ring in multiple

variables.

• Parameterization of these objects as a subset of a product of

grassmannians together with a group action.

• By using this parameterization, show that there are no barcode-like

invariants in dimension greater than one.

This talk is based on and inspired by G. Carlsson, A. Zomorodian, The
Theory of Multidimensional Persistence, 2009.



Motivation



• Metric space = RNA-Sequences + Hamming-distance

• Goal: compute the number of reticulate events (one-dim. 
cycles) in which a mutation participates (detect bars of 
length one in barcode born in first step).

• topological Recurrence Index (tRI) for virus-mutations.

• A growing tRI of a particular mutation together with a 
growing prevalence of this mutation and biological evidence 
could serve as a heuristic for a possible evolutionary 
fitness advantage of this mutation.

• Virus data-sets grow over time.

Motivation

M. Bleher, M. Carrière, L. Hahn, A. Ott, J. Patiño-Galindo and R. Rabadán, 
Topology identifies emerging adaptive mutations in SARS-CoV-2, 2021
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Motivation



Betti numbers + ranks of transition maps

Barcodes of subfiltrations

First homology 

Motivation



Multifiltered Simplicial Complexes 
and 

Multigraded Modules



Definition (Partial order on Nn)

For (u1, . . . , un), (v1, . . . , vn) 2 Nn
, we write

(u1, . . . , un) � (v1, . . . , vn)

if ui  vi for all i 2 {1, . . . , n}.



Definition (n-filtered simplicial complex)

Let X be a finite simplicial complex and n � 1. Then X is called n-filtered
if there exists a familily of simplicial complexes (Xu)u2Nn such that

X =

[

u2Nn

Xu and Xu ✓ Xv

for all u, v 2 Nn
with u � v.



Definition (Polynomial ring)

For a field F,

F[x] := F[x1, . . . , xn]

denotes the polynomial ring in n variables. For v = (v1, . . . , vn) 2 Nn
,

we write

xv
:= x

v1
1 · · · · · xvn

n



Definition (n-graded Module)

An F[x]-module M is called n-graded if M admits a direct sum

decomposition into F-vector spaces

M =

M

v2Nn

Mv

such that for all v, w 2 Nn
,

xv ·Mw ✓ Mv+w.



Definition (Homogeneous element)

Let M be an n-graded F[x]-module and v 2 Nn
. An element

y 2 Mv \ {0}

is called homogenous of degree v.



Definition (Graded homomorphism)

Let N,M be n-graded F[x]-modules. An F[x]-module homomorphism

f : M �! N

is called graded if for all v 2 Nn
,

f(Mv) ✓ Nv.



Example

F[x] is n-graded over itself where for u 2 Nn
,

F[x]u := hxuiF.

For v 2 Nn
, F[x](v) is defined by shifting the grading of F[x] via

F[x](v)u :=

8
<

:
hxu�viF, u 2 Nn

⌫v

0, else



Definition (Associated n-graded module)

If X is a finite n-filtered simplicial complex, then

M`(X) :=

M

u2Nn

H`(Xu,F)

defines a f.g. n-graded F[x]-module where the variable action is given via

the induced maps on homology

xv�u
: H`(Xu,F) �! H`(Xv,F)

for u � v.



Theorem (Realization)

Assume that F = Fp where p 2 N is a prime number or that F = Q. Let M

be a f.g. n-graded F[x]-module. Then for every ` � 1, there exists an

n-filtered finite simplicial complex X such that

M`(X) ⇠= M.

For a proof see H. A. Harrington, N. Otter, H. Schenck, U. Tillmann,
Stratifying multiparameter persistent homology, arXiv 2019.



Conclusion

The study of finite n-filtered simplicial complexes translates into the study

of f.g. n-graded F[x]-modules.



Invariants



Definition (Invariant)

An invariant is a function

IF
n : {f.g.n-gradedF[x]-modules} /⇠= �! Q

F
n

where Q
F
n is a set. IF

n is called

• discrete if Q
F
n = Q

T
n for all fields F,T and if IF

n has countable image.

• complete if IF
n is injective, i.e. each isomorphism class [M ] is

completely determined by IF
n([M ]).



Theorem (Barcode)

In dimension one (n = 1), the persistence barcode defines a discrete

and complete invariant.

• Are there Barcode-like invariants in dimension n � 2?



Definition (Rank invariant)

Let

Dn
:= {(u, v) 2 Nn ⇥ Nn | u � v} ✓ Nn ⇥ Nn

be the subset above the diagonal. The assignment

⇢
F
n : {f.g.n-gradedF[x]-modules} /⇠= �! HomSets(Dn

,N2
)

which maps an isomorphism class [M ] to the function

Dn �! N2
, (u, v) 7�!

�
rank(xv�u

: Mu ! Mv), dimF(Mu)
�

defines a discrete invariant ⇢
F
n, the so-called rank invariant.



Theorem

In dimension one, the rank invariant ⇢
F
1 is equivalent to the barcode and

hence complete.

Conclusion

The rank invariant ⇢
F
n is a discrete generalization of the persistence

barcode to dimension n � 2.

• Is the rank invariant ⇢
F
n complete for n � 2?

• Unfortunenately, the answer is no.

Goal

Show that if n � 2 there exists no discrete and complete invariant for

{f.g.n-gradedF[x]-modules} /⇠=
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Free Hulls and Graded Free Resolutions



Definition (n-dimensional multiset)

An n-dimensional multiset is a pair ⇠ = (V, µ) where V ✓ Nn
and

µ : V ! N�1 is a function such that

⇠ = (V, µ) =

[

v2V

{(v, 1), . . . , (v, µ(v))}.

µ is also called the mulitplicity function of ⇠.



Proposition

Every f.g. n-graded free F[x]-module is isomorphic to

FF
n(⇠) :=

M

v2V

F[x](v)µ(v)

where ⇠ = (V, µ) is a finite n-dimensional multiset.



Example



Example



• Recall that by the structure theorem every f.g. one-graded

F[x]-module M admits a graded isomorphism

M ⇠=
mM

i=1

diM

j=1

F[x]/hxti,j iF[x](vi,j)�
rM

i=m+1

diM

j=1

F[x](vi,j).

• Thus, we obtain a commutative diagram:

mL
i=1

diL
j=1

hxti,j iF[x]
rL

i=1

diL
j=1

F[x](vi,j)

M

FF
1 (⇠1) FF

1 (⇠0)

⇠

• ⇠0 corresponds to the start points of the barcode of M and ⇠1 to the

endpoints.



• What about n � 2?

• We have a graded exact sequence

FF
n(⇠1) FF

n(⇠0) M

• Problem: in general, the left arrow is not injective. The reason is that for

n � 2, submodules of free F[x]-modules are generally not free again.



• Nonetheless, M admits a minimal graded free resolution

· · · FF
n(⇠2) FF

n(⇠1) FF
n(⇠0) M

• Here minimal means that each arrow maps a homogeneous basis of

FF
n(⇠i) to a minimal system of homogeneous generators of its image.

• The multisets ⇠i only depend on the isomorphism class of M . The ⇠i

are also called the i-th type of M and we write

Typei(M) = ⇠i.

• FF
n(⇠0) is also called the free hull of M . It keeps track of the degree

and number of a minimal system of homogeneous generators of M .



Goal

Show that for n � 2 there exists no discrete and complete invariant for

{f.g.n-gradedF[x]-modules} /⇠=



Definition

Let

I
F
n(⇠0, ⇠1) ✓ {f.g.n-gradedF[x]-modules} /⇠=

be the subset of all [M ] such that Type0(M) = ⇠0 and Type1(M) = ⇠1.

Goal (refined)

Show that for n � 2, there exist mulitsets ⇠0 and ⇠1 such that I
F
n(⇠0, ⇠1) is

uncountable if F is uncountable.

Idea

Parameterize I
F
n(⇠0, ⇠1) as a subset of a product of Grassmannians

together with a group action of Aut(FF
n(⇠0)).



Parameterization



• As a consequence of the n-graded version of Nakayama’s Lemma
(see E. Miller, B. Sturmfels, Combinatorial Commutative Algebra, 2005),

we have the following:

Proposition

Let M be a finitely generated n-graded F[x]-module. Then

p : FF
n(⇠0) �⇣ M

is a free hull of M (i.e. p maps a homogeneous basis to a minimal set of

homogeneous generators of M ), if and only if

idF ⌦F[x] p : F⌦F[x] FF
n(⇠0) �! F⌦F[x] M

is an isomorphism of n-graded F-vector spaces. Here F[x] acts on F by

setting the variable action identical to zero.



Theorem (Parameterization, Part 1)

Let

S
F
n(⇠0, ⇠1) :=

8
><

>:

L ✓ FF
n(⇠0) graded submodule :

1. Type0(L) = ⇠1

2. im
�
F⌦F[x] L ! F⌦F[x] FF

n(⇠0)
�
= 0

9
>=

>;
.

We have a bijection of sets

S
F
n(⇠0, ⇠1)/Aut(FF

n(⇠0)) Aut(FF
n(⇠0)) · L

I
F
n(⇠0, ⇠1)

⇥
FF

n(⇠0)/L
⇤

⇠
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S
F
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8
><
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n(⇠0) graded submodule :

1. Type0(L) = ⇠1

2. im
�
F⌦F[x] L ! F⌦F[x] FF

n(⇠0)
�
= 0

9
>=

>;
.

We have a bijection of sets

S
F
n(⇠0, ⇠1)/Aut(FF

n(⇠0)) Aut(FF
n(⇠0)) · L

I
F
n(⇠0, ⇠1)

⇥
FF

n(⇠0)/L
⇤

⇠

• Condition 2, which we also call tensor-condition, ensures that FF
n(⇠0)

is a free hull of FF
n(⇠0)/L or equivalently that Type0(FF

n(⇠0)/L) = ⇠0.
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Theorem (Parameterization, Part 1)

Let

S
F
n(⇠0, ⇠1) :=

8
><

>:
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2. im
�
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�
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9
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Proposition (Automorphism group)

Recall that ⇠0 = (V0, µ0). Let

Aut
F
�(⇠0) :=

8
><

>:

f 2 Aut
�L

v2V0
Fµ0(v)

�
:

f
�
Fµ0(v)

�
✓

L
w�v Fµ0(w) for all v 2 V0

9
>=

>;

Then

Aut(FF
n(⇠0))

⇠= Aut
F
�(⇠0)

Example

Let

⇠0 = {(v, 1), . . . , (v, µ0(v))}.

Then

Aut
F
�(⇠0) = GLµ0(v)(F).



Example

The formula

f

⇣
Fµ0(v)

⌘
✓

M

w�v

Fµ0(w)

can be interpreted as a vanishing condition on the entries of the

transformation matrix of f 2 Aut
F
�(⇠0):

⇠0 = {(1, 1), (1, 2), (2, 1), (3, 1)}

0

BBB@

a21 a22 a23 a24

a21 a22 a23 a24

0 0 a33 a34

0 0 0 a44

1

CCCA

0

BBB@

1  1 1  1 1  2 1  3

1  1 1  1 1  2 1  3

2 ⇥ 1 2 ⇥ 1 2  2 2  3

3 ⇥ 1 3 ⇥ 1 3 ⇥ 2 3  3

1

CCCA



Example

The formula

f

⇣
Fµ0(v)

⌘
✓

M

w�v

Fµ0(w)

can be interpreted as a vanishing condition on the entries of the

transformation matrix of f 2 Aut
F
�(⇠0):

⇠0 = {((0, 3), 1), ((1, 3), 1), ((0, 4), 1)}

0

B@
a11 a12 a13

0 a22 0

0 0 a33

1

CA

0

B@
(0, 3) � (0, 3) (0, 3) � (1, 3) (0, 3) � (0, 4)

(1, 3) � (0, 3) (1, 3) � (1, 3) (1, 3) � (0, 4)

(0, 4) � (0, 3) (0, 4) � (1, 3) (0, 4) � (0, 4)

1

CA



Theorem (Parameterization, Part 1)

Let

S
F
n(⇠0, ⇠1) :=

8
><

>:

L ✓ FF
n(⇠0) graded submodule :

1. Type0(L) = ⇠1

2. im
�
F⌦F[x] L ! F⌦F[x] FF

n(⇠0)
�
= 0

9
>=

>;
.

We have a bijection of sets

S
F
n(⇠0, ⇠1)/Aut(FF

n(⇠0)) Aut(FF
n(⇠0)) · L

I
F
n(⇠0, ⇠1)

⇥
FF

n(⇠0)/L
⇤

⇠



• Recall that ⇠1 = (V1, µ1). Let L 2 S
F
n(⇠0, ⇠1). Now map L to the familiy

of F-vector spaces

(Lw)w2V1 2
Y

w2V1

GrassF(dimF(FF
n(⇠1)w), |⇠0|)

• (Lw)w2V1 defines a so-called relation family over (⇠0, ⇠1).



Definition (Relation family)

Recall that ⇠0 = (V0, µ0) and ⇠1 = (V1, µ1). A relation family is a family

(Lw)w2V1 2
Y

w2V1

GrassF(dimF(FF
n(⇠1)w), |⇠0|)

such that for all w 2 V1:

• ⇡v(Lw) = 0 for all v 2 V0 with v ⌃ w where ⇡v : F|⇠0| ! Fµ0(v)

denotes the canonical projection (note that F|⇠0| =
L

v2V0
Fµ0(v)).

• if v 2 V1 with v � w, then Lv ✓ Lw.

• dimF
�
Lw/

P
v�w Lv

�
= µ1(w).

Y
F
n (⇠0, ⇠1) denotes the set of all relations families over (⇠0, ⇠1).
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Example



Theorem (Parameterization, Part 2)

We have a bijection of sets

S
F
n(⇠0, ⇠1)

⇠����! Y
F
n (⇠0, ⇠1)

where L mapped to the familiy of F-vector spaces (Lw)w2V1 . The inverse

is given by mapping (Lw)w2V1 to h
S

w2V1
LwiF[x]. This leads to a

bijection of sets on the orbit spaces

S
F
n(⇠0, ⇠1)/Aut(FF

n(⇠0))
⇠����! Y

F
n (⇠0, ⇠1)/Aut

F
�(⇠0).

Thus,

I
F
n(⇠0, ⇠1)

⇠= Y
F
n (⇠0, ⇠1)/Aut

F
�(⇠0).
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⇠0 = {((0, 0), 1), ((0, 0), 2)}

⇠1 = {((3, 0), 1), ((2, 1), 1), ((1, 2), 1), ((0, 3), 1)}

• We have

Y
F
2 (⇠0, ⇠1)/Aut

F
�(⇠0) = GrassF(1, 2)

4
/GL2(F) = P1(F)4/GL2(F)

which is uncountable if F is uncountable. Thus,

{f.g.n-gradedF[x]-modules} /⇠= ◆ I
F
2 (⇠0, ⇠1)

⇠= P1(F)4/GL2(F)

is uncountable if F is uncountable which shows that there is no discrete
and complete invariant.

• For n > 2, append zeros to the entries of ⇠0 and ⇠1.

Example (Non-existence of a discrete and complete invariant)



Thanks for your attention!


