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Outline
e Motivation for multidimensional persistence.

e Elaboration of the algebraic objects that naturally arise from the study of
multifiltrations: multigraded modules over a polynomial ring in multiple
variables.

e Parameterization of these objects as a subset of a product of
grassmannians together with a group action.

e By using this parameterization, show that there are no barcode-like
invariants in dimension greater than one.

This talk is based on and inspired by G. Carlsson, A. Zomorodian, The
Theory of Multidimensional Persistence, 2009.
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Motivation

e Metric space = RNA-Sequences + Hamming-distance

 Goal: compute the number of reticulate events (one-dim.
cycles) in which a mutation participates (detect bars of
. length one in barcode born in first step).

e topological Recurrence Index (tRlI) for virus-mutations.

e A growing tRI of a particular mutation together with a

I:I growing prevalence of this mutation and biological evidence
could serve as a heuristic for a possible evolutionary
fitness advantage of this mutation.

e \irus data-sets grow over time.

M. Bleher, M. Carriere, L. Hahn, A. Ott, J. Patiho-Galindo and R. Rabadan,
Topology identifies emerging adaptive mutations in SARS-CoV-2, 2021
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Motivation

e Study of one-dimensional
subfiltrations along the
time and scaling parameter
to obtain persistence
information.

e This allows us to apply
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Multifiltered Simplicial Complexes
and
Multigraded Modules



Definition (Partial order on N")

For (u1,...,un), (v1,...,v,) € N?, we write

(ul,...,un) = (Ul,...,?}n)

if u; <w;foralli e {1,...,n}.



Definition (n-filtered simplicial complex)
Let X be afinite simplicial complex and n > 1. Then X is called n-filtered

if there exists a familily of simplicial complexes (X ).en~ such that

X = U X, and X, C X,
uEN™

for all u,v € N™ with u < v.



Definition (Polynomial ring)

For a field IF,
Flx] :=Flxq,...,x,]

denotes the polynomial ring in n variables. For v = (v, ...

we write

v ._ U1
€T ._ajl :En

7vn) 6 an



Definition (n-graded Module)

An F|x|-module M is called n-graded if M admits a direct sum
decomposition into IF-vector spaces

M_

p
\l/
vE
such that for all v, w € N,

x’ - Mw C Mv—l—w-



Definition (Homogeneous element)

Let M be an n-graded F|x]-module and v € N™. An element

y € M, \ {0}

is called homogenous of degree v.



Definition (Graded homomorphism)

Let N, M be n-graded F|x]-modules. An FF|x]-module homomorphism
f:M—N
Is called graded if for all v € N,

f(My) € N,.



Example

[Flx] is n-graded over itself where for u € N”,

Forv € N", IF|x|(v) is defined by shifting the grading of IF|x] via

Pl o | 7 4N

0, else



Definition (Associated n-graded module)

If X is a finite n-filtered simplicial complex, then

M(X) = €D Hi(X,,F)
ueN™

defines a f.g. n-graded FF|x|-module where the variable action is given via
the induced maps on homology

z'" . Hy(X,,F) — Hy(X,,F)

for u < v.



Theorem (Realization)

Assume that IF = IF,, where p € N is a prime number or that I = Q. Let M
be a f.g. n-graded IF|x|-module. Then for every ¢ > 1, there exists an
n-filtered finite simplicial complex X such that

My(X) 2 M.

For a proof see H. A. Harrington, N. Otter, H. Schenck, U. Tillmann,
Stratifying multiparameter persistent homology, arXiv 2019.



Conclusion

The study of finite n-filtered simplicial complexes translates into the study
of .g. n-graded F|x]-modules.



Invariants



Definition (Invariant)

An invariant is a function
7; : {f.g. n-graded F[x]-modules} /o~ — Q*
where Q° is a set. Z* is called
e discrete if Q = Q! for all fields F, T and if Z" has countable image.

e complete if Z© is injective, i.e. each isomorphism class [M] is
completely determined by Z" ([M]).



Theorem (Barcode)

In dimension one (n = 1), the persistence barcode defines a discrete
and complete invariant.

e Are there Barcode-like invariants in dimension n > 27



Definition (Rank invariant)

Let
D" :={(u,v) e N* x N" |y v} CN" x N"

be the subset above the diagonal. The assignment
pr : {f.g. n-graded F[x]-modules} /~ — Homges (D™, N?)
which maps an isomorphism class [ M| to the function
D" — N°,  (u,v) —> (rank(z"~" : M, — M,),dimg(M,))

defines a discrete invariant ot , the so-called rank invariant.



Theorem
In dimension one, the rank invariant p% is equivalent to the barcode and

hence complete.

Conclusion
The rank invariant p’, is a discrete generalization of the persistence
barcode to dimension n > 2.
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Theorem

In dimension one, the rank invariant p% is equivalent to the barcode and
hence complete.

Conclusion

The rank invariant p’, is a discrete generalization of the persistence
barcode to dimension n > 2.

e Is the rank invariant p. complete for n > 2?

e Unfortunenately, the answer is no.

Goal

Show that if n > 2 there exists no discrete and complete invariant for

{f.g. n-graded F|x]-modules} /~



Free Hulls and Graded Free Resolutions



Definition (n-dimensional multiset)

An n-dimensional multiset is a pair ¢ = (V, ) where V' C N™ and
w 'V — N>q is a function such that

e= (Vo) = (L@, 1), (0, (o)}

veV

1. 1s also called the mulitplicity function of £.



Proposition

Every f.g. n-graded free F|a|-module is isomorphic to

Fn(€) = €D Fla](v)*)

veV

where £ = (V, u) is a finite n-dimensional multiset.



Example

§=1{(1,1),(2,1)}
Fi(§) = Flz](1) ® Flz](2)




Example

>

£ =1((0,2),1),((0,2),2),((2,0),1)}
]:IQF(’S) — ]F[xla 332](0, 2)2 D IEP[xla 332](2, 0)




e Recall that by the structure theorem every f.g. one-graded
[Flz]-module M admits a graded isomorphism

v = D@ F /e g @D D)

1=1 7=1 1=m—+1 5=1

e Thus, we obtain a commutative diagram:

M

[ [(vi5)
Ty
1 /

Fi (&) « > F1 (&)

e £ corresponds to the start points of the barcode of M and &; to the
endpoints.



e What about n > 27?
e We have a graded exact sequence
Fnl&l) — Fp(§o) —» M

e Problem: in general, the left arrow is not injective. The reason is that for
n > 2, submodules of free F|x]-modules are generally not free again.



Nonetheless, M admits a minimal graded free resolution
- Fa() —— Fu&) —— Fp(éo) —» M

Here minimal means that each arrow maps a homogeneous basis of
FE(&;) to a minimal system of homogeneous generators of its image.

The multisets &; only depend on the isomorphism class of M. The &;
are also called the z-th type of M and we write

Type,(M) = &i.

Fr(&) is also called the free hull of M. It keeps track of the degree
and number of a minimal system of homogeneous generators of M.



Goal

Show that for n > 2 there exists no discrete and complete invariant for

{f.g. n-graded F|x|-modules} /~



Definition

Let
I (&), &1) C {f.g. n-graded F[x]-modules} /=

be the subset of all [M] such that Type, (M) = & and Type,; (M) = &;.

Goal (refined)

Show that for n > 2, there exist mulitsets &, and &; such that IF (&, &) is
uncountable if IF is uncountable.

Idea

Parameterize 1" (&), &) as a subset of a product of Grassmannians
together with a group action of Aut(F~ (&)).



Parameterization



e As a consequence of the n-graded version of Nakayama’s Lemma
(see E. Miller, B. Sturmfels, Combinatorial Commutative Algebra, 2005),
we have the following:

Proposition

Let M be a finitely generated n-graded F|x]-module. Then
D: ]:E@o) — M

Is a free hull of M (i.e. p maps a homogeneous basis to a minimal set of
homogeneous generators of M), if and only if

idp Qp(az) P : F Qpa) Fpy (§0) — F Qppz) M

is an isomorphism of n-graded [F-vector spaces. Here F|x] acts on [F by
setting the variable action identical to zero.



Theorem (Parameterization, Part 1)
Let
L C Fi (&) graded submodule :

Sn(60:&1) i=q 1. Typeg(L) =&
2. 1Im (F OF[a] L —F SF[a] .7'—,,15(50)) =0

We have a bijection of sets

S (&0, 1)/ Aut(F,; (&) AUt(]:E_(fo)) - L

%

~ -

17 (&0, &) Fr(&0)/L]



Theorem (Parameterization, Part 1)
Let
L C Fi (&) graded submodule :

Sn(€0,61) == ¢ 1. Typey(L) =&
im (F RF[x] L = F Qg ]-“E(SO)) =0

We have a bijection of sets

S (&0, &1)/Aut(F, (€0)) AUt(]'—E_(ﬁo)) - L

2

/

17 (&0, &1) Fr(&o)/L]

e Condition 2, which we also call tensor-condition, ensures that F~ (&)
is a free hull of F. (&9) /L or equivalently that Typey (Fr (&) /L) = &o.
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Proposition (Automorphism group)

Recall that £y = (Vp, po). Let

J € Aut (D,ey, Frolv)) -

Auts (&) =

f (F,uo(v)) C @wj’v IF'U“O(w) for all v € VO

Then
Aut(F, (&) = Auts (&)

Example
Let

o ={(v,1),..., (v, po(v))}.
Then

Aut]i (50) — GLMO (v) (IF)



Example

The formula

f (]Fuo(’v)) C 69 Freo(w)

w=v

can be interpreted as a vanishing condition on the entries of the
transformation matrix of f € Aut’ (&):

/a21
a1

\

§o = {(17 1)7 (17 2)7 (27 1)7 (37 1)}

ao2o2 423
ao2o 423
a33

1 <1

34 2

1 <1

(1§1 1<1 1<2

< 2

< 3)
1 <3
2 < 3
3<3)




Example

The formula

f (FMO(‘U)) C 69 Fro(w)

w=v

can be interpreted as a vanishing condition on the entries of the
transformation matrix of f € Aut’ (&):

§o = {((Oa 3)7 1)7 ((17 3)7 1)7 ((Ov 4)7 1)}

/a11 ai2

a2

alS\

a33)




Theorem (Parameterization, Part 1)

Let

L C FE (&) graded submodule :

Sn(60,61) = 1. Typeg(L) =&
2. 1m (F OF|[a] L — SF[a] fg(fo)) =0

We have a bijection of sets

S (&0, &1)/Aut(F, (£0)) AUt(FE_(fo)) - L

¢

/

I (€0, &1) P (0)/L]




e Recallthat & = (Vi, u1). Let L € ST (&, £1). Now map L to the familiy
of [F-vector spaces

(Lw)wevs € | Grassp(dims(F} (¢1)w), [€ol)

weVq

e (L, )wcv, defines a so-called relation family over (&, &1).



Definition (Relation family)

Recall that &y = (Vy, o) and &1 = (Vi, p1). A relation family is a family

(Lw)wev, € [] Grasse(dimp(F} (£1)w), [o)

weVy

such that for all w € Vi:

e m,(L,)=0forallv e Vywith v £ w where m,, : Fl¢ol — Fro(v)

denotes the canonical projection (note that Fitol = @ Fro(®)).

o fveVywthy <w,then L, C L.

o dimp (Lw/Zv-<w L,U) = 1 (w).

Y¥ (&, &1) denotes the set of all relations families over (&, &1).
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Theorem (Parameterization, Part 2)

We have a bijection of sets

Y

SE(SO)&I) ? YE(§07§1)

where L mapped to the familiy of F-vector spaces (L., )wcy,. The inverse
is given by mapping (L )wev; 10 (U, e, Lw)riz)- This leads to a
bijection of sets on the orbit spaces

Y

> Y, (€0, €1)/Aut (&)

Sy (€0, &1)/Aut(F, (o))

Thus,
I (&0.61) 2 Y, (&0, &) /AutS (&)



Example (Non-existence of a discrete and complete invariant)
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A §o = {((Oa 0)7 1)? ((Oa 0)’ 2)}
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Example (Non-existence of a discrete and complete invariant)

§O — {((070)7 1)7 ((070)72)}
51 — {((370)7 1)7 ((27 1)7 1)7 ((172)7 1)7 ((073)7 1)}

e We have
Yy (€0, €1)/AutX(€o) = Grassp(1,2)*/GLy(F) = Py (F)*/GLy(F)
which is uncountable if ¥ is uncountable. Thus,
{f.g. n-graded F|z]-modules} /=~ D I (&, &1) =2 Py (F)* /GLo(TF)

IS uncountable if IF is uncountable which shows that there is no discrete
and complete invariant.

e Forn > 2, append zeros to the entries of &, and &;.



Thanks for your attention!



