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G. Wiesend [W1] established a class field theory for arithmetic schemes,
solely based on data attached to closed points and curves on the given scheme.
Our goal is to deduce from his result the relation between the integral singu-
lar homology in degree zero and the abelianized tame fundamental group of a
regular, connected scheme of finite type over Spec(Z).

1 Singular homology of schemes

In [S1] we extended the definition of Suslin’s singular homology groups of vari-
eties, see [SV], to schemes of finite type over a regular, connected and excellent
base scheme S. We start by recalling this definition in the case S = Spec(Z).
See [S1] for more details and motivation.

Let Sch(Z) denote the category of separated schemes of finite type over
Spec(Z). Let ∆• be the standard cosimplicial object in Sch(Z), i.e., ∆n is given
as a subscheme in An+1

Z = Spec(Z[T0, . . . , Tn]) by the equation ΣTi = 1, and
the simplicial structure is given by the usual face and degeneracy morphisms.
For a scheme X ∈ Sch(Z) and an integer n ≥ 0 we put

Cn(X) = free abelian group on closed integral subschemes Z ⊂ X ×∆n

such that the restriction of the projection X ×∆n → ∆n to Z
induces a finite morphism Z → T ⊂ ∆n onto a closed integral
subscheme T of codimension 1 in ∆n which intersects all faces
∆m ⊂ ∆n properly.

If Z is as above, then for each face map δi : ∆n−1 → ∆n, i = 0, . . . , n, each
component of (δi)−1(Z) ⊂ X × ∆n−1 is finite and surjective over an inte-
gral subscheme of codimension 1 in ∆n−1 which intersects all faces properly.
Therefore the cycle theoretic inverse image (δi)∗(Z) is well-defined and lies in
Cn−1(X). This yields face operators ∂i = (δi)∗ : Cn(X) → Cn−1(X). The
homology groups of the complex

(
C•(X), d

)
, d =

∑
(−1)i∂i

are called the (integral) singular homology groups of X and will be denoted
by Hsing

∗ (X,Z). Singular homology is covariantly functorial in the scheme X.
If X ∈ Sch(Z) is a variety over a finite field, then the singular homology groups
defined above coincide with those defined by Suslin [SV].
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By definition, C0(X) is the group Z0(X) of zero-cycles on X, i.e., the free
abelian group on the set of closed points of X. Furthermore, Hsing

0 (X,Z) is
the quotient of C0(X) by the subgroup d1(C1(X)). This imposes an equiva-
lence relation on the group of zero-cycles which is in general finer than rational
equivalence.

We call integral schemes of dimension one in Sch(Z) curves. Let C ∈ Sch(Z)
be a curve. Then to each rational function f 6= 0 on C we can attach the
zero-cycle div(f) ∈ Z0(C) (see [Fu], Ch.I,1.2). Let C̃ be the normalization of
C in its function field and let P (C̃) be the regular compactification of C̃, i.e.,
P (C̃) is the uniquely determined regular curve which is proper over Spec(Z)
and contains C̃ as an open subscheme. With this terminology, elements in
the function field k(C) of a curve C are in 1–1 correspondence to morphisms
P (C̃) → P1

Z which are not ≡∞. The following result of [S1] explicitly describes
the singular homology groups in degree zero.

Theorem 1.1. The group Hsing
0 (X,Z) is the quotient of Z0(X) by the subgroup

generated by elements of the form div(f), where

• C ⊂ X is a closed curve and
• f is a rational function on C which, considered as a morphism

P (C̃) → P1
Z, is ≡ 1 on P (C̃)r C̃.

Proof. See [S1], Theorem 5.1.

Corollary 1.2. All relations on C0(X) = Z0(X) defining Hsing
0 (X,Z) come

from curves. More precisely, the subgroup d1(C1(X)) ⊂ C0(X) is generated by
elements of the form f∗(x), where C ∈ Sch(Z) is a regular curve, f : C → X is
a finite morphism and x ∈ d1(C1(C)).

2 The reciprocity homomorphism

Assume that X ∈ Sch(Z) is regular and connected. Then either X is a smooth
variety over a finite field or the structural morphism X → Spec(Z) is flat.
We will refer to these cases as the geometric and the arithmetic one, respec-
tively. Besides the abelianized étale fundamental group πet

1 (X)ab , we consider
the group πt

1(X)ab , which classifies finite, abelian, étale coverings of X with
at most tame ramification along the boundary of a compactification, see [S2],
[W2]. We also consider the modified group π̃t

1(X)ab , the quotient of πt
1(X)ab

which classifies those coverings in which, in addition, every R-valued point splits
completely (this gives nothing new in the geometric case, as well in the arith-
metic case if X(R) = ∅). For each closed point x ∈ X, the field k(x) is finite.
Therefore the étale fundamental group πet

1 ({x}) is isomorphic to Ẑ with the
Frobenius automorphism Frob as a canonical generator. We denote by Frobx

the image of Frob under the natural homomorphisms πet
1 ({x}) → πet

1 (X)ab , and
we consider the homomorphism

rX : Z0(X) −→ πet
1 (X)ab , x 7−→ Frobx.

By the density theorem of Čebotarev-Lang [La], the image of rX is a dense
subgroup of the profinite group πet

1 (X)ab .
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Proposition 2.1. Let X ∈ Sch(Z) be regular and connected. Then the compos-
ite map

Z0(X) rX−→ πet
1 (X)ab

pX−→ π̃t
1(X)ab,

where pX : πet
1 (X)ab → π̃t

1(X)ab denotes the canonical projection, factors through
Hsing

0 (X,Z), thus defining a reciprocity homomorphism

recX : Hsing
0 (X,Z) −→ π̃t

1(X)ab.

Proof. The case dim X = 0 (i.e., X is the spectrum of a finite field) is trivial.
Let us consider the case dim X = 1 first. Then the function field K = k(X)
is a global field. By Theorem 1.1, we obtain a natural isomorphism between
Hsing

0 (X,Z) and the ray class group Cm(K), where m is the (square-free) mod-
ulus obtained by multiplying all places of K with center outside X (including
the archimedean ones). The statement of the proposition follows easily from
classical (one-dimensional) global class field theory.

Now we come to the general case. By Corollary 1.2, it suffices to show that
for any finite morphism f : C → X from a regular curve C to X and for any
x ∈ d1(C1(C)), we have pX ◦rX(f∗(x)) = 0. This follows from the corresponding
result in dimension 1 and from the commutative diagram

C1(C) d1−→ C0(C) rC−→ πet
1 (C)ab

pC−→ π̃t
1(C)abyf∗

yf∗

yf∗

yf∗

C1(X) d1−→ C0(X) rX−→ πet
1 (X)ab

pX−→ π̃t
1(X)ab .

3 Tame class field theory

Now we use the power of Wiesend’s higher dimensional class field theory to es-
tablish the properties of the tame reciprocity morphism recX of the last section.

We start with the geometric case. Let X be a smooth, connected variety over a
finite field k. The structural morphism X → Spec(k) induces degree maps:

Hsing
0 (X,Z) −→ Hsing

0 (Spec(k),Z) = Z
πt

1(X)ab −→ πt
1(Spec(k))ab = Gal(k̄|k) ∼= Ẑ.

The next theorem was proved in 1999 by M. Spieß and the author, see [SS]. We
used deep results on motivic cohomology to deduce the assertion for surfaces
from the unramified class field theory of Bloch-Kato-Saito [KS]. Then we used a
version of Colliot-Thélène’s hypersurface section argument to extend the result
to arbitrary dimensions. For technical reasons, we also had to assume that
X is quasi-projective and admits a smooth, projective compactification. Using
Wiesend’s result, the proof becomes much simpler now.

Theorem 3.1 (Schmidt/Spieß). Let X be a smooth, connected variety over a
finite field k. Then the reciprocity homomorphism

recX : Hsing
0 (X,Z) −→ πt

1(X)ab
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is injective. The image of recX consists of all elements whose degree in Gal(k̄|k)
is an integral power of the Frobenius automorphism. In particular, the coker-
nel coker(recX) ∼= Ẑ/Z is uniquely divisible. The induced map on the degree-
zero parts rec0

X : Hsing
0 (X,Z)0 ∼→ πt

1(X)ab, 0 is an isomorphism of finite abelian
groups.

Proof. Let Ct
X be the tame idèle class group of [W1], Definition 4, i.e.

Ct
X = coker(

⊕

C⊂X

k(C)× → Z0(X)⊕
⊕

C⊂X

⊕

v∈C∞

k(C)×v /U1
k(C)v

),

where C∞ = P (C̃) r C̃ is the set of places of the global field k(C) with center
outside C and k(C)v is the completion of k(C) with respect to v. Elementary
approximation on curves shows that the obvious map

φ : Z0(X) −→ Ct
X

is surjective. The kernel of φ is the subgroup in Z0(X) generated by elements
of the form div(f) where C ⊂ X is a closed curve and f is an invertible rational
function on C which is in U1

k(C)v
for all v ∈ C∞. By Theorem 1.1, we obtain

ker(φ) = d1(C1(X)). Therefore φ induces an isomorphism

Hsing
0 (X,Z) ∼−→ Ct

X .

By construction, this isomorphism is compatible with the respective reciprocity
homomorphisms to πt

1(X)ab . Therefore the statement of the theorem follows
from [W1], Theorem 1(b), which establishes the respective result for the reci-
procity homomorphism Ct

X −→ πt
1(X)ab .

Next we consider the arithmetic case. We have shown in [S2] that π̃t
1(X)ab is

finite in this case. We conjectured that recX is an isomorphism of finite abelian
groups and we proved in [S3] a version of this conjecture with Hsing

0 (X,Z)
replaced by CH0(X̄, X), the relative Chow group of zero-cycles with respect to
a regular compactification X̄ of X. See [S4] for a discussion on the relation
between this result and the (at that time) conjecture on H0. Having Wiesend’s
class field theory at hand, the proof of the following theorem is quite simple.

Theorem 3.2. Let X be a regular, connected scheme, flat and of finite type
over Spec(Z). Then the reciprocity homomorphism

recX : Hsing
0 (X,Z) −→ π̃t

1(X)ab

is an isomorphism of finite abelian groups.

Proof. We make the notational convention U1(K) = K× for the archimedean
local fields K = R,C. We consider the quotient Ct

X of CX obtained by cutting
out the 1-unit groups of all places not on X. More precisely,

Ct
X := coker(

⊕

C⊂X

k(C)× → Z0(X)⊕
⊕

C⊂X

⊕

v∈C∞

k(C)×v /U1
k(C)v

).

Ct
X is a discrete quotient of CX . By [W1], Theorem 1, its subgroups classify those

finite, étale, abelian coverings of X such that the base change to each regular
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curve C defines a finite, étale, abelian covering which is at most tamely ramified
along the boundary of a regular compactification of C and in which every R-
valued point splits completely. Therefore (cf. [W2], Theorem 2) the reciprocity
homomorphism ρX : CX → πet

1 (X)ab of [W1] induces an isomorphism of finite
abelian groups Ct

X
∼→ π̃t

1(X)ab . Now we proceed as in the proof of Theorem 3.1
and consider the obvious map

φ : Z0(X) −→ Ct
X .

The same argument as in the proof of Theorem 3.1 shows that φ induces an iso-
morphism Hsing

0 (X,Z) ∼→ Ct
X which is compatible with the respective reciprocity

homomorphisms to π̃t
1(X)ab . This completes the proof of the theorem.

Finally, assume that X is regular, flat and proper over Spec(Z), and let
D ⊂ X be a divisor. Then (cf. [S3], [S4]) the relative Chow group of zero
cycles CH0(X, D) is a quotient of Hsing

0 (X r D,Z) in a natural way. In [S3]
we constructed, under a mild technical assumption, a reciprocity isomorphism
rec′X : CH0(X, D) ∼→ π̃t

1(X r D)ab . As rec is the composite of rec′ with the
natural projection, we obtain the following corollary.

Corollary 3.3. Let X be a regular, connected scheme, flat and proper over
Spec(Z), such that its generic fibre X ⊗Z Q is projective over Q. Let D be a
divisor on X whose vertical irreducible components are normal schemes. Then
the natural homomorphism

Hsing
0 (X rD,Z) −→ CH0(X,D)

is an isomorphism of finite abelian groups.
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