On the relation between 2 and ∞ in Galois cohomology of number fields

by Alexander Schmidt
at Heidelberg

1 Introduction

Number theorist's nightmare, the prime number 2, frequently causes technical problems and requires additional efforts. In Galois cohomology the problems with $p=2$ are essentially due to the fact that the decomposition groups of the real places are 2 -groups and so the case of a totally imaginary number field is comparatively easier to deal with.

A classical object of study in number theory is Galois groups with restricted ramification. For a number field k, a set S of primes of k and a prime number p, one is interested in the Galois group $G_{S}(p)=G\left(k_{S}(p) \mid k\right)$ of the maximal p-extension $k_{S}(p)$ of k which is unramified outside S. If S is empty, then $G_{S}(p)$ is the Galois group of the so-called p-class field tower of k and, besides the fact that it can be infinite (Golod-Šafarevič), not much is known about this group. The situation is easier in the case that S contains the set S_{p} of primes dividing p, where the cohomological dimension of $G_{S}(p)$ is known to be less than or equal to two (cf. [9], (8.3.17), (10.4.9)). However, there is an exception: if $p=2$ and k has at least one real place. If, in this exceptional case, S contains all real places, then these places become complex in $k_{S}(2)$ and therefore $G_{S}(2)$, containing involutions, has infinite cohomological dimension. Furthermore, the virtual cohomological dimension $\operatorname{vcd} G_{S}(2)$ is less than or equal to two in this case, i.e. $G_{S}(2)$ has an open subgroup U with $\operatorname{cd} U \leq 2$. The case when not all real places are in S has been open so far and is the subject of this paper.

Theorem 1 Let k be a number field and let S be a set of primes of k which contains all primes dividing 2. If no real prime is in S, then $\operatorname{cd} G_{S}(2) \leq 2$. If S contains real primes, then they become complex in $k_{S}(2)$ and $\operatorname{cd} G_{S}(2)=\infty$, $\operatorname{vcd} G_{S}(2) \leq 2$.

If S is finite, then $H^{i}\left(G_{S}(2)\right):=H^{i}\left(G_{S}(2), \mathbb{Z} / 2 \mathbb{Z}\right)$ is finite for all i and

$$
\chi_{2}\left(G_{S}(2)\right)=-r_{2}
$$

where $\chi_{2}\left(G_{S}(2)\right)=\sum_{i=0}^{2}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{2}} H^{i}\left(G_{S}(2)\right)$ is the second partial Euler characteristic and r_{2} is the number of complex places of k.

The key for the proof of theorem 1 is the following theorem 2 in the case $p=2$ and $T=S \cup S_{\mathbb{R}}$, where $S_{\mathbb{R}}$ is the set of real places of k. Theorem 2 is the number theoretical analogue of Riemann's existence theorem and was previously known under the assumption that p is odd or that S contains $S_{\mathbb{R}}$ (see [9], (10.5.1)).

Theorem 2 Let k be a number field, p a prime number and $T \supset S \supseteq S_{p}$ sets of primes of k. Then the canonical homomorphism

$$
\stackrel{*}{\mathfrak{p} \in T \backslash S\left(k_{S}(p)\right)} T\left(k_{\mathfrak{p}}(p) \mid k_{\mathfrak{p}}\right) \longrightarrow G\left(k_{T}(p) \mid k_{S}(p)\right)
$$

is an isomorphism. Here $T\left(k_{\mathfrak{p}}(p) \mid k_{\mathfrak{p}}\right) \subset G\left(k_{\mathfrak{p}}(p) \mid k_{\mathfrak{p}}\right)$ is the inertia group and $*$ denotes the free pro-p-product.

Since the cyclotomic \mathbb{Z}_{2}-extension $k_{\infty}(2)$ of k is contained in $k_{S_{2}}(2)$, the group $G_{S_{2}}(2)$ is infinite, in particular, it is nontrivial. Hence, for $S \supseteq S_{2}$ and $S \cap S_{\mathbb{R}}=\varnothing$, the group $G_{S}(2)$ is of cohomological dimension 1 or 2 . The next theorem gives a criterion for which case occurs. In condition (3) below, $\mathrm{Cl}_{S}^{0}(k)(2)$ denotes the 2-torsion part of the S-ideal class group in the narrow sense of k.

Theorem 3 Assume that $S \supseteq S_{2}$ and $S \cap S_{\mathbb{R}}=\varnothing$. Then $\operatorname{cd} G_{S}(2)=1$ if and only if the following conditions (1)-(3) hold.
(1) $S_{2}=\left\{\mathfrak{p}_{0}\right\}$, i.e. there exist exactly one prime dividing 2 in k.
(2) $S=\left\{\mathfrak{p}_{0}\right\} \cup\{$ complex places $\}$.
(3) $\mathrm{Cl}_{S}^{0}(k)(2)=0$.

In this case, $G_{S}(2)$ is a free pro-2-group of rank $r_{2}+1$ and \mathfrak{p}_{0} does not split in $k_{S \cup S_{\mathbb{R}}}(2)$. In particular, if k is totally real and $G_{S}(2)$ is free, then $k_{S}(2)=$ $k_{\infty}(2)$.

Let k be a number field, p a prime number and $S \supseteq S_{p}$ a set of places of k. A (necessarily infinite) extension $K \mid k$ is called p - S-closed if it has no p-extension which is unramified outside S. If p is odd and K is p - S-closed, then the group $\mathrm{Cl}_{S}\left(K\left(\mu_{p}\right)\right)(p)(j)^{G\left(K\left(\mu_{p}\right) \mid K\right)}$ is trivial for $j=0,-1$, where μ_{p} is the group of p-th roots of unity, (p) denotes the p-torsion part and (j) the j-th Tate-twist (see [9], (10.4.7)). The corresponding result for $p=2$ is the following

Theorem 4 Let k be a number field, $S \supseteq S_{2}$ a set of primes of k and $K a$ 2-S-closed extension of k. Then the following holds.
(i) $\mathrm{Cl}_{S}\left(K\left(\mu_{4}\right)\right)(2)=0$.
(ii) $\mathrm{Cl}_{S}^{0}(K)(2)=0$.

Remarks: 1. The triviality of $\mathrm{Cl}(K)(2)$, and hence also that of $\mathrm{Cl}_{S}(K)(2)$, follows easily from the principal ideal theorem; assertions (i) and (ii) do not.
2. In (i) one can replace $K\left(\mu_{4}\right)$ by any totally imaginary extension of degree 2 of K in $K_{S}(2)$.

Finally, we consider the full extension k_{S}, i.e. the maximal extension of k which is unramified outside S, and its Galois group $G_{S}=G\left(k_{S} \mid k\right)$.

Theorem 5 Let k be a number field and S a set of primes of k containing all primes dividing 2. Then $\operatorname{vcd}_{2} G_{S} \leq 2$ and $\operatorname{cd}_{2} G_{S} \leq 2$ if and only if S contains no real primes. For every discrete $G_{S}(2)$-module A the inflation maps

$$
\inf : H^{i}\left(G_{S}(2), A\right) \longrightarrow H^{i}\left(G_{S}, A\right)(2)
$$

are isomorphisms for all $i \geq 1$.
Remark: If $\operatorname{cd} G_{S}(K)(2)=2$ (e.g. if K contains at least two primes dividing 2) for some finite subextension K of k in k_{S}, then $\operatorname{vcd}_{2} G_{S}=2$. This is always the case if $S \supset S_{\mathbb{R}}$ because the class numbers of the cyclotomic fields $\mathbb{Q}\left(\mu_{2^{n}}\right)$ are nontrivial for $n \gg 0$. But, for example, we do not know whether $\operatorname{cd}_{2} G\left(\mathbb{Q}_{s_{2}} \mid \mathbb{Q}\right)$ equals 1 or 2 . The answer would be ' 2 ' if at least one of the real cyclotomic fields $\mathbb{Q}\left(\mu_{2^{n}}\right)^{+}, n=2,3, \ldots$, would have a nontrivial class number. But this is unknown.

In section 5 we investigate the relation between the cohomology of the group $G_{S}(k)$ and the modified étale cohomology of the scheme $\operatorname{Spec}\left(\mathcal{O}_{k, S}\right)$. A discrete $G_{S}(k)$-module A induces a locally constant sheaf on $\operatorname{Spec}\left(\mathcal{O}_{k, S}\right)_{e t, \text { mod }}$, which we will denote by the same letter. We show the following theorem which is well-known if S contains all real primes (and also for odd p).

Theorem 6 Let k be a number field and S a finite set of primes of k containing all primes dividing 2. Then for every 2-primary discrete $G_{S}(k)$-module A the natural comparison maps

$$
H^{i}\left(G_{S}(k), A\right) \longrightarrow H_{e t, \text { mod }}^{i}\left(\operatorname{Spec}\left(\mathcal{O}_{k, S}\right), A\right)
$$

are isomorphisms for all $i \geq 0$.
For finite A it is not difficult to show that the modified étale cohomology groups on the right hand side of the comparison map are finite and that they vanish for $i \geq 3$ if S contains no real primes. Therefore one could deduce theorem 1 (with $G_{S}(k)(2)$ replaced by $G_{S}(k)$) from theorem 6 . However, in order to prove theorem 6, one needs information on the interaction between the decomposition groups of the real primes and so theorem 1 and theorem 6 are both consequences of theorem 2 .

The main ingredients in the proofs of theorems $1-5$ are Poitou-Tate duality, the validity of the weak Leopoldt-conjecture for the cyclotomic \mathbb{Z}_{p}-extension and, most essential, the systematic use of free products of bundles of profinite groups over a topological base. The reason that the above theorems had not been proven earlier seems to be a psychological one. At least the author always thought that one has to prove theorem 1 first, before showing the other assertions. For example, theorem 2 for $p=2, T=S_{2} \cup S_{\mathbb{R}}$ and $S=S_{2}$ was known if $k_{S_{2}}(2)=k_{\infty}(2)$ (see [12], $\S 4.2$ for the case $k=\mathbb{Q}$ and [15], Satz 1.4 for the general case). But now it is theorem 2 which is used in the proof of theorem 1.

Finally, we should mention that theorem 1 was formulated as a conjecture in O. Neumann's article [10].

The author wants to thank K. Wingberg for his comments which led to a substantial simplification in the proof of theorem 2.

2 Free products of inertia groups

In this section we briefly collect some facts on free products of profinite groups and how they naturally occur in number theory. For a more detailed presentation and for proofs of the facts cited below we refer the reader to [9], chap. IV and chap. $\mathrm{X}, \S 1$.

A profinite space is a topological space which is compact and totally disconnected. Equivalently, a profinite space is a topological inverse limit of finite discrete spaces. A profinite group is a group object in the category of profinite spaces. It can be shown that a profinite group is the inverse limit of finite groups. A full class of finite groups \mathfrak{c} is a full subcategory of the category of all finite groups which is closed under taking subgroups, quotients and extensions. A pro-c-group is a profinite group which is the inverse limit of groups in \mathbf{c}.

Let T be a profinite space. A bundle of profinite groups \mathcal{G} over T is a group object in the category of profinite spaces over T. We say that \mathcal{G} is a bundle of pro-c-groups if the fibre \mathcal{G}_{t} of \mathcal{G} over every point $t \in T$ is a pro-c-group. The functor "constant bundle", which assigns to a pro-c-group G the bundle $p r_{2}: G \times T \rightarrow T$ has a left adjoint

$$
\begin{array}{ccc}
\text { \{bundles of pro-c-groups over } T\} & \longrightarrow & \text { \{pro-c-groups }\} \\
\mathcal{G} & \longmapsto & \underset{T}{*} \mathcal{G} .
\end{array}
$$

The image $*_{T} \mathcal{G}$ of a bundle \mathcal{G} under this functor is called its free pro-c-product. It satisfies a universal property which is determined by the functor adjunction. Bundles of pro-c-groups often arise in the following way:

Let G be a pro-c-group and assume we are given a continuous family of closed subgroups of G, i.e. a family of closed subgroups $\left\{G_{t}\right\}_{t \in T}$ indexed by the points of a profinite space T which has the property that for every open subgroup $U \subset G$ the set $T(U)=\left\{t \in T \mid G_{t} \subseteq U\right\}$ is open in T. Then

$$
\mathcal{G}=\left\{(g, t) \in G \times T \mid g \in G_{t}\right\}
$$

is in a natural way a bundle of pro-c-groups over T. We have a canonical homomorphism

$$
\phi: \underset{T}{*} \mathcal{G} \longrightarrow G
$$

and we say that G is the free product of the family $\left\{G_{t}\right\}_{t \in T}$ if ϕ is an isomorphism.

The usual free pro-c-product of a discrete family of pro-c-groups as defined in various places in the literature (e.g. [8]) fits into the picture as follows. For
a family $\left\{G_{i}\right\}_{i \in I}$ we consider the disjoint union $\left(\cup_{i} G_{i}\right) \cup\{*\}$ of the G_{i} and one external point $*$. Equipped with a suitable topology, this is a bundle of pro-c-groups over the one-point compactification $\bar{I}=I \cup\{*\}$ of I and the free pro-c-product of the family $\left\{G_{i}\right\}_{i \in I}$ coincides with that of the bundle (cf. [9], chap.IV, $\S 3$, examples 2 and 4). For the free product of a discrete family of pro-c-groups we have the following profinite version of Kurosh's subgroup theorem (see [2] or [9], (4.2.1)).

Theorem 2.1 Let $G=\underset{i \in I}{*} G_{i}$ be the free pro-c-product of the discrete family G_{i} and let H be an open subgroup of G. Then there exist systems S_{i} of representatives s_{i} of the double coset decomposition $G=\bigcup_{s_{i} \in S_{i}} H s_{i} G_{i}$ for all i and a free pro-c-group $F \subseteq G$ of finite rank

$$
\operatorname{rk}(F)=\sum_{i \in I}\left[(G: H)-\# S_{i}\right]-(G: H)+1,
$$

such that the natural inclusions induce a free product decomposition

$$
H=\underset{i, s_{i}}{*}\left(G_{i}^{s_{i}} \cap H\right) * F
$$

where $G_{i}^{s_{i}}\left(=s_{i} G_{i} s_{i}^{-1}\right)$ denotes the conjugate subgroup.
In number theory, continuous families of pro-c-groups occur in the following way. For a number field k we denote the one-point compactification of the set of all places of k by $\operatorname{Sp}(k)$. The compactifying point will be denoted by η_{k} and should be thought as the generic point of the $\operatorname{scheme} \operatorname{Spec}\left(\mathcal{O}_{k}\right)$ in the sense of algebraic geometry or as the trivial valuation of k from the point of view of valuation theory. For an infinite extension $K \mid k$, we set

$$
\operatorname{Sp}(K)=\underset{k^{\prime}}{\lim _{\overleftarrow{\prime}}} \operatorname{Sp}\left(k^{\prime}\right),
$$

where k^{\prime} runs through all finite subextensions of k in K. The complement of the (closed and open) subset of all archimedean places of K in $\operatorname{Sp}(K)$ is naturally isomorphic to $\operatorname{Spec}\left(\mathcal{O}_{K}\right)$ endowed with the constructible topology (see [6], chap.I, $\S 7$, (7.2.11) for the definition of the constructible topology of a scheme). Let S be a set of primes of k and \bar{S} its closure in $\operatorname{Sp}(k)(\bar{S}=S$ if S is finite, $\bar{S}=S \cup\left\{\eta_{k}\right\}$ if S is infinite). The pre-image $\bar{S}(K)$ of \bar{S} under the natural projection $\mathrm{Sp}(K) \rightarrow \mathrm{Sp}(k)$ is the closure of the set $S(K)$ of all prolongations of primes in S to K in $\operatorname{Sp}(K)$.

Now assume that $M \supset K \supset k$ are possibly infinite extensions of k such that $M \mid K$ is Galois and $G(M \mid K)$ is a pro-c-group. The natural projection $\bar{S}(M) \rightarrow$ $\bar{S}(K)$ has a section (in fact, there are many of them). For a fixed section $s: \bar{S}(K) \rightarrow \bar{S}(M)$ we consider the family of inertia groups $\left\{T_{s(\mathfrak{p})}(M \mid K)\right\}_{\mathfrak{p} \in \bar{S}(K)}$, where by convention $T_{\eta_{M}}=\{1\}$. Since a finite extension of number fields is
ramified only at finitely many primes, this is a continuous family of subgroups of $G(M \mid K)$ indexed by $\bar{S}(K)$. We obtain a natural homomorphism

$$
\phi: \underset{\bar{S}(K)}{*} T_{s(\mathfrak{p})}(M \mid K) \longrightarrow G(M \mid K)
$$

which we also write in the form

$$
\phi: \underset{\mathfrak{p} \in S(K)}{*} T_{\mathfrak{p}}(M \mid K) \longrightarrow G(M \mid K) .
$$

The cohomology groups of the free product on the left hand side with coefficients in a trivial module do not depend on the particularly chosen section s. The question, however, whether the homomorphism ϕ is an isomorphism does depend on s. Moreover, if s is a section for which ϕ is an isomorphism, we always find a section s^{\prime} for which it is not, at least if \mathfrak{c} is not the class of p-groups, where p is a prime number. In the case of pro- p-groups this pathology does not occur because of the following easy and well-known

Lemma 2.2 Let p be a prime number and let $\phi: G^{\prime} \longrightarrow G$ be a (continuous) homomorphism of pro-p-groups. Let A be $\mathbb{Z} / p \mathbb{Z}$ or $\mathbb{Q}_{p} / \mathbb{Z}_{p}$ with trivial action. Then ϕ is an isomorphism if and only if the induced homomorphism

$$
H^{i}(\phi, A): H^{i}(G, A) \longrightarrow H^{i}\left(G^{\prime}, A\right)
$$

is an isomorphism for $i=1$ and injective for $i=2$.
In the number theoretical situation above, we have the following formula for the cohomology of the free product with values in a torsion group A (considered as a module with trivial action) and for $i \geq 1$:

$$
H^{i}\left(\underset{\mathfrak{p} \in S(K)}{*} T_{\mathfrak{p}}(M \mid K), A\right)=\underset{k^{\prime}}{\lim } \bigoplus_{\mathfrak{p} \in S\left(k^{\prime}\right)} H^{i}\left(T_{\mathfrak{p}}\left(M^{\prime} \mid k^{\prime}\right), A\right),
$$

where k^{\prime} runs through all finite subextensions of k in K and M^{\prime} is the maximal pro-c Galois subextension of $M \mid k^{\prime}$ (so $M=\underset{\longrightarrow}{\lim } M^{\prime}$). The limit on the right hand side depends on K and not on k and we denote it by

$$
\bigoplus_{\mathfrak{p} \in S(K)}^{\prime} H^{i}\left(T_{\mathfrak{p}}(M \mid K), A\right)
$$

If $K \mid k$ is Galois, then this limit is the maximal discrete $G(K \mid k)$-submodule of the product $\prod_{\mathfrak{p} \in S(K)} H^{i}\left(T_{\mathfrak{p}}(M \mid K), A\right)$.

3 Proof of theorem 2

Let us first remark that for $\mathfrak{p} \in T \backslash S(k)$ the inertia group has the following structure:

- if \mathfrak{p} is nonarchimedean and $N(\mathfrak{p}) \equiv 1 \bmod p$ (i.e. if there is a primitive p-th root of unity in $\left.k_{\mathfrak{p}}\right)$, then $T\left(k_{\mathfrak{p}}(p) \mid k_{\mathfrak{p}}\right)$ is a free pro- p-group of rank 1 , i.e. isomorphic to \mathbb{Z}_{p}.
- if \mathfrak{p} is nonarchimedean and $N(\mathfrak{p}) \not \equiv 1 \bmod p$, then $T\left(k_{\mathfrak{p}}(p) \mid k_{\mathfrak{p}}\right)=\{1\}$.
- if \mathfrak{p} is real and $p=2$, then $T\left(k_{\mathfrak{p}}(p) \mid k_{\mathfrak{p}}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$.
- if \mathfrak{p} is real and $p \neq 2$ or if \mathfrak{p} is complex, then $T\left(k_{\mathfrak{p}}(p) \mid k_{\mathfrak{p}}\right)=\{1\}$.

If p is odd or if $p=2$ and $S \supset S_{\mathbb{R}}$, then theorem 2 is known (see [9], (10.5.1)). So we assume that $p=2$ and $S \not \supset S_{\mathbb{R}}$. For a pro-2-group G we use the notation $H^{i}(G)$ for $H^{i}(G, \mathbb{Z} / 2 \mathbb{Z})$. We start with the following

Lemma 3.1 Let G and G^{\prime} be pro-2-groups which are generated by involutions and assume that $H^{2}\left(G, \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)=0=H^{2}\left(G^{\prime}, \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)$. Let $\phi: G^{\prime} \rightarrow G$ be a (continuous) homomorphism. Then the following assertions are equivalent.
(i) ϕ is an isomorphism.
(ii) $H^{1}(\phi): H^{1}(G) \rightarrow H^{1}\left(G^{\prime}\right)$ is an isomorphism.
(iii) $H^{2}(\phi): H^{2}(G) \rightarrow H^{2}\left(G^{\prime}\right)$ is an isomorphism.

Proof: Clearly, (i) implies (ii) and (iii) and, by lemma 2.2, (ii) and (iii) together imply (i). So it remains to show that (ii) and (iii) are equivalent. Since $H^{2}\left(G, \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)=0$, the exact sequence $0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Q}_{2} / \mathbb{Z}_{2} \rightarrow \mathbb{Q}_{2} / \mathbb{Z}_{2} \rightarrow 0$ induces the four term exact sequence

$$
0 \rightarrow H^{1}(G) \xrightarrow{\alpha} H^{1}\left(G, \mathbb{Q}_{2} / \mathbb{Z}_{2}\right) \xrightarrow{\beta} H^{1}\left(G, \mathbb{Q}_{2} / \mathbb{Z}_{2}\right) \xrightarrow{\gamma} H^{2}(G) \rightarrow 0 .
$$

Since G is generated by involutions, α is an isomorphism. Hence β is zero and γ is an isomorphism. The same argument also applies to G^{\prime} and therefore (ii) and (iii) are both equivalent to
(iv) $H^{1}\left(\phi, \mathbb{Q}_{2} / \mathbb{Z}_{2}\right): H^{1}\left(G, \mathbb{Q}_{2} / \mathbb{Z}_{2}\right) \rightarrow H^{1}\left(G^{\prime}, \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)$ is an isomorphism.

This concludes the proof.
We show theorem 2 first in the special case $T=S_{2} \cup S_{\mathbb{R}}, S=S_{2}$. The groups $*_{\mathfrak{p} \in S_{\mathbb{R}}\left(k_{S_{2}}(2)\right)} T\left(k_{\mathfrak{p}}(2) \mid k_{\mathfrak{p}}\right)$ and $G\left(k_{S_{2} \cup S_{\mathbb{R}}}(2) \mid k_{S_{2}}(2)\right)$ are both generated by involutions. Since $H^{2}\left(T\left(k_{\mathfrak{p}}(2) \mid k_{\mathfrak{p}}\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)=0$ for every $\mathfrak{p} \in S_{\mathbb{R}}\left(k_{S_{2}}(2)\right)$, we have

$$
H^{2}\left(\underset{\mathfrak{p} \in S_{\mathfrak{R}}\left(k_{S_{2}}(2)\right)}{*} T\left(k_{\mathfrak{p}}(2) \mid k_{\mathfrak{p}}\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)=0 .
$$

By [9], (10.4.8), the inflation map

$$
H^{2}\left(G\left(k_{S_{2} \cup S_{\mathbb{R}}}(2) \mid k_{S_{2}}(2)\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right) \longrightarrow H^{2}\left(G\left(k_{S_{2} \cup S_{\mathbb{R}}} \mid k_{S_{2}}(2)\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)
$$

is an isomorphism and, since $k_{S_{2}}(2)$ contains the cyclotomic \mathbb{Z}_{2}-extension $k_{\infty}(2)$ of k, the validity of the weak Leopoldt-conjecture for the cyclotomic \mathbb{Z}_{p}-extension (see [9], (10.3.25)) implies (by [9], (10.3.22)) that

$$
H^{2}\left(G\left(k_{S_{2} \cup S_{\mathbb{R}}}(2) \mid k_{S_{2}}(2)\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)=0
$$

By lemma 3.1 and the calculation of the cohomology of free products (see §1), it therefore suffices to show that the natural map

$$
H^{2}(\phi): H^{2}\left(G\left(k_{S_{2} \cup S_{\mathbb{R}}}(2) \mid k_{S_{2}}(2)\right) \rightarrow \bigoplus_{\mathfrak{p} \in S_{\mathbb{R}}\left(k_{S_{2}}(2)\right)}^{\prime} H^{2}\left(T\left(k_{\mathfrak{p}}(2) \mid k_{\mathfrak{p}}\right)\right)\right.
$$

is an isomorphism. Now let K be a finite extension of k inside $k_{S}(2)$. The 9 -term exact sequence of Poitou-Tate induces the exact sequence

$$
\begin{aligned}
0 & \rightarrow \amalg^{2}\left(K_{S_{2} \cup S_{\mathbb{R}}}, \mathbb{Z} / 2 \mathbb{Z}\right) \rightarrow H^{2}\left(G\left(k_{S_{2} \cup S_{\mathfrak{R}}} \mid K\right), \mathbb{Z} / 2 \mathbb{Z}\right) \rightarrow \\
& \bigoplus_{\mathfrak{p} \in S_{2} \cup S_{\mathbb{R}}(K)} H^{2}\left(G\left(\bar{k}_{\mathfrak{p}} \mid K_{\mathfrak{p}}\right), \mathbb{Z} / 2 \mathbb{Z}\right) \rightarrow H^{0}\left(G\left(k_{S_{2} \cup S_{\mathbb{R}}} \mid K\right), \mu_{2}\right)^{\vee} \rightarrow 0,
\end{aligned}
$$

where \vee denotes the Pontryagin dual. Furthermore, we have

$$
\Pi^{2}\left(K_{S_{2} \cup S_{\mathbb{R}}}, \mathbb{Z} / 2 \mathbb{Z}\right) \cong \amalg^{1}\left(K_{S_{2} \cup S_{\mathbb{R}}}, \mu_{2}\right)^{\vee}=\amalg^{1}\left(K_{S_{2} \cup S_{\mathbb{R}}}, \mathbb{Z} / 2 \mathbb{Z}\right)^{\vee}=\mathrm{Cl}_{S_{2}}(K) / 2
$$

For a finite, nontrivial extension K^{\prime} of K inside $k_{S_{2}}(2)$ the corresponding homomorphism $H^{0}\left(G\left(k_{S_{2} \cup S_{\mathbb{Z}}} \mid K\right), \mu_{2}\right)^{\vee} \rightarrow H^{0}\left(G\left(k_{S_{2} \cup S_{\mathbb{R}}} \mid K^{\prime}\right), \mu_{2}\right)^{\vee}$ is the dual of the norm map, hence trivial. Furthermore, $H^{2}\left(G\left(\bar{k}_{\mathfrak{p}} \mid\left(k_{S_{2}}(2)\right)_{\mathfrak{p}}\right), \mathbb{Z} / 2 \mathbb{Z}\right)=0$ for $\mathfrak{p} \in S_{2}\left(k_{S_{2}}(2)\right)$ (see [9], (7.1.8)(i)). Therefore we obtain the following exact sequence in the limit over all finite subextensions $K \mid k$ in $k_{S_{2}}(2) \mid k$ (the omitted coefficients are $\mathbb{Z} / 2 \mathbb{Z}$):

$$
\mathrm{Cl}_{S_{2}}\left(k_{S_{2}}(2)\right) / 2 \hookrightarrow H^{2}\left(G\left(k_{S_{2} \cup S_{\mathfrak{R}}} \mid k_{S_{2}}(2)\right)\right) \underset{\mathfrak{p} \in S_{\mathbb{R}}\left(k_{S_{2}}(2)\right)}{\rightarrow} \bigoplus^{\prime} H^{2}\left(G\left(\bar{k}_{\mathfrak{p}} \mid k_{\mathfrak{p}}\right)\right) .
$$

The principal ideal theorem implies that $\mathrm{Cl}\left(k_{S_{2}}(2)\right)(2)=0$, and therefore also $\mathrm{Cl}_{S_{2}}\left(k_{S_{2}}(2)\right) / 2=0$. Furthermore, $G\left(\bar{k}_{\mathfrak{p}} \mid k_{\mathfrak{p}}\right)=T\left(k_{\mathfrak{p}}(2) \mid k_{\mathfrak{p}}\right)$ for $\mathfrak{p} \in S_{\mathbb{R}}\left(k_{S_{2}}(2)\right)$ and the inflation map

$$
H^{2}\left(G\left(k_{S_{2} \cup S_{\mathbb{R}}}(2) \mid k_{S_{2}}(2)\right)\right) \longrightarrow H^{2}\left(G\left(k_{S_{2} \cup S_{\mathbb{R}}} \mid k_{S_{2}}(2)\right)\right)
$$

is an isomorphism (see [9], (10.4.8)). This concludes the proof of theorem 2 in the case $T=S_{2} \cup S_{\mathbb{R}}, S=S_{2}$. For the proof in the general case we need the

Proposition 3.2 Let k be a number field, p a prime number and $T \supset S \supseteq S_{p}$ sets of primes in k. Let K be a $p-S_{p}$-closed extension of k. Then the following assertions are equivalent.
(i) The natural homomorphism

$$
\phi_{T, S_{p}}: \underset{\mathfrak{p} \in T \backslash S_{p}(K)}{*} T\left(K_{\mathfrak{p}}(p) \mid K_{\mathfrak{p}}\right) \rightarrow G\left(K_{T}(p) \mid K\right)
$$

is an isomorphism.
(ii) The natural homomorphisms

$$
\phi_{T, S}: \underset{\mathfrak{p} \in T \backslash S\left(K_{S}(p)\right)}{*} T\left(K_{\mathfrak{p}}(p) \mid K_{\mathfrak{p}}\right) \rightarrow G\left(K_{T}(p) \mid K_{S}(p)\right)
$$

and

$$
\phi_{S, S_{p}}: \underset{\mathfrak{p} \in S \backslash S_{p}(K)}{*} T\left(K_{\mathfrak{p}}(p) \mid K_{\mathfrak{p}}\right) \rightarrow G\left(K_{S}(p) \mid K\right)
$$

are isomorphisms.
Here $*$ denotes the free pro-p-product.
Proof: If $\phi_{T, S_{p}}$ is an isomorphism, then also $\phi_{S, S_{p}}$ is an isomorphism. Furthermore, a straightforward application of theorem 2.1 shows that also $\phi_{T, S}$ is an isomorphism in this case. Let us show the converse statement. Assume that $\phi_{T, S}$ and $\phi_{S, S_{p}}$ are isomorphisms. Note that all primes in $S \backslash S_{p}\left(K_{S}(p)\right)$ split completely in $K_{T}(p) \mid K_{S}(p)$. Therefore the extension of pro- p-groups

$$
\begin{equation*}
1 \rightarrow G\left(K_{T}(p) \mid K_{S}(p)\right) \rightarrow G\left(K_{T}(p) \mid K\right) \rightarrow G\left(K_{S}(p) \mid K\right) \rightarrow 1 \tag{1}
\end{equation*}
$$

splits. By lemma 2.2, we have to show that the induced homomorphism

$$
H^{i}\left(\phi_{T, S_{p}}\right): H^{i}\left(G\left(K_{T}(p) \mid K\right)\right) \longrightarrow \bigoplus_{\mathfrak{p} \in T \backslash S_{p}(K)}^{\prime} H^{i}\left(T\left(K_{\mathfrak{p}}(p) \mid K_{\mathfrak{p}}\right)\right)
$$

is an isomorphism for $i=1$ and injective for $i=2$ (coefficients $\mathbb{Z} / p \mathbb{Z})$. This follows easily from the Hochschild-Serre spectral sequence associated to the split exact sequence (1):

$$
E_{2}^{i j}=H^{i}\left(G\left(K_{S}(p) \mid K\right), H^{j}\left(G\left(K_{T}(p) \mid K_{S}(p)\right)\right)\right) \Longrightarrow H^{i+j}\left(G\left(K_{T}(p) \mid K\right)\right)
$$

First of all, the differentials d_{2} are zero ($-d_{2}$ is the cup-product with the extension class, see [9], (2.1.8)). Furthermore, every prime in $T \backslash S(K)$ splits completely in $K_{S}(p) \mid K$ because these primes are unramified in $K_{S}(p) \mid K$ and K contains $K_{\infty}(p)$. Since $\phi_{T, S}$ is an isomorphism, the $G\left(K_{S}(p) \mid K\right)$-module $(j \geq 1)$

$$
\begin{aligned}
H^{j}\left(G\left(K_{T}(p) \mid K_{S}(p)\right)\right) & = \\
& =\operatorname{Ind}_{G\left(K_{S}(p) \mid K\right)} \bigoplus_{\mathfrak{p} \in T \backslash S\left(K_{S}(p)\right)}^{\prime} H^{j}\left(T\left(K_{\mathfrak{p}}(p) \mid K_{\mathfrak{p}}\right)\right) \\
& H^{j}\left(T\left(K_{\mathfrak{p}}(p) \mid K_{\mathfrak{p}}\right)\right)
\end{aligned}
$$

is cohomologically trivial. Therefore we obtain short exact sequences

$$
0 \rightarrow H^{i}\left(K_{S}(p) \mid K\right) \rightarrow H^{i}\left(K_{T}(p) \mid K\right) \rightarrow \bigoplus_{\mathfrak{p} \in T \backslash S(K)}^{\prime} H^{i}\left(T\left(K_{\mathfrak{p}}(p) \mid K_{\mathfrak{p}}\right)\right) \rightarrow 0
$$

for $i=1,2$, and the result follows from the five-lemma.

Now we can prove theorem 2 in the general case. It is true for odd p and for $p=2$ in the special cases $T=S_{2} \cup S_{\mathbb{R}}, S=S_{2}$ and $T=$ \{all primes \}, $S=S_{2} \cup S_{\mathbb{R}}$. Applying proposition 3.2 in the situation $p=2, T=\{$ all primes $\}$, $S=S_{2} \cup S_{\mathbb{R}}$ and $K=k_{S_{2}}(2)$, we obtain theorem 2 in the 'extremal' case $T=\{$ all primes $\}, S=S_{2}$. Applying proposition 3.2 again, we obtain the case $T=\{$ all primes $\}$ and S arbitrary and then the general case. This concludes the proof of theorem 2.

A straightforward limit process shows the following variant of theorem 2.
Theorem 2' Let k be a number field, p a prime number and $T \supset S \supseteq S_{p}$ sets of primes of k. Let K be a p-S-closed extension field of k. Then the canonical homomorphism

$$
\underset{\mathfrak{p} \in T \backslash S(K)}{*} T\left(K_{\mathfrak{p}}(p) \mid K_{\mathfrak{p}}\right) \longrightarrow G\left(K_{T}(p) \mid K\right)
$$

is an isomorphism.

4 Proofs of the remaining statements

In order to prove theorem 1, we may assume that $S \not \supset S_{\mathbb{R}}$ and we investigate the Hochschild-Serre spectral sequence

$$
E_{2}^{i j}=H^{i}\left(G_{S}(2), H^{j}\left(G\left(k_{S \cup S_{\mathbb{R}}}(2) \mid k_{S}(2)\right)\right) \Longrightarrow H^{i+j}\left(G_{S \cup S_{\mathbb{R}}}(2)\right),\right.
$$

where the omitted coefficient are $\mathbb{Z} / 2 \mathbb{Z}=\mu_{2}$. By theorem 2, we have complete control over the $G_{S}(2)$-modules $H^{j}\left(G\left(k_{S \cup S_{\mathbb{R}}}(2) \mid k_{S}(2)\right)\right.$, which are for $j \geq 1$ isomorphic to

$$
\operatorname{Ind}_{G_{S}(2)} \bigoplus_{\mathfrak{p} \in S_{\mathbb{R}} \backslash S(k)} H^{j}(G(\mathbb{C} \mid \mathbb{R}))
$$

In particular, $E_{2}^{i j}=0$ for $i j \neq 0$. Therefore the spectral sequence induces an exact sequence

$$
\begin{align*}
& 0 \rightarrow H^{1}\left(G_{S}(2)\right) \rightarrow H^{1}\left(G_{S \cup S_{\mathbb{R}}}(2)\right) \rightarrow \bigoplus_{\mathfrak{p} \in S_{\mathbb{R}} \backslash S(k)} H^{1}(G(\mathbb{C} \mid \mathbb{R})) \rightarrow \tag{2}\\
& H^{2}\left(G_{S}(2)\right) \rightarrow H^{2}\left(G_{S \cup S_{\mathbb{R}}}(2)\right) \rightarrow \bigoplus_{\mathfrak{p} \in S_{\mathbb{R}} \backslash S(k)} H^{2}(G(\mathbb{C} \mid \mathbb{R})) \rightarrow 0
\end{align*}
$$

and exact sequences

$$
\begin{equation*}
0 \rightarrow H^{i}\left(G_{S}(2)\right) \rightarrow H^{i}\left(G_{S \cup S_{\mathbb{R}}}(2)\right) \rightarrow \bigoplus_{\mathfrak{p} \in S_{\mathbb{R}} \backslash S(k)} H^{i}(G(\mathbb{C} \mid \mathbb{R})) \rightarrow 0 \tag{3}
\end{equation*}
$$

for $i \geq 3$. If S is finite, this shows the finiteness statement on the cohomology of $G_{S}(2)$ and that

$$
\chi_{2}\left(G_{S}(2)\right)=\chi_{2}\left(G_{S \cup S_{\mathbb{R}}}(2)\right)
$$

But $\chi_{2}\left(G_{S \cup S_{\mathbb{R}}}(2)\right)=\chi_{2}\left(G_{S \cup S_{\mathbb{R}}}\right)=-r_{2}($ see [9], (8.6.16) and (10.4.8)).
For arbitrary S and $i \geq 3$ the restriction map

$$
H^{i}\left(G_{S \cup S_{\mathfrak{R}}}(2)\right) \rightarrow \bigoplus_{\mathfrak{p} \in S_{\mathbb{R}}(k)} H^{i}(G(\mathbb{C} \mid \mathbb{R}))
$$

is an isomorphism (see [9], (8.6.13)(ii) and (10.4.8)). This together with (3) shows that the natural homomorphism

$$
H^{i}\left(G_{S}(2)\right) \rightarrow \bigoplus_{\mathfrak{p} \in S \cap S_{\mathbb{R}}(k)} H^{i}(G(\mathbb{C} \mid \mathbb{R}))
$$

is an isomorphism for $i \geq 3$. Therefore $\operatorname{cd} G_{S}(2) \leq 2$ if $S \cap S_{\mathbb{R}}=\varnothing$. For later use we formulate the last result as a proposition.

Proposition 4.1 Let k be a number field and $S \supset S_{2}$ a set of primes. Then the natural homomorphism

$$
H^{i}\left(G_{S}(2), \mathbb{Z} / 2 \mathbb{Z}\right) \rightarrow \bigoplus_{\mathfrak{p} \in S \cap S_{\mathfrak{R}}(k)} H^{i}(G(\mathbb{C} \mid \mathbb{R}), \mathbb{Z} / 2 \mathbb{Z})
$$

is an isomorphism for $i \geq 3$.
In order to conclude the proof of theorem 1, it remains to show that every real prime in S ramifies in $k_{S}(2)$. Let S^{f} be the subset of nonarchimedean primes in S. Then theorem 2 yields an isomorphism

$$
\underset{\mathfrak{p} \in S_{\mathfrak{R}}\left(k_{S^{f}}(2)\right)}{*} T\left(k_{\mathfrak{p}}(2) \mid k_{\mathfrak{p}}\right) \cong G\left(k_{S}(2) \mid k_{S^{f}}(2)\right)
$$

which shows the required assertion. This finishes the proof of theorem 1.

Now we prove theorem 3. To fix conventions, we recall the following definitions. For a set S of primes of k the group $\mathcal{O}_{k, S}^{\times}$of S-units is defined as the subgroup in k^{\times}of those elements which are units at every finite prime not in S and positive at every real prime not in S. The S-ideal class group $\mathrm{Cl}_{S}^{0}(k)$ in the narrow sense of k is the quotient of the group of fractional ideals of k by the subgroup generated by the nonarchimedean primes in S and the principal ideals (a) with a positive at every real place of k not contained in S. In particular, $\mathrm{Cl}_{\varnothing}^{0}(k)=\mathrm{Cl}^{0}(k)$ is the ideal class group in the narrow sense and $\mathrm{Cl}_{S \cup S_{\mathbb{R}}}^{0}(k)=\mathrm{Cl}_{S}(k)$ is the usual S-ideal class group. By class field theory, $\mathrm{Cl}_{S}^{0}(k)$ is isomorphic to the Galois group of the maximal abelian extension of k which is unramified outside $S_{\mathbb{R}}$ and in which every prime in S splits completely. By Kummer theory, we can replace condition (3) of theorem 3 by the following condition
(3') $\quad\left\{x \in k^{\times} \mid x \in k_{\mathfrak{p}_{0}}^{\times 2}\right.$ and $2 \mid v_{\mathfrak{p}}(x)$ for every finite prime $\left.\mathfrak{p}\right\}=k^{\times 2}$.

Lemma 4.2 If $S \supseteq S_{2}$ and $\operatorname{cd} G_{S_{2}}(2)=1$, then $S=S_{2}$.
Proof: By theorem 2, we have an isomorphism

$$
\underset{\mathfrak{p} \in S \backslash S_{2}\left(k_{S_{2}}(2)\right)}{*} T\left(k_{\mathfrak{p}}(2) \mid k_{\mathfrak{p}}\right) \xrightarrow{\sim} G\left(k_{S}(2) \mid k_{S_{2}}(2)\right)
$$

Since for nonarchimedean primes $\mathfrak{p} \notin S_{2}$ the maximal unramified 2-extension of $k_{\mathfrak{p}}$ is realized by $k_{\infty}(2) \subset k_{S_{2}}(2)$, this shows that for $\mathfrak{p} \in S \backslash S_{2}$ the maximal 2extension of the local field $k_{\mathfrak{p}}$ is realized by $k_{S}(2)$ or, in other words, the natural homomorphism

$$
G\left(k_{\mathfrak{p}}(2) \mid k_{\mathfrak{p}}\right) \longrightarrow G_{S}(2)
$$

is injective. But for these primes we have $\operatorname{cd} G\left(k_{\mathfrak{p}}(2) \mid k_{\mathfrak{p}}\right) \geq 2$ which shows that $S \backslash S_{2}=\varnothing$.

Now assume that $G_{S_{2}}(2)$ is free. For a prime \mathfrak{p} we denote the local group $G\left(k_{\mathfrak{p}}(2) \mid k_{\mathfrak{p}}\right)$ by $\mathcal{G}_{\mathfrak{p}}$ and the inertia group $T\left(k_{\mathfrak{p}}(2) \mid k_{\mathfrak{p}}\right)$ by $\mathcal{T}_{\mathfrak{p}}$. By Čebotarev's density theorem, we find a finite set of nonarchimedean primes $T \supset S_{2}$ such that the natural homomorphism

$$
H^{1}\left(G_{S_{2}}\right) \longrightarrow \bigoplus_{\mathfrak{p} \in T \backslash S} H^{1}\left(\mathcal{G}_{\mathfrak{p}} / \mathcal{T}_{\mathfrak{p}}\right)
$$

is an isomorphism. It is then an easy exercise using lemma 2.2 to show that the natural homomorphism

$$
\underset{\mathfrak{p} \in T \backslash S_{2}}{*} \mathcal{G}_{\mathfrak{p}} / \mathcal{T}_{\mathfrak{p}} \longrightarrow G_{S_{2}}(2)
$$

is an isomorphism. Theorem 2 for $T=S_{2} \cup S_{\mathbb{R}}$ and $S=S_{2}$ and the same arguments as in the proof of proposition 3.2 show that the natural homomorphism

$$
\underset{\mathfrak{p} \in T \backslash S_{2}}{*} \mathcal{G}_{\mathfrak{p}} / \mathcal{T}_{\mathfrak{p}} \quad * \underset{\mathfrak{p} \in S_{\mathfrak{R}}}{*} \mathcal{G}_{\mathfrak{p}} \longrightarrow G_{S_{2} \cup S_{\mathfrak{R}}}(2)
$$

is an isomorphism. Then, by ([16], Theorem 6) or ([9], (10.7.2)), we obtain the conditions (1)-(3) and that the unique prime \mathfrak{p}_{0} dividing 2 in k does not split in $k_{S_{2} \cup S_{\mathbb{R}}}$. If, on the other hand, conditions (1)-(3) of theorem 3 are satisfied, then we obtain (loc. cit.) the above isomorphism and deduce that $G_{S_{2}}(2)$ is free. The statement on the rank of $G_{S_{2}}(2)$ follows from $\chi_{2}\left(G_{S_{2}}(2)\right)=-r_{2}$. If k is totally real, then the homomorphism

$$
G_{S_{2}}(2) \longrightarrow G\left(k_{\infty}(2) \mid k\right)
$$

is a surjection of free pro-2-groups of rank 1 and hence an isomorphism. This concludes the proof of theorem 3.

Next we show theorem 4 . Let S be a set of finite primes of k and $\Sigma=S \cup S_{\mathbb{R}}$. If S is finite, then the image of the group of Σ-units of k under the logarithm
map $L o g: \mathcal{O}_{k, \Sigma}^{\times} \longrightarrow \bigoplus_{v \in \Sigma} \mathbb{R}, a \mapsto\left(\log |a|_{v}\right)_{v \in S}$ is a lattice of rank equal to $\# S+r_{1}+r_{2}-1$ (Dirichlet's unit theorem). Complementary to this map is the signature map (which is also defined for infinite S)

$$
\operatorname{Sign}_{k, S}: \mathcal{O}_{k, \Sigma}^{\times} \longrightarrow \bigoplus_{v \in S_{\mathbb{R}}} \mathbb{R}^{\times} / \mathbb{R}^{\times 2}
$$

More or less by definition, there exists a five-term exact sequence

$$
0 \rightarrow \mathcal{O}_{k, S}^{\times} \rightarrow \mathcal{O}_{k, \Sigma}^{\times} \rightarrow \bigoplus_{v \in S_{\mathbb{R}}(k)} \mathbb{R}^{\times} / \mathbb{R}^{\times 2} \rightarrow \mathrm{Cl}_{S}^{0}(k) \rightarrow \mathrm{Cl}_{\Sigma}^{0}(k) \rightarrow 0
$$

and so the cokernel of $\operatorname{Sign}_{k, S}$ measures the difference between the usual S ideal class group $\mathrm{Cl}_{S}(k)=\mathrm{Cl}_{\Sigma}^{0}(k)$ and that in the narrow sense. Of course this discussion is void if k is totally imaginary. If K is an infinite extension of k, we define the signature map

$$
\operatorname{Sign}_{K, S}: \mathcal{O}_{K, \Sigma}^{\times} \longrightarrow \underset{k^{\prime}}{\lim } \bigoplus_{v \in S_{\mathbb{R}}\left(k^{\prime}\right)} \mathbb{R}^{\times} / \mathbb{R}^{\times}
$$

as the limit over the signature maps $\operatorname{Sign}_{k^{\prime}, S}$, where k^{\prime} runs through all finite subextension $k^{\prime} \mid k$ of $K \mid k$. If K is $2-S$-closed, then $\mathrm{Cl}_{S}(K)(2)=0$ and so statement (ii) of theorem 4 is equivalent to the statement that Sign_{K} is surjective.

Now assume that k, S, K are as in theorem 4. By theorem 1, all real places in S become complex in K. By the principal ideal theorem, $\mathrm{Cl}(K)(2)=2$ and so statement (i) and (ii) are trivial if K is totally imaginary (note that $K=K\left(\mu_{4}\right)$ in this case). So we may assume that $S_{\mathbb{R}}(K) \neq \varnothing$ and, by theorem 1, we may suppose $S \cap S_{\mathbb{R}}=\varnothing$.

Let $K^{\prime}=K\left(\mu_{4}\right)$. Then K^{\prime} is totally imaginary and $G=G\left(K^{\prime} \mid K\right)$ is cyclic of order 2. Let $\Sigma=S \cup S_{\mathbb{R}}$ and let K_{Σ} be the maximal (not just the pro-2) extension of K which is unramified outside Σ. Inspecting the Hochschild-Serre spectral sequence associated to $K_{\Sigma}\left|K_{\Sigma}(2)\right| K$ and using the well-known calculation of $H^{i}\left(G\left(K_{\Sigma} \mid K\right), \mathcal{O}_{K_{\Sigma}, \Sigma}^{\times}\right)(c f .[9],(10.4 .8))$ we see that

$$
\begin{align*}
H^{1}\left(G\left(K_{\Sigma}(2) \mid K\right), \mathcal{O}_{K_{\Sigma}(2), \Sigma}^{\times}\right) & =H^{1}\left(G\left(K_{\Sigma} \mid K\right), \mathcal{O}_{K_{\Sigma}, \Sigma}^{\times}\right)(2) \tag{4}\\
& =\mathrm{Cl}_{S}(K)(2)=0
\end{align*}
$$

and the same argument shows that

$$
\begin{equation*}
H^{1}\left(G\left(K_{\Sigma}(2) \mid K^{\prime}\right), \mathcal{O}_{K_{\Sigma}(2), \Sigma}^{\times}\right) \cong \mathrm{Cl}_{S}\left(K^{\prime}\right)(2) \tag{5}
\end{equation*}
$$

Next we consider the Hochschild-Serre spectral sequence for the extension $K_{\Sigma}(2)\left|K^{\prime}\right| K$ and the module $\mathcal{O}_{K_{\Sigma}(2), \Sigma}^{\times}$. By (4) and (5), we obtain an exact sequence

$$
0 \rightarrow \mathrm{Cl}_{S}\left(K^{\prime}\right)(2)^{G} \rightarrow H^{2}\left(G, \mathcal{O}_{K^{\prime}, \Sigma}^{\times}\right) \xrightarrow{\phi} H^{2}\left(G\left(K_{\Sigma}(2) \mid K\right), \mathcal{O}_{K_{\Sigma}(2), \Sigma}^{\times}\right)
$$

Since G is a 2-group, in order to prove assertion (i), it suffices to show that ϕ is injective. Let c be a generator of the cyclic group $H^{2}(G, \mathbb{Z})$. For each prime $\mathfrak{p} \in S_{\mathbb{R}}(K)$ (respectively for the chosen prolongation of \mathfrak{p} to $K_{\Sigma}(2)$, cf. the discussion in section 1), the composition $T_{\mathfrak{p}}\left(K_{\Sigma}(2) \mid K\right) \rightarrow G\left(K_{\Sigma}(2) \mid K\right) \rightarrow G$ is an isomorphism and we denote the image of c in $H^{2}\left(T_{\mathfrak{p}}\left(K_{\Sigma}(2) \mid K\right), \mathbb{Z}\right)$ by $c_{\mathfrak{p}}$. As is well known, the cup-product with c induces an isomorphism $\hat{H}^{0}\left(G, \mathcal{O}_{K^{\prime}, \Sigma}^{\times}\right) \xrightarrow{\sim}$ $H^{2}\left(G, \mathcal{O}_{K^{\prime}, \Sigma}^{\times}\right)$and the similar statement holds for each $c_{\mathfrak{p}}, \mathfrak{p} \in S_{\mathbb{R}}(K)$.

The quotient $\mathcal{O}_{K_{\Sigma}(2), \Sigma}^{\times} / \mu_{2 \infty}$ is uniquely 2-divisible, and so we obtain a natural isomorphism

$$
H^{2}\left(G\left(K_{\Sigma}(2) \mid K\right), \mu_{2 \infty}\right) \xrightarrow{\sim} H^{2}\left(G\left(K_{\Sigma}(2) \mid K\right), \mathcal{O}_{K_{\Sigma}(2), \Sigma}^{\times}\right) .
$$

Furthermore, for each $\mathfrak{p} \in S_{\mathbb{R}} \backslash S$ we obtain an isomorphism

$$
\begin{aligned}
H^{2}\left(T_{\mathfrak{p}}\left(K_{\Sigma}(2) \mid K\right), \mu_{2 \infty}\right) & \xrightarrow[\rightarrow]{ } H^{2}\left(T_{\mathfrak{p}}\left(K_{\Sigma}(2) \mid K\right), \mathcal{O}_{K_{\Sigma}(2), \Sigma}^{\times}\right) \\
& \cong H^{2}\left(G\left(\bar{K}_{\mathfrak{p}} \mid K_{\mathfrak{p}}\right), \bar{K}_{\mathfrak{p}}^{\times}\right) .
\end{aligned}
$$

Therefore, the calculation of the cohomology in dimension $i \geq 2$ of free products with values in torsion modules (see [10], Satz 4.1 or [9], (4.1.4)) and theorem 2 for the pair Σ, S show that we have a natural isomorphism

$$
H^{2}\left(G\left(K_{\Sigma}(2) \mid K\right), \mathcal{O}_{K_{\Sigma}(2), \Sigma}^{\times}\right) \xrightarrow{\sim} \bigoplus_{\mathfrak{p} \in S_{\mathfrak{R}}(K)}^{\prime} H^{2}\left(G\left(\bar{K}_{\mathfrak{p}} \mid K_{\mathfrak{p}}\right), \bar{K}_{\mathfrak{p}}^{\times}\right) .
$$

(Alternatively, we could have obtained this isomorphism from the calculation of the cohomology of the Σ-units, cf. ([9], (8.3.10)(iii)) by passing to the limit over all finite subextensions of k in $K)$. We obtain the following commutative diagram

Hence $\operatorname{ker}(\phi) \cong \operatorname{ker}(\psi)$ and $\operatorname{coker}(\phi) \cong \operatorname{coker}(\psi)$. Since $\hat{H}^{0}\left(G, \mathcal{O}_{K^{\prime}, \Sigma}^{\times}\right)=$ $\mathcal{O}_{K, \Sigma}^{\times} / N_{K^{\prime} \mid K}\left(\mathcal{O}_{K^{\prime}, \Sigma}^{\times}\right)$, each element in $\operatorname{ker}(\psi)$ is represented by an S-unit in K and we have to show that all these are norms of Σ-units in K^{\prime}. Let $e \in \mathcal{O}_{K, S}^{\times}$. Then $K(\sqrt{e}) \mid K$ is a 2 -extension which is unramified outside S, hence trivial. Therefore e is a square in K and if $f^{2}=e$, then $f \in \mathcal{O}_{K, \Sigma}^{\times}$and $e=N_{K^{\prime} \mid K}(f)$. This concludes the proof of assertion (i).
To show assertion (ii), it remains to show that $\operatorname{coker}\left(\operatorname{Sign}_{K, S}\right)=\operatorname{coker}(\psi) \cong$ $\operatorname{coker}(\phi)$ is trivial. Using the same spectral sequence as before, in order to see that $\operatorname{coker}(\phi)=0$, it suffices to show that the spectral terms

- $E_{2}^{02}=H^{0}\left(G, H^{2}\left(G\left(K_{\Sigma}(2) \mid K^{\prime}\right), \mathcal{O}_{K_{\Sigma}(2), \Sigma}^{\times}\right)\right)$and
- $E_{2}^{11}=H^{1}\left(G, \mathrm{Cl}_{S}\left(K^{\prime}\right)(2)\right)$
are trivial. The first assertion is easy, because K^{\prime} is totally imaginary and contains $k_{\infty}(2)$ and so $H^{2}\left(G\left(K_{\Sigma}(2) \mid K^{\prime}\right), \mathcal{O}_{K_{\Sigma}(2), \Sigma}^{\times}\right)=0$. That the second spectral term is trivial follows from (i). This completes the proof of theorem 4.

Finally, we prove theorem 5 . The statement on $\mathrm{cd}_{2} G_{S}$ and $\mathrm{vcd}_{2} G_{S}$ follows by choosing a 2-Sylow subgroup $H \subset G_{S}$ and applying theorem 1 to all finite subextensions of k in $\left(k_{S}\right)^{H}$. It remains to show the statement on the inflation map. It is equivalent to the statement that

$$
i n f \otimes \mathbb{Z}_{(2)}: H^{i}\left(G_{S}(2), A\right) \otimes \mathbb{Z}_{(2)} \longrightarrow H^{i}\left(G_{S}, A\right) \otimes \mathbb{Z}_{(2)}
$$

is an isomorphism for every discrete $G_{S}(2)$-module A and all $i \geq 0$, where $\mathbb{Z}_{(2)}$ denotes the localization of \mathbb{Z} at the prime ideal (2).

Since cohomology commutes with inductive limits, we may assume that A is finitely generated (as a \mathbb{Z}-module). Using the exact sequences

$$
\begin{gathered}
0 \longrightarrow \operatorname{tor}(A) \longrightarrow A \longrightarrow A / \operatorname{tor}(A) \longrightarrow 0, \\
0 \longrightarrow A / \operatorname{tor}(A) \longrightarrow(A / \operatorname{tor}(A)) \otimes \mathbb{Q} \longrightarrow(A / \operatorname{tor}(A)) \otimes \mathbb{Q} / \mathbb{Z} \longrightarrow 0
\end{gathered}
$$

and using the limit argument for $(A / \operatorname{tor}(A)) \otimes \mathbb{Q} / \mathbb{Z}$ again, we are reduced to the case that A is finite. Every finite $G_{S}(2)$-module is the direct sum of its 2-part and its prime-to-2-part. The statement is obvious for the prime-to-2-part and every finite 2 -primary $G_{S}(2)$-module has a composition series whose quotients are isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$. Therefore we are reduced to showing the statement on the inflation map for $A=\mathbb{Z} / 2 \mathbb{Z}$. But it is more convenient to work with $A=\mathbb{Q}_{2} / \mathbb{Z}_{2}$ (with trivial action) which is possible by the exact sequence

$$
0 \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \longrightarrow \mathbb{Q}_{2} / \mathbb{Z}_{2} \longrightarrow \mathbb{Q}_{2} / \mathbb{Z}_{2} \longrightarrow 0
$$

Using the Hochschild-Serre spectral sequence for the extensions $k_{S}\left|k_{S}(2)\right| k$, we thus have to show that

$$
H^{i}\left(G\left(k_{S} \mid k_{S}(2)\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)=0
$$

for $i \geq 1$. The case $i=1$ is obvious by the definition of the field $k_{S}(2)$. By theorem 1, every real prime in S becomes complex in $k_{S}(2)$ and therefore $\operatorname{cd}_{2} G\left(k_{S} \mid k_{S}(2)\right) \leq 2$. It remains to show that $H^{2}\left(G\left(k_{S} \mid k_{S}(2)\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)=0$. Therefore the next proposition implies the remaining statement of theorem 5 .

Proposition 4.3 Let k be a number field, $S \supseteq S_{2}$ a set of primes in k and $K \supseteq k_{\infty}(2)$ an extension of K in k_{S}. Then

$$
H^{2}\left(G\left(k_{S} \mid K\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)=0
$$

Proof: Let H be a 2-Sylow subgroup in $G\left(k_{S} \mid K\right)$ and $L=\left(k_{S}\right)^{H}$. Then the restriction map

$$
H^{2}\left(G\left(k_{S} \mid K\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right) \longrightarrow H^{2}\left(G\left(k_{S} \mid L\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)
$$

is injective and so, replacing K by L, we may suppose that $k_{S}=K_{S}(2)$. Applying theorem 2 ' to the 2 - S-closed field $K_{S}(2)$, we obtain an isomorphism

$$
G\left(K_{S \cup S_{\mathfrak{R}}}(2) \mid K_{S}(2)\right) \cong \underset{\mathfrak{p} \in S_{\mathfrak{R}}\left(K_{S}(2)\right)}{*} T_{\mathfrak{p}}\left(K_{\mathfrak{p}}(2) \mid K_{\mathfrak{p}}\right) .
$$

Hence we have complete control over the Hochschild-Serre spectral sequence associated to $K_{S \cup S_{\mathbb{R}}}(2)\left|K_{S}(2)\right| K$. Furthermore, the weak Leopoldt conjecture holds for the cyclotomic \mathbb{Z}_{2}-extension and $K \supseteq k_{\infty}(2)$, which implies that $H^{2}\left(G\left(K_{S \cup S_{\mathbb{R}}}(2) \mid K\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)=0$. The exact sequence (2) of $\S 4$ applied to all finite subextensions $k^{\prime} \mid k$ of $K \mid k$ yields a surjection

$$
\bigoplus_{\mathfrak{p} \in S_{\mathbb{R}} \backslash S(K)}^{\prime} H^{1}\left(T\left(K_{\mathfrak{p}}(2) \mid K_{\mathfrak{p}}\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right) \rightarrow H^{2}\left(G\left(K_{S}(2) \mid K\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)
$$

and therefore, in order to prove the proposition, it suffices to show that the group $H^{2}\left(G\left(K_{S}(2) \mid K\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)$ is 2-divisible. This is trivial if $S \cap S_{\mathbb{R}}(K)=\varnothing$ because then $\operatorname{cd} G\left(K_{S}(2) \mid K\right) \leq 2$. Otherwise, this follows from the commutative diagram

The right hand vertical arrow is an isomorphism by proposition 4.1. But $H^{2}\left(T\left(K_{\mathfrak{p}}(2) \mid K_{\mathfrak{p}}\right), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)=0$ for all $\mathfrak{p} \in S \cap S_{\mathbb{R}}(K)$ and therefore the object in the lower left corner is zero.

5 Relation to étale cohomology

Let k be a number field and S a finite set of places of k. We think of $\operatorname{Spec}\left(\mathcal{O}_{k, S}\right)$ as "\{scheme-theoretic points of $\left.\operatorname{Spec}\left(\mathcal{O}_{k, S}\right)\right\} \cup\{$ real places of k not in $S\}$ ". Essentially following Zink [17], we introduce the site $\operatorname{Spec}\left(\mathcal{O}_{k, S}\right)_{e t, \text { mod }}$.

Objects of the category are pairs $\bar{U}=\left(U, U_{\text {real }}\right)$, where U is a scheme together with an étale structural morphism $\phi_{U}: U \rightarrow \operatorname{Spec}\left(\mathcal{O}_{k, S}\right)$ and $U_{\text {real }}$ is a subset of the set of real valued points $U(\mathbb{R})=\operatorname{Mor}_{\text {Schemes }}(\operatorname{Spec}(\mathbb{R}), U)$ of U such that $\phi_{U}\left(U_{\text {real }}\right) \subset S_{\mathbb{R}}(k) \backslash S$.

Morphisms are scheme morphisms $f: U \rightarrow V$ over $\operatorname{Spec}\left(\mathcal{O}_{k, S}\right)$ satisfying $f\left(U_{\text {real }}\right) \subset V_{\text {real }}$.

Coverings are families $\left\{\pi_{i}: \bar{U}_{i} \rightarrow \bar{U}\right\}_{i \in I}$ such that $\left\{\pi_{i}: U_{i} \rightarrow U\right\}_{i \in I}$ is an étale covering in the usual sense and $\bigcup_{i \in I} \pi_{i}\left(U_{\text {ireal }}\right)=U_{\text {real }}$.
There exists an obvious morphism of sites

$$
\operatorname{Spec}\left(\mathcal{O}_{k, S}\right)_{e t} \longrightarrow \operatorname{Spec}\left(\mathcal{O}_{k, S}\right)_{e t, m o d}
$$

and both sites coincide if S contains all real places of k. The pair $\bar{X}=\left(X, X_{\text {real }}\right)$ with $X=\operatorname{Spec}\left(\mathcal{O}_{k, S}\right)$ and $X_{\text {real }}=S_{\mathbb{R}}(k) \backslash S$ is the terminal object of the category and the profinite group $G_{S}(k)$ is nothing else but the fundamental group of \bar{X} with respect to this site. Let η denote the generic point of X. For a sheaf A of abelian groups on $\operatorname{Spec}\left(\mathcal{O}_{k, S}\right)_{e t, \text { mod }}$ and for any point v of \bar{X} we have a specialization homomorphisms $s_{v}: A_{v} \rightarrow A_{\eta}$ from the stalk A_{v} of A in v to that in η. For each point $v \in X_{\text {real }}$ we consider the local cohomology $H_{v}^{i}(\bar{X}, A)$ with support in v. There is a long exact localization sequence (see [17])

$$
\cdots \rightarrow \bigoplus_{v \in X_{\text {real }}} H_{v}^{i}(\bar{X}, A) \rightarrow H_{e t, \text { mod }}^{i}(\bar{X}, A) \rightarrow H_{e t}^{i}(X, A) \rightarrow \cdots
$$

and the local cohomology with support in real points is calculated as follows:
Lemma 5.1 For $v \in X_{\text {real }}$ the following holds.

$$
\begin{aligned}
H_{v}^{0}(\bar{X}, A) & =\operatorname{ker}\left(s_{v}: A_{v} \rightarrow A_{\eta}\right) \\
H_{v}^{1}(\bar{X}, A) & =\operatorname{coker}\left(s_{v}: A_{v} \rightarrow A_{\eta}\right) \\
H_{v}^{i}(\bar{X}, A) & =H^{i-1}\left(k_{v}, A_{v}\right) \quad \text { for } i \geq 2
\end{aligned}
$$

Here the right hand side of the last isomorphism is the Galois cohomology of the field k_{v}.

Proof See [17], Lemma 2.3.
Remark: Suppose that S contains all primes dividing 2 and no real primes. Let A be a locally constant constructible sheaf on $\operatorname{Spec}\left(\mathcal{O}_{k, S}\right)_{e t}$ which is annihilated by a power of 2 . We denote the push-forward of A to $\operatorname{Spec}\left(\mathcal{O}_{k, S}\right)_{e t, \bmod }$ by the same letter. By Poitou-Tate duality, the boundary map of the long exact localization sequence

$$
H_{e t}^{i}(X, A) \longrightarrow \bigoplus_{v \in X_{\text {real }}} H_{v}^{i+1}(\bar{X}, A)=\bigoplus_{v \text { arch. }} H^{i}\left(k_{v}, A_{v}\right)
$$

is an isomorphisms for $i \geq 3$ and surjective for $i=2$. Therefore, we obtain the vanishing of $H_{e t, \text { mod }}^{i}\left(\operatorname{Spec}\left(\mathcal{O}_{k, S}\right), A\right)$ for $i \geq 3$. In this situation the modified étale cohomology is connected to the "positive étale cohomology" $H_{2}^{*}\left(\operatorname{Spec}\left(\mathcal{O}_{k, S}\right), A_{+}\right)$defined in [3] in the following way. There exists a natural exact sequence

$$
\begin{aligned}
0 \rightarrow & H_{e t, \text { mod }}^{0}\left(\operatorname{Spec}\left(\mathcal{O}_{k, S}\right), A\right) \rightarrow \\
& \bigoplus_{v \text { arch. }} H^{0}\left(k_{v}, A_{v}\right) \rightarrow H_{2}^{0}\left(\operatorname{Spec}\left(\mathcal{O}_{k, S}\right), A_{+}\right) \rightarrow H_{e t, \text { mod }}^{1}\left(\operatorname{Spec}\left(\mathcal{O}_{k, S}\right), A\right) \rightarrow 0
\end{aligned}
$$

and isomorphisms

$$
H_{2}^{i}\left(\operatorname{Spec}\left(\mathcal{O}_{k, S}\right), A_{+}\right) \xrightarrow{\sim} H_{e t, \text { mod }}^{i+1}\left(\operatorname{Spec}\left(\mathcal{O}_{k, S}\right), A\right)
$$

for $i \geq 1$. This can be easily deduced from the long exact localization sequence, lemma 5.1 and the long exact sequence (2.4) of [3].

Now let A be a discrete $G_{S}(k)$-module. The module A induces locally constant sheaves on $\operatorname{Spec}\left(\mathcal{O}_{k, S}\right)_{e t, \text { mod }}$ and $\operatorname{Spec}\left(\mathcal{O}_{k, S}\right)_{e t}$, which we will denote by the same letter. According to lemma 5.1, we obtain for every $v \in X_{\text {real }}$

$$
H_{v}^{i}(\bar{X}, A)=0 \quad \text { for } i=0,1 .
$$

Let $\tilde{X}=\left(\operatorname{Spec}\left(\mathcal{O}_{k_{S}, S}\right), S_{\mathbb{R}}\left(k_{S}\right) \backslash S\left(k_{S}\right)\right.$ be the universal covering of \bar{X}. The Hochschild-Serre spectral sequence

$$
E_{2}^{i j}=H^{i}\left(G_{S}(k), H_{e t, \text { mod }}^{j}(\tilde{X}, A)\right) \Longrightarrow H_{e t, \text { mod }}^{i+j}(\bar{X}, A)
$$

induces natural comparison homomorphisms

$$
H^{i}\left(G_{S}(k), A\right) \longrightarrow H_{e t, \text { mod }}^{i}(\bar{X}, A)
$$

for all $i \geq 0$. It follows immediately from the spectral sequence that these homomorphisms are isomorphisms if

$$
H_{e t, \text { mod }}^{j}(\tilde{X}, A)=0
$$

for all $j \geq 1$.
Next we are going to prove theorem 6 of the introduction. Assume that S contains all primes dividing 2 and that A is 2 -torsion. Both sides of the comparison homomorphism commute with direct limits, and so, in order to prove theorem 6 , we may suppose that A is finite. Since A is constant on \widetilde{X}, we can easily reduce to the case $A=\mathbb{Z} / 2 \mathbb{Z}$, in order to show $H_{e t, \text { mod }}^{j}(\widetilde{X}, A)=0$ for $j \geq 1$. Furthermore, the assertion is trivial for $j=1$. The theorem is wellknown if S contains all real primes (see [17], prop. 3.3 .1 or [7], II, 2.9) and so, passing to the limit over all finite subextensions of k in k_{S}, we obtain natural isomorphisms for all $j \geq 0$.

$$
H^{j}\left(G_{S \cup S_{\mathbb{R}}}\left(k_{S}\right), \mathbb{Z} / 2 \mathbb{Z}\right) \xrightarrow{\sim} H_{e t}^{j}\left(\tilde{X} \backslash S_{\mathbb{R}}\left(k_{S}\right), \mathbb{Z} / 2 \mathbb{Z}\right) .
$$

On the other hand, theorem 2 for $T=S \cup S_{\mathbb{R}}, S=S$ applied to all finite subextensions of k in k_{S} in conjunction with theorem 5 induces isomorphisms for all $j \geq 1$.

$$
H^{j}\left(G_{S \cup S_{\mathbb{R}}}\left(k_{S}\right), \mathbb{Z} / 2 \mathbb{Z}\right) \xrightarrow{\sim} \bigoplus_{v \in S_{\mathbb{R}} \backslash S\left(k_{S}\right)}^{\prime} H^{j}\left(k_{v}, \mathbb{Z} / 2 \mathbb{Z}\right) .
$$

These two isomorphisms together with the long exact localization sequence show that

$$
H_{e t, \text { mod }}^{j}(\tilde{X}, \mathbb{Z} / 2 \mathbb{Z})=0
$$

for $j \geq 1$. This completes the proof of theorem 6 .
Theorem 6 is best understood in the context of étale homotopy, namely as a vanishing statement on the 2-parts of higher homotopy groups. For a scheme X we denote by $X_{e t}$ its étale homotopy type, i.e. a pro-simplicial set. The étale homotopy groups of X are by definition the homotopy groups of $X_{e t}$ and, as is well known, these pro-groups are pro-finite, whenever the scheme X is noetherian, connected and geometrically unibranch ([1] Theorem 11.1). If we consider the modified étale $\operatorname{site} \operatorname{Spec}\left(\mathcal{O}_{k, S}\right)_{e t, \text { mod }}$ as above, we obtain in exactly the same manner as for the usual étale site a pro-finite simplicial set $\bar{X}_{e t, \text { mod }}$. We denote the universal covering of $\bar{X}_{e t, \text { mod }}$ by $\tilde{X}_{e t, \text { mod }}$. If p is a prime number and Y. is a pro-simplicial set, we denote the pro- p completion of Y. by $Y^{\wedge p}$. Furthermore, we write $G(p)$ for the maximal pro- p factor group of a pro-group G.

Lemma 5.2 Assume that Y. is a simply connected (i.e. $\pi_{1}(Y)=$.0) pro-simplicial set such that $\pi_{i}(Y$.$) is pro-finite for all i \geq 2$. Then we have isomorphisms for all i :

$$
\pi_{i}(Y .)(p) \longrightarrow \pi_{i}\left(Y_{.}^{\wedge p}\right) .
$$

Proof: See [13], prop. 13.
For a pro-group G we denote by $K(G, 1)$ the Eilenberg-MacLane pro-simplicial set associated with G (cf. [1], (2.6)). If S contains all real primes of k the following theorem was proved in [13], prop. 14.

Theorem 5.3 Let k be a number field and S a finite set of primes of k containing all primes dividing 2 . Let \bar{X} be the pair $\left(X, X_{\text {real }}\right)$ with $X=\operatorname{Spec}\left(\mathcal{O}_{k, S}\right)$ and $X_{\text {real }}=S_{\mathbb{R}}(k) \backslash S$ endowed with the modified étale topology. Then the higher homotopy groups of $\bar{X}_{e t, \bmod }$ have no 2-part, i.e.

$$
\pi_{i}\left(\bar{X}_{e t, \text { mod }}\right)(2)=0 \quad \text { for } i \geq 2
$$

Furthermore, the canonical morphism

$$
\left(\bar{X}_{e t, m o d}\right)^{\wedge 2} \longrightarrow K\left(G_{S}(k)(2), 1\right)
$$

is a weak homotopy equivalence.
Proof: Since $G_{S}(k)$ is the fundamental group of $\bar{X}_{e t, \text { mod }}$, theorem 6 implies that the universal covering $\widetilde{X}_{e t, \text { mod }}$ of $\bar{X}_{e t, \text { mod }}$ has no cohomology with values in 2-primary coefficient groups. By the Hurewicz theorem ([1], (4.5)), the pro-2 completion of $\widetilde{X}_{e t, \text { mod }}$ is weakly contractible. Therefore lemma 5.2 implies

$$
\pi_{i}\left(\bar{X}_{e t, \text { mod }}\right)(2) \cong \pi_{i}\left(\widetilde{X}_{e t, m o d}\right)(2) \cong \pi_{i}\left(\left(\widetilde{X}_{e t, m o d}\right)^{\wedge 2}\right)=0
$$

for $i \geq 2$, which shows the first statement of the theorem. By theorem 5 , for every finite 2-primary $G_{S}(k)(2)$-torsion module A the inflation homomorphism $H^{i}\left(G_{S}(k)(2), A\right) \longrightarrow H^{i}\left(G_{S}(k), A\right)$ is an isomorphism for all i. The same arguments as above show that the universal covering of $\left(\bar{X}_{e t, \text { mod }}\right)^{\wedge 2}$ is weakly contractible. This proves the second statement.

6 Closing Remarks

1. Dualizing modules

Unfortunately, we do not have (despite semi-tautological reformulations of the definition) a good description of the p-dualizing module I of the group G_{S}, where S is a finite set of finite primes containing S_{p}. If k is totally imaginary, then I is determined by the exact sequence

$$
0 \longrightarrow \mu_{p^{\infty}} \xrightarrow{\text { diag }} \bigoplus_{\mathfrak{p} \in S\left(k_{S}\right)}^{\prime} \mu_{p^{\infty}} \longrightarrow I \longrightarrow 0
$$

(see [9], (10.2.1)) and the group G_{S} is a duality group at p of dimension 2 (see [13], th. 4 or [9], (10.9.1)). The general case remains unsolved (also for odd p).

2. Free profinite product decompositions

In this paper we used free pro-p-product decompositions of Galois groups of pro- p-extensions of global fields into Galois groups of local pro- p-extensions in an essential way. One might ask whether, for sets of places $T \supset S$, the natural homomorphism

$$
\phi: \underset{\mathfrak{p} \in T \backslash S\left(k_{S}\right)}{*} T\left(\bar{k}_{\mathfrak{p}} \mid k\right) \longrightarrow G\left(k_{T} \mid k_{S}\right)
$$

is an isomorphism, where the free product on the left hand side is the free product of profinite groups. More precisely, one has to ask, whether there exists a continuous section to the natural projection $T \backslash S\left(k_{T}\right) \rightarrow T \backslash S\left(k_{S}\right)$ such that the above map is an isomorphism (cf. the discussion in section 2). We do not know the answers to this question in general. It is 'yes' if S contains all but finitely many primes of k (see below). But it seems likely that ϕ is never an isomorphism if T and S are finite. The present level of knowledge on this question is rather low. For example, we do not know whether there are infinitely many prime numbers p such that p^{∞} divides the order of G_{T}. The best result known in this direction is that if T contains all real places and all primes dividing one prime number p, then there exist infinitely many prime numbers ℓ dividing the order of G_{T} (see [14], cor. 3 or [9], (10.9.4)).

In the case that S contains all but finitely many primes of k, we can deduce the above statement by applying the following slightly more general result to the complement of S :

For a finite set S of primes of k, let k^{S} be the maximal extension of k in which all primes in S are totally decomposed. Then there exists a continuous
section to the natural projection $S(\bar{k}) \rightarrow S\left(k^{S}\right)$ such that the natural map

$$
\underset{\mathfrak{p} \in S\left(k^{S}\right)}{*} G\left(\bar{k}_{\mathfrak{p}} \mid k\right) \longrightarrow G\left(\bar{k} \mid k^{S}\right)
$$

is an isomorphism. This had been proved first in the special case $S=S_{\mathbb{R}}$ by Fried-Haran-Völklein [4] and then by Pop [11] for arbitrary finite S.

3. Leopoldt's conjecture

The Leopoldt conjecture for k and a prime number p holds if and only if the group

$$
H^{2}\left(G_{S}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)
$$

is trivial for one (all) finite set(s) of primes $S \supseteq S_{p}$. The weak Leopoldt conjecture is true for k, p and a \mathbb{Z}_{p}-extension $k_{\infty} \mid k$ if and only if

$$
H^{2}\left(G_{S}\left(k_{\infty}\right), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)
$$

is trivial for one (all) finite set(s) of primes $S \supseteq S_{p}$ (of k). This is well known for odd p and for $p=2$ it can be easily deduced from the above results.

4. Iwasawa theory

Let k be a number field, $S \supseteq S_{2}$ a finite set of primes of k and $k_{\infty} \mid k$ the cyclotomic \mathbb{Z}_{2}-extension of k. Let $\Gamma=G\left(k_{\infty} \mid k\right) \cong \mathbb{Z}_{2}$ and let $\Lambda=\mathbb{Z}_{2} \llbracket \Gamma \rrbracket \cong$ $\mathbb{Z}_{2}[[T]]$ be the Iwasawa algebra. We consider the compact Λ-module

$$
X_{S}=G\left(k_{S}(2) \mid k_{\infty}\right)^{a b}
$$

Then the following holds
(i) X_{S} is a finitely generated Λ-module.
(ii) $\operatorname{rank}_{\Lambda} X_{S}=r_{2}$ (the number of complex places of k).
(iii) X_{S} does not contain any nontrivial finite Λ-submodule.
(iv) the μ-invariant of X_{S} is greater than or equal to $\# S \cap S_{\mathbb{R}}(k)$.

Properties (i)-(iii) follow in a purely formal way (see [9], (5.6.15)) from the facts that: (a) $\chi_{2}\left(G_{S}(2)\right)=-r_{2}$, (b) $H^{2}\left(G_{S}\left(k_{\infty}\right)(2), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)=0$ and (c) $H^{2}\left(G_{S}(2), \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)$ is 2-divisible. Assertion (iv) is trivial if S contains no real places and in the general case it follows from the exact sequence

$$
0 \rightarrow(\Lambda / 2)^{\# S \cap S_{\mathbb{R}}(k)} \longrightarrow X_{S} \longrightarrow X_{S \backslash S_{\mathbb{R}}} \longrightarrow 0
$$

Now let k^{+}be a totally real number field, $k=k^{+}\left(\mu_{4}\right), k_{\infty}^{+}$the cyclotomic $\mathbb{Z}_{2^{-}}$ extension of k^{+}and $k_{\infty}=k_{\infty}^{+}\left(\mu_{4}\right)=k\left(\mu_{2} \infty\right)$. Let k_{n} be the unique subextension of degree 2^{n} in k_{∞} and let J be the complex conjugation. We set $A_{n}=\operatorname{Cl}\left(k_{n}\right)(2)$ and

$$
A_{n}^{-}:=\left\{a \in A_{n} \mid a J(a)=1\right\} .
$$

Furthermore, let $A_{\infty}^{-}=\lim _{\longrightarrow} A_{n}^{-}, X^{+}=X_{S_{2}}\left(k^{+}\right)$, let \vee denote the Pontryagin dual and (-1) the Tate-twist by -1 . Then there exists a natural homomorphism

$$
\phi:\left(A_{\infty}^{-}\right)^{\vee} \longrightarrow X^{+}(-1)
$$

whose kernel and cokernel are annihilated by 2 . If the Iwasawa μ-invariant of k is zero (this is known if $k \mid \mathbb{Q}$ is abelian), then ϕ is a pseudo-isomorphism, i.e. ϕ has finite kernel and cokernel. This can be seen by a slight modification of the arguments given in [5], §2:

Let M^{+}be the maximal abelian 2-extension of k_{∞}^{+}which is unramified outside S_{2}, in particular, M^{+}is totally real. Kummer theory shows that, for an $\alpha \in k_{\infty}^{\times}$, the field $k_{\infty}(\sqrt[2^{n}]{\alpha})$ is contained in $M^{+} k_{\infty}$ if and only if: (a) $\alpha \in k_{\infty, \mathfrak{p}}^{\times 2^{n}}$ for all $\mathfrak{p} \notin S\left(k_{\infty}\right)$ and (b) $\alpha J(\alpha)=\beta^{2^{n}}$ for a totally positive element $\beta \in k_{\infty}^{+}$. Let R_{n} be the subgroup in $k_{\infty}^{\times} / k_{\infty}^{\times 2^{n}}$ generated by elements satisfying (a) and (b) and let

$$
\mathfrak{M}^{-}:=\underset{n}{\lim } R_{n} \subset k_{\infty}^{\times} \otimes \mathbb{Q}_{2} / \mathbb{Z}_{2}
$$

Then we have a perfect Kummer pairing $X^{+} \times \mathfrak{M}^{-} \rightarrow \mu_{2 \infty}$. Since all primes dividing 2 are infinitely ramified in $k_{\infty} \mid k$, for $\alpha \otimes 2^{-n} \in \mathfrak{M}^{-}$there exists a unique ideal \mathfrak{a} in k_{∞} with $\mathfrak{a}^{2^{n}}=(\alpha)$ and the class [\mathfrak{a}] is contained in A_{∞}^{-}. This yields a homomorphism

$$
\phi^{\vee}: \mathfrak{M}^{-} \longrightarrow A_{\infty}^{-}
$$

A straightforward computation shows that $\operatorname{im}\left(\phi^{\vee}\right) \supseteq\left(A_{\infty}^{-}\right)^{2}$ and that $\operatorname{ker}\left(\phi^{\vee}\right)$ is the image of $\mathcal{O}_{k_{\infty}^{+}, \varnothing}^{\times} / \mathcal{O}_{k_{\infty}^{+}, S_{\mathbb{Z}}}^{\times 2}$ in \mathfrak{M}^{-}(notational conventions as in $\S 4$). Thus, if the Iwasawa μ-invariant of k is zero, then the cokernel of ϕ^{\vee} is finite and it remains to show the same for its kernel. Since $\mu=0$, the \mathbb{F}_{2}-ranks of ${ }_{2} \mathrm{Cl}^{0}\left(k_{n}^{+}\right)$ (the subgroup of elements annihilated by 2 in the ideal class groups in the narrow sense) are bounded independently of n. Thus also the \mathbb{F}_{2}-ranks of the kernels of the signature maps

$$
\mathcal{O}_{k_{n}^{+}, S_{\mathbb{R}}}^{\times} / \mathcal{O}_{k_{n}^{+}, S_{\mathbb{R}}}^{\times 2} \longrightarrow \bigoplus_{v \in S_{\mathbb{R}}\left(k_{n}^{+}\right)} \mathbb{R}^{\times} / \mathbb{R}^{\times 2}
$$

are bounded independently of n. But the direct limit over n of these kernels is just the group in question. Finally, we obtain the result by taking Pontryagin duals.

References

[1] M. Artin, B. Mazur Etale Homotopy. Lecture Notes in Mathematics vol. 100, Springer 1969
[2] E. Binz, J. Neukirch, G. Wenzel A subgroup theorem for free products of profinite groups. J. of Algebra 19 (1971) 104-109
[3] T. Chinburg, M. Kolster, G. Pappas, V. Snaith Galois structure of K-groups of rings of integers. K-theory 14 (1998) 319-369
[4] M. D. Fried, D. Haran, H. Völklein Absolute Galois group of the totally real numbers. C. R. Acad. Sci., Paris 317 (1993) 995-999
[5] R. Greenberg On p-adic L-functions and cyclotomic fields II. Nagoya Math. J. 67 (1977) 139-158
[6] A. Grothendieck, J. A. Dieudonné Eléments de géométrie algébrique I. Grundlehren der mathematischen Wissenschaften vol. 166, Springer 1971
[7] J. S. Milne Arithmetic Duality Theorems. Persp. in Math. vol. 1, Academic Press Boston 1986
[8] J. Neukirch Freie Produkte pro-endlicher Gruppen und ihre Kohomologie. Archiv der Math. 22 (1971) 337-357
[9] J. Neukirch, A. Schmidt, K. Wingberg Cohomology of Number Fields. Grundlehren der mathematischen Wissenschaften vol. 323, Springer 2000
[10] O. Neumann On maximal p-extensions, class numbers and unit signatures. Soc. Math. de France, Astérisque 41-42 (1977), 239-246
[11] F. Pop Embedding problems over large fields. Ann. of Math. 144 (1996) 1-34
[12] I. R. Šafarevič Extensions with given points of ramification. (Russian) Inst. haut. Etud. Sci. Publ. Math. 18 (1964), 295-319; English translation in Am. Math. Soc., Transl. 59 (1966), 128-149
[13] A. Schmidt Extensions with restricted ramification and duality for arithmetic schemes. Comp. Math. 100 (1996) 233-245
[14] L. C. Washington Class numbers of \mathbb{Z}_{p}-extensions. Ann. Math. 214 (1975) 177-193
[15] K. Wingberg Freie Produktzerlegungen von Galoisgruppen und IwasawaInvarianten für p-Erweiterungen von \mathbb{Q}. J. reine u. angew. Math. 341 (1983) 112-129
[16] K. Wingberg On Galois groups of p-closed algebraic number fields with restricted ramification. J. reine u. angew. Math. 400 (1989) 185-202
[17] T. Zink Etale cohomology and duality in number fields. Appendix 2 to K. Haberland: Galois cohomology of algebraic number fields. Dt. Verlag der Wissenschaften, Berlin 1978

Alexander Schmidt Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69120 Heidelberg, Deutschland e-mail: schmidt@mathi.uni-heidelberg.de

