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by Alexander S
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Dedi
ated to the memory of J�urgen Neukir
h

The Galois 
ohomology of the S-idele 
lass group

H

i

(G(k

S

jk); C

S

(k

S

))

plays an important role in 
lass �eld theory. Here S is a set of primes of a number

�eld k, k

S

denotes the maximal extension of k whi
h is unrami�ed outside S and,

though 
arrying a 
anoni
al topology, C

S

= C

S

(k

S

) is 
onsidered as a dis
rete

G

S

= G(k

S

jk)-module. The natural lo
ally 
ompa
t topology on C

S

, however,

be
omes essential in the proof of the global duality theorem of Tate-Poitou. The


ru
ial point is the following theorem of Poitou whi
h is applied to the submodule

C

0

S

� C

S

of idele 
lasses of norm 1.

Theorem 1 (Poitou) Let G be a pro�nite group and let C be a 
lass formation

for G su
h that the group of universal norms

N

U

C =

\

V�U

N

U=V

C

V

� C

U

is divisible for all open subgroups U � G. Furthermore, suppose that for every

open subgroup U � G the group of invariants C

U


arries a natural 
ompa
t

topology. Then the 
up produ
t

^

H

i

(G;Hom(A;C)) �

^

H

2�i

(G;A)

[

�! H

2

(G;C)

inv

�

�!

1

#G

Z=Z

indu
es isomorphisms

^

H

i

(G;Hom(A;C))

�

�!

^

H

2�i

(G;A)

_

for all i � 0 and every dis
rete G-module A whi
h is �nitely generated as a

Z-module.
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Here _ denotes the Pontryagin dual,

^

H

i

(G;Hom(A;C)) is the usual 
ohomology

of pro�nite groups in positive dimensions and for i � 0 it denotes the Tate


ohomology of pro�nite groups, whi
h is de�ned by

^

H

i

(G;M) = lim

 �

U

^

H

i

(G=U;M

U

); i � 0; (1)

where U runs through the open normal subgroups of G. For V � U the transi-

tion map is given by the de
ation def :

^

H

i

(G=V;M

V

) !

^

H

i

(G=U;M

U

), whose

de�nition we will re
all below.

The aim of this paper is twofold. First, answering a question of J. Neukir
h,

we give a 
omplete proof of theorem 1, i.e. we �ll a gap in the original proof of

Poitou. Se
ondly, in the arithmeti
 
ase, we extend Poitou's theorem to positive

dimensions i, proving theorems 2 and 3 below. We denote the set of ar
himedean

pla
es of a number �eld k by S

1

and, for a prime number p, the set of primes

dividing p by S

p

. If A is a G-module and i > 0, we write

^

H

i

(G

S

; A)(p) for the

p-torsion subgroup of the torsion group

^

H

i

(G

S

; A). If i � 0 and

^

H

i

(G

S

; A) is

pro�nite, then we use the notation

^

H

i

(G

S

; A)(p) for the maximal pro-p-fa
tor

group.

Theorem 2 Let p be a prime number and let S be a �nite set of primes of the

number �eld k su
h that S � S

p

[ S

1

. Then the 
up produ
t

^

H

i

(G

S

;Hom(A;C

S

)) �

^

H

2�i

(G

S

; A)

[

�! H

2

(G

S

; C

S

)

inv

�

�!

1

#G

S

Z=Z

indu
es isomorphisms

^

H

i

(G

S

;Hom(A;C

S

))(p)

�

�!

^

H

2�i

(G

S

; A)(p)

_

for all i 2 Z and every dis
rete G-module A whi
h is �nitely generated as a

Z-module.

So far, the pairing H

1

(G

S

;Hom(A;C

S

))�H

1

(G

S

; A)

[

! H

2

(G

S

; C

S

)(p)

�

=

Q

p

=Z

p

has been known to be non-degenerate only for �nite p-primary A (
f. [S℄ thm.4).

The extension of this duality to �nitely generated modules 
omes somewhat un-

expe
ted be
ause we do not know whether the stri
t 
ohomologi
al p-dimension

of G

S

a
tually equals 2. (A proof of this would require to show the validity of

Leopoldt's 
onje
ture for the prime number p and for every �nite subextension of

k in k

S

). Furthermore, note that we did not assume that k is totally imaginary,

if p = 2. The essential input in the proof of theorem 2 is theorem 6 of [S℄ whi
h

asserts that C

S

is p-divisible under the given assumptions.

As an appli
ation of the prin
ipal ideal theorem, the p-divisibility of C

S


an

also be veri�ed for prime numbers p su
h that none of the primes dividing p is

in S. Re
all that one says that p

1

divides the order #G of a pro�nite group G,

if we �nd open subgroups in G of index divisible by arbitrary high p-powers.
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Theorem 3 Let p be a prime number and let S be a �nite set of primes of the

number �eld k su
h that S � S

1

and S \ S

p

= ;. If p

1

j#G

S

, then the 
up

produ
t

^

H

i

(G

S

;Hom(A;C

S

)) �

^

H

2�i

(G

S

; A)

[

�! H

2

(G

S

; C

S

)

inv

�

�!

1

#G

S

Z=Z

indu
es isomorphisms

^

H

i

(G

S

;Hom(A;C

S

))(p)

�

�!

^

H

2�i

(G

S

; A)(p)

_

for all i 2 Z and every dis
rete G-module A whi
h is �nitely generated as a

Z-module.

We do not know anything about the 
ohomologi
al p-dimension of G

S

in the

situation of theorem 3. It applies, for example, to the 
ase S = S

1

, if the p-
lass

�eld tower of k is in�nite.

In order to explain the above mentioned problem in Poitou's proof of theo-

rem 1, let us re
all the de�nition of the de
ation map. Consider for q � 0 the


omposition

H

q

(G=V;M

V

)

edge

�! H

q

(G=U; (M

V

)

U

)

N

�

�! H

q

(G=U;M

U

);

where edge is the edge morphism (
oin
ation) of the homologi
al Ho
hs
hild-

Serre spe
tral sequen
e asso
iated to the group extension 1 ! U=V ! G=V !

G=U ! 1 and N

�

is the map whi
h is indu
ed on homology by the norm

N

U=V

: (M

V

)

U

!M

U

. Via the identi�
ation of homology with Tate 
ohomology

in negative dimensions, this de�nes the de
ation in dimension i < �1. In dimen-

sions i = 0;�1, the map def is indu
ed via the identi�
ations

^

H

0

(G=U;A

U

)

�

=

A

G

=N

G=U

A

U

and

^

H

�1

(G=U;A

U

)

�

=

N

G=U

A

U

=I

G=U

A

U

by the identity and the norm

map, respe
tively.

It is 
lear from its de�nition that the Tate 
ohomology of pro�nite groups

does not satisfy all properties of a usual 
ohomology fun
tor. Theorem 1 follows

by a limit pro
ess from the following well known theorem of Tate and Nakayama

(see e.g. [NSW℄ Thm. 3.1.5).

Theorem 4 (Tate-Nakayama) Let G be a �nite group, let C be a 
lass module

for G and let 
 2 H

2

(G;C) be a fundamental 
lass. Then for all integers i 2 Z

the 
up produ
t

^

H

i

(G;Hom(A;C)) �

^

H

2�i

(G;A)

[

�! H

2

(G;C)

�

=

1

#G

Z=Z;

where H

2

(G;C)

�

=

1

#G

Z=Z is given by 
 7!

1

#G

mod Z, indu
es an isomorphism

^

H

i

(G;Hom(A;C))

�

=

^

H

2�i

(G;A)

_

of �nite abelian groups, provided that A is �nitely generated and Z-free.
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Already in order to de�ne the duality map in theorem 1, one has to show that

the 
up produ
t is 
ompatible with de
ation. Expli
itly, given a �nite group G,

a normal subgroup U � G and G-modules A;B, we have to show that for i � 0

and q � 1 the diagram

(�)

�

[

�

[

�

def

�

inf

�

inf

^

H

q

(G=U; (A
 B)

U

)

^

H

q�i

(G=U;B

U

)�

^

H

i

(G=U;A

U

)

^

H

q

(G;A
 B)

^

H

q�i

(G;B)�

^

H

i

(G;A)


ommutes (inf denotes the in
ation map). In 1995 J. Neukir
h pointed out that

there is no proof for the 
ommutativity of (�) in the literature. Indeed, G. Poitou

in his original paper [P℄ in
orre
tly 
laims that the required 
ommutativity follows

easily from the 
ase i = 0 by dimension shifting. L. V. Kuz'min, 
f. [K℄, noti
ed

that this is not true and gave a proof in a spe
ial 
ase. All other authors (at

least to the restri
ted knowledge of the author of the present paper) ignored the

problem.

In dimensions i = �1; 0, however, the 
ommutativity of (�) 
an be veri�ed

dire
tly, whi
h justi�es theorem 1 for i = 0. Therefore Neukir
h proposed to give

a proof of the duality theorem of Tate-Poitou using theorem 1 only in dimension

i = 0. A
tually, this 
an be done, 
f. [NSW℄, Ch.VIII. However, la
king duality

for

^

H

�1

, the proof of Tate's 9-term sequen
e for �nite modules be
omes rather

intri
ate and one has to 
ombine its proof with that of the global Euler-Poin
ar�e


hara
teristi
 formula (lo
. 
it.). The 
ow of arguments would be
ome more

streamlined if we were allowed to use Poitou's theorem in arbitrary dimensions.

Furthermore, we need the 
orre
tness of the de�nition of the duality homomor-

phism also for theorems 2 and 3. Therefore the �rst se
tions of this paper are

devoted to the rather te
hni
al veri�
ation of the 
ommutativity of diagram (�)

for all i � 0. Then we re
all the proof of theorem 1 and show theorems 2 and 3.

0. Some fa
ts about Tate 
ohomology

Let G be a �nite group. Re
all (see e.g. [B℄ Ch.IV) that Tate 
ohomology is


onstru
ted using a 
omplete resolution P

�

(of Z)

�

d

2

�

d

1

�

d

0

�

d

�1

	

d

�2


�

�

�

�


Æ

00

Z

� � �P

�3

P

�2

P

�1

P

0

P

1

� � �


onsisting of �nitely generated proje
tive Z[G℄-modules P

n

, n 2 Z, by the rule

^

H

i

(G;A) := H

i

(Hom(P

�

; A)

G

); (2)
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where Hom(P

�

; A)

i

:= Hom(P

i

; A). If P is �nitely generated and proje
tive,

then the same holds for P

+

= Hom(P;Z)

1

and for an arbitrary G-module A

the module Hom(P;A) is 
ohomologi
ally trivial. Therefore the norm indu
es an

isomorphism

(P

+


 A)

G

�!

�

Hom(P;A)

G

N

G

�

�! Hom(P;A)

G

; (3)

whi
h, applied to the negative part of the 
omplete resolution, implies isomor-

phisms

H

i

(G;A)

N

G

�

�!

^

H

�i�1

(G;A) for i � 1: (4)

Re
all the de�nition of the 
up produ
t (
f. [B℄ 
hap. IV x5)

^

H

p

�

^

H

q

�!

^

H

p+q

.

It is indu
ed by the tensor produ
t in dimension 0 and is uniquely 
hara
terized

by its fun
torial properties. In order to 
onstru
t it, one uses an (essentially

unique) diagonal approximation

� : P

�

�! P

�


 P

�

; (5)

i.e. a family of G-module homomorphisms '

p;q

: P

p+q

! P

p


 P

q

, p; q 2 Z

satisfying a 
ertain list of axioms (lo
. 
it.).

The abstra
t de�nition of the 
up produ
t, however, is not suÆ
ient for our pur-

poses. We will have to �x a parti
ular 
omplete resolution P

�

and an expli
itly

given diagonal approximation '

p;q

, p; q 2 Z. Fortunately, su
h an expli
it diag-

onal approximation is given in [AW℄ for the homogeneous standard resolution.

The modules in this resolution are given by

P

i

= P

�1�i

= Z[G

i+1

℄; i � 0 (6)

and the di�erentials are de�ned for i > 0 by

d

i

(g

0

; : : : ; g

i

) =

i

X

j=0

(�1)

j

(g

0

; : : : ; g

j�1

; g

j+1

; : : : ; g

i

); (7)

d

�i

(g

1

; : : : ; g

i

) =

X

�2G

i

X

j=0

(�1)

j

(g

1

; : : : ; g

j

; �; g

j+1

; : : : ; g

i

); (8)

while d

0

: P

0

�! P

�1

is given by

d

0

(g

0

) =

X

�2G

�g

0

(=

X

�2G

�): (9)

An expli
it diagonal approximation for this 
omplex is given by (
f. [AW℄):

If p � 0 and q � 0,

'

p;q

(�

0

; : : : ; �

p+q

) = (�

0

; : : : ; �

p

)
 (�

p

; : : : ; �

p+q

) : (10)

1

Hom always means Hom

Z
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If p � 1 and q � 1,

'

�p;�q

(�

1

; : : : ; �

p+q

) = (�

1

; : : : ; �

p

)
 (�

p+1

; : : : ; �

p+q

) : (11)

If p � 0 and q � 1,

'

p;�p�q

(�

1

; : : : ; �

q

) =

X

(�

1

; �

1

; : : : ; �

p

)
 (�

p

; : : : ; �

1

; �

1

; : : : ; �

q

) ; (12)

'

�p�q;p

(�

1

; : : : ; �

q

) =

X

(�

1

; : : : ; �

q

; �

1

; : : : ; �

p

)
 (�

p

; : : : ; �

1

; �

q

) ; (13)

'

p+q;�q

(�

0

; : : : ; �

p

) =

X

(�

0

; : : : ; �

p

; �

1

; : : : ; �

q

)
 (�

q

; : : : ; �

1

) ; (14)

'

�q;p+q

(�

0

; : : : ; �

p

) =

X

(�

1

; : : : ; �

q

)
 (�

q

; : : : ; �

1

; �

0

; : : : ; �

p

) ; (15)

where the �

i

on the right-hand side run independently through G.

1. The diagram (�) 
ommutes

Let P

(G)

�

, resp. P

(G=U)

�

be the 
omplete standard resolution for G, resp. G=U

as de�ned in the last se
tion.

Lemma 1 Let G be a �nite group and let U � G be a normal subgroup. Let in

negative dimension the map �

�i

: P

(G=U)

�i

�! P

(G)

�i

be given by

(�

1

U; : : : ; �

i

U) 7�!

X

�

1

;:::;�

i

2U

(�

1

�

1

; : : : ; �

i

�

i

); (16)

where the �

i

on the right-hand side run independently through U . Then in dimen-

sion � �2 the de
ation map is indu
ed by a 
o
y
le map

def : Hom

G

(P

(G)

�

; A) �! Hom

G=U

(P

(G=U)

�

; A

U

);

whi
h is uniquely de�ned by the 
ommutative diagram

�

N

G

�

(�

�

�i

;(N

U

)

�

)

�

N

G=U

�

def

Hom

G=U

(P

(G=U)

�i

; A

U

):Hom(P

(G=U)

�i

; A

U

)

G=U

Hom

G

(P

(G)

�i

; A)Hom(P

(G)

�i

; A)

G

Proof: First note that the map �

�i


ommutes with the di�erential on the neg-

ative part of the standard 
omplex. Let (g

1

; : : : ; g

i

)

�

g

1

;:::;g

i

2G

denote the dual ba-

sis of (P

(G)

�i

)

+

= Hom(P

(G)

�i

;Z), i.e. (g

1

; : : : ; g

i

)

�

maps (g

1

; : : : ; g

i

) to 1 and all

other basis elements of P

(G)

�i

to zero. The dual basis of P

(G=U)

�i

+

is denoted by
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((g

1

U); : : : ; (g

i

U))

�

g

1

U;:::;g

i

U2G=U

. Consider the diagram

�

D

�

D

�

D

�

N

G

�

N

G=U

�

N

G=U

�


oinf

�

id
N

U

�

(�

�

�i

;pr

�

)

�

(id

�

;(N

U

)

�

)

�

�

�

(id

�

;(N

U

)

�

)

Hom

G=U

(P

(G=U)

�i

; A

U

):Hom(P

(G=U)

�i

; A

U

)

G=U

((P

(G=U)

�i

)

+


 A

U

)

G=U

Hom

G=U

(P

(G=U)

�i

; A

U

)Hom(P

(G=U)

�i

; A

U

)

G=U

((P

(G=U)

�i

)

+


 A

U

)

G=U

Hom

G

(P

(G)

�i

; A)Hom(P

(G)

�i

; A)

G

((P

(G)

�i

)

+


 A)

G

Explanations: pr : A ! A

U

is the natural proje
tion, 
oinf is the 
hain map

whi
h indu
es 
oin
ation on homology, it is indu
ed by pr and by the map

P

(G)

�i

+

! P

(G=U)

�i

+

, whi
h sends (g

�

1

; : : : ; g

�

i

) to ((g

1

U)

�

; : : : ; (g

i

U)

�

). The maps

D are indu
ed by the 
anoni
al duality isomorphisms P

+


A

�

=

Hom(P;A) (the

P

�i

are free of �nite rank). A simple 
al
ulation shows that the upper left square


ommutes and we de�ne � in order to let the upper right square 
ommute. The

lower squares 
ommute obviously. By de�nition, def is indu
ed by the 
ompo-

sition of the two verti
al arrows on the right. This 
ompletes the proof of the

lemma. 2

Now assume that A and B are G-modules. The problem in extending the


ommutativity of (�) from i = 0 to the 
ase of arbitrary dimensions is that

we 
annot make the shift for A and A

U

simultaneously (and, 
learly, the same

problem o

urs for B). That is why we are for
ed to make these expli
it 
hain


al
ulations below.

Suppose that i � 2 and q � 1. Let �x 2

^

H

�i

(G;A), �y 2 H

q+i

(G=U;B

U

)

be 
ohomology 
lasses represented by 
o
y
les x 2 Hom

G

(P

(G)

�i

; A) and y 2

Hom

G=U

(P

(G=U)

q+i

; A), respe
tively.

Proposition 2

�x [ inf �y = inf (def �x [ �y) 2 H

q

(G;A
B):

Proof: We 
al
ulate both sides on the level of 
o
hains. Let us start with the

left side. For (�

0

; : : : ; �

q

) 2 P

(G)

q

we obtain by (15)

(x [ inf y)(�

0

; : : : ; �

q

) =

X

�

1

;:::;�

i

2G

x(�

1

; : : : ; �

i

)
 y(�

i

U; : : : ; �

1

U; �

0

U; : : : ; �

q

U):

In order to 
ompute the right side, 
hoose a z 2 Hom(P

(G)

�i

; A) with x = N

G

z.

Then by (15) and by lemma 1 we have

7



inf (defx [ y)(�

0

; : : : ; �

q

) =

�

(N

G=U

(�

�

�i

; (N

U

)

�

)z) [ y

�

(�

0

U; : : : ; �

q

U)

=

X

�

1

U;:::;�

i

U2G=U

(N

G=U

(�

�

�i

; (N

U

)

�

)z)(�

1

U; : : : ; �

i

U)
 y(�

i

U; : : : ; �

1

U; �

0

U; : : : ; �

q

U):

Using the de�nition of �

�i

and of N

U

this transforms to

X

�U2G=U

X

u2U

X

�

1

U;:::;�

i

U2G=U

X

u

1

;:::;u

i

2U

�u z(�

�1

�

1

u

1

; : : : ; �

�1

�

i

u

i

)
 y(�

i

U; : : : ; �

1

U; �

0

U; : : : ; �

q

U);

whi
h 
oin
ides with

X

�

1

;:::;�

i

2G

(N

G

z)(�

1

; : : : ; �

i

)
 y(�

i

U; : : : ; �

1

U; �

0

U; : : : ; �

q

U):

This shows the proposition. 2

Proposition 3 For i � 0 and q � 1 the diagram

(�)

�

[

 

[

!

def

"

inf

#

inf

^

H

q

(G=U; (A
B)

U

);

^

H

q�i

(G=U;B

U

)�

^

H

i

(G=U;A

U

)

^

H

q

(G;A
 B)

^

H

q�i

(G;B)�

^

H

i

(G;A)


ommutes.

Proof: For i � �2 this follows from the last proposition. Via the isomorphism

N

G

A=I

G

A �!

�

H

�1

(G;A)

a 7�! x

a

: Z[G℄! A; � 7! �(a)

the 
up produ
t is given on the 
hain level by

x

a

[ y(�

0

; : : : ; �

q

) =

X

�2G

�a
 y(�; �

0

; : : : ; �

q

):

The 
ommutativity of (�) for i = �1 follows immediately, sin
e def is indu
ed by

the norm

N

U

:

N

G

A=I

G

A �!

N

G=U

A

U

=I

G=U

A

U

:

The 
ase i = 0 is obvious. 2
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2. Proof of the theorems

From now on let G be a pro�nite group. Having veri�ed the 
ommutativity of

the diagram (�), we 
an now dedu
e the following proposition from the theorem

of Tate-Nakayama for �nite groups.

Proposition 4 Under the assumption of theorem 1 suppose that A is Z-free.

Then the 
up produ
t

^

H

i

(G;Hom(A;C)) �

^

H

2�i

(G;A)

[

�! H

2

(G;C)

inv

�

�!

1

#G

Z=Z

indu
es isomorphisms

^

H

i

(G;Hom(A;C))

�

�!

^

H

2�i

(G;A)

_

for all i 2 Z.

Proof: For i 6= 1 this follows easily from the theorem 4 by passing to the limit

over G=U , where U runs through the open normal subgroups in G. For i = 1, let

U � G be an open normal subgroup whi
h a
ts trivially on A. Sin
e A is Z-free,

H

1

(U=V;A

V

) = 0 for every open normal subgroup V � U and therefore

H

1

(G=U;A

U

)!

�

H

1

(G=V;A

V

):

Using the fa
t that C is a 
lass formation, we obtain

H

1

(U=V;Hom(A;C)

V

) = H

1

(U=V;Hom(A;C

V

))

�

=

H

1

(U=V; C

V

)

rank

Z

A

= 0:

This implies that

H

1

(G=U;Hom(A;C)

U

)!

�

H

1

(G=V;Hom(A;C)

V

):

A stationary limit pro
ess shows that theorem 4 implies proposition 4 also in

dimension 1. 2

For a dis
rete G-module M we denote by

N

G

M =

\

U�G

N

G=U

M

U

�M

G

the module of universal norms of M . In the following de�nition we systematize

the assumption on the 
ompa
tness of C

U

in theorem 1.

De�nition 1 Let G be a pro�nite group. A level-
ompa
t G-module is a dis
rete

G-module M (i.e. M =

S

U

M

U

, where U runs through the open subgroups of G)

whi
h is endowed with an additional topology, su
h that the a
tion

G�M �!M

is 
ontinuous and M

U

is 
ompa
t for every open subgroup U � G.

9



IfM is level-
ompa
t, then for i � 0 the groups

^

H

i

(G;M) are abelian pro�nite

groups in a natural way: For every open normal U � G the group

^

H

i

(G=U;M

U

)

inherits a natural 
ompa
t topology from M

U

via the standard 
omplex. Fur-

thermore, this group is annihilated by (G : U), hen
e

^

H

i

(G=U;M

U

) and thus

also

^

H

i

(G;M) is pro�nite. For i > 0 we give H

i

(G;M) the dis
rete topology.

Lemma 5 Let M be a level-
ompa
t G-module. Then

^

H

0

(G;M) =M

G

=N

G

M:

Proof: For every open normal subgroup U � G we have a short exa
t sequen
e

N

G=U

M

U

�!M

G

�!

^

H

0

(G=U;M

U

) �! 0:

Sin
e all groups are 
ompa
t by assumption, the sequen
e remains exa
t after

passing to the proje
tive limit over all U . 2

Lemma 6 Let M be a level-
ompa
t G-module. Suppose that for every open

subgroup U � G a 
losed subgroup

M(U) �M

U

is given in su
h a way that the following 
onditions hold

(i) N

U

M �M(U) for every open U � G,

(ii) if V is normal in U , then N

U=V

:M

V

!M

U

maps M(V ) to M(U).

Then

^

H

i

(G;M)

�

=

lim

 �

U

^

H

i

(G=U;M(U))

for all i � �1.

Proof: We have seen in lemma 1 that the de
ation maps are in negative di-

mensions given by a map on the 
hain level. As proje
tive limits are exa
t on


ompa
t groups, we see that for i � �2 the group

^

H

i

(G;M) also 
an be 
al
u-

lated as the quotient of the inverse limit of the 
o
y
les modulo the inverse limit

of the 
oboundaries. These, however take values in the groups of universal norms

on the 
orresponding levels, i.e. we may take the limit over the groups M(U)

instead of M

U

as well. This shows the lemma for i � �2. For i = �1 de
ation

is expli
itly given by the norm and a straightforward 
omputation, similarly ex-

ploiting the level-
ompa
tness, shows the statement also in this 
ase (
f. [NSW℄

3.1.7). 2
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Proposition 7 Let

0 �!M

0

i

�!M

j

�!M

00

be an exa
t sequen
e of level-
ompa
t G-modules, su
h that the indu
ed map

N

U

M

N

U

j

�! N

U

M

00

is surje
tive for all open normal subgroups U of G. Then

there is an asso
iated long exa
t 
ohomology sequen
e

� � � �!

^

H

�n

(G;M

0

) �!

^

H

�n

(G;M) �!

^

H

�n

(G;M

00

) �! � � �

ending with � � � !

^

H

0

(G;M

0

) !

^

H

0

(G;M) !

^

H

0

(G;M

00

). If, moreover, j

is surje
tive, we obtain the long exa
t 
ohomology sequen
e unbounded in both

dire
tions (i.e. from �1 to +1).

Proof: For every open normal subgroup U in G we 
onsider the kernelM

0

(U) :=

ker(N

U

M

N

U

j

�! N

U

M

00

). We have in
lusions N

U

M

0

� M

0

(U) � M

0U

and obtain

the exa
t and 
ommutative diagram

$%&'(

N

G=U

)

N

G=U

*

N

G=U

+,-

M

00G

:M

G

M

0G

0

0N

U

M

00

N

U

MM

0

(U)0

Consider the long exa
t 
ohomology sequen
e

� � � !

^

H

i

(G=U;M

0

(U))!

^

H

i

(G=U;N

U

M)!

^

H

i

(G=U;N

U

M

00

)! � � � (17)

asso
iated to the upper line. It 
onsists of 
ompa
t abelian groups, is 
learly exa
t

and all homomorphisms in
luding the boundary maps are 
ontinuous (use, e.g.,

the snake lemma in the abelian 
ategory of 
ompa
t abelian groups). Passing

to the inverse limit over U , we obtain using lemma 6 the asserted long exa
t

sequen
e up to dimension �1.

By 
ompa
tness, the image of N

G=U

: N

U

M �! M

G

is N

G

M and hen
e, by

lemma 5, the 
okernel of this map is

^

H

0

(G;M). We denote its kernel by

X(M;U) =

N

G=U

N

U

M;

whi
h 
ontains Y (M;U) := I

G=U

N

U

M , and the same holds for M

00

. The snake

lemma implies an exa
t 
ommutative diagram

.

j

/012

Æ

34

^

H

0

(G;M

00

):

^

H

0

(G;M)M

0G

=N

G=U

M

0

(U)X(M

00

; U)X(M;U)

Y (M

00

; U)Y (M;U)

Observe that

lim

 �

U

(M

0G

=N

G=U

M

0

(U)) =

^

H

0

(G;M

0

):
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Furthermore, the upper map j : I

G=U

N

U

M ! I

G=U

N

U

M

00

is obviously surje
tive

and N

G=U

: N

U

M ! M

G

maps I

G=U

N

U

M to zero. Therefore Æ : X(M

00

; U) !

M

0G

=N

G=U

M

0

(U) maps Y (M

00

; U) to zero by the de�nition of Æ. This means that

we may repla
e in the last diagram the group X(M;U) by

^

H

�1

(G=U;N

U

M) =

X(M;U)=Y (M;U) andX(M

00

; U) by

^

H

�1

(G=U;N

U

M

00

) = X(M

00

; U)=Y (M

00

; U)

and obtain an exa
t sequen
e of 
ompa
t groups and 
ontinuous homomorphisms.

Taking proje
tive limits over U , we obtain the exa
t sequen
e

^

H

�1

(G;M)!

^

H

�1

(G;M

00

)

Æ

!

^

H

0

(G;A)!

^

H

0

(G;B)!

^

H

0

(G;C):

Now suppose that j is surje
tive. Consider the 
ommutative and exa
t diagram

56789:;<=>?

N

G

j

�A

0

BC

H

1

(G;M)

0 :0

N

G

M

00

N

G

M

H

1

(G;M

0

)M

00G

M

G

^

H

0

(G;M

00

)

^

H

0

(G;M)

00

The verti
al sequen
es are exa
t by lemma 5. We 
on
lude the existen
e of the

dotted arrow, whi
h glues the already proven negative part long exa
t sequen
e

with the long exa
t sequen
e

H

1

(G;M

0

) �! H

1

(G;M) �! H

1

(G;M

00

) �! � � � : 2

Remark: The homomorphisms in the negative part of the long exa
t sequen
e

are easily seen to be 
ontinuous. The maps in dimensions greater or equal to

one are 
ontinuous be
ause the groups are dis
rete. Only the boundary map Æ

0

:

^

H

0

(G;M

00

)! H

1

(G;M

0

) might 
ause a problem. It 
an be seen to be 
ontinuous

in our appli
ation, however, under the general assumptions of proposition 7 this

is not ne
essarily true.

Corollary 8 If p is a prime number, then the long exa
t sequen
e of proposition 7

indu
es a long exa
t sequen
e of the p-parts, too.

Proof: All o

urring 
ohomology groups are either abelian pro�nite groups or

abelian dis
rete torsion groups and therefore they naturally de
ompose into the

dire
t sum of their p-parts and their prime-to-p-parts. In order to prove the
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orollary, it suÆ
es to show that also the di�erentials de
ompose into a dire
t

sum of homomorphisms. This is trivially true for 
ontinuous di�erentials, hen
e

it remains to 
onsider the homomorphism Æ

0

:

^

H

0

(G;M

00

)! H

1

(G;M

0

). Let x 2

^

H

0

(G;M

00

)(p). Choose a pre-imagem

00

2M

00G

of x and letm 2M be a pre-image

of m

00

. Furthermore, let U � G be an open normal subgroup in G su
h that m 2

M

U

. The 
losed subgroup generated by m inM

U

maps onto the 
losed subgroup

generated by x whi
h 
oin
ides with Z

p

� x �

^

H

0

(G;M

00

)(p). We 
on
lude that

Æ

0

(�x) 2 H

1

(G=U;M

0U

) � H

1

(G;M

0

) for all � 2 Z

p

. Writing #(G=U) = Np

k

with (N; p) = 1, we obtain that Æ

0

(x) = NÆ

0

(N

�1

x) 2 N �H

1

(G=U;M

0U

) =

H

1

(G=U;M

0U

)(p) � H

1

(G;M

0

)(p). A similar argument shows that Æ

0

sends the

prime-to-p-part of

^

H

0

(G;M

00

) to the prime-to-p-part of H

1

(G;M

0

). 2

We use the �rst part of proposition 7 in order to prove Poitou's theorem.

Proof of theorem 1: If A is Z-free, the assertion is 
ontained in proposi-

tion 4. Let A be an arbitrary �nitely generated G-module. There exists an exa
t

sequen
e

0 �! R �! F �! A �! 0

of �nitely generated G-modules, where R and F are Z-free. Applying the fun
tor

Hom(�; C), we obtain an exa
t sequen
e

0 �! Hom(A;C) �! Hom(F;C) �! Hom(R;C) :

Let U run through the open normal subgroups su
h that F

U

= F , hen
e

A

U

= A; R

U

= R. Then N

U

Hom(F;C) = Hom(F;N

U

C), N

U

Hom(R;C) =

Hom(R;N

U

C) and the map N

U

Hom(F;C) �! N

U

Hom(R;C) is surje
tive sin
e

N

U

C is divisible. For i � 0 proposition 7 indu
es an exa
t 
ommutative diagram

in whi
h we write

�

for Hom(�; C):

DEFGHIJKLMNOP

H

2�i

(G;R)

_

:H

2�i

(G;F )

_

H

2�i

(G;A)

_

H

3�i

(G;R)

_

H

3�i

(G;F )

_

^

H

i

(G;

~

R)

^

H

i

(G;

~

F )

^

H

i

(G;

~

A)

^

H

i�1

(G;

~

R)

^

H

i�1

(G;

~

F )

The verti
al arrows ex
ept the middle one are isomorphisms by proposition 4.

Hen
e, by the �ve lemma the middle one is also an isomorphism. This proves

theorem 1. 2

In the proofs of theorems 2 and 3 we will use the se
ond statement of propo-

sition 7 as well as the proposition 10 below. First we need the

Lemma 9 Suppose that A is �nitely generated and that p

1

j#G. Then

^

H

0

(G;A)

is pro�nite and we have a 
anoni
al isomorphism

^

H

0

(G;A)(p)

�

=

A

G


 Z

p

:
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Proof: By de�nition,

^

H

0

(G;A) is the inverse limit of the groups A

G

=N

G=U

A

U

.

Sin
e A is �nitely generated, all norm groups are of �nite index in A

G

and it suf-

�
es to show that for arbitrarily given n 2 N the subgroup N

G=U

A

U

is 
ontained

in p

n

A

G

for suÆ
iently small U . Let U be an open normal subgroup su
h that

A

U

= A. Then for every normal open subgroups V � U with p

n

j(U : V ) and for

every a 2 A

V

= A

U

= A we have

N

G=V

a = N

G=U

N

U=V

a = (U : V )N

G=U

a 2 p

n

A

G

:

This shows the lemma. 2

Proposition 10 Suppose that p

1

j#G and let

0 �! A

0

�! A �! A

00

�! 0

be a short exa
t sequen
e of �nitely generated G-modules. Then we obtain a long

exa
t sequen
e

� � � �!

^

H

i

(G;A

0

)(p) �!

^

H

i

(G;A)(p) �!

^

H

i

(G;A

00

)(p) �! � � �

whi
h is unbounded in both dire
tions. The groups are 
ompa
t for i � 0, dis
rete

for i > 0 and all homomorphisms are 
ontinuous.

Proof: Sin
e A is �nitely generated,

^

H

i

(G=U;A

U

) is �nite for all U . Further-

more, A

U

= A for small U , hen
e we obtain for small U a long exa
t sequen
e

� � � �!

^

H

0

(G=U;A

0U

)(p) �!

^

H

0

(G=U;A

U

)(p) �!

^

H

0

(G=U;A

00U

)(p)

of �nite abelian p-torsion groups. Passing to the proje
tive limit, we obtain the

negative part of our long exa
t sequen
e. Now 
onsider for small U the long exa
t

sequen
e

0 �! A

0G

�! A

G

�! A

00G

�!

^

H

1

(G=U;A

U

) �! � � � :

Tensoring by Z

p

and passing to the dire
t limit over U , we obtain the right part

of our long exa
t sequen
e. Both �t together by lemma 9. The 
ontinuity of the

maps is 
lear from their de�nitions. 2

The following is the abstra
t form of theorems 2 and 3.

Theorem 5 Let G be a pro�nite group and let p be a prime number with p

1

j#G.

Suppose that C is a level-
ompa
t 
lass formation for G su
h that the group of

universal norms

N

U

C =

\

V�U

N

U=V

C

V

� C

U

14



is p-divisible for all open subgroups U � G. If, moreover, C is p-divisible, then

the 
up produ
t

^

H

i

(G;Hom(A;C)) �

^

H

2�i

(G;A)

[

�! H

2

(G;C)

inv

�

�!

1

#G

Z=Z

indu
es isomorphisms

^

H

i

(G;Hom(A;C))(p)

�

�!

^

H

2�i

(G;A)(p)

_

for all i 2 Z and every dis
rete G-module A whi
h is �nitely generated as a

Z-module.

Proof: If A is Z-free, the assertion follows immediately from proposition 4. Let A

be an arbitrary �nitely generated G-module, whose torsion part 
onsists, without

loss of generality, only of p-torsion. There exists an exa
t sequen
e

0 �! R �! F �! A �! 0

of �nitely generated G-modules, where R and F are Z-free. Applying the fun
tor

Hom(�; C), sin
e C is p-divisible, we obtain an exa
t sequen
e

0 �! Hom(A;C) �! Hom(F;C) �! Hom(R;C) �! 0:

Let U run through the open normal subgroups su
h that F

U

= F , hen
e

A

U

= A; R

U

= R. Then N

U

Hom(F;C) = Hom(F;N

U

C), N

U

Hom(R;C) =

Hom(R;N

U

C) and the map N

U

Hom(F;C) �! N

U

Hom(R;C) is surje
tive sin
e

N

U

C is p-divisible. By 
orollary 8 we obtain a long exa
t 
ohomology sequen
e

whi
h is unbounded in both dire
tions

� � � �!

^

H

i

(G;

~

A)(p) �!

^

H

i

(G;

~

F )(p) �!

^

H

i

(G;

~

R)(p) �! � � �

and in whi
h we wrote

�

for Hom(�; C). Furthermore, proposition 10 gives us

a 
orresponding long exa
t 
ohomology sequen
e asso
iated to the short exa
t

sequen
e 0 ! R ! F ! A ! 0 in whi
h all groups are 
ompa
t or dis
rete

and all maps are 
ontinuous. Hen
e this sequen
e remains exa
t after taking

Pontryagin duals. Thus the duality map of theorem 5 de�nes a map between two

long exa
t sequen
es. Therefore the statement of theorem 5 for A follows easily

from that for F and R and from the �ve lemma. 2

Finally, we apply theorem 5 to the arithmeti
 situation. Let k be a number

�eld, p a prime number and let S be any �nite set of primes of k su
h that S � S

1

.

For every �nite subextension K of k in k

S


onsider the subgroup C

0

S

(K) of ideles

of norm 1 in C

S

(K) and let C

0

S

= lim

�!

K�k

S

C

0

S

(K). The exa
t sequen
es

0 �! C

0

S

(K) �! C

S

(K)

j j

�! R

�

+

�! 0
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show isomorphisms

^

H

i

(G

S

; C

0

S

)

�

=

^

H

i

(G

S

; C

S

)

for all i 2 Z. Sin
e C

0

S

(K) is 
ompa
t for all �nite subextensions K of k in k

S

, we


on
lude that C

0

S

is a level-
ompa
t 
lass formation for G

S

. One easily obtains

that the groups of universal norms of C

0

S

are divisible, be
ause this is true for C

S

(see e.g. [NSW℄ 8.4.10, 8.5.2).

Proof of theorem 2: If S � S

p

, then p

1

j#G

S

, for instan
e be
ause k

S


ontains

the 
y
lotomi
 Z

p

-extension of k. By theorem 6 of [S℄ (see also 10.9.5 in [NSW℄)

C

S

and hen
e also C

0

S

is p-divisible. Therefore theorem 2 follows from theorem 5.

2

Proof of theorem 3: Under the given assumptions, for every �nite subextension

K of k in k

S

the group G

S

(K)

ab

(p) is �nitely generated (sin
e S is �nite) and

torsion (a Z

p

-extension is rami�ed at least at one prime dividing p and S\S

p

= ;),

hen
e �nite. By the group theoreti
 form of the prin
ipal ideal theorem (see [N℄


hap.VI thm. 7.6), we 
on
lude that

lim

�!

K�k

S

G

S

(K)

ab

(p) = 0:

Sin
e D

S

(K) is divisible, the exa
t sequen
es

D

S

(K) �! C

S

(K) �! G

S

(K)

ab

�! 0

indu
e an isomorphism

C

S

=p �!

�

lim

�!

K�k

S

G

S

(K)

ab

=p = 0

in the limit. Hen
e C

S

and thus also C

0

S

is p-divisible and theorem 3 follows from

theorem 5. 2

Closing remarks: 1. If S � S

p

[ S

1

, theorem 2 
an be used to 
al
ulate the

group of universal norms of the G

S

-module Hom(Z=pZ; C

S

) =

p

C

S

as

N

G

S

(

p

C

S

) =

Y

v2S

C

�

p

;

where S

C

denotes the set of 
omplex pla
es of k. One 
an show that the validity

of the Leopoldt 
onje
ture for k and p is equivalent to the fa
t, that these are

all the universal norms in C

S

(k) whi
h are annihilated by p (
f. [NSW℄ 10.3.7).

However, we 
an not derive the latter statement from the duality theorems above.
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2. Theorem 5 also applies to the absolute Galois group of a �nite extension kjQ

l

,

where l is any prime number. The level-
ompa
t 
lass module

A = lim

�!

Kjk

(lim

 �

n

K

�

=n);

is easily seen to have trivial universal norms. Theorem 5 applies to every prime

number p and we obtain the well known duality theorem for lo
al Galois modules

(
f. [NSW℄ 7.2.8).
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