On Poitou’s duality theorem

by Alexander Schmidt at Heidelberg

Dedicated to the memory of Jurgen Neukirch

The Galois cohomology of the S-idele class group
H'(G(kslk), Cs(ks))

plays an important role in class field theory. Here S is a set of primes of a number
field k, ks denotes the maximal extension of k£ which is unramified outside S and,
though carrying a canonical topology, Cs = Cg(ks) is considered as a discrete
Gs = G(ks|k)-module. The natural locally compact topology on Cg, however,
becomes essential in the proof of the global duality theorem of Tate-Poitou. The
crucial point is the following theorem of Poitou which is applied to the submodule
CY C Cjs of idele classes of norm 1.

Theorem 1 (Poitou) Let G be a profinite group and let C' be a class formation
for G such that the group of universal norms

NyC = ([ NypCV CCY

vcuU

s diwvisible for all open subgroups U C G. Furthermore, suppose that for every
open subgroup U C G the group of invariants CY carries a natural compact
topology. Then the cup product

H'(G,Hom(A,C)) x H* (G, A) - H*(G,C) =5 J52/7
induces 1somorphisms
HY(G,Hom(A,C)) = H* (G, A)Y

for all © < 0 and every discrete G-module A which is finitely generated as a
Z-module.



Here v denotes the Pontryagin dual, H (G, Hom(A, (') is the usual cohomology
of profinite groups in positive dimensions and for ¢ < 0 it denotes the Tate
cohomology of profinite groups, which is defined by

HY(G, M) = lim H(G/U,M"), i<, (1)
U

where U runs through the open normal subgroups of G. For V' C U the transi-
tion map is given by the deflation def : H/(G/V,M") — H'(G/U, MV), whose
definition we will recall below.

The aim of this paper is twofold. First, answering a question of J. Neukirch,
we give a complete proof of theorem 1, i.e. we fill a gap in the original proof of
Poitou. Secondly, in the arithmetic case, we extend Poitou’s theorem to positive
dimensions ¢, proving theorems 2 and 3 below. We denote the set of archimedean
places of a number field k£ by S, and, for a prime number p, the set of primes
dividing p by S,. If A is a G-module and i > 0, we write H (G, A)(p) for the
p-torsion subgroup of the torsion group H*(Gg, A). If i < 0 and H'(Gg, A) is
profinite, then we use the notation H¥(Gg, A)(p) for the maximal pro-p-factor
group.

Theorem 2 Let p be a prime number and let S be a finite set of primes of the
number field k such that S 2 S, U Se. Then the cup product

H'(Gs,Hom(4,Cs)) x H* (G, A) =5 H*(Gs,Cs) =5 25-2/7,
induces 1somorphisms
H(Gg,Hom(A, Cs))(p) = H*(Gg, A)(p)”

for all i € Z and every discrete G-module A which is finitely generated as a
Z-module.

So far, the pairing H'(Gg, Hom(A, Cs)) x H'(Gg, A) = H*(Gs,Cs)(p) = Q,/Z,
has been known to be non-degenerate only for finite p-primary A (cf. [S] thm.4).
The extension of this duality to finitely generated modules comes somewhat un-
expected because we do not know whether the strict cohomological p-dimension
of Gg actually equals 2. (A proof of this would require to show the validity of
Leopoldt’s conjecture for the prime number p and for every finite subextension of
k in kg). Furthermore, note that we did not assume that k is totally imaginary,
if p = 2. The essential input in the proof of theorem 2 is theorem 6 of [S] which
asserts that C's is p-divisible under the given assumptions.

As an application of the principal ideal theorem, the p-divisibility of C's can
also be verified for prime numbers p such that none of the primes dividing p is
in S. Recall that one says that p*™ divides the order #G of a profinite group G,
if we find open subgroups in G of index divisible by arbitrary high p-powers.
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Theorem 3 Let p be a prime number and let S be a finite set of primes of the
number field k such that S O Sy and SN S, = 0. If p®|#Gs, then the cup
product

H'(Gs,Hom(A,Cs)) x H* (G, A) =5 H*(Gs,Cs) =5 55-2/7,
induces 1somorphisms
fIi(GS,Hom(A,C’S))(p) — fIQ_i(GS,A)(p)V

for all v+ € Z and every discrete G-module A which is finitely generated as a
Z-module.

We do not know anything about the cohomological p-dimension of G5 in the
situation of theorem 3. It applies, for example, to the case S = Sy, if the p-class
field tower of k is infinite.

In order to explain the above mentioned problem in Poitou’s proof of theo-
rem 1, let us recall the definition of the deflation map. Consider for ¢ > 0 the
composition

H,(G/V,M") “S H,(G/U,(MY)y) X Hy(G/U,MY),

where edge is the edge morphism (coinflation) of the homological Hochschild-
Serre spectral sequence associated to the group extension 1 — U/V — G/V —
G/U — 1 and N, is the map which is induced on homology by the norm
Ny + (MY)y — MY. Via the identification of homology with Tate cohomology
in negative dimensions, this defines the deflation in dimension ¢ < —1. In dimen-
sions i = 0,—1, the map def is induced via the identifications fIO(G/U, AY) =
A% /N AV and H-Y(G /U, AV) = Neyo AY /Ty AV by the identity and the norm
map, respectively.

It is clear from its definition that the Tate cohomology of profinite groups
does not satisfy all properties of a usual cohomology functor. Theorem 1 follows

by a limit process from the following well known theorem of Tate and Nakayama
(see e.g. [NSW] Thm. 3.1.5).

Theorem 4 (Tate-Nakayama) Let G be a finite group, let C be a class module
for G and let v € H*(G,C) be a fundamental class. Then for all integers i € Z
the cup product

H'(G,Hom(4,C)) x H*7(G,A) — H*(G,C) = 457./7,
where H*(G,C) & ﬁZ/Z is given by vy +— ﬁ mod Z, induces an isomorphism
H'(G,Hom(A,C)) = H*(G, A)Y

of finite abelian groups, provided that A s finitely generated and Z-free.
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Already in order to define the duality map in theorem 1, one has to show that
the cup product is compatible with deflation. Explicitly, given a finite group G,
a normal subgroup U C GG and G-modules A, B, we have to show that for ¢ <0
and ¢ > 1 the diagram

Hi(G,A) x H"(G,B) —~— HYG,A® B)
(%) ldef Tmf Tmf
Hi(G/U,AV) x H"(G/U, BY) "% HY(G/U,(A® B)Y)

commutes (inf denotes the inflation map). In 1995 J. Neukirch pointed out that
there is no proof for the commutativity of (%) in the literature. Indeed, G. Poitou
in his original paper [P] incorrectly claims that the required commutativity follows
easily from the case i = 0 by dimension shifting. L. V. Kuz'min, cf. [K], noticed
that this is not true and gave a proof in a special case. All other authors (at
least to the restricted knowledge of the author of the present paper) ignored the
problem.

In dimensions i = —1,0, however, the commutativity of (x) can be verified
directly, which justifies theorem 1 for s = 0. Therefore Neukirch proposed to give
a proof of the duality theorem of Tate-Poitou using theorem 1 only in dimension
i = 0. Actually, this can be done, cf. [NSW], Ch.VIII. However, lacking duality
for H!, the proof of Tate’s 9-term sequence for finite modules becomes rather
intricate and one has to combine its proof with that of the global Euler-Poincaré
characteristic formula (loc. cit.). The flow of arguments would become more
streamlined if we were allowed to use Poitou’s theorem in arbitrary dimensions.
Furthermore, we need the correctness of the definition of the duality homomor-
phism also for theorems 2 and 3. Therefore the first sections of this paper are
devoted to the rather technical verification of the commutativity of diagram (x)
for all + < 0. Then we recall the proof of theorem 1 and show theorems 2 and 3.

0. Some facts about Tate cohomology

Let G be a finite group. Recall (see e.g. [B] Ch.IV) that Tate cohomology is
constructed using a complete resolution P, (of Z)

d_1 d_o

d2 P1 d1 PO d() Pf 1
&~

v/
7N
0 0

Py

Py

consisting of finitely generated projective Z|G|-modules P,, n € Z, by the rule
H'(G, A) := H'(Hom(P.,, A)9), (2)
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where Hom(P,, A)* := Hom(P;, A). If P is finitely generated and projective,
then the same holds for P™ = Hom(P,Z) ! and for an arbitrary G-module A
the module Hom(P, A) is cohomologically trivial. Therefore the norm induces an
isomorphism

(PT® A)g = Hom(P, A)g Ne, Hom(P, A)€, (3)

which, applied to the negative part of the complete resolution, implies isomor-
phisms
Hi(G,A) 2o A==Y(G,A) fori> 1. (4)

Recall the definition of the cup product (cf. [B] chap. IV §5) H? x HY — HP*4,
It is induced by the tensor product in dimension 0 and is uniquely characterized
by its functorial properties. In order to construct it, one uses an (essentially
unique) diagonal approximation

A:P,— P.® P, (5)
i.e. a family of G-module homomorphisms ¢,, : Ppyy — P, ® P, p,q € Z
satisfying a certain list of axioms (loc. cit.).

The abstract definition of the cup product, however, is not sufficient for our pur-
poses. We will have to fix a particular complete resolution P, and an explicitly
given diagonal approximation ¢, 4, p,q € Z. Fortunately, such an explicit diag-
onal approximation is given in [AW] for the homogeneous standard resolution.
The modules in this resolution are given by

Pi=P,_;=7Z[G""], i>0 (6)

and the differentials are defined for ¢ > 0 by

i

dz(g()aagl) = Z(_l)j(g()a"'7gj—lagj+17"'7gi)7 (7)
j=0
d—i(gla"'agi) = ZZ(_l)j(gla'"JgjaTagj—I—lJ""gi)’ (8)
T7€G 7=0

while dy : Py — P_; is given by

do(go) = D 790 (=D 7). (9)

TEG TEG

An explicit diagonal approximation for this complex is given by (cf. [AW]):
If p>0andqg>0,

Opa(00ys -3 Opig) = (005 -,05) @ (Opy - -+, Opig) - (10)

'Hom always means Homj,



Ifp>1andq>1,

P—p—q(01, -, Opig) = (01, 0p) ® (Opt1s-- -5 Opig) - (11)
Ifp>0andq>1,
1y Tty e s Tp) @ (Tpy oo o, T1, 015 -+, )
Olyee ey Oy Thy oy Tp) @ (Tpy oo, T1, 0y)
OOy ey Oy Thy ooy Tg) @ (Tgy oo, T1)
= Z Ty oo s Tg) @ (Tyy oy T1, 00, - ., 0p) s

where the 7; on the right-hand side run independently through G.

1. The diagram (*) commutes

Let P(%) resp. P{/Y) be the complete standard resolution for G, resp. G/U
as defined in the last section.

Lemma 1 Let G be a finite group and let U C G be a normal subgroup. Let in
negative dimension the map a_; : pf/U) — PEZG) be given by

(alU,...,aiU)»—> Z (017—17---70'1'7_1')7 (16)

Tl HEU

where the T; on the right-hand side run independently through U. Then in dimen-
ston < —2 the deflation map is induced by a cocycle map

def : HomG(P.(G), A) — HOIIlg/U(P.(G/U), AY),
which s uniquely defined by the commutative diagram

Hom(P'S, A)g —2& Home(P'D, 4)

—Z )
[CRCEHS |er
Hom(PG/™), A% a0 TIN Homg/U(PE?/U), AY).

Proof: First note that the map a_; commutes with the differential on the neg-
ative part of the standard complex. Let (gi,...,0i);, . 4ee denote the dual ba-

sis of (PE?))Jr = Hom(Pﬁ?),Z), ie. (g1,...,9;)" maps (¢g1,...,9;) to 1 and all

other basis elements of PEZG) to zero. The dual basis of PEZG/ oy is denoted by



((910)s .-, (6:U))y,v,...qvecu- Consider the diagram

(P @ A) ¢ —L2— Hom(P'Y, A)g — 22— Home (P9, A)

—1 —3

lcoinf l(a*_,' PTx) lﬁ

(P @ Ap)ar 2> Hom(PS!™), Ay)ayw "2 Homeo (P!, Ap)
g ")) v
(P @ AV)g 25 Hom (PSSP, AV) g 2 Home,y (PS/Y), AV).

—1 —1
Ezxplanations: pr : A — Ay is the natural projection, coinf is the chain map
which induces coinflation on homology, it is induced by pr and by the map
PE?)JF — PE?/U)JF, which sends (g7,...,9;) to ((nU)*,...,(¢U)*). The maps
D are induced by the canonical duality isomorphisms P* ® A = Hom(P, A) (the
P_; are free of finite rank). A simple calculation shows that the upper left square
commutes and we define 3 in order to let the upper right square commute. The
lower squares commute obviously. By definition, def is induced by the compo-
sition of the two vertical arrows on the right. This completes the proof of the
lemma. a

Now assume that A and B are G-modules. The problem in extending the
commutativity of (%) from i = 0 to the case of arbitrary dimensions is that
we cannot make the shift for A and AY simultaneously (and, clearly, the same
problem occurs for B). That is why we are forced to make these explicit chain
calculations below.

Suppose that ¢ > 2 and ¢ > 1. Let z € H™(G,A), § € H"(G/U, BY)
be cohomology classes represented by cocycles = € HomG(Pf),A) and y €
HOIIlg/U(P(J(fi/U), A), respectively.

Proposition 2

zUinfy = inf(defzrUy) € H(G,A® B).

Proof: We calculate both sides on the level of cochains. Let us start with the
left side. For (oy,...,04) € P{%) we obtain by (15)

(xUinfy)(oo,...,00) = > a(r,...,7) @y(nU,...,nU00U,...,0.U).

In order to compute the right side, choose a z € Hom(Pf),A) with © = Ngz.
Then by (15) and by lemma 1 we have



inf (defz Uy) (00, ..., o) = ((Nayr(e;, (Ny).)2) Uy) (00U, .., o,U)

= Y (Ngw(at, (Nu))2)(nU,...,nU)@y(nU,...,nUoU,...,o.0).

7 U,..., TZ'UEG/U

Using the definition of a_; and of Ny this transforms to

PO D DD

TUEG/U uel mU,. ,nUEG/U ui,...,u; €U
! ! U. U, 00U U
Tuz(t— nuy, ..., 7 nw) @y(nU, ..., nU o0U,. .., 0,U),
which coincides with

> (Nez)(ri,...,m) @y(nU,...,nU,00U,...,0.U).

Ly T EG

This shows the proposition. O

Proposition 3 For:¢ <0 and g > 1 the diagram
Hi(G,4) x HY(G,B) —Y— HYG,A® B)
(%) ldef Tmf Tmf
H{(G/U,AYY x HY(G/U,B") -& HY(G/U,(A® B)Y),

commutes.

Proof: For i < —2 this follows from the last proposition. Via the isomorphism

NeAJIgA = H (G, A)
a — x4:Z[G] = A, 0 o(a)

the cup product is given on the chain level by

T, Uy(og,...,00) = Y oa®y(o,0p,...,0,).

oceG
The commutativity of (x) for i = —1 follows immediately, since defis induced by
the norm
NU : NGA/[GA — NG/UAU/[G/UAU.
The case ¢+ = 0 is obvious. O



2. Proof of the theorems

From now on let G be a profinite group. Having verified the commutativity of
the diagram (x), we can now deduce the following proposition from the theorem
of Tate-Nakayama for finite groups.

Proposition 4 Under the assumption of theorem 1 suppose that A is Z-free.
Then the cup product

H'(G,Hom(A,C)) x H*7(G,A) = H*(G,C) 25 L2/7
induces 1somorphisms
H'(G,Hom(4,C)) = H* (G, A)Y
for all i € Z.
Proof: For i # 1 this follows easily from the theorem 4 by passing to the limit
over G /U, where U runs through the open normal subgroups in G. For i = 1, let

U C G be an open normal subgroup which acts trivially on A. Since A is Z-free,
H'(U/V,AV) = 0 for every open normal subgroup V' C U and therefore

HY(G/U,AY) = HY GV, AV).
Using the fact that C is a class formation, we obtain
H'(U/V,Hom(A,C)") = H'(U/V,Hom(A,C")) = H*(U/V,C" )k = g,
This implies that
HY(G/U,Hom(A,C)) = H'(G/V,Hom(A,C)").

A stationary limit process shows that theorem 4 implies proposition 4 also in
dimension 1. O

For a discrete G-module M we denote by

NeM = (| NgwM" C MY
UCG

the module of universal norms of M. In the following definition we systematize
the assumption on the compactness of CV in theorem 1.

Definition 1 Let G be a profinite group. A level-compact G-module is a discrete
G-module M (i.e. M = Uy MY, where U runs through the open subgroups of G)
which is endowed with an additional topology, such that the action

GxM-—M

is continuous and MY is compact for every open subgroup U C G.
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If M is level-compact, then for i < 0 the groups H “(G, M) are abelian profinite
groups in a natural way: For every open normal U C G the group H(G /U, MV)
inherits a natural compact topology from MY via the standard complex. Fur-
thermore, this group is annihilated by (G : U), hence H(G/U, MY) and thus
also H(G, M) is profinite. For i > 0 we give H'(G, M) the discrete topology.

Lemma 5 Let M be a level-compact G-module. Then

HY(G, M) = M®/NgM.

Proof: For every open normal subgroup U C GG we have a short exact sequence
NgjMY — MY — HY(G/U,MY) — 0.

Since all groups are compact by assumption, the sequence remains exact after
passing to the projective limit over all U. a

Lemma 6 Let M be a level-compact G-module. Suppose that for every open
subgroup U C G a closed subgroup

M(U) c MY
15 given in such a way that the following conditions hold
(i) NyM C M(U) for every open U C G,
(ii) 4f V' is normal in U, then Ny : MV — MY maps M(V) to M(U).

Then N N
H' (G, M) = 1<£n H'(G/U, M(U))
U
for all 1 < —1.

Proof: We have seen in lemma 1 that the deflation maps are in negative di-
mensions given by a map on the chain level. As projective limits are exact on
compact groups, we see that for 1 < —2 the group ﬁi(G, M) also can be calcu-
lated as the quotient of the inverse limit of the cocycles modulo the inverse limit
of the coboundaries. These, however take values in the groups of universal norms
on the corresponding levels, i.e. we may take the limit over the groups M (U)
instead of MV as well. This shows the lemma for i < —2. For i = —1 deflation
is explicitly given by the norm and a straightforward computation, similarly ex-
ploiting the level-compactness, shows the statement also in this case (cf. [NSW]
3.1.7). O
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Proposition 7 Let .
0— M M- M"
be an exact sequence of level-compact G-modules, such that the induced map

NyM Nug NyM" is surjective for all open normal subgroups U of G. Then
there is an associated long exact cohomology sequence

o — H G, M) — H™G,M) — H™(G,M") — ---

ending with --- — H(G,M') — H*(G,M) — H°(G,M"). If, moreover, j
18 surjective, we obtain the long exact cohomology sequence unbounded in both
directions (i.e. from —oo to +00).

Proof: For every open normal subgroup U in G we consider the kernel M'(U) :=

ker(Ny M 223 Ny M™). We have inclusions Ny M' € M'(U) € M and obtain
the exact and commutative diagram

0 —— M'(U) —— NyM —— NyM" —— 0

lNG/U lNG/U lNG/U

0 M/G MG M”G.

Consider the long exact cohomology sequence

oo = HY(G/U,M'(U)) = H(G/U,NyM) — H(G/U Ny M") — ---  (17)

associated to the upper line. It consists of compact abelian groups, is clearly exact
and all homomorphisms including the boundary maps are continuous (use, e.g.,
the snake lemma in the abelian category of compact abelian groups). Passing
to the inverse limit over U, we obtain using lemma 6 the asserted long exact
sequence up to dimension —1.

By compactness, the image of Ng,yv : NyM — M€Y is NgM and hence, by
lemma 5, the cokernel of this map is fIO(G, M). We denote its kernel by

X(M,U) = ., NuM,

Ng/v

which contains Y (M,U) := I,y Ny M, and the same holds for M". The snake
lemma implies an exact commutative diagram

Y(M,U) L Y(M",U)

| |

X(M,U) — X(M",U) 2> M'/NgyM'(U) — H°(G, M) — H°(G, M").

Observe that X
lim (M /Ngu M'(U)) = H(G, M").
U
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Furthermore, the upper map j : Iq;u NyM — Iy NyM" is obviously surjective
and Ny : NyM — MY maps Iy NyM to zero. Therefore 6 : X(M",U) —
M'S /NguM'(U) maps Y (M",U) to zero by the definition of 6. This means that
we may replace in the last diagram the group X(M,U) by H~(G/U, NyM) =
X(M,U))Y (M,U) and X (M",U) by H (G /U, NyM") = X (M",U)/Y (M",U)
and obtain an exact sequence of compact groups and continuous homomorphisms.
Taking projective limits over U, we obtain the exact sequence

H (G, M) —» H (G, M") > B (G, A) —» H(G, B) — H*(G, C).

Now suppose that j is surjective. Consider the commutative and exact diagram

NeM —2N6I o N M

The vertical sequences are exact by lemma 5. We conclude the existence of the
dotted arrow, which glues the already proven negative part long exact sequence
with the long exact sequence

HYG,M') — HY (G, M) — H(G,M") — --- . O

Remark: The homomorphisms in the negative part of the long exact sequence
are easily seen to be continuous. The maps in dimensions greater or equal to
one are continuous because the groups are discrete. Only the boundary map ¢° :
HY(G, M") — H'(G, M') might cause a problem. It can be seen to be continuous
in our application, however, under the general assumptions of proposition 7 this
is not necessarily true.

Corollary 8 Ifp is a prime number, then the long exact sequence of proposition 7
induces a long exact sequence of the p-parts, too.

Proof: All occurring cohomology groups are either abelian profinite groups or
abelian discrete torsion groups and therefore they naturally decompose into the
direct sum of their p-parts and their prime-to-p-parts. In order to prove the
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corollary, it suffices to show that also the differentials decompose into a direct
sum of homomorphisms. This is trivially true for continuous differentials, hence
it remains to consider the homomorphism 6° : H(G, M") — HY(G, M'). Let x €
H(G, M")(p). Choose a pre-image m” € M"S of z and let m € M be a pre-image
of m”. Furthermore, let U C G be an open normal subgroup in G such that m €
MUY The closed subgroup generated by m in MY maps onto the closed subgroup
generated by z which coincides with Z,- z € H°(G, M")(p). We conclude that
§°(\x) € HY(G/U,M'Y) C HY(G, M) for all X\ € Z,. Writing #(G/U) = NpF
with (N,p) = 1, we obtain that §°(z) = N§*(N~'z) € N-HY(G/U M) =
HY(G/U,M'Y)(p) C H'(G,M")(p). A similar argument shows that ¢° sends the
prime-to-p-part of H°(G, M") to the prime-to-p-part of H' (G, M"). 0

We use the first part of proposition 7 in order to prove Poitou’s theorem.

Proof of theorem 1: If A is Z-free, the assertion is contained in proposi-
tion 4. Let A be an arbitrary finitely generated G-module. There exists an exact
sequence

0—R—F—A—70

of finitely generated G-modules, where R and F' are Z-free. Applying the functor
Hom(—, ('), we obtain an exact sequence

0 — Hom(A, C') — Hom(F,C) — Hom(R,C).

Let U run through the open normal subgroups such that FY = F, hence
AV = A, RY = R. Then NyHom(F,C) = Hom(F, NyC), NyHom(R,C) =
Hom(R, NyC) and the map NyHom(F,C) — NyHom(R, C) is surjective since
Ny C'is divisible. For ¢ < 0 proposition 7 induces an exact commutative diagram
in which we write ~ for Hom(—, C):

HYG, F) — H(G,R) — HY(G,A) — H{(G,F) —— H'(G.R)
H3(G,F)" — H*(G,R)Y — H*(G,A)" - H>(G,F)" — H*(G,R)".

The vertical arrows except the middle one are isomorphisms by proposition 4.
Hence, by the five lemma the middle one is also an isomorphism. This proves
theorem 1. a

In the proofs of theorems 2 and 3 we will use the second statement of propo-
sition 7 as well as the proposition 10 below. First we need the

Lemma 9 Suppose that A is finitely generated and that p™®|#G. Then fIO(G, A)
18 profinite and we have a canonical tsomorphism

H°(G, A)(p) = A° © Z,.
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Proof: By definition, H°(G, A) is the inverse limit of the groups A%/NgyAU.
Since A is finitely generated, all norm groups are of finite index in A® and it suf-
fices to show that for arbitrarily given n € N the subgroup Ng A is contained
in p" AY for sufficiently small U. Let U be an open normal subgroup such that
AY = A. Then for every normal open subgroups V' C U with p*|(U : V) and for
every a € AV = AV = A we have

Ng/va = Ng/UNU/VCL = (U . V)Ng/Ua € pnAG

This shows the lemma. O

Proposition 10 Suppose that p™|#G and let
0—A —A—A"—0

be a short exact sequence of finitely generated G-modules. Then we obtain a long
exact sequence

e HU(GLA)(p) — H'(G, A)(p) — H(G,A")(p) — -+
which is unbounded in both directions. The groups are compact for v < 0, discrete

for v >0 and all homomorphisms are continuous.

Proof: Since A is finitely generated, H'(G/U, AV) is finite for all U. Further-
more, AV = A for small U, hence we obtain for small U a long exact sequence

o — HY(G /U, AV (p) — HY(G/U, AY)(p) — H(G/U, A")(p)

of finite abelian p-torsion groups. Passing to the projective limit, we obtain the
negative part of our long exact sequence. Now consider for small U the long exact
sequence

0— A¢ — A9 — A" — HYG/U,AY) — .. .

Tensoring by Z, and passing to the direct limit over U, we obtain the right part
of our long exact sequence. Both fit together by lemma 9. The continuity of the
maps is clear from their definitions. O

The following is the abstract form of theorems 2 and 3.

Theorem 5 Let G be a profinite group and let p be a prime number with p™|#G.
Suppose that C' is a level-compact class formation for G such that the group of
universal norms

NyC = (| NypCV CCY

vcu
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15 p-divisible for all open subgroups U C G. If, moreover, C is p-divisible, then
the cup product

H'(G,Hom(A,C)) x H* (G, A) = H*(G,C) =5 52/T
induces 1somorphisms
H'(G,Hom(A, C))(p) = H* (G, A)(p)"

for all i € Z and every discrete G-module A which is finitely generated as a
Z-module.

Proof: If A is Z-free, the assertion follows immediately from proposition 4. Let A
be an arbitrary finitely generated G-module, whose torsion part consists, without
loss of generality, only of p-torsion. There exists an exact sequence

0 —R—F—A—70

of finitely generated G-modules, where R and F' are Z-free. Applying the functor
Hom(—, ('), since C' is p-divisible, we obtain an exact sequence

0 — Hom(A, C') — Hom(F,C) — Hom(R,C) — 0.

Let U run through the open normal subgroups such that FY = F, hence
AV = A, RY = R. Then NyHom(F,C) = Hom(F, NyC), NyHom(R,C) =
Hom(R, NyC) and the map NyHom(F,C) — NyHom(R, C) is surjective since
Ny (' is p-divisible. By corollary 8 we obtain a long exact cohomology sequence
which is unbounded in both directions

- — H'(G, A)(p) — H'(G, F)(p) — H'(G,R)(p) — -~

and in which we wrote ~ for Hom(—, C'). Furthermore, proposition 10 gives us
a corresponding long exact cohomology sequence associated to the short exact
sequence 0 - R — F — A — 0 in which all groups are compact or discrete
and all maps are continuous. Hence this sequence remains exact after taking
Pontryagin duals. Thus the duality map of theorem 5 defines a map between two
long exact sequences. Therefore the statement of theorem 5 for A follows easily
from that for F' and R and from the five lemma. a

Finally, we apply theorem 5 to the arithmetic situation. Let £ be a number
field, p a prime number and let S be any finite set of primes of k such that S O S.
For every finite subextension K of k in kg consider the subgroup C%(K) of ideles
of norm 1 in Cs(K) and let Cg = lim ok CY%(K). The exact sequences

S

0 — CUK) — Cs(K) 1L R — 0
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show isomorphisms

H(Gg,C% = H(Gg,Cy)

for all i € Z. Since C%(K) is compact for all finite subextensions K of k in kg, we
conclude that C§ is a level-compact class formation for Gg. One easily obtains
that the groups of universal norms of C% are divisible, because this is true for Cg
(see e.g. [NSW] 8.4.10, 8.5.2).

Proof of theorem 2: If S D S, then p>|#G, for instance because kg contains
the cyclotomic Zy-extension of k. By theorem 6 of [S] (see also 10.9.5 in [NSW])
Cs and hence also C? is p-divisible. Therefore theorem 2 follows from theorem 5.

a

Proof of theorem 3: Under the given assumptions, for every finite subextension
K of k in kg the group Gg(K)®(p) is finitely generated (since S is finite) and
torsion (a Z,-extension is ramified at least at one prime dividing p and SNS, = 0),
hence finite. By the group theoretic form of the principal ideal theorem (see [N]
chap. VI thm. 7.6), we conclude that

lim Gs(K)™(p) = 0.
KCks

Since Dg(K) is divisible, the exact sequences
Ds(K) — Cs(K) — Gg(K)™® — 0
induce an isomorphism

Cs/p = lim Gs5(K)"/p=0
KCkg

in the limit. Hence Cs and thus also C? is p-divisible and theorem 3 follows from
theorem 5. O

Closing remarks: 1. If S O S, U S, theorem 2 can be used to calculate the
group of universal norms of the Gg-module Hom(Z/pZ,Cs) = ,Cs as

Nas(p,Cs) = H Hps

vESC

where Sc¢ denotes the set of complex places of k. One can show that the validity
of the Leopoldt conjecture for k£ and p is equivalent to the fact, that these are
all the universal norms in Cg(k) which are annihilated by p (cf. [NSW] 10.3.7).
However, we can not derive the latter statement from the duality theorems above.
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2. Theorem 5 also applies to the absolute Galois group of a finite extension k|Q;,
where [ is any prime number. The level-compact class module

A =1lim (lim K> /n),
N
Kk n

is easily seen to have trivial universal norms. Theorem 5 applies to every prime

number p and we obtain the well known duality theorem for local Galois modules
(cf. [NSW] 7.2.8).
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