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The Galois ohomology of the S-idele lass group

H

i

(G(k

S

jk); C

S

(k

S

))

plays an important role in lass �eld theory. Here S is a set of primes of a number

�eld k, k

S

denotes the maximal extension of k whih is unrami�ed outside S and,

though arrying a anonial topology, C

S

= C

S

(k

S

) is onsidered as a disrete

G

S

= G(k

S

jk)-module. The natural loally ompat topology on C

S

, however,

beomes essential in the proof of the global duality theorem of Tate-Poitou. The

ruial point is the following theorem of Poitou whih is applied to the submodule

C

0

S

� C

S

of idele lasses of norm 1.

Theorem 1 (Poitou) Let G be a pro�nite group and let C be a lass formation

for G suh that the group of universal norms

N

U

C =

\

V�U

N

U=V

C

V

� C

U

is divisible for all open subgroups U � G. Furthermore, suppose that for every

open subgroup U � G the group of invariants C

U

arries a natural ompat

topology. Then the up produt

^

H

i

(G;Hom(A;C)) �

^

H

2�i

(G;A)

[

�! H

2

(G;C)

inv

�

�!

1

#G

Z=Z

indues isomorphisms

^

H

i

(G;Hom(A;C))

�

�!

^

H

2�i

(G;A)

_

for all i � 0 and every disrete G-module A whih is �nitely generated as a

Z-module.
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Here _ denotes the Pontryagin dual,

^

H

i

(G;Hom(A;C)) is the usual ohomology

of pro�nite groups in positive dimensions and for i � 0 it denotes the Tate

ohomology of pro�nite groups, whih is de�ned by

^

H

i

(G;M) = lim

 �

U

^

H

i

(G=U;M

U

); i � 0; (1)

where U runs through the open normal subgroups of G. For V � U the transi-

tion map is given by the deation def :

^

H

i

(G=V;M

V

) !

^

H

i

(G=U;M

U

), whose

de�nition we will reall below.

The aim of this paper is twofold. First, answering a question of J. Neukirh,

we give a omplete proof of theorem 1, i.e. we �ll a gap in the original proof of

Poitou. Seondly, in the arithmeti ase, we extend Poitou's theorem to positive

dimensions i, proving theorems 2 and 3 below. We denote the set of arhimedean

plaes of a number �eld k by S

1

and, for a prime number p, the set of primes

dividing p by S

p

. If A is a G-module and i > 0, we write

^

H

i

(G

S

; A)(p) for the

p-torsion subgroup of the torsion group

^

H

i

(G

S

; A). If i � 0 and

^

H

i

(G

S

; A) is

pro�nite, then we use the notation

^

H

i

(G

S

; A)(p) for the maximal pro-p-fator

group.

Theorem 2 Let p be a prime number and let S be a �nite set of primes of the

number �eld k suh that S � S

p

[ S

1

. Then the up produt

^

H

i

(G

S

;Hom(A;C

S

)) �

^

H

2�i

(G

S

; A)

[

�! H

2

(G

S

; C

S

)

inv

�

�!

1

#G

S

Z=Z

indues isomorphisms

^

H

i

(G

S

;Hom(A;C

S

))(p)

�

�!

^

H

2�i

(G

S

; A)(p)

_

for all i 2 Z and every disrete G-module A whih is �nitely generated as a

Z-module.

So far, the pairing H

1

(G

S

;Hom(A;C

S

))�H

1

(G

S

; A)

[

! H

2

(G

S

; C

S

)(p)

�

=

Q

p

=Z

p

has been known to be non-degenerate only for �nite p-primary A (f. [S℄ thm.4).

The extension of this duality to �nitely generated modules omes somewhat un-

expeted beause we do not know whether the strit ohomologial p-dimension

of G

S

atually equals 2. (A proof of this would require to show the validity of

Leopoldt's onjeture for the prime number p and for every �nite subextension of

k in k

S

). Furthermore, note that we did not assume that k is totally imaginary,

if p = 2. The essential input in the proof of theorem 2 is theorem 6 of [S℄ whih

asserts that C

S

is p-divisible under the given assumptions.

As an appliation of the prinipal ideal theorem, the p-divisibility of C

S

an

also be veri�ed for prime numbers p suh that none of the primes dividing p is

in S. Reall that one says that p

1

divides the order #G of a pro�nite group G,

if we �nd open subgroups in G of index divisible by arbitrary high p-powers.

2



Theorem 3 Let p be a prime number and let S be a �nite set of primes of the

number �eld k suh that S � S

1

and S \ S

p

= ;. If p

1

j#G

S

, then the up

produt

^

H

i

(G

S

;Hom(A;C

S

)) �

^

H

2�i

(G

S

; A)

[

�! H

2

(G

S

; C

S

)

inv

�

�!

1

#G

S

Z=Z

indues isomorphisms

^

H

i

(G

S

;Hom(A;C

S

))(p)

�

�!

^

H

2�i

(G

S

; A)(p)

_

for all i 2 Z and every disrete G-module A whih is �nitely generated as a

Z-module.

We do not know anything about the ohomologial p-dimension of G

S

in the

situation of theorem 3. It applies, for example, to the ase S = S

1

, if the p-lass

�eld tower of k is in�nite.

In order to explain the above mentioned problem in Poitou's proof of theo-

rem 1, let us reall the de�nition of the deation map. Consider for q � 0 the

omposition

H

q

(G=V;M

V

)

edge

�! H

q

(G=U; (M

V

)

U

)

N

�

�! H

q

(G=U;M

U

);

where edge is the edge morphism (oination) of the homologial Hohshild-

Serre spetral sequene assoiated to the group extension 1 ! U=V ! G=V !

G=U ! 1 and N

�

is the map whih is indued on homology by the norm

N

U=V

: (M

V

)

U

!M

U

. Via the identi�ation of homology with Tate ohomology

in negative dimensions, this de�nes the deation in dimension i < �1. In dimen-

sions i = 0;�1, the map def is indued via the identi�ations

^

H

0

(G=U;A

U

)

�

=

A

G

=N

G=U

A

U

and

^

H

�1

(G=U;A

U

)

�

=

N

G=U

A

U

=I

G=U

A

U

by the identity and the norm

map, respetively.

It is lear from its de�nition that the Tate ohomology of pro�nite groups

does not satisfy all properties of a usual ohomology funtor. Theorem 1 follows

by a limit proess from the following well known theorem of Tate and Nakayama

(see e.g. [NSW℄ Thm. 3.1.5).

Theorem 4 (Tate-Nakayama) Let G be a �nite group, let C be a lass module

for G and let  2 H

2

(G;C) be a fundamental lass. Then for all integers i 2 Z

the up produt

^

H

i

(G;Hom(A;C)) �

^

H

2�i

(G;A)

[

�! H

2

(G;C)

�

=

1

#G

Z=Z;

where H

2

(G;C)

�

=

1

#G

Z=Z is given by  7!

1

#G

mod Z, indues an isomorphism

^

H

i

(G;Hom(A;C))

�

=

^

H

2�i

(G;A)

_

of �nite abelian groups, provided that A is �nitely generated and Z-free.
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Already in order to de�ne the duality map in theorem 1, one has to show that

the up produt is ompatible with deation. Expliitly, given a �nite group G,

a normal subgroup U � G and G-modules A;B, we have to show that for i � 0

and q � 1 the diagram

(�)

�

[

�

[

�

def

�

inf

�

inf

^

H

q

(G=U; (A
 B)

U

)

^

H

q�i

(G=U;B

U

)�

^

H

i

(G=U;A

U

)

^

H

q

(G;A
 B)

^

H

q�i

(G;B)�

^

H

i

(G;A)

ommutes (inf denotes the ination map). In 1995 J. Neukirh pointed out that

there is no proof for the ommutativity of (�) in the literature. Indeed, G. Poitou

in his original paper [P℄ inorretly laims that the required ommutativity follows

easily from the ase i = 0 by dimension shifting. L. V. Kuz'min, f. [K℄, notied

that this is not true and gave a proof in a speial ase. All other authors (at

least to the restrited knowledge of the author of the present paper) ignored the

problem.

In dimensions i = �1; 0, however, the ommutativity of (�) an be veri�ed

diretly, whih justi�es theorem 1 for i = 0. Therefore Neukirh proposed to give

a proof of the duality theorem of Tate-Poitou using theorem 1 only in dimension

i = 0. Atually, this an be done, f. [NSW℄, Ch.VIII. However, laking duality

for

^

H

�1

, the proof of Tate's 9-term sequene for �nite modules beomes rather

intriate and one has to ombine its proof with that of the global Euler-Poinar�e

harateristi formula (lo. it.). The ow of arguments would beome more

streamlined if we were allowed to use Poitou's theorem in arbitrary dimensions.

Furthermore, we need the orretness of the de�nition of the duality homomor-

phism also for theorems 2 and 3. Therefore the �rst setions of this paper are

devoted to the rather tehnial veri�ation of the ommutativity of diagram (�)

for all i � 0. Then we reall the proof of theorem 1 and show theorems 2 and 3.

0. Some fats about Tate ohomology

Let G be a �nite group. Reall (see e.g. [B℄ Ch.IV) that Tate ohomology is

onstruted using a omplete resolution P

�

(of Z)

�

d

2

�

d

1

�

d

0

�

d

�1

	

d

�2


�

�

�

�

Æ

00

Z

� � �P

�3

P

�2

P

�1

P

0

P

1

� � �

onsisting of �nitely generated projetive Z[G℄-modules P

n

, n 2 Z, by the rule

^

H

i

(G;A) := H

i

(Hom(P

�

; A)

G

); (2)
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where Hom(P

�

; A)

i

:= Hom(P

i

; A). If P is �nitely generated and projetive,

then the same holds for P

+

= Hom(P;Z)

1

and for an arbitrary G-module A

the module Hom(P;A) is ohomologially trivial. Therefore the norm indues an

isomorphism

(P

+


 A)

G

�!

�

Hom(P;A)

G

N

G

�

�! Hom(P;A)

G

; (3)

whih, applied to the negative part of the omplete resolution, implies isomor-

phisms

H

i

(G;A)

N

G

�

�!

^

H

�i�1

(G;A) for i � 1: (4)

Reall the de�nition of the up produt (f. [B℄ hap. IV x5)

^

H

p

�

^

H

q

�!

^

H

p+q

.

It is indued by the tensor produt in dimension 0 and is uniquely haraterized

by its funtorial properties. In order to onstrut it, one uses an (essentially

unique) diagonal approximation

� : P

�

�! P

�


 P

�

; (5)

i.e. a family of G-module homomorphisms '

p;q

: P

p+q

! P

p


 P

q

, p; q 2 Z

satisfying a ertain list of axioms (lo. it.).

The abstrat de�nition of the up produt, however, is not suÆient for our pur-

poses. We will have to �x a partiular omplete resolution P

�

and an expliitly

given diagonal approximation '

p;q

, p; q 2 Z. Fortunately, suh an expliit diag-

onal approximation is given in [AW℄ for the homogeneous standard resolution.

The modules in this resolution are given by

P

i

= P

�1�i

= Z[G

i+1

℄; i � 0 (6)

and the di�erentials are de�ned for i > 0 by

d

i

(g

0

; : : : ; g

i

) =

i

X

j=0

(�1)

j

(g

0

; : : : ; g

j�1

; g

j+1

; : : : ; g

i

); (7)

d

�i

(g

1

; : : : ; g

i

) =

X

�2G

i

X

j=0

(�1)

j

(g

1

; : : : ; g

j

; �; g

j+1

; : : : ; g

i

); (8)

while d

0

: P

0

�! P

�1

is given by

d

0

(g

0

) =

X

�2G

�g

0

(=

X

�2G

�): (9)

An expliit diagonal approximation for this omplex is given by (f. [AW℄):

If p � 0 and q � 0,

'

p;q

(�

0

; : : : ; �

p+q

) = (�

0

; : : : ; �

p

)
 (�

p

; : : : ; �

p+q

) : (10)

1

Hom always means Hom

Z
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If p � 1 and q � 1,

'

�p;�q

(�

1

; : : : ; �

p+q

) = (�

1

; : : : ; �

p

)
 (�

p+1

; : : : ; �

p+q

) : (11)

If p � 0 and q � 1,

'

p;�p�q

(�

1

; : : : ; �

q

) =

X

(�

1

; �

1

; : : : ; �

p

)
 (�

p

; : : : ; �

1

; �

1

; : : : ; �

q

) ; (12)

'

�p�q;p

(�

1

; : : : ; �

q

) =

X

(�

1

; : : : ; �

q

; �

1

; : : : ; �

p

)
 (�

p

; : : : ; �

1

; �

q

) ; (13)

'

p+q;�q

(�

0

; : : : ; �

p

) =

X

(�

0

; : : : ; �

p

; �

1

; : : : ; �

q

)
 (�

q

; : : : ; �

1

) ; (14)

'

�q;p+q

(�

0

; : : : ; �

p

) =

X

(�

1

; : : : ; �

q

)
 (�

q

; : : : ; �

1

; �

0

; : : : ; �

p

) ; (15)

where the �

i

on the right-hand side run independently through G.

1. The diagram (�) ommutes

Let P

(G)

�

, resp. P

(G=U)

�

be the omplete standard resolution for G, resp. G=U

as de�ned in the last setion.

Lemma 1 Let G be a �nite group and let U � G be a normal subgroup. Let in

negative dimension the map �

�i

: P

(G=U)

�i

�! P

(G)

�i

be given by

(�

1

U; : : : ; �

i

U) 7�!

X

�

1

;:::;�

i

2U

(�

1

�

1

; : : : ; �

i

�

i

); (16)

where the �

i

on the right-hand side run independently through U . Then in dimen-

sion � �2 the deation map is indued by a oyle map

def : Hom

G

(P

(G)

�

; A) �! Hom

G=U

(P

(G=U)

�

; A

U

);

whih is uniquely de�ned by the ommutative diagram

�

N

G

�

(�

�

�i

;(N

U

)

�

)

�

N

G=U

�

def

Hom

G=U

(P

(G=U)

�i

; A

U

):Hom(P

(G=U)

�i

; A

U

)

G=U

Hom

G

(P

(G)

�i

; A)Hom(P

(G)

�i

; A)

G

Proof: First note that the map �

�i

ommutes with the di�erential on the neg-

ative part of the standard omplex. Let (g

1

; : : : ; g

i

)

�

g

1

;:::;g

i

2G

denote the dual ba-

sis of (P

(G)

�i

)

+

= Hom(P

(G)

�i

;Z), i.e. (g

1

; : : : ; g

i

)

�

maps (g

1

; : : : ; g

i

) to 1 and all

other basis elements of P

(G)

�i

to zero. The dual basis of P

(G=U)

�i

+

is denoted by

6



((g

1

U); : : : ; (g

i

U))

�

g

1

U;:::;g

i

U2G=U

. Consider the diagram

�

D

�

D

�

D

�

N

G

�

N

G=U

�

N

G=U

�

oinf

�

id
N

U

�

(�

�

�i

;pr

�

)

�

(id

�

;(N

U

)

�

)

�

�

�

(id

�

;(N

U

)

�

)

Hom

G=U

(P

(G=U)

�i

; A

U

):Hom(P

(G=U)

�i

; A

U

)

G=U

((P

(G=U)

�i

)

+


 A

U

)

G=U

Hom

G=U

(P

(G=U)

�i

; A

U

)Hom(P

(G=U)

�i

; A

U

)

G=U

((P

(G=U)

�i

)

+


 A

U

)

G=U

Hom

G

(P

(G)

�i

; A)Hom(P

(G)

�i

; A)

G

((P

(G)

�i

)

+


 A)

G

Explanations: pr : A ! A

U

is the natural projetion, oinf is the hain map

whih indues oination on homology, it is indued by pr and by the map

P

(G)

�i

+

! P

(G=U)

�i

+

, whih sends (g

�

1

; : : : ; g

�

i

) to ((g

1

U)

�

; : : : ; (g

i

U)

�

). The maps

D are indued by the anonial duality isomorphisms P

+


A

�

=

Hom(P;A) (the

P

�i

are free of �nite rank). A simple alulation shows that the upper left square

ommutes and we de�ne � in order to let the upper right square ommute. The

lower squares ommute obviously. By de�nition, def is indued by the ompo-

sition of the two vertial arrows on the right. This ompletes the proof of the

lemma. 2

Now assume that A and B are G-modules. The problem in extending the

ommutativity of (�) from i = 0 to the ase of arbitrary dimensions is that

we annot make the shift for A and A

U

simultaneously (and, learly, the same

problem ours for B). That is why we are fored to make these expliit hain

alulations below.

Suppose that i � 2 and q � 1. Let �x 2

^

H

�i

(G;A), �y 2 H

q+i

(G=U;B

U

)

be ohomology lasses represented by oyles x 2 Hom

G

(P

(G)

�i

; A) and y 2

Hom

G=U

(P

(G=U)

q+i

; A), respetively.

Proposition 2

�x [ inf �y = inf (def �x [ �y) 2 H

q

(G;A
B):

Proof: We alulate both sides on the level of ohains. Let us start with the

left side. For (�

0

; : : : ; �

q

) 2 P

(G)

q

we obtain by (15)

(x [ inf y)(�

0

; : : : ; �

q

) =

X

�

1

;:::;�

i

2G

x(�

1

; : : : ; �

i

)
 y(�

i

U; : : : ; �

1

U; �

0

U; : : : ; �

q

U):

In order to ompute the right side, hoose a z 2 Hom(P

(G)

�i

; A) with x = N

G

z.

Then by (15) and by lemma 1 we have
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inf (defx [ y)(�

0

; : : : ; �

q

) =

�

(N

G=U

(�

�

�i

; (N

U

)

�

)z) [ y

�

(�

0

U; : : : ; �

q

U)

=

X

�

1

U;:::;�

i

U2G=U

(N

G=U

(�

�

�i

; (N

U

)

�

)z)(�

1

U; : : : ; �

i

U)
 y(�

i

U; : : : ; �

1

U; �

0

U; : : : ; �

q

U):

Using the de�nition of �

�i

and of N

U

this transforms to

X

�U2G=U

X

u2U

X

�

1

U;:::;�

i

U2G=U

X

u

1

;:::;u

i

2U

�u z(�

�1

�

1

u

1

; : : : ; �

�1

�

i

u

i

)
 y(�

i

U; : : : ; �

1

U; �

0

U; : : : ; �

q

U);

whih oinides with

X

�

1

;:::;�

i

2G

(N

G

z)(�

1

; : : : ; �

i

)
 y(�

i

U; : : : ; �

1

U; �

0

U; : : : ; �

q

U):

This shows the proposition. 2

Proposition 3 For i � 0 and q � 1 the diagram

(�)

�

[

 

[

!

def

"

inf

#

inf

^

H

q

(G=U; (A
B)

U

);

^

H

q�i

(G=U;B

U

)�

^

H

i

(G=U;A

U

)

^

H

q

(G;A
 B)

^

H

q�i

(G;B)�

^

H

i

(G;A)

ommutes.

Proof: For i � �2 this follows from the last proposition. Via the isomorphism

N

G

A=I

G

A �!

�

H

�1

(G;A)

a 7�! x

a

: Z[G℄! A; � 7! �(a)

the up produt is given on the hain level by

x

a

[ y(�

0

; : : : ; �

q

) =

X

�2G

�a
 y(�; �

0

; : : : ; �

q

):

The ommutativity of (�) for i = �1 follows immediately, sine def is indued by

the norm

N

U

:

N

G

A=I

G

A �!

N

G=U

A

U

=I

G=U

A

U

:

The ase i = 0 is obvious. 2
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2. Proof of the theorems

From now on let G be a pro�nite group. Having veri�ed the ommutativity of

the diagram (�), we an now dedue the following proposition from the theorem

of Tate-Nakayama for �nite groups.

Proposition 4 Under the assumption of theorem 1 suppose that A is Z-free.

Then the up produt

^

H

i

(G;Hom(A;C)) �

^

H

2�i

(G;A)

[

�! H

2

(G;C)

inv

�

�!

1

#G

Z=Z

indues isomorphisms

^

H

i

(G;Hom(A;C))

�

�!

^

H

2�i

(G;A)

_

for all i 2 Z.

Proof: For i 6= 1 this follows easily from the theorem 4 by passing to the limit

over G=U , where U runs through the open normal subgroups in G. For i = 1, let

U � G be an open normal subgroup whih ats trivially on A. Sine A is Z-free,

H

1

(U=V;A

V

) = 0 for every open normal subgroup V � U and therefore

H

1

(G=U;A

U

)!

�

H

1

(G=V;A

V

):

Using the fat that C is a lass formation, we obtain

H

1

(U=V;Hom(A;C)

V

) = H

1

(U=V;Hom(A;C

V

))

�

=

H

1

(U=V; C

V

)

rank

Z

A

= 0:

This implies that

H

1

(G=U;Hom(A;C)

U

)!

�

H

1

(G=V;Hom(A;C)

V

):

A stationary limit proess shows that theorem 4 implies proposition 4 also in

dimension 1. 2

For a disrete G-module M we denote by

N

G

M =

\

U�G

N

G=U

M

U

�M

G

the module of universal norms of M . In the following de�nition we systematize

the assumption on the ompatness of C

U

in theorem 1.

De�nition 1 Let G be a pro�nite group. A level-ompat G-module is a disrete

G-module M (i.e. M =

S

U

M

U

, where U runs through the open subgroups of G)

whih is endowed with an additional topology, suh that the ation

G�M �!M

is ontinuous and M

U

is ompat for every open subgroup U � G.

9



IfM is level-ompat, then for i � 0 the groups

^

H

i

(G;M) are abelian pro�nite

groups in a natural way: For every open normal U � G the group

^

H

i

(G=U;M

U

)

inherits a natural ompat topology from M

U

via the standard omplex. Fur-

thermore, this group is annihilated by (G : U), hene

^

H

i

(G=U;M

U

) and thus

also

^

H

i

(G;M) is pro�nite. For i > 0 we give H

i

(G;M) the disrete topology.

Lemma 5 Let M be a level-ompat G-module. Then

^

H

0

(G;M) =M

G

=N

G

M:

Proof: For every open normal subgroup U � G we have a short exat sequene

N

G=U

M

U

�!M

G

�!

^

H

0

(G=U;M

U

) �! 0:

Sine all groups are ompat by assumption, the sequene remains exat after

passing to the projetive limit over all U . 2

Lemma 6 Let M be a level-ompat G-module. Suppose that for every open

subgroup U � G a losed subgroup

M(U) �M

U

is given in suh a way that the following onditions hold

(i) N

U

M �M(U) for every open U � G,

(ii) if V is normal in U , then N

U=V

:M

V

!M

U

maps M(V ) to M(U).

Then

^

H

i

(G;M)

�

=

lim

 �

U

^

H

i

(G=U;M(U))

for all i � �1.

Proof: We have seen in lemma 1 that the deation maps are in negative di-

mensions given by a map on the hain level. As projetive limits are exat on

ompat groups, we see that for i � �2 the group

^

H

i

(G;M) also an be alu-

lated as the quotient of the inverse limit of the oyles modulo the inverse limit

of the oboundaries. These, however take values in the groups of universal norms

on the orresponding levels, i.e. we may take the limit over the groups M(U)

instead of M

U

as well. This shows the lemma for i � �2. For i = �1 deation

is expliitly given by the norm and a straightforward omputation, similarly ex-

ploiting the level-ompatness, shows the statement also in this ase (f. [NSW℄

3.1.7). 2
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Proposition 7 Let

0 �!M

0

i

�!M

j

�!M

00

be an exat sequene of level-ompat G-modules, suh that the indued map

N

U

M

N

U

j

�! N

U

M

00

is surjetive for all open normal subgroups U of G. Then

there is an assoiated long exat ohomology sequene

� � � �!

^

H

�n

(G;M

0

) �!

^

H

�n

(G;M) �!

^

H

�n

(G;M

00

) �! � � �

ending with � � � !

^

H

0

(G;M

0

) !

^

H

0

(G;M) !

^

H

0

(G;M

00

). If, moreover, j

is surjetive, we obtain the long exat ohomology sequene unbounded in both

diretions (i.e. from �1 to +1).

Proof: For every open normal subgroup U in G we onsider the kernelM

0

(U) :=

ker(N

U

M

N

U

j

�! N

U

M

00

). We have inlusions N

U

M

0

� M

0

(U) � M

0U

and obtain

the exat and ommutative diagram

$%&'(

N

G=U

)

N

G=U

*

N

G=U

+,-

M

00G

:M

G

M

0G

0

0N

U

M

00

N

U

MM

0

(U)0

Consider the long exat ohomology sequene

� � � !

^

H

i

(G=U;M

0

(U))!

^

H

i

(G=U;N

U

M)!

^

H

i

(G=U;N

U

M

00

)! � � � (17)

assoiated to the upper line. It onsists of ompat abelian groups, is learly exat

and all homomorphisms inluding the boundary maps are ontinuous (use, e.g.,

the snake lemma in the abelian ategory of ompat abelian groups). Passing

to the inverse limit over U , we obtain using lemma 6 the asserted long exat

sequene up to dimension �1.

By ompatness, the image of N

G=U

: N

U

M �! M

G

is N

G

M and hene, by

lemma 5, the okernel of this map is

^

H

0

(G;M). We denote its kernel by

X(M;U) =

N

G=U

N

U

M;

whih ontains Y (M;U) := I

G=U

N

U

M , and the same holds for M

00

. The snake

lemma implies an exat ommutative diagram

.

j

/012

Æ

34

^

H

0

(G;M

00

):

^

H

0

(G;M)M

0G

=N

G=U

M

0

(U)X(M

00

; U)X(M;U)

Y (M

00

; U)Y (M;U)

Observe that

lim

 �

U

(M

0G

=N

G=U

M

0

(U)) =

^

H

0

(G;M

0

):

11



Furthermore, the upper map j : I

G=U

N

U

M ! I

G=U

N

U

M

00

is obviously surjetive

and N

G=U

: N

U

M ! M

G

maps I

G=U

N

U

M to zero. Therefore Æ : X(M

00

; U) !

M

0G

=N

G=U

M

0

(U) maps Y (M

00

; U) to zero by the de�nition of Æ. This means that

we may replae in the last diagram the group X(M;U) by

^

H

�1

(G=U;N

U

M) =

X(M;U)=Y (M;U) andX(M

00

; U) by

^

H

�1

(G=U;N

U

M

00

) = X(M

00

; U)=Y (M

00

; U)

and obtain an exat sequene of ompat groups and ontinuous homomorphisms.

Taking projetive limits over U , we obtain the exat sequene

^

H

�1

(G;M)!

^

H

�1

(G;M

00

)

Æ

!

^

H

0

(G;A)!

^

H

0

(G;B)!

^

H

0

(G;C):

Now suppose that j is surjetive. Consider the ommutative and exat diagram

56789:;<=>?

N

G

j

�A

0

BC

H

1

(G;M)

0 :0

N

G

M

00

N

G

M

H

1

(G;M

0

)M

00G

M

G

^

H

0

(G;M

00

)

^

H

0

(G;M)

00

The vertial sequenes are exat by lemma 5. We onlude the existene of the

dotted arrow, whih glues the already proven negative part long exat sequene

with the long exat sequene

H

1

(G;M

0

) �! H

1

(G;M) �! H

1

(G;M

00

) �! � � � : 2

Remark: The homomorphisms in the negative part of the long exat sequene

are easily seen to be ontinuous. The maps in dimensions greater or equal to

one are ontinuous beause the groups are disrete. Only the boundary map Æ

0

:

^

H

0

(G;M

00

)! H

1

(G;M

0

) might ause a problem. It an be seen to be ontinuous

in our appliation, however, under the general assumptions of proposition 7 this

is not neessarily true.

Corollary 8 If p is a prime number, then the long exat sequene of proposition 7

indues a long exat sequene of the p-parts, too.

Proof: All ourring ohomology groups are either abelian pro�nite groups or

abelian disrete torsion groups and therefore they naturally deompose into the

diret sum of their p-parts and their prime-to-p-parts. In order to prove the

12



orollary, it suÆes to show that also the di�erentials deompose into a diret

sum of homomorphisms. This is trivially true for ontinuous di�erentials, hene

it remains to onsider the homomorphism Æ

0

:

^

H

0

(G;M

00

)! H

1

(G;M

0

). Let x 2

^

H

0

(G;M

00

)(p). Choose a pre-imagem

00

2M

00G

of x and letm 2M be a pre-image

of m

00

. Furthermore, let U � G be an open normal subgroup in G suh that m 2

M

U

. The losed subgroup generated by m inM

U

maps onto the losed subgroup

generated by x whih oinides with Z

p

� x �

^

H

0

(G;M

00

)(p). We onlude that

Æ

0

(�x) 2 H

1

(G=U;M

0U

) � H

1

(G;M

0

) for all � 2 Z

p

. Writing #(G=U) = Np

k

with (N; p) = 1, we obtain that Æ

0

(x) = NÆ

0

(N

�1

x) 2 N �H

1

(G=U;M

0U

) =

H

1

(G=U;M

0U

)(p) � H

1

(G;M

0

)(p). A similar argument shows that Æ

0

sends the

prime-to-p-part of

^

H

0

(G;M

00

) to the prime-to-p-part of H

1

(G;M

0

). 2

We use the �rst part of proposition 7 in order to prove Poitou's theorem.

Proof of theorem 1: If A is Z-free, the assertion is ontained in proposi-

tion 4. Let A be an arbitrary �nitely generated G-module. There exists an exat

sequene

0 �! R �! F �! A �! 0

of �nitely generated G-modules, where R and F are Z-free. Applying the funtor

Hom(�; C), we obtain an exat sequene

0 �! Hom(A;C) �! Hom(F;C) �! Hom(R;C) :

Let U run through the open normal subgroups suh that F

U

= F , hene

A

U

= A; R

U

= R. Then N

U

Hom(F;C) = Hom(F;N

U

C), N

U

Hom(R;C) =

Hom(R;N

U

C) and the map N

U

Hom(F;C) �! N

U

Hom(R;C) is surjetive sine

N

U

C is divisible. For i � 0 proposition 7 indues an exat ommutative diagram

in whih we write

�

for Hom(�; C):

DEFGHIJKLMNOP

H

2�i

(G;R)

_

:H

2�i

(G;F )

_

H

2�i

(G;A)

_

H

3�i

(G;R)

_

H

3�i

(G;F )

_

^

H

i

(G;

~

R)

^

H

i

(G;

~

F )

^

H

i

(G;

~

A)

^

H

i�1

(G;

~

R)

^

H

i�1

(G;

~

F )

The vertial arrows exept the middle one are isomorphisms by proposition 4.

Hene, by the �ve lemma the middle one is also an isomorphism. This proves

theorem 1. 2

In the proofs of theorems 2 and 3 we will use the seond statement of propo-

sition 7 as well as the proposition 10 below. First we need the

Lemma 9 Suppose that A is �nitely generated and that p

1

j#G. Then

^

H

0

(G;A)

is pro�nite and we have a anonial isomorphism

^

H

0

(G;A)(p)

�

=

A

G


 Z

p

:

13



Proof: By de�nition,

^

H

0

(G;A) is the inverse limit of the groups A

G

=N

G=U

A

U

.

Sine A is �nitely generated, all norm groups are of �nite index in A

G

and it suf-

�es to show that for arbitrarily given n 2 N the subgroup N

G=U

A

U

is ontained

in p

n

A

G

for suÆiently small U . Let U be an open normal subgroup suh that

A

U

= A. Then for every normal open subgroups V � U with p

n

j(U : V ) and for

every a 2 A

V

= A

U

= A we have

N

G=V

a = N

G=U

N

U=V

a = (U : V )N

G=U

a 2 p

n

A

G

:

This shows the lemma. 2

Proposition 10 Suppose that p

1

j#G and let

0 �! A

0

�! A �! A

00

�! 0

be a short exat sequene of �nitely generated G-modules. Then we obtain a long

exat sequene

� � � �!

^

H

i

(G;A

0

)(p) �!

^

H

i

(G;A)(p) �!

^

H

i

(G;A

00

)(p) �! � � �

whih is unbounded in both diretions. The groups are ompat for i � 0, disrete

for i > 0 and all homomorphisms are ontinuous.

Proof: Sine A is �nitely generated,

^

H

i

(G=U;A

U

) is �nite for all U . Further-

more, A

U

= A for small U , hene we obtain for small U a long exat sequene

� � � �!

^

H

0

(G=U;A

0U

)(p) �!

^

H

0

(G=U;A

U

)(p) �!

^

H

0

(G=U;A

00U

)(p)

of �nite abelian p-torsion groups. Passing to the projetive limit, we obtain the

negative part of our long exat sequene. Now onsider for small U the long exat

sequene

0 �! A

0G

�! A

G

�! A

00G

�!

^

H

1

(G=U;A

U

) �! � � � :

Tensoring by Z

p

and passing to the diret limit over U , we obtain the right part

of our long exat sequene. Both �t together by lemma 9. The ontinuity of the

maps is lear from their de�nitions. 2

The following is the abstrat form of theorems 2 and 3.

Theorem 5 Let G be a pro�nite group and let p be a prime number with p

1

j#G.

Suppose that C is a level-ompat lass formation for G suh that the group of

universal norms

N

U

C =

\

V�U

N

U=V

C

V

� C

U

14



is p-divisible for all open subgroups U � G. If, moreover, C is p-divisible, then

the up produt

^

H

i

(G;Hom(A;C)) �

^

H

2�i

(G;A)

[

�! H

2

(G;C)

inv

�

�!

1

#G

Z=Z

indues isomorphisms

^

H

i

(G;Hom(A;C))(p)

�

�!

^

H

2�i

(G;A)(p)

_

for all i 2 Z and every disrete G-module A whih is �nitely generated as a

Z-module.

Proof: If A is Z-free, the assertion follows immediately from proposition 4. Let A

be an arbitrary �nitely generated G-module, whose torsion part onsists, without

loss of generality, only of p-torsion. There exists an exat sequene

0 �! R �! F �! A �! 0

of �nitely generated G-modules, where R and F are Z-free. Applying the funtor

Hom(�; C), sine C is p-divisible, we obtain an exat sequene

0 �! Hom(A;C) �! Hom(F;C) �! Hom(R;C) �! 0:

Let U run through the open normal subgroups suh that F

U

= F , hene

A

U

= A; R

U

= R. Then N

U

Hom(F;C) = Hom(F;N

U

C), N

U

Hom(R;C) =

Hom(R;N

U

C) and the map N

U

Hom(F;C) �! N

U

Hom(R;C) is surjetive sine

N

U

C is p-divisible. By orollary 8 we obtain a long exat ohomology sequene

whih is unbounded in both diretions

� � � �!

^

H

i

(G;

~

A)(p) �!

^

H

i

(G;

~

F )(p) �!

^

H

i

(G;

~

R)(p) �! � � �

and in whih we wrote

�

for Hom(�; C). Furthermore, proposition 10 gives us

a orresponding long exat ohomology sequene assoiated to the short exat

sequene 0 ! R ! F ! A ! 0 in whih all groups are ompat or disrete

and all maps are ontinuous. Hene this sequene remains exat after taking

Pontryagin duals. Thus the duality map of theorem 5 de�nes a map between two

long exat sequenes. Therefore the statement of theorem 5 for A follows easily

from that for F and R and from the �ve lemma. 2

Finally, we apply theorem 5 to the arithmeti situation. Let k be a number

�eld, p a prime number and let S be any �nite set of primes of k suh that S � S

1

.

For every �nite subextension K of k in k

S

onsider the subgroup C

0

S

(K) of ideles

of norm 1 in C

S

(K) and let C

0

S

= lim

�!

K�k

S

C

0

S

(K). The exat sequenes

0 �! C

0

S

(K) �! C

S

(K)

j j

�! R

�

+

�! 0

15



show isomorphisms

^

H

i

(G

S

; C

0

S

)

�

=

^

H

i

(G

S

; C

S

)

for all i 2 Z. Sine C

0

S

(K) is ompat for all �nite subextensions K of k in k

S

, we

onlude that C

0

S

is a level-ompat lass formation for G

S

. One easily obtains

that the groups of universal norms of C

0

S

are divisible, beause this is true for C

S

(see e.g. [NSW℄ 8.4.10, 8.5.2).

Proof of theorem 2: If S � S

p

, then p

1

j#G

S

, for instane beause k

S

ontains

the ylotomi Z

p

-extension of k. By theorem 6 of [S℄ (see also 10.9.5 in [NSW℄)

C

S

and hene also C

0

S

is p-divisible. Therefore theorem 2 follows from theorem 5.

2

Proof of theorem 3: Under the given assumptions, for every �nite subextension

K of k in k

S

the group G

S

(K)

ab

(p) is �nitely generated (sine S is �nite) and

torsion (a Z

p

-extension is rami�ed at least at one prime dividing p and S\S

p

= ;),

hene �nite. By the group theoreti form of the prinipal ideal theorem (see [N℄

hap.VI thm. 7.6), we onlude that

lim

�!

K�k

S

G

S

(K)

ab

(p) = 0:

Sine D

S

(K) is divisible, the exat sequenes

D

S

(K) �! C

S

(K) �! G

S

(K)

ab

�! 0

indue an isomorphism

C

S

=p �!

�

lim

�!

K�k

S

G

S

(K)

ab

=p = 0

in the limit. Hene C

S

and thus also C

0

S

is p-divisible and theorem 3 follows from

theorem 5. 2

Closing remarks: 1. If S � S

p

[ S

1

, theorem 2 an be used to alulate the

group of universal norms of the G

S

-module Hom(Z=pZ; C

S

) =

p

C

S

as

N

G

S

(

p

C

S

) =

Y

v2S

C

�

p

;

where S

C

denotes the set of omplex plaes of k. One an show that the validity

of the Leopoldt onjeture for k and p is equivalent to the fat, that these are

all the universal norms in C

S

(k) whih are annihilated by p (f. [NSW℄ 10.3.7).

However, we an not derive the latter statement from the duality theorems above.
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2. Theorem 5 also applies to the absolute Galois group of a �nite extension kjQ

l

,

where l is any prime number. The level-ompat lass module

A = lim

�!

Kjk

(lim

 �

n

K

�

=n);

is easily seen to have trivial universal norms. Theorem 5 applies to every prime

number p and we obtain the well known duality theorem for loal Galois modules

(f. [NSW℄ 7.2.8).
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