On the étale site of marked schemes

Alexander Schmidt

When considering the étale site of a scheme it is often of interest to consider
a variant which forces a given set of points to split in at least one member of a
covering. Examples are the étale site of a marked curve used in [Scm], where a
finite set of closed points is considered and the Nisnevich site [Nis], where all points
are required to split. In this note we develop this approach in greater generality.
Furthermore, we close a small gap in the literature by showing that any Nisnevich
covering of a quasi-compact scheme has a finite subcovering.

1 Definition of the marked site

Let X be a scheme and let T" be a set of points of X. We will loosely write T'c X
and call the pair (X,T) a marked scheme. A morphism f : (Y,S) - (X,T) of
marked schemes is a scheme morphism f:Y - X with f(S)cT.

Definition 1.1. Let (X,T) be a marked scheme. The marked étale site (X,T)et
consists of the following data: The category Cat(X,T)e is the category of mor-
phisms f: (U,S) - (X,T) such that

a) (f:U — X) is étale, and

b) S=p (7).
A family (p; : (U;,S;) = (U, S))ier of morphisms in Cat(X,T)e; is a covering if
it is surjective and any point s € S splits, i.e., there exists an index ¢ and a point
u; € S; mapping to s such that the induced field homomorphism k(s) - k(u;) is an
isomorphism.

Example 1.2. For T = @, we obtain the small étale site of X, for T = X the
Nisnevich site [Nis|.

A morphism of marked schemes induces a morphism of the associated marked
étale sites in the obvious way.

We consider the following “geometric points” of (X,T).: we fix a separable closure
k(x)® of k(zx) for every scheme-theoretic point z € X and consider the following
morphisms of marked schemes

1.) for = ¢ T, the natural morphism (Speck(z)®, @) —» (X, T).

2.) for x € T, the natural morphisms (Speck, Specr) - (X,T) for every subex-

tension x/k(x) of k(x)*/k(x).
If f: P — X is any of the morphisms described in 1.) and 2.), the assignment
F — T'(P,f*F) is a topos-theoretic point of (X,T)e and one easily verifies that
this family of points is conservative. In particular, exactness of sequences of abelian
sheaves can be checked stalkwise.
We denote the cohomology of a sheaf F € She(X,T) of abelian groups on

(XaT)ct by Hgt(XaTaF)'



2 Excision

Let (X,T) be a marked scheme, i : Z - X a closed immersion and U = X \ Z
the open complement. The right derivatives of the left exact functor “sections with

support in Z”
Fvoker(F(X,T) - F(UTnU))

are called the cohomology groups with support in Z. Notation: H (X, T, F).
The proof of the next proposition is standard (cf. [Artl III, (2.11)] for the étale
case without marking).

Proposition 2.1. There is a long exact sequence

0~ HY(X,T,F) > HY(X,T,F) - HY(U,TnU,F) -
Hy(X,T,F) > Hy\(X,T,F) > H\ (U TnU,F) ...

Proposition 2.2 (Excision). Let 7 : (X',T") - (X,T) be a morphism of marked
schemes, Z < X, Z' - X' closed immersions and U = X \ Z, U’ = X'\ Z' the open
complements. Assume that
m: X' - X is étale,
T =7 (T),
7 induces an isomorphism Z; 4, —— Zyed,

m(U") cU.

Then the induced homomorphism

HY(X,T,F) = H (X', T',n*F)
is an isomorphism for every sheaf F € She(X,T) and all p > 0.

Proof. The standard proof for étale topology applies: By the general theory, 7* is
exact. Since 7 belongs to Cat(X,T)et, 7* has the exact left adjoint “extension by
zero”, hence 7* sends injectives to injectives. Therefore it suffices to deal with the
case p = 0. Without changing the statement, we can replace all occurring schemes
by their reductions. By assumption,

X", 1") 1] (U, TnU)— (X,T)

is a covering. For a € H) (X, T, F) mapping to zero in H),(X',T', 7* F') we therefore
obtain a = 0.

Now let o’ € HY, (X', T',7*F) be given. We show that o/ and 0 € H°(U,T n
U,F) glue to an element in HY(X,T,F). The only nontrivial compatibility on
intersections is pj(a’) = p3(a’) for p1,p2 : (X' xx X', T xp T") — (X',T"). This
can be checked on stalks noting that Z' — Z implies that the two projections
Z'"xz Z" - Z' are the same. O

3 Continuity

Proposition 3.1. Let X be a quasi-compact scheme and let T' ¢ X be a closed
subscheme. Then every étale covering of (X,T') admits a finite subcovering.

Proof. Since X has a finite affine Zariski-open covering, we may assume that X
is affine, in particular X is quasi-separated. Then also T is quasi-compact and
quasi-separated. Let

LI, S:) - (X,T)

iel



be an étale covering. Let, for ¢ € I, K; ¢ T be the set of points in T which
split in U; - X. By [Src, Lemma 13.3], K; is ind-constructible, i.e., open in the
constructible topology of T'; which is compact by [EGA4l 1.9.15 (iii)]. Since T =
U; K; by assumption, we find a finite subset J c I with T = U;c; K;. Furthermore,
since X is quasi-compact and étale morphisms are open, we find a finite subset J' c I
such that [],.;;U; — X is an étale covering. We conclude that 11,5, (Us, S;) —
(X,T) is a finite subcovering of [1,;.;(U;, Si) — (X, T). O

As in [SGA4l VII, 3.2] for the unmarked étale site, we define the restricted

marked étale site
(X, T)e”

as the restriction of (X, T )¢ to the subcategory of all (U, S) € (X,T)e; where U — X
is of finite presentation. Assume that X is quasi-compact and quasi-separated.
Then the same is true for any such U and Proposition [3.1]shows that the restricted
site is noetherian. Moreover, the categories of sheaves on (X,T)q and (X,T)5°
are naturally equivalent. Hence the same argument as in the unmarked étale case
[SGA4, VII, Prop. 3.3] shows

Theorem 3.2. Let X be a quasi-compact and quasi-separated scheme and let
T c X be a closed subscheme. Let (F;) be a filtered direct system of abelian
sheaves on (X,T)et. Then

colim HE(X,T,F;) =2 HY (X, T, colim F)

for all p > 0.
Next we consider inverse limits of marked schemes.

Theorem 3.3. Let (X,T) be a marked scheme with T closed in X and let X; — X,
i € I, be an inverse system of X-schemes. Assume that all X; are quasi-separated
and quasi-compact and that all transition morphisms are affine. Let T; be the
preimage of T in X; and put X, = @X,», Too = linT,

Then the restricted site (Xoo, Too )rg® is the limit site of the sites (X;,T;)eg’.

Corollary 3.4. With the notation and assumptions of Theorem let F be a
sheaf of abelian groups on (X, T).,. We denote its inverse image on (X;,T;)et and
(XoosToo)et by F; and Fy,. Then the natural map

coll_imHgt(Xi,ﬂ;,Fi) — H? (X oo, Too, F)

is an isomorphism for all p > 0.

Proof of Theorem[3.3 By [Art], III, Theorem 3.8|, the site (Xo)L® is naturally
equivalent to the limit site of the (X;)i®. In view of Proposition it there-
fore suffices to show that for every quasi-compact étale surjection U; - X; with
the property that every point of To, splits in Us = U; xx, Xoo = Xo there exist
j > i such that every point of 7} splits in U; = U; xx, X; - X;. We follow the
proof of [Src, Lemma 13.2] for Nisnevich coverings. By [Src, Lemma 13.3], the
subset S; c T} of points that split in U; - X is ind-constructible for all j > 1.
Denoting the projection by u; : Toe — Tj, the assumption on Us, — X implies
Too = U;u;"(S;). Considering the T ¢ X as reduced, closed subschemes, we may
apply [EGA4, Cor. 8.3.4] to obtain S; = T} for some j. O

Remark 3.5. Let A be aring and let (A — B;);c; be an affine Nisnevich covering.
We write A as the union of its finitely generated subrings. Then, by Proposition [3.1
and Theorem there exists a finite subset J c I, a subring A’ ¢ A which is



finitely generated over Z and a finite Nisnevich covering (A" - BY);cs such that
BjzA®a Bj forall jeJ.

Hence the refined definition of Nisnevich coverings for general rings introduced
by Lurie in [DAG] XI, Definition 1.1 and Remark 1.15] coincides with the naive
definition.

Corollary 3.6. Let (X,T) be a marked scheme with T closed in X and Z =
{z1,...,2n} a finite set of closed points of X. Put X! = Spec((’)}}gﬁ). Then, for
every sheaf F of abelian groups on (X,T)e, and all p >0

HY(X,T,F)= @HfZi}(XZ,T nX! F).

Proof. Since HY(X,T,F) 2 ®;, Hfz_}(X, T, F), we may assume that Z = {2} con-
sists of a single closed point. Excision shows that

HY (X,T,F)=H{ ,(U,TnU,F)

for every affine étale open neighbourhood U of z. Since X’ is the limit over all
these U, the long exact sequences of Proposition together with Corollary
show the result. O

Using Corollary it is easy to calculate the stalks of the higher direct images
of the site morphism (X,7T)e = (X, X)et = Xnis- The Leray spectral sequence
together with the fact that the Nisnevich cohomological dimension of noetherian
schemes is bounded by the Krull dimension [Nis|, Theorem 1.32] yields:

Corollary 3.7. Let X be a noetherian scheme of finite Krull dimension d, T c¢ X
closed and assume that there exists a nonnegative integer N such that

cd(k(z))< N
for all points x € X \T. Then for every abelian torsion sheaf F on (X,T); we have

HY(X,T,F)=0 forp>N +d.

4 Galois covers

Definition 4.1. A Galois cover of X with finite Galois group G in the site (X, T")et
is a morphism (Y,5) - (X,T) in (X,T'); together with a right action of G on Y
over X such that the following holds:

1. (V,5) - (X,T) is a covering for the site (X, T ).
2. Y - X is an étale Galois cover, i.e.,

YxG->YxxY, (y,9)~ (y,99)

is an isomorphism.

Since G acts transitively on the set of points in Y over a given point x € X, we see
that every t € T splits completely in Y/X.

Proposition 4.2 (Hochschild-Serre spectral sequence). Let (Y,S) - (X,T) be a
Galois cover with finite group G und F € Shey(X,T). Then there is a natural
spectral sequence

EY = HP(G,HL(Y,S,F)) = HL(X,T,F).



Proof. The proof is word-by-word the same as for the étale cohomology, see [Mil
Theorem 2.20]. O

Remark 4.3. Assume that X is quasi-compact and quasi-separated and T c¢ X
closed. Let

be a directed inverse system of Galois covers with finite Galois groups G; and
(Y,5) =1im(Y3,.5;). Then (Y,S) - (X, T) is a pro-Galois cover with profinite Galois
group G = limG;. By Theorem for F € Shet(X,T), the groups HZ (Y, S,F) =
colim H? (Y;,S;, F') are discrete G-modules and we obtain the profinite Hochschild-
Serre sequence

B} = HY(G, HL(Y, S, F)) = HE(X,T,F),

where H*(G,-) is the continuous cohomology of the profinite group G with values
in a discrete G-module (see [NSWI I, §2]).

5 Fundamental group

We recall some facts from Artin-Mazur [AM]. Let € be a pointed site and HR(%)
the category of pointed hypercovers of ¢ [AM, §8]. If € is locally connected, then
the “connected component functor” 7 defines an object

0% = {7(Ke)} k.eHR(%)

in the pro-category of the homotopy category of pointed simplicial sets. By defini-
tion, the fundamental group of % is the pro-group 1 (II(%)).

Let X be alocally noetherian scheme. Then (cf. [AM] §9]) the site X, and hence
also (X, T)et is locally connected. Pointing (X,T)et by choosing any “geometric”
point Z described at the end of Section [I we obtain the étale fundamental group
7" (X, T,z). It is independent of the choice of T up to isomorphism, which is
canonical up to inner automorphisms. By [AM| Cor. 10.7], for any group G, the set
Hom(7{*(X,T,z),G) is in bijection with the set of isomorphism classes of pointed
(over ) G-torsors in (X,T)¢t. In particular, 7$"(X,@,z) is the enlarged étale
fundamental group of [SGA3| X, §6] and its profinite completion is the usual étale
fundamental group of X defined in [SGAI|. If Z is a geometric point of X, then
(X, T,z) is a factor group of 7$*(X,@,Z), which is profinite for normal X by
[AM, Thm. 11.1]. Hence we obtain the following result.

Proposition 5.1. Let X be a noetherian, normal, connected scheme and T c X.
Then (for any choice of base point) n$*(X,T') is a profinite group. Its finite quotients
are in bijection with the isomorphism classes of finite connected pointed étale Galois
covers of X in which every point t € T splits completely.

Example 5.2. For general (X,T), the fundamental group need not be profinite.
For example, let k be a field and N =P}/(0 ~ 1) the node over k. Then

e ZxGalg, T=2
Wlt(N’T);{ z.  T-x.

We will use the notation #$'(X,T) for the profinite completion of 7$*(X,T),
hence we have a completion map 7¢*(X,T) — #$*(X,T) which is an isomorphism

by Proposition [5.1]if X is a noetherian, normal and connected scheme.

We end this section with the following observation concerning products.



Proposition 5.3. Let k be a field, X and Y geometrically connected schemes of
finite type over k and S c X (k), T c Y (k) nonempty sets of k-rational points. Let
a and b be geometric points of X \ S and Y \T with values in a common separably
closed extension field of k. Assume that at least one of the schemes X and Y is
proper over k. Then the natural map

AU % VoS x T, (,b)) — 75 (X, S, 0) x 75" (V. T, b)
is an isomorphism of profinite groups.

Proof. We omit the base points from notation. For a connected scheme X, let X
denote the profinite universal cover. For a subset S c X, the kernel of #'(X) —
#$'(X,S) is the (closed) normal subgroup of #§*(X) = Gal(X|X) generated by the
decomposition groups of the points in S, i.e., it is the (closed) subgroup of Gal(X|X)
generated by all automorphisms which fix a point § € X lying over some s ¢ S. We
denote this group by K(X,S).

Now assume we are in the situation of the proposition. By the topological
invariance of the étale topology we may assume that k is perfect. Let k be an
algebraic closure of k. We denote the base changes to k by (X,S) and (Y,T). By
[SGAIL X, 1.7], we have a natural isomorphism

X X V) 2 750(X) < A51(Y).
Moreover, by [SGA1] IX, 6.1], we have a natural exact sequence
1 — #%(X) — #5%(X) — Gal(k|k) — 1.
This and the similar sequence for Y shows the isomorphism
X 0 V) < 754X Xgaigipy 5 (V). (+)

where the term on the right hand side is a fibre product in the category of profinite
groups. We consider the corresponding diagram of étale Galois covers.

Let (s,2) € SxT c X x, Y and let (3,1) € X x, Y = X x; Y be a point lying
above (s,t). An element o € #5"(X x;, ) = Gal(X x; Y|X x; Y) fixes (3,7) if and
only if its image in #§*(X) = Gal(X xp Y|X x; V) fixes § € X and its image in
#8(Y) = Gal(X xp, Y|X x Y) fixes £ € Y. Hence, the isomorphism (*) induces an
isomorphism of subgroups

K(X %, Y,5xT) = K(X,5) xgam K, T). ()



The isomorphisms (*) and (*x) together induce an isomorphism
(X xp Y, SxT) = C
with
C= COker(K(X7 S) xcawry KV, T) — 1 (X) X Gal(k|k) ﬁt(y))

The natural homomorphism C' — #*(X, S) x #*(Y, T') is injective. To conclude the
proof of the proposition, it remains to show surjectivity, i.e., we have to show that
every element in #{* (X, S) x #{*(Y,T) has a preimage in 77" (X) X g 75 (Y) ©
(X)) x #5*(Y'). For this it suffices to show that the composite map K(X,S) -
78 (X) — Gal(k|k) is surjective. This is true since K(X,S) contains the decompo-
sition group of a k-rational point. O

6 A modification

We consider a modification of the marked étale site which was used in [Scm]| for
one-dimensional, noetherian regular schemes.

Definition 6.1. The strict marked étale site (X, T )et.s consists of the following
data: Cat(X,T)ets is the category of morphisms f : (U,S) — (X, T) such that
a) (f:U — X) is étale,
b) S=p}(T), and
c) for every u € S mapping to t € T the induced field homomorphism k(s) - k(u)
is an isomorphism.
Coverings are surjective families.

Proposition 6.2. (i) If T' ¢ X consists of a finite set of closed points, then the
natural morphism of sites ¢ : (X, T)et > (X, T)et—s induces isomorphisms

Hept*S(X7 T’F) - Hept(X’ T790*F)’ Hé)tfs(X’ T’SO*G) - Hé)t(X7 T?G)

for any F € Shei—s(X,T), G € Shet—s(X,T) and p > 0.

(ii) For locally noetherian X (and any chosen base point), the natural map
(X, T) — 7" (X, T)
is an isomorphism.

Proof. Let (U,S) € Cat(X,T)ers and assume that (f; : (U;,S;) — (U,S)) is a
covering in (X,T)e. Removing for all ¢ the finitely many points s € S; such that
k(f(si)) = k(s;) is not an isomorphism from U;, we obtain a strict covering (f; :
(U, 8!) - (U,S)) which is a refinement of the original one. Hence ¢.o*F = F
and RYp,G =0 for ¢ > 1. In view of the Leray spectral sequence, this shows (i).
Assertion (ii) follows since both pro-groups represent the same functor: for any
group G, a G-torsor in (X, T)e is the same as a G-torsor in (X, T )et.s- O
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