
On the étale site of marked schemes

Alexander Schmidt

When considering the étale site of a scheme it is often of interest to consider
a variant which forces a given set of points to split in at least one member of a
covering. Examples are the étale site of a marked curve used in [Scm], where a
�nite set of closed points is considered and the Nisnevich site [Nis], where all points
are required to split. In this note we develop this approach in greater generality.
Furthermore, we close a small gap in the literature by showing that any Nisnevich
covering of a quasi-compact scheme has a �nite subcovering.

1 De�nition of the marked site

Let X be a scheme and let T be a set of points of X. We will loosely write T ⊂ X
and call the pair (X,T ) a marked scheme. A morphism f ∶ (Y,S) → (X,T ) of
marked schemes is a scheme morphism f ∶ Y →X with f(S) ⊂ T .

De�nition 1.1. Let (X,T ) be a marked scheme. The marked étale site (X,T )et

consists of the following data: The category Cat(X,T )et is the category of mor-
phisms f ∶ (U,S)→ (X,T ) such that

a) (f ∶ U →X) is étale, and
b) S = p−1(T ).

A family (pi ∶ (Ui, Si) → (U,S))i∈I of morphisms in Cat(X,T )et is a covering if
it is surjective and any point s ∈ S splits, i.e., there exists an index i and a point
ui ∈ Si mapping to s such that the induced �eld homomorphism k(s)→ k(ui) is an
isomorphism.

Example 1.2. For T = ∅, we obtain the small étale site of X, for T = X the
Nisnevich site [Nis].

A morphism of marked schemes induces a morphism of the associated marked
étale sites in the obvious way.

We consider the following �geometric points� of (X,T )et: we �x a separable closure
k(x)s of k(x) for every scheme-theoretic point x ∈ X and consider the following
morphisms of marked schemes
1.) for x ∉ T , the natural morphism (Speck(x)s,∅)→ (X,T ).
2.) for x ∈ T , the natural morphisms (Specκ,Specκ) → (X,T ) for every subex-

tension κ/k(x) of k(x)s/k(x).
If f ∶ P → X is any of the morphisms described in 1.) and 2.), the assignment
F ↦ Γ(P, f∗F ) is a topos-theoretic point of (X,T )et and one easily veri�es that
this family of points is conservative. In particular, exactness of sequences of abelian
sheaves can be checked stalkwise.

We denote the cohomology of a sheaf F ∈ Shet(X,T ) of abelian groups on
(X,T )et by H∗

et(X,T,F ).
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2 Excision

Let (X,T ) be a marked scheme, i ∶ Z ↪ X a closed immersion and U = X ∖ Z
the open complement. The right derivatives of the left exact functor �sections with
support in Z�

F ↦ ker(F (X,T )→ F (U,T ∩U))

are called the cohomology groups with support in Z. Notation: H∗
Z(X,T,F ).

The proof of the next proposition is standard (cf. [Art, III, (2.11)] for the étale
case without marking).

Proposition 2.1. There is a long exact sequence

0→H0
Z(X,T,F )→H0

et(X,T,F )→H0
et(U,T ∩U,F )→

H1
Z(X,T,F )→H1

et(X,T,F )→H1
et(U,T ∩U,F )→ . . .

Proposition 2.2 (Excision). Let π ∶ (X ′, T ′) → (X,T ) be a morphism of marked
schemes, Z ↪X, Z ′ ↪X ′ closed immersions and U =X ∖Z, U ′ =X ′ ∖Z ′ the open
complements. Assume that

� π ∶X ′ →X is étale,
� T ′ = π−1(T ),
� π induces an isomorphism Z ′

red Ð→
∼ Zred,

� π(U ′) ⊂ U .

Then the induced homomorphism

Hp
Z(X,T,F )Ð→

∼ Hp
Z′(X

′, T ′, π∗F )

is an isomorphism for every sheaf F ∈ Shet(X,T ) and all p ≥ 0.

Proof. The standard proof for étale topology applies: By the general theory, π∗ is
exact. Since π belongs to Cat(X,T )et, π∗ has the exact left adjoint �extension by
zero�, hence π∗ sends injectives to injectives. Therefore it su�ces to deal with the
case p = 0. Without changing the statement, we can replace all occurring schemes
by their reductions. By assumption,

(X ′, T ′) ∐ (U,T ∩U)Ð→ (X,T )

is a covering. For α ∈H0
Z(X,T,F )mapping to zero inH0

Z′(X ′, T ′, π∗F ) we therefore
obtain α = 0.

Now let α′ ∈ H0
Z′(X ′, T ′, π∗F ) be given. We show that α′ and 0 ∈ H0(U,T ∩

U,F ) glue to an element in H0
Z(X,T,F ). The only nontrivial compatibility on

intersections is p∗1(α′) = p∗2(α′) for p1, p2 ∶ (X ′ ×X X ′, T ′ ×T T ′) → (X ′, T ′). This
can be checked on stalks noting that Z ′ Ð→∼ Z implies that the two projections
Z ′ ×Z Z ′ → Z ′ are the same.

3 Continuity

Proposition 3.1. Let X be a quasi-compact scheme and let T ⊂ X be a closed
subscheme. Then every étale covering of (X,T ) admits a �nite subcovering.

Proof. Since X has a �nite a�ne Zariski-open covering, we may assume that X
is a�ne, in particular X is quasi-separated. Then also T is quasi-compact and
quasi-separated. Let

∐
i∈I
(Ui, Si)→ (X,T )
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be an étale covering. Let, for i ∈ I, Ki ⊂ T be the set of points in T which
split in Ui → X. By [Src, Lemma 13.3], Ki is ind-constructible, i.e., open in the
constructible topology of T , which is compact by [EGA4, 1.9.15 (iii)]. Since T =
⋃iKi by assumption, we �nd a �nite subset J ⊂ I with T = ⋃i∈J Ki. Furthermore,
sinceX is quasi-compact and étale morphisms are open, we �nd a �nite subset J ′ ⊂ I
such that ∐i∈J ′ Ui → X is an étale covering. We conclude that ∐i∈J∪J ′(Ui, Si) →
(X,T ) is a �nite subcovering of ∐i∈I(Ui, Si)→ (X,T ).

As in [SGA4, VII, 3.2] for the unmarked étale site, we de�ne the restricted
marked étale site

(X,T )res
et

as the restriction of (X,T )et to the subcategory of all (U,S) ∈ (X,T )et where U →X
is of �nite presentation. Assume that X is quasi-compact and quasi-separated.
Then the same is true for any such U and Proposition 3.1 shows that the restricted
site is noetherian. Moreover, the categories of sheaves on (X,T )et and (X,T )res

et

are naturally equivalent. Hence the same argument as in the unmarked étale case
[SGA4, VII, Prop. 3.3] shows

Theorem 3.2. Let X be a quasi-compact and quasi-separated scheme and let
T ⊂ X be a closed subscheme. Let (Fi) be a �ltered direct system of abelian
sheaves on (X,T )et. Then

colim
i

Hp
et(X,T,Fi) ≅H

p
et(X,T, colim

i
Fi)

for all p ≥ 0.

Next we consider inverse limits of marked schemes.

Theorem 3.3. Let (X,T ) be a marked scheme with T closed in X and let Xi →X,
i ∈ I, be an inverse system of X-schemes. Assume that all Xi are quasi-separated
and quasi-compact and that all transition morphisms are a�ne. Let Ti be the
preimage of T in Xi and put X∞ = lim←ÐXi, T∞ = lim←ÐTi.

Then the restricted site (X∞, T∞)res
et is the limit site of the sites (Xi, Ti)res

et .

Corollary 3.4. With the notation and assumptions of Theorem 3.3, let F be a
sheaf of abelian groups on (X,T )et. We denote its inverse image on (Xi, Ti)et and
(X∞, T∞)et by Fi and F∞. Then the natural map

colim
i

Hp
et(Xi, Ti, Fi)Ð→Hp

et(X∞, T∞, F∞)

is an isomorphism for all p ≥ 0.

Proof of Theorem 3.3. By [Art, III, Theorem3.8], the site (X∞)res
et is naturally

equivalent to the limit site of the (Xi)res
et . In view of Proposition 3.1, it there-

fore su�ces to show that for every quasi-compact étale surjection Ui → Xi with
the property that every point of T∞ splits in U∞ = Ui ×Xi X∞ → X∞ there exist
j ≥ i such that every point of Tj splits in Uj = Ui ×Xi Xj → Xj . We follow the
proof of [Src, Lemma 13.2] for Nisnevich coverings. By [Src, Lemma 13.3], the
subset Sj ⊂ Tj of points that split in Uj → Xj is ind-constructible for all j ≥ i.
Denoting the projection by uj ∶ T∞ → Tj , the assumption on U∞ → X∞ implies
T∞ = ⋃j u−1

j (Sj). Considering the Tj ⊂ Xj as reduced, closed subschemes, we may
apply [EGA4, Cor. 8.3.4] to obtain Sj = Tj for some j.

Remark 3.5. Let A be a ring and let (A→ Bi)i∈I be an a�ne Nisnevich covering.
We write A as the union of its �nitely generated subrings. Then, by Proposition 3.1
and Theorem 3.3, there exists a �nite subset J ⊂ I, a subring A′ ⊂ A which is

3



�nitely generated over Z and a �nite Nisnevich covering (A′ → B′
j)j∈J such that

Bj ≅ A⊗A′ B′
j for all j ∈ J .

Hence the re�ned de�nition of Nisnevich coverings for general rings introduced
by Lurie in [DAG, XI, De�nition 1.1 and Remark 1.15] coincides with the naive
de�nition.

Corollary 3.6. Let (X,T ) be a marked scheme with T closed in X and Z =
{z1, . . . , zn} a �nite set of closed points of X. Put Xh

zi = Spec(OhX,zi). Then, for
every sheaf F of abelian groups on (X,T )et and all p ≥ 0

Hp
Z(X,T,F ) ≅

n

⊕
i=1

Hp
{zi}(X

h
zi , T ∩Xh

zi , F ).

Proof. Since Hp
Z(X,T,F ) ≅⊕

n
i=1H

p
{zi}(X,T,F ), we may assume that Z = {z} con-

sists of a single closed point. Excision shows that

Hp
{z}(X,T,F ) =H

p
{z}(U,T ∩U,F )

for every a�ne étale open neighbourhood U of z. Since Xh
z is the limit over all

these U , the long exact sequences of Proposition 2.1 together with Corollary 3.4
show the result.

Using Corollary 3.4, it is easy to calculate the stalks of the higher direct images
of the site morphism (X,T )et → (X,X)et = XNis. The Leray spectral sequence
together with the fact that the Nisnevich cohomological dimension of noetherian
schemes is bounded by the Krull dimension [Nis, Theorem 1.32] yields:

Corollary 3.7. Let X be a noetherian scheme of �nite Krull dimension d, T ⊂ X
closed and assume that there exists a nonnegative integer N such that

cd(k(x)) ≤ N

for all points x ∈X ∖T . Then for every abelian torsion sheaf F on (X,T )et we have

Hp
et(X,T,F ) = 0 for p > N + d.

4 Galois covers

De�nition 4.1. A Galois cover of X with �nite Galois group G in the site (X,T )et

is a morphism (Y,S) → (X,T ) in (X,T )et together with a right action of G on Y
over X such that the following holds:

1. (Y,S)→ (X,T ) is a covering for the site (X,T )et.

2. Y →X is an étale Galois cover, i.e.,

Y ×G→ Y ×X Y, (y, g)↦ (y, yg)

is an isomorphism.

Since G acts transitively on the set of points in Y over a given point x ∈X, we see
that every t ∈ T splits completely in Y /X.

Proposition 4.2 (Hochschild-Serre spectral sequence). Let (Y,S) → (X,T ) be a
Galois cover with �nite group G und F ∈ Shet(X,T ). Then there is a natural
spectral sequence

Epq2 =Hp(G,Hq
et(Y,S,F ))Ô⇒Hp+q

et (X,T,F ).
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Proof. The proof is word-by-word the same as for the étale cohomology, see [Mi,
Theorem 2.20].

Remark 4.3. Assume that X is quasi-compact and quasi-separated and T ⊂ X
closed. Let

(Yi, Si)→ (X,T )

be a directed inverse system of Galois covers with �nite Galois groups Gi and
(Y,S) = lim(Yi, Si). Then (Y,S)→ (X,T ) is a pro-Galois cover with pro�nite Galois
group G = limGi. By Theorem 3.3, for F ∈ Shet(X,T ), the groups Hq

et(Y,S,F ) =
colimHq

et(Yi, Si, F ) are discrete G-modules and we obtain the pro�nite Hochschild-
Serre sequence

Epq2 =Hp(G,Hq
et(Y,S,F ))Ô⇒Hp+q

et (X,T,F ),

where H∗(G,−) is the continuous cohomology of the pro�nite group G with values
in a discrete G-module (see [NSW, I, �2]).

5 Fundamental group

We recall some facts from Artin-Mazur [AM]. Let C be a pointed site and HR(C )
the category of pointed hypercovers of C [AM, �8]. If C is locally connected, then
the �connected component functor� π de�nes an object

ΠC = {π(K●)}K●∈HR(C )

in the pro-category of the homotopy category of pointed simplicial sets. By de�ni-
tion, the fundamental group of C is the pro-group π1(Π(C )).

LetX be a locally noetherian scheme. Then (cf. [AM, �9]) the siteXet, and hence
also (X,T )et is locally connected. Pointing (X,T )et by choosing any �geometric�
point x̄ described at the end of Section 1, we obtain the étale fundamental group
πet

1 (X,T, x̄). It is independent of the choice of x̄ up to isomorphism, which is
canonical up to inner automorphisms. By [AM, Cor. 10.7], for any group G, the set
Hom(πet

1 (X,T, x̄),G) is in bijection with the set of isomorphism classes of pointed
(over x̄) G-torsors in (X,T )et. In particular, πet

1 (X,∅, x̄) is the enlarged étale
fundamental group of [SGA3, X, �6] and its pro�nite completion is the usual étale
fundamental group of X de�ned in [SGA1]. If x̄ is a geometric point of X, then
πet

1 (X,T, x̄) is a factor group of πet
1 (X,∅, x̄), which is pro�nite for normal X by

[AM, Thm. 11.1]. Hence we obtain the following result.

Proposition 5.1. Let X be a noetherian, normal, connected scheme and T ⊂ X.
Then (for any choice of base point) πet

1 (X,T ) is a pro�nite group. Its �nite quotients
are in bijection with the isomorphism classes of �nite connected pointed étale Galois
covers of X in which every point t ∈ T splits completely.

Example 5.2. For general (X,T ), the fundamental group need not be pro�nite.
For example, let k be a �eld and N = P1

k/(0 ∼ 1) the node over k. Then

πet
1 (N,T ) ≅ {

Z ×Galk, T = ∅
Z, T =X.

We will use the notation π̂et
1 (X,T ) for the pro�nite completion of πet

1 (X,T ),
hence we have a completion map πet

1 (X,T ) → π̂et
1 (X,T ) which is an isomorphism

by Proposition 5.1 if X is a noetherian, normal and connected scheme.

We end this section with the following observation concerning products.
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Proposition 5.3. Let k be a �eld, X and Y geometrically connected schemes of
�nite type over k and S ⊂ X(k), T ⊂ Y (k) nonempty sets of k-rational points. Let
a and b be geometric points of X ∖S and Y ∖T with values in a common separably
closed extension �eld of k. Assume that at least one of the schemes X and Y is
proper over k. Then the natural map

π̂et
1 (X ×k Y,S × T, (a, b))Ð→ π̂et

1 (X,S, a) × π̂et
1 (Y,T, b)

is an isomorphism of pro�nite groups.

Proof. We omit the base points from notation. For a connected scheme X, let X̃
denote the pro�nite universal cover. For a subset S ⊂ X, the kernel of π̂et

1 (X) →
π̂et

1 (X,S) is the (closed) normal subgroup of π̂et
1 (X) = Gal(X̃ ∣X) generated by the

decomposition groups of the points in S, i.e., it is the (closed) subgroup of Gal(X̃ ∣X)
generated by all automorphisms which �x a point s̃ ∈ X̃ lying over some s ∈ S. We
denote this group by K(X,S).

Now assume we are in the situation of the proposition. By the topological
invariance of the étale topology we may assume that k is perfect. Let k̄ be an
algebraic closure of k. We denote the base changes to k̄ by (X̄, S̄) and (Ȳ , T̄ ). By
[SGA1, X, 1.7], we have a natural isomorphism

π̂et
1 (X̄ ×k̄ Ȳ )Ð→∼ π̂et

1 (X̄) × π̂et
1 (Ȳ ).

Moreover, by [SGA1, IX, 6.1], we have a natural exact sequence

1Ð→ π̂et
1 (X̄)Ð→ π̂et

1 (X)Ð→ Gal(k̄∣k)Ð→ 1.

This and the similar sequence for Y shows the isomorphism

π̂et
1 (X ×k Y )Ð→∼ π̂et

1 (X) ×Gal(k̄∣k) π̂
et
1 (Y ), (∗)

where the term on the right hand side is a �bre product in the category of pro�nite
groups. We consider the corresponding diagram of étale Galois covers.

X̃ ×k Y

X̃ ×k̄ Ỹ

X̃ ×k̄ Ȳ X̄ ×k̄ Ỹ

X̄ ×k̄ Ȳ

X ×k Y

≀

πet
1 (Ȳ ) πet

1 (X̄)

πet
1 (X) πet

1 (Y )Gal(k̄∣k)

Let (s, t) ∈ S × T ⊂ X ×k Y and let (s̃, t̃) ∈ X̃ ×k Y = X̃ ×k̄ Ỹ be a point lying
above (s, t). An element σ ∈ π̂et

1 (X ×k Y ) = Gal(X̃ ×k Y ∣X ×k Y ) �xes (s̃, t̃) if and
only if its image in π̂et

1 (X) = Gal(X̃ ×k̄ Ȳ ∣X ×k Y ) �xes s̃ ∈ X̃ and its image in
π̂et

1 (Y ) = Gal(X̄ ×k̄ Ỹ ∣X ×k Y ) �xes t̃ ∈ Ỹ . Hence, the isomorphism (∗) induces an
isomorphism of subgroups

K(X ×k Y,S × T )Ð→∼ K(X,S) ×Gal(k̄∣k)K(Y,T ). (∗∗)
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The isomorphisms (∗) and (∗∗) together induce an isomorphism

π̂et
1 (X ×k Y,S × T )Ð→∼ C

with

C = coker(K(X,S) ×Gal(k̄∣k)K(Y,T )Ð→ π̂et
1 (X) ×Gal(k̄∣k) π̂

et
1 (Y )).

The natural homomorphism C → π̂et
1 (X,S)× π̂et

1 (Y,T ) is injective. To conclude the
proof of the proposition, it remains to show surjectivity, i.e., we have to show that
every element in π̂et

1 (X,S) × π̂et
1 (Y,T ) has a preimage in π̂et

1 (X) ×Gal(k̄∣k) π̂
et
1 (Y ) ⊂

π̂et
1 (X) × π̂et

1 (Y ). For this it su�ces to show that the composite map K(X,S) ↪
πet

1 (X)→ Gal(k̄∣k) is surjective. This is true since K(X,S) contains the decompo-
sition group of a k-rational point.

6 A modi�cation

We consider a modi�cation of the marked étale site which was used in [Scm] for
one-dimensional, noetherian regular schemes.

De�nition 6.1. The strict marked étale site (X,T )et-s consists of the following
data: Cat(X,T )et-s is the category of morphisms f ∶ (U,S)→ (X,T ) such that

a) (f ∶ U →X) is étale,
b) S = p−1(T ), and
c) for every u ∈ S mapping to t ∈ T the induced �eld homomorphism k(s)→ k(u)

is an isomorphism.
Coverings are surjective families.

Proposition 6.2. (i) If T ⊂ X consists of a �nite set of closed points, then the
natural morphism of sites ϕ ∶ (X,T )et → (X,T )et−s induces isomorphisms

Hp
et−s(X,T,F )Ð→

∼ Hp
et(X,T,ϕ

∗F ), Hp
et−s(X,T,ϕ∗G)Ð→

∼ Hp
et(X,T,G)

for any F ∈ Shet−s(X,T ), G ∈ Shet−s(X,T ) and p ≥ 0.

(ii) For locally noetherian X (and any chosen base point), the natural map

πet
1 (X,T )Ð→ πet−s

1 (X,T )

is an isomorphism.

Proof. Let (U,S) ∈ Cat(X,T )et-s and assume that (fi ∶ (Ui, Si) → (U,S)) is a
covering in (X,T )et. Removing for all i the �nitely many points s ∈ Si such that
k(f(si)) → k(si) is not an isomorphism from Ui, we obtain a strict covering (fi ∶
(U ′

i , S
′
i) → (U,S)) which is a re�nement of the original one. Hence ϕ∗ϕ∗F = F

and Rqϕ∗G = 0 for q ≥ 1. In view of the Leray spectral sequence, this shows (i).
Assertion (ii) follows since both pro-groups represent the same functor: for any
group G, a G-torsor in (X,T )et is the same as a G-torsor in (X,T )et-s.

Acknowledgement. The author thanks Philippe Lebacque for helpful comments and
motivational discussions.
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