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In the 1960s Artin and Mazur [AM] constructed a functor which associates to
each locally noetherian scheme X its étale homotopy type Xet , an object of
pro-H, the pro-category of the homotopy category H of simplicial sets. For
any geometric point x of X, the (pro)groups πi((X, x)et), i ≥ 1, give a nat-
ural definition of homotopy groups in algebraic geometry. Artin and Mazur
proved that the étale homotopy type Xet of a smooth complex variety X is
isomorphic in pro-H to the profinite completion of the topological space X(C).
This strongly refined previously known comparison theorems between étale and
singular cohomology and led to interesting applications to both algebraic geom-
etry and topology, most prominent, the proofs of the Adam’s conjecture given
by Friedlander/Quillen [Fr1] and by Sullivan [Su].

In the 1990s Morel and Voevodsky [MV] defined a natural categorical framework
for the use of topological methods in algebraic geometry. They embedded the
category of smooth schemes of finite type over a field k into a larger category
of ‘k-spaces’, which carries the structure of a closed model category, namely
the A1-model structure. The associated homotopy category is the celebrated
A1-homotopy category of smooth schemes over k.

The aim of this paper is to show how both concepts interact. More precisely,
we show that over any field k, the functor ‘étale homotopy type’ has a nat-
ural extension to k-spaces. Furthermore, if k has characteristic zero and is of
finite virtual cohomological dimension, then a weak A1-homotopy equivalence
X → Y of k-spaces induces an isomorphism Xet → Yet , i.e. we obtain an
induced functor on the A1-homotopy category of smooth schemes over k. In
particular, we obtain the notion of étale homotopy groups of k-spaces. In con-
trast, if k has positive characteristic, then the affine line has a highly non-trivial
fundamental group [Ra] and the étale homotopy type does not factor through
the A1-homotopy category. However, factorization holds after completion away
from the characteristics.

I want to thank Eric Friedlander and Jens Hornbostel for their comments on
a preliminary version of this article. After completing this work I learned
that D. Isaksen [Is] has obtained related results by using a completely different
method.
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1 Hypercoverings

Slightly changing the usual notation we call a k-scheme X smooth if it is the
disjoint union of smooth schemes of finite type over k and we say that a mor-
phism in Sm(k) is étale if it is the disjoint union of étale morphisms in the usual
sense. Note that this change in terminology does not affect the notion of étale
sheaves on the category Sm(k). Let H be the homotopy category of simplicial
sets and let pro-H be its pro-category. Following [AM] have a natural functor

et : Sm(k) −→ pro-H,

which associates to each smooth scheme its ‘etale homotopy type’. The con-
struction works for arbitrary locally noetherian schemes and we recall it briefly.
Let C be any site.

Definition 1.1. A hypercovering X· of C is a simplicial object with values in
C such that the following conditions hold

(i) the natural morphism X0 → e to the final object of C is a covering

(ii) for all n the natural morphism

Xn+1 −→ (cosknX·)n+1

is a covering.

Recall that the functor coskn is the right adjoint to the functor ‘truncation at
level n’ and that (cosknX·)k = Xk for k ≤ n.

Example: Let C be the site (Sets) where coverings are surjective families of
maps. A simplicial set is a hypercovering if and only if it satisfies the Kan-
condition and is contractible (cf. [AM], 8.5.a).

Let X· be a simplicial object of C and let T· be a simplicial set. We form the
simplicial object of C

(X ⊗ T )·

which is given in degree n as the coproduct of copies of Xn indexed by Tn. For
a non-decreasing map α : {0, 1, . . . ,m} → {0, 1, . . . , n} the operator α∗ acts on
the copy of Xn indexed by t ∈ Tn via α∗ : (Xn)t → (Xm)α∗(t). Of course, this
construction requires the existence of infinite coproducts in C unless Tn is finite
for all n.

Definition 1.2. Two maps f0, f1 : X· → Y· of simplicial objects in C are
homotopic if there exists a map

H : X· ⊗∆(1) −→ Y·

with H ◦ iν = fν for ν = 0, 1. Here iν : X· → X·⊗∆(1), ν = 0, 1 are the obvious
inclusions.

Lemma 1.3. For a site C, let HR(C) denote the category whose objects are hy-
percoverings and whose maps are homotopy classes of morphisms. Then HR(C)
is left filtering.
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Proof. See [AM], 8.13.

Definition 1.4. An object X ∈ C is connected if it has no non-trivial coproduct
decomposition. C is called locally connected if every object has a coproduct
decomposition into connected objects. C is connected if it is locally connected
and its final object e is connected.

If C is locally connected, then the expression of an object X as a coproduct
of connected objects is essentially unique. Moreover, the rule associating to an
object its set of connected components is a functor. We denote this functor by

Π : C −→ (Sets)

and call it the connected component functor. Applying Π to each Xn separately,
we obtain a simplicial set Π(X·) associated to each hypercovering X· of C. This
assignment induces a functor Π : HR(C) → H and therefore defines a pro-object

ΠC ∈ pro-H.

Now, if X is locally noetherian scheme, we obtain its étale homotopy type
Xet ∈ pro-H by applying the above construction to the small étale site over X.

2 Local fibrations versus hypercoverings

Next we recall several definitions and facts on simplicial sheaves from [MV], only
that we work with the étale site. We work in the category ∆opShvet(Sm(k)) of
simplicial étale sheaves (of sets) on Sm(k). By a point we will always mean a
geometric point. A map of simplicial sheaves f : F → G is called a simplicial
weak equivalence if for every point x the map Fx → Gx is a weak equivalence of
simplicial sets. f is called a (trivial) cofibration if it is injective (injective and
a weak equivalence). Fibrations are maps satisfying the right lifting property
with respect to trivial cofibrations. The category of simplicial sheaves together
with these three classes of morphisms is a simplicial closed model category and
we denote the associated homotopy category by Hs,et(Sm(k)).

A map of simplicial sheaves F → G is called a (trivial) local fibration if for
every point x the map Fx → Gx is a fibration (fibration and weak equivalence).
A local fibration has the right lifting property after an étale refinement. Kan-
simplicial sets considered as constant simplicial sheaves are locally fibrant.

For simplicial sheaves X , Y denote by π(X ,Y) the quotient of Hom(X ,Y) =
S0(X ,Y) with respect to the equivalence relation generated by simplicial ho-
motopies, i.e. the set of connected components of the simplicial function object
S(X ,Y), and call it the set of simplicial homotopy classes of morphisms from X
to Y. One easily checks that the simplicial homotopy relation is compatible with
composition and thus one gets a category π∆opShvet(Sm(k)) with objects the
simplicial sheaves and morphisms the simplicial homotopy classes of morphisms.
For any simplicial sheaf X denote by πTriv/X the category whose objects are
the trivial local fibrations to X and whose morphisms are the obvious commu-
tative triangles in π∆opShvet(Sm(k)). This category is filtering and essentially
small ([MV], Lemma 2.1.12). We will need the following
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Proposition 2.1 ([MV],2.1.13). For any simplicial sheaves X , Y, with Y locally
fibrant, the canonical map

colimp:X ′→X∈πTriv/X π(X ′,Y) −→ HomHs,et(Sm(k))(X ,Y)

is a bijection.

As usual, we consider a sheaf F as a simplicial sheaf with F in each degree
and all face and degeneracy morphisms the identity of F . We will also make
no difference in notation between a smooth scheme X and the sheaf that it
represents. A hypercovering U· of X is a hypercovering in the small étale site
over X and will be also considered as an object in ∆opShvet(Sm(k)).

Lemma 2.2. Let X be a smooth scheme and let U· be a hypercovering of X.
Then, considered as a map in ∆opShvet(Sm(k)), the projection

U· −→ X

is a trivial local fibration.

Proof. For every point x, the associated map U·x → Xx is a hypercovering in
(Sets), hence a Kan-fibration and a weak equivalence.

Lemma 2.3. Let X be a smooth scheme and let X → X be a trivial local
fibration of simplicial sheaves. Then there exists a hypercovering U· → X of
X and a map of simplicial sheaves U· → X that commutes with the respective
projections to X.

Proof. For each geometric point x : Spec(K) → X, the stalk Xx is a contractible
Kan-simplicial set. In particular, these stalks are nonempty and, for all n, the
restriction of the map

Xn+1 −→ (cosknX )n+1

to the small etale site over X is an epimorphism of sheaves.
Now we construct the required hypercovering by induction. First of all,

there exists an etale covering U0 → X such that X0(U0) 6= ∅. This gives a
map in degree zero. Assume we have already constructed the hypercovering
U· up to level n together with a map from U· to the level n truncation of X .
This gives a map of sheaves α : (cosknU·)n+1 → (cosknX )n+1 or, equivalently,
a section α ∈ (cosknX )n+1

(
(cosknU·)n+1

)
. Since the map of sheaves Xn+1 −→

(cosknX )n+1 is an epimorphism in the small etale site over X, we find an etale
covering W → (cosknU·)n+1 and a lift of α to Xn+1 over W . Then we put
Un+1 = W .

Summarizing, we have proven the following

Proposition 2.4. Let X be a smooth scheme. Every hypercovering U· → X
defines an object of πTriv/X. The category HR(X) is a full and cofinal subcat-
egory of πTriv/X.

In order not to overload notation, given a simplicial set, we will denote several
associated objects by the same letter: the associated constant pro-simplicial set,
the associated constant object in pro-H, the associated constant simplicial sheaf
in Shvet(Sm(k)), its image in Hs,et(Sm(k)), and so on.

4



Corollary 2.5. Let M be a simplicial set and let X be a smooth scheme. Then
we have a natural isomorphism

HomHs,et(Sm(k))(X,M) = Hompro-H(Xet ,M).

Proof. First we may replace M by a weakly equivalent Kan-simplicial set. Then
M is locally fibrant as an object in ∆opShvet(Sm(k)). By propositions 2.1, 2.4,
we obtain

HomHs(Sm(k)et)(X,M) = colimp:X→X∈πTriv/X π(X ,M)
= colimp:U·→X hypercovering π(U·,M)
= colimp:U·→X hypercovering π(Π(U·),M)
= Hompro-H(Xet , M),

where, in the third line, we considered Π(U·) as a constant simplicial sheaf. This
proves the corollary.

Proposition 2.4 suggests to define the étale homotopy type of a simplicial
sheaf X as the functor of connected components

Π : πTriv/X −→ H
In order to do this, one has to show that the category of sheaves is locally
connected. We will do this in the next section.

3 Geometry of sheaves

The goal of the section is to show that Shvet(Sm(k)) is a connected site. The re-
sults of this section are rather formal and extend to sheaves for any subcanonical
topology.

The category Shvet(Sm(k)) has fibre products, in contrast to Sm(k). If
X → Z and Y → Z are morphisms in Sm(k) and if at least one of them is
smooth, then the scheme-theoretical fibre product X×Z Y is smooth over k and
represents the sheaf-theoretical fibre product.

Definition 3.1. A morphism F → G in Shvet(Sm(k)) is étale, if for any X ∈
Sm(k) and any morphism X → G the fibre product

F ×G X −→ X

is represented by an étale morphism in Sm(k). An étale covering of a sheaf is a
surjective family of étale morphisms.

Using the identity morphism of a smooth scheme X, we see that an étale
morphism to X in Shvet(Sm(k)) is nothing else but an étale morphism to X in
Sm(k). Therefore the notion of étale morphisms in Shvet(Sm(k)) extends that
of Sm(k).

Definition 3.2. An open subsheaf F ⊂ G is an injective sheaf morphism which
is étale.

This notion agrees with the scheme-theoretical one when applied to a sheaf
which is represented by a smooth scheme.
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Lemma 3.3. Any morphism of sheaves is continuous, i.e. the inverse image
of an open subsheaf is open. Etale morphisms of sheaves are stable under base
change.

Proof. The first statement follows from the second one. Let F ′ → F be etale,
G → F any map and G′ = F ′ ×F G. In order to show that G′ → G is etale we
have to show that for any map U → G with U a smooth scheme, the pullback
U ′ of G′ to U is represented by an etale scheme over U . But, with respect to
the composite map U → G → F , we have U ′ = U ×F F ′.

Corollary 3.4. If F is the disjoint union of subsheaves F1, F2, then F1 and
F2 are open in F .

Proof. Let pt = Spec(k) and put B = pt ∪. pt, which is obviously a decomposi-
tion into open subsheaves. The canonical projections Fi → pt, i = 1, 2, give a
map F → B such that the Fi are the preimages of open subsheaves. Therefore
the statement follows from lemma 3.3.

A sheaf F is connected if it cannot be written as a nontrivial disjoint union
of subsheaves.

Lemma 3.5. A smooth connected scheme represents a connected sheaf.

Proof. By corollary 3.4, a disjoint union decomposition of a representable sheaf
corresponds to a disjoint union decomposition of the representing scheme.

Lemma 3.6. Let F ∈ Shvet(Sm(k)) be connected. Then every map from F to
a constant sheaf is constant, i.e. factors through F → pt.

Proof. The constant sheaf over a set M is the disjoint union over the final sheaf
pt indexed by M . If f : F → M is a map of sheaves, then F is the disjoint
union F = ∪. m∈M f−1(ptm) and therefore only one of these components can be
nontrivial, if F is connected.

The following lemma (obvious for schemes) will be essential for the construc-
tion of the étale homotopy type.

Proposition 3.7. Each G ∈ Shvet(Sm(k)) can be written in a unique way as
the disjoint union of connected subsheaves. The connected components are open.

Proof. If f : F → G is a morphism with F connected then the image sheaf
im(F ) ⊂ G is connected. We consider the natural surjection

∪.
(X,α)

X −³ G,

where (X, α) runs through the pairs X ∈ Sm(k) connected, α ∈ G(X). Let
I be the set of equivalence classes of such pairs with respect to the smallest
equivalence relation containing the relations ‘(X1, α1) ∼ (X2, α2) if im(α1) ∩
im(α2) 6= ∅’. Then G is the disjoint union of its connected subsheaves

Gi :=
⋃

(X,α)∈i

im(α), i ∈ I.

The uniqueness of the decomposition is obvious. That the Gi are open follows
from corollary 3.4 (or can be easily seen directly).
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4 The étale homotopy type

The rule associating to a sheaf its set of connected components defines the
connected component functor

Π : Shvet(Sm(k)) −→ (Sets) .

This functor naturally extends to simplicial sheaves (taking values in simplicial
sets). Furthermore, simplicial homotopies between simplicial sheaves carry over
to homotopies between simplicial sets.

Definition 4.1. The étale homotopy type Xet of an X ∈ ∆opShvet(Sm(k)) is
the induced functor

Π : πTriv/X −→ H
By proposition 2.4, the etale homotopy type of a smooth scheme is naturally
isomorphic to the etale homotopy type of the sheaf that it represents.

Corollary 4.2. Let M be a simplicial set and let X ∈ ∆opShvet(Sm(k)). Then
we have a natural isomorphism

HomHs,et(Sm(k))(X ,M) = Hompro-H(Xet ,M).

Proof. We may replace M by a weakly equivalent Kan-simplicial set. Then the
statement follows from proposition 2.1 and lemma 3.6.

Corollary 4.3. If a morphism f : X → Y in ∆opShvet(Sm(k)) is a simplicial
weak equivalence, then the induced map fet : Xet → Yet is an isomorphism in
pro-H.

Proof. This follows from corollary 4.2 and from the fact that pro-objects in a
category are uniquely determined by their morphisms to constant objects.

Summarizing, we have proven the

Theorem 4.4. There exists a natural functor

et : Hs,et(Sm(k)) −→ pro-H

such that the composite Sm(k) → Hs,et(Sm(k)) → pro-H is the functor ‘étale
homotopy type’ of Artin-Mazur.

Remark 4.5. Having the notion of an etale covering of a sheaf F , we can
define the left filtering category of étale hypercoverings of F . Then the analog
of proposition 2.4 holds and we can use hypercoverings to define Fet .

In order to extend the above constructions to a pointed setting, we have to
define the notion of a geometric point on a sheaf. Let us fix a separable closure k̄
of k. We define a (geometrically) pointed sheaf (F, f) as a sheaf F together with
an element f ∈ F (Spec(k̄)). As is well-known, the set of geometric points of the
form x : Spec(k̄) → X, X ∈ Sm(k), is a conservative set of points for Sm(k)et .
Therefore every non-empty sheaf can be pointed. A pointed simplicial sheaf is
a simplicial object in the category of pointed sheaves. Calling a map of pointed
simplicial sheaves a fibration, cofibration or simplicial weak equivalence if and
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only if the underlying unpointed map has this property, we obtain the pointed
simplicial homotopy category. We say that a simplicial sheaf X is connected
if the simplicial set ΠX is. We then can form the category Shvet(Sm(k))0 of
pointed connected simplicial sheaves on Sm(k)et and we denote its simplicial
homotopy category by Hs,et,0(Sm(k)). Similarly, denote by H0 the category of
pointed connected simplicial sets. For each (T, t) ∈ pro-H0, we have the pro-sets
πi(T, t), which are pro-groups for i ≥ 1 (abelian, if i ≥ 2).

The proof of the following lemma is straightforward.

Lemma 4.6. Let (X , x) be a pointed simplicial sheaf and denote by π0(X , x) the
pointed set of connected components of the pointed simplicial set Π(X , x). Then
the pointed pro-set π0((X , x)et) is isomorphic in pro-(Sets∗) to the pointed set
π0(X , x). Furthermore, X is a disjoint union of non-trivial connected simplicial
sheaves Xα corresponding to elements α ∈ π0(X , x).

We obtain a natural functor

et : Hs,et,0(Sm(k)) −→ pro-H0.

Definition 4.7. Let (X , x) be a pointed connected simplicial sheaf. We call the
pro-groups

πi(X , x) := πi((X , x)et), i ≥ 1,

the étale homotopy groups of (X , x).

5 A1-factorization

We say that a field k has finite virtual cohomological dimension if there exists
a finite extension K|k and a number d such that Hi(K,A) = 0 for all i > d and
every discrete G(K̄|K)-module A. All fields of arithmetic interest, as absolutely
finitely generated fields and their various completions and henselizations have
this property.

The A1-homotopy category HA1,et(Sm(k)) is obtained from Hs,et(Sm(k)) by a
process, which essentially inverts the morphism A1

k → Spec(k), see [MV]. The
aim of this section is to prove the

Theorem 5.1. Let k be a field of characteristic zero having finite virtual coho-
mological dimension. Then the functor

et : Hs,et(Sm(k)) −→ pro-H

factors through the étale A1-homotopy category HA1,et(Sm(k)).

We recall the notion of weak equivalences in pro-H from [AM]. Let X = {Xi}
be in pro-H. The various coskeletons cosknXi form a pro-object X\ indexed by
pairs (i, n). We have a natural map X → X\ and X\ → X\\ is an isomorphism.
We call a map f : X → Y in pro-H a weak equivalence (\-isomorphism in [AM])
if f \ : X\ → Y \ is an isomorphism. Let

(pro-H)w
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be the full subcategory in pro-H consisting of objects isomorphic to X\ for some
X. Then (pro-H)w is the localization of pro-H with respect to the class of weak
equivalences.

In pro-H0, weak equivalences can be detected on homotopy groups. For a proof
of the next theorem see [AM], Theorem 4.4.

Theorem 5.2. A map in pro-H0 is a weak equivalence, if and only if it induces
isomorphisms on the homotopy groups.

We say that an object X of a site C has dimension ≤ d if for every locally
constant sheaf A of abelian groups on C we have Hq(X, A) = 0 for q > d. The
site C is said to have local dimension ≤ d if for every X ∈ C, there is a covering
X ′ → X such that X ′ has dimension ≤ d. As is well known, if the field k has
virtual finite cohomological dimension and if X ∈ Sm(k), then the small étale
site over X has finite local dimension.

If C is a connected pointed site, then ΠC is naturally pointed and we consider
it as an object in pro-H0. The following theorem is a special case of [AM],
Theorem 12.5.

Theorem 5.3. Let f : C → D be a morphism of pointed connected sites.
Suppose that C,D have finite local dimension and that Πf : ΠC → ΠD is a
weak equivalence in pro-H0. Then Πf is an isomorphism in pro-H0.

The above results enable us to show A1-factorization.

Proposition 5.4. Let k be a field of characteristic zero. Then for any smooth
scheme U over k the projection A1

k × U → U induces a weak equivalence

(A1
k × U)et → Uet

in pro-H. If k has virtual finite cohomological dimension, then this map is an
isomorphism.

Proof. First of all, we may assume that U is connected. Choosing a (geometric)
point u of U and the point u′ = (0, u) of A1

k × U , we obtain a morphism of
smooth connected pointed schemes. By theorem 5.2, it suffices to show that the
projection induces an isomorphism on homotopy groups. By [AM], Theorem
11.1, these groups are profinite. By [Fr2], Theorem 11.5, we have a long exact
sequence

· · · → πi(A1
k̄, 0) → πi(A1 × U, u′) → πi(U, u) → · · · .

It therefore remains to show that A1
k̄

is weakly contractible if k has characteristic
zero. It is well known, that the fundamental group is trivial (use Hurwitz’
genera formula). The statement on the higher homotopy groups follows via the
Hurewicz-homomorphism ([AM], 4.5, 9.3) from the triviality of the cohomology
of A1

k̄
with values in constant sheaves of abelian groups. The last statement

follows from theorem 5.3.

Now let B be the class of morphisms f : X → Y in Hs,et(Sm(k)) such that
for every simplicial set M the induced map

HomHs,et(Sm(k))(Y, M) −→ HomHs,et(Sm(k))(X ,M)
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is an isomorphism. Slightly abusing language, we say that a morphism of sim-
plicial sheaves is in B, if its class in Hs,et(Sm(k)) is in B. The proof of the
next lemma is strictly parallel to the proof of [MV] 2.2.12 (where the class of
A1-weak equivalences is considered), and therefore we omit it.

Lemma 5.5. Let I be a small category, X ,Y functors from I to ∆opShvet(Sm(k))
and f : X → Y a natural transformation such that all the morphisms fi, i ∈ I,
are in B. Then the morphism

hocolimIX −→ hocolimIY

is in B.

Lemma 5.6. Let f : X → Y be a morphism of simplicial sheaves such that for
each n ≥ 0 the morphism of sheaves fn : Xn → Yn is in B. Then f is in B.

Proof. (cf. the proof of [MV] 2.1.14) Consider X and Y as diagrams of simplicial
sheaves of simplicial dimension zero indexed by ∆op . By [BK], XII, 3.4, the
obvious morphisms hocolim∆opX → X and hocolim∆opY → Y are simplicial
weak equivalences. Therefore the statement follows from lemma 5.5.

Proposition 5.7. Suppose that k has characteristic zero and is of finite virtual
cohomological dimension. Then

(i) the class B contains the class of A1-weak equivalences.

(ii) a simplicial set, considered as an element in Hs,et(Sm(k)) is A1-local.

Proof. Let M be simplicial set. By definition, M is A1-local if for every X ∈
Hs,et(Sm(k)) the projection X × A1

k → X induces an isomorphism

HomHs,et(Sm(k))(X ,M) −→ HomHs,et(Sm(k))(X × A1
k,M).

In other words, we have to show that the projections X ×A1
k → X are in B. If

X is a smooth scheme, then this follows from proposition 5.4 and corollary 4.2.
The case of a smooth simplicial scheme follows from lemma 5.6. Finally, by
[MV] Lemma 2.1.16, applied to the class of representable sheaves, each ob-
ject in ∆opShvet(Sm(k)) is simplicially weakly equivalent to a smooth simplicial
scheme. This shows (ii), and (i) follows easily.

Now, theorem 5.1 follows from proposition 5.7, corollary 4.2 and the fact that
an object in the pro-category is detected by its morphisms to constant objects.

We finally mention a variant which does not make use of the assumption on
the virtual cohomological dimension of the ground field k. Consider the functor

ht = \ ◦ et : Sm(k) −→ (pro-H)w.

Proceeding as above, but using only those simplicial sets M as test objects
which have non-trivial homotopy only in finitely many dimensions, we obtain:
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Theorem 5.8. (i) There exists a natural functor

ht : Hs,et(Sm(k)) −→ (pro-H)w

such that the composite Sm(k) → Hs,et(Sm(k)) → (pro-H)w is the functor ht
defined above.

(ii) If k has characteristic zero, then ht factors through the A1-homotopy cate-
gory, inducing a functor

ht : HA1,et(Sm(k)) −→ (pro-H)w

6 Closing remarks

1. Composing et with the natural functor HA1,Nis(Sm(k)) −→ HA1,et(Sm(k)),
we obtain an étale homotopy type functor on the usual Morel-Voevodsky cat-
egory. Alternatively, we could have worked with Nisnevich sheaves all through
this paper, without any difference.

2. Our construction of the étale homotopy type for simplicial sheaves particu-
larly applies to smooth simplicial schemes (via the represented simplicial sheaf).
In this case the étale homotopy type was defined previously by Friedlander [Fr2]
using bisimplicial hypercoverings. Both constructions coincide up to weak equiv-
alence. This can be best seen by using Isaksen’s “hypercover descent theorem”
[Is], theorems 11 and 12.

3. If k is a field of positive characteristic, then the functor ht factors through
A1-equivalence after completion away from the characteristics. More precisely,
let C be the class of finite groups of order prime to the characteristic of k and
let C∧ : pro-H0 → pro-H0 be the C-completion functor of [AM], Thm.3.4. Then
the composite

Hs,et,0(Sm(k)) ht−→ (pro-H0)w
C∧−→ (pro-H0)w

factors through HA1,et,0(Sm(k)). If k has finite virtual C-cohomological dimen-
sion, then, as above, we may work with (pro-H0) instead of (pro-H0)w.

Finally, with the obvious modifications, everything works over an arbitrary
noetherian base scheme S instead of Spec(k).

4. One can stabilize the construction of the étale homotopy type with respect
to the simplicial sphere S1

s of [MV] (use [Fr2], prop. 4.7).

5. As already mentioned in the introduction, there exists another construction of
an étale realization functor due to Isaksen [Is], who, however, does not construct
a functor with values in pro-H. His approach is the following: he fixes a prime
number p different to the characteristic of k and constructs a functors which
takes values in the localization Lp of the category (pro-∆opSets) with respect to
a model structure, in which the weak equivalences are those morphisms which
induce isomorphisms in mod-p cohomology. One advantage of our construction
is the rather useful adjunction formula 4.2. Furthermore, we do not have to fix
one particular prime number p. A problem in comparing both approaches is to
find an appropriate common target category.
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