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In the course of the last years several authors have studied index problems for
open Riemannian manifolds. The abstract indices are elements in the K-theory of an
associated C∗-algebra, which only depends on the ”coarse” (or large scale) geometry
of the underlying metric space. In order to make these indices computable J.Roe
introduced a new cohomology theory, called coarse cohomology, which is sensitive
only to this coarse geometry (see [5]). This theory takes values in R-vector spaces and
it is functorial on complete metric spaces and coarse maps. The coarse cohomology
(which can be computed in many examples) is the source of a character map to the
cyclic cohomology of a C∗-algebra associated to the metric space.

The coarse cohomology groups measure the behavior at infinity of the given metric
space, i.e. they really depend on the metric, not just on the underlying topology.
Roe defined his cohomology using a standard complex of locally bounded real valued
functions satisfying a suitable support condition.

The object of this paper is to show that coarse geometry can be viewed as a
special example of the general concept of a Grothendieck topology. In fact we will
show that there is a natural Grothendieck topology on the category of metric spaces
under which Roe’s coarse cohomology is just the cohomology with compact support of
the constant sheaf R. From this point of view many properties of coarse cohomology
are easy consequences of general principles. Several of the notions that we define in
this article (like bornotopy) are taken from [5] and in order to give a self contained
presentation we also give some corollaries, which are already in [5]. Our intention
however is to put emphasis on the more functorial point of view and the greater
freedom of working with arbitrary sheaves rather than constant systems.

The author wants to thank M.Puschnigg for his interest and for his comments on a
draft version of this paper. Moreover we are grateful to the referee for his detailed and
constructive criticism and for many valuable suggestions concerning the presentation.

1 Definition of the coarse topology

In the following let X be a metric space. Our concern is to explain how the technique
of Grothendieck topologies can be applied in the investigation of ”coarse” properties of
metric spaces. The term ”coarse” means that one is only interested in the behaviour
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at infinity of a given metric space. From the coarse point of view compact spaces
are trivial (i.e. equivalent to a one-point space) and maps are considered only with
respect to their asymptotic behaviour at infinity.

Recall (see [1] or [2] for the details) that a Grothendieck topology (or a site) X
consists of a category Cat(X ) and a collection of coverings. This means that for every
object B in Cat(X ) we have given a collection Cov(B) of families {Bi → B}i∈I of

morphisms to B, such that the identity B
id→ B is a covering and the collection of

coverings is stable under composition and base change1.
For example the usual topology of the metric space X consists of the category of

open subsets of X (with inclusions as morphisms) and a covering is a family of open
subsets such that every point of X is contained in at least one of the opens. We will
denote this classical topology on X by Xtop.

It is well known that many non-equivalent metrics on X give rise to the same
topology Xtop, in particular we loose the information about bounded sets.

Definition: The coarse topology Xco on X is the Grothendieck topology associated
to the following data

(i) Cat(Xco) = the category of (all) subsets of X with inclusions as morphisms.

(ii) A family {Ui ⊂ U}i∈I of morphisms in Cat(Xco) is called a covering if every
bounded subset V ⊂ U is contained in Ui for some i ∈ I.

Remark: We do not restrict to the subcategory of open subsets of X, since working
with the category of all subsets of X we get functoriality under a larger class of
morphisms.

Associated with Xco are the categories of presheaves (i.e. contravariant functors
from Cat(Xco) to the category Ab of abelian groups) and of sheaves of abelian groups
on Xco, i.e. those presheaves F for which the sequence

F (U) −→
∏
i∈I
F (Ui)−→−→

∏
i,j∈I

F (Ui ×U Uj)

is exact for all coverings {Ui → U}i∈I . We denote these categories by Presh(Xco)
and Sh(Xco), respectively. The presheaves on Xco are just the usual presheaves on
X, when X is endowed with the discrete topology. The property of being a (co)-sheaf
measures the behavior at infinity. For example, if X is bounded, then every presheaf
is a (co)-sheaf.

As is known from the general theory, the categories Presh(Xco) and Sh(Xco) are
abelian categories with sufficiently many injective objects. Furthermore there exists
a sheafifycation functor a : Presh(Xco) → Sh(Xco), which is exact and left adjoint
to the canonical inclusion i : Sh(Xco) ↪→ Presh(Xco) (see [1], II (1.6)). In particular,
an injective sheaf is also injective as a presheaf.

1In [2] these data define a pre-topology, while the associated topology is given by a class of sieves,
which is defined using the coverings. The coarse topology below will be defined by a pre-topology
and it therefore suffices to work on the level of coverings, avoiding the use of sieves.
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Lemma 1.1 A sequence of sheaves F → G → H is exact in Sh(Xco) if and only
if the associated sequence F (B) → G(B) → H(B) is exact for every bounded subset
B ⊂ X.

Proof: It follows from the general theory that with F → G → H also the restricted
sequence FB → GB → HB of sheaves in Sh(Bco) is exact. If B is bounded, then
Sh(Bco) = Presh(Bco), hence the sequence of sheaves on B is exact if and only if the
sequence F (A) → G(A) → H(A) is exact for every A ⊂ B. This shows the only if
part in the statement.
Now assume that the sequence F (B) → G(B) → H(B) is exact for all bounded
subsets B ⊂ X. In order to show the exactness of the sequence of sheaves F → G→
H, we have to show that:

If U ⊂ X is arbitrary and t ∈ ker(G(U)→ H(U)), then there exists a covering
{Ui → U}i∈I and a family {si ∈ F (Ui)}i∈I such that si maps to resUUi

(t) ∈ G(Ui).

But this is easy: Choose a covering {Ui → U}i∈I with bounded sets Ui. Then
resUUi

(t) ∈ ker(G(Ui) → H(Ui)) = im(F (Ui) → G(Ui)) for every i ∈ I. This com-
pletes the proof. 2

Remark: Every bounded subset B ⊂ X defines a point of Xco, i.e. F 7→ F (B) defines
a functor from the category of set-valued sheaves on X to the category of sets which is
right exact and commutes with direct limits (see [2] IV, 6.1.). Hence lemma 1.1 says
that sequences of sheaves of abelian groups are exact if and only if they are stalk-wise
exact.

For an abelian group A we will denote by A the constant sheaf to A, i.e. the
presheaf U 7→ A (for all U), which is already a coarse sheaf: Indeed, assume that
{Ui ⊂ U}i∈I is a coarse covering and suppose that Ui, Uj 6= ∅. Then there exists a
bounded subset B ⊂ X with B ∩ Ui, B ∩ Uj 6= ∅ and since B ⊂ Uk for some index
k ∈ I, we have that Uk∩Ui, Uk∩Uj 6= ∅. In particular we see that constant sheaves are
flabby2 and it is not difficult to prove that the usual sheaf cohomology (i.e. the right
derived functor of the global sections functor) is trivial for constant sheaves. Therefore
we use the natural analogue of the ”sections with compact support”-functor in order
to define coarse cohomology.

Definition: Let F ∈ Sh(Xco) be a sheaf and let s ∈ Γ(Xco, F ). For every real
number R > 0 the we define the R-support of the section s by

suppR(s) =
⋃

s|U 6=0

d(U)<R

U,

where d(U) := supx,y∈U d(x, y) denotes the diameter of the subset U ⊂ X.

Definition: The group of sections with compact support is defined by

Γc(Xco, F ) = {s ∈ Γ(Xco, F ) | suppR(s) is bounded ∀R > 0}.
2A sheaf is flabby if the restriction map resUV : F (U)→ F (V ) is surjective for every pair V ⊂ U .
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One easily observes that Γc(Xco,−) is an additive, left exact functor from Sh(Xco) to
the category of abelian groups. By RiT we will denote the ith right derived functor
of an additive (usually left exact) functor T .

Definition: The groups

H i
c(Xco, F ) := RiΓc(Xco,−)(F )

are called the coarse cohomology groups of X with values in the sheaf F ∈
Sh(Xco). For an abelian group A we will denote H i

c(Xco, A) also by H i
co(X,A).

Remark: It is easily seen that Γc is an exact functor, when X is bounded. Therefore
bounded metric spaces have the cohomology of a point.

2 Change of space

As one expects from the above discussion, the class of maps under which coarse
cohomology is functorial is not the class of (top)-continuous maps.

Definition: A map f : X −→Y between metric spaces is bornologous if the images
of bounded subsets in X are bounded subsets in Y . We say that f is uniformly
bornologous (cf. [5],(2.1)) if for every R > 0 there exists S > 0 such that

∀x, x′ ∈ X, d(x, x′) < R⇒ d(f(x), f(x′)) < S.

We call f proper if preimages of bounded sets are bounded. We say that f is
uniformly proper if for every R > 0 there exists S > 0 such that

∀x, x′ ∈ X, d(f(x), f(x′)) < R⇒ d(x, x′) < S.

Remark: Assume that X and Y are proper metric spaces, i.e. that bounded, closed
subsets of X (resp. Y ) are compact. Then every continuous map f : X → Y is
bornologous and if f is proper in the sense of proper, continuous maps between lo-
cally compact Hausdorff spaces, then it is proper in our sense.

A bornologous map induces a continuous morphism of Grothendieck topologies
f : Xco → Yco, i.e. the assignment U ⊂ Y 7→ f−1(U) ⊂ X defines a functor
f−1 : Cat(Yco) → Cat(Xco) which sends coverings to coverings. Without further
mentioning we will assume all occurring maps to be bornologous. Associated to every
(bornologous) map f are the usual functors f∗ and f ∗ between the categories of coarse
sheaves: The functor f∗ : Sh(Xco) → Sh(Yco) is defined by f∗F (U) = F (f−1(U)),
U ⊂ Y, F ∈ Sh(Xco), and is left exact. By the general theory (see [2] III.2.3) f∗
admits the exact left adjoint functor f ∗ : Sh(Yco) → Sh(Xco), in particular f∗ sends
injective sheaves to injective sheaves.

Lemma 2.1 Assume that f : X −→Y is uniformly bornologous and proper. Then

(i) f∗ is exact.
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(ii) There are functorial morphisms: H i(f ∗) : H i
c(Yco, G)−→H i

c(Xco, f
∗G) for all i

and every G ∈ Sh(Yco). In particular we have associated morphisms

H i(f ∗) : H i
co(Y,A)−→H i

co(X,A)

for all i and every abelian group A.

Proof: (i) The exactness of f∗ is easily verified on stalks because the preimages of
bounded sets are bounded.
(ii) If f : X → Y is uniformly bornologous and G ∈ Sh(Yco), then for every R > 0
there exists an S > 0 such that for every s ∈ Γc(Y,G)

suppR(f ∗(s)) ⊂ f−1(suppS(s)).

Therefore, if f : X −→Y is uniformly bornologous and proper, then there exists a
functor morphism Γc(Yco,−)−→Γc(Xco,−) ◦ f ∗, which extends to a corresponding
morphism for the derived functors

R+Γc(Yco,−)−→R+(Γc(Xco,−) ◦ f ∗)−→R+(Γc(Xco,−)) ◦ f ∗,

where the last morphism exists because f ∗ is exact. Therefore we have functorial
morphisms: H i

c(Yco, G)−→H i
c(Xco, f

∗G) for all i and every G ∈ Sh(Yco). Moreover
f ∗(A) = A, which shows the last claim. 2

Theorem 1 Assume that f : X → Y is uniformly bornologous, uniformly proper and
surjective. Then for every sheaf G ∈ Sh(Yco) the canonical homomorphism

f ∗ : H i
c(Yco, G)→ H i

c(Xco, f
∗G)

is an isomorphism for all i.

Proof: Since f is surjective and proper, one verifies on stalks that the canonical
adjunction homomorphism G−→ f∗f

∗G is an isomorphism.
Now let F ∈ Sh(Xco) be any sheaf. Then, since f is uniformly bornologous, for every
R > 0 there exists an S > 0 such that for every s ∈ Γ(Xco, F )

suppR(s) ⊂ f−1(suppS(f∗s)).

Because f is proper, we therefore have a canonical injective morphism of functors
Γc(Yco,−) ◦ f∗ ↪→ Γc(Xco,−). Since f is uniformly proper, for every R > 0 there is an
S > 0 such that for every s ∈ Γc(Xco, F ) we have

suppR(f∗s) ⊂ f(suppS(s)).

Hence the canonical injective functor morphism Γc(Yco,−) ◦ f∗−→Γc(Xco,−) is an
isomorphism in our situation. Since f∗ is exact an sends injectives to injectives, we ob-
tain canonical isomorphisms H i

c(Yco, f∗F )
∼−→H i

c(Xco, F ). For F = f ∗G we therefore
get isomorphisms

H i
c(Yco, G)

∼−→H i
c(Yco, f∗f

∗G)
∼−→H i

c(Xco, f
∗G).
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2

Following [5],(2.5) we define the notion of bornotopy:

Definition: Two maps f, g : X → Y (assumed to be uniformly bornologous and
proper throughout) are called to be bornotopic if there is a uniformly bornologous
and proper map:

F : {0, 1} ×X −→Y

with f = F (0,−), g = F (1,−). Here we choose any metric on the two point space
{0, 1}.
We also could have worked with [0, 1] instead (cf. the remarks after (2.5) in [5]).

Corollary 2.2 (Bornotopy invariance of coarse cohomology)
Assume that f, g : X −→Y are bornotopic maps. Then for every abelian group A the
induced homomorphisms

H i(f ∗), H i(g∗) : H i
co(Y,A)−→H i

co(X,A)

are the same.

Proof: Since the projection: p : {0, 1}×X −→X is uniformly bornologous, uniformly
proper and surjective, it induces isomorphisms

H i
co(X,A)

∼−→H i
co({0, 1} ×X,A).

Therefore the two obvious sections i0 and i1 of p both induce the same (namely the
inverse to H i(p∗)) map H i

co({0, 1}×X,A)
∼−→H i

co(X,A). From this the statement of
the corollary follows because f ∗ = i∗0 ◦ F ∗ and g∗ = i∗1 ◦ F ∗ 2

Definition: A subspace of Z ⊂ X is called uniformly dense in X if there is an
R > 0 such that for every x ∈ X there exists an z ∈ Z with d(x, z) < R.

Corollary 2.3 Assume that Z ⊂ X is uniformly dense. Then for every abelian group
A the canonical restriction homomorphism

H i
co(X,A)

∼−→H i
co(Z,A)

is an isomorphism for all i.

Proof: We denote the canonical inclusion by i : Z ↪−→ X. Choose any map p : X → Z
sending an x ∈ X to a z ∈ Z with distance < R. Then p and i are bornotopy inverse
to each other, i.e. p ◦ i is bornotopic to idZ and i ◦ p is bornotopic to idX . 2

3 An auxiliary topology

In order to compare the coarse cohomology as defined above with Roe’s cohomology
and with the usual cohomology with compact support it is useful to introduce an
auxiliary topology XCO on X.

Definition: We define the CO-topology on X by the following data:
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(i) Cat(XCO) = the category of (top-) open subsets of X together with inclusions.

(ii) A family {Ui ⊂ U}i∈I of morphisms in Cat(XCO) is called a covering if every
bounded (open) subset V ⊂ U is contained in Ui for some i ∈ I.

The co-topology is a refinement of the CO-topology (having more ”open” sets) and
the obvious forgetful functor will be denoted by

v : Xco−→XCO.

However also the classical topology Xtop is a refinement of XCO (having more cover-
ings) and we will denote this forgetful functor by

h : Xtop−→XCO.

The presheaves on XCO are the usual presheaves on Xtop and the functor h∗ :
Sh(Xtop) → Sh(XCO) reads as ”looking at a top-sheaf as CO-sheaf”, while h∗ is
the functor of ”sheafifying a CO-sheaf to a top-sheaf ”. The CO-sheaves are the
presheaves which are called ω-sheaves in [5],(3.19). We define the functor Γc on
Sh(XCO) in the same way as for Sh(Xco) and we define the cohomology H i

c(XCO,−)
as the ith right derived functor of the functor Γc on Sh(XCO). The next lemma as-
sures that we do not loose cohomological information, when we change from Xco to
XCO.

Lemma 3.1 The functor v∗ : Sh(Xco)→ Sh(XCO) is exact and the canonical homo-
morphism: G → v∗v

∗G is an isomorphism for every G ∈ Sh(XCO). The canonical
homomorphisms

H i(v∗) : H i
c(XCO, v∗F )

∼−→H i
c(Xco, F ) and H i(v∗) : H i

c(XCO, G)
∼−→H i

c(Xco, v
∗G)

are isomorphisms for all i and all sheaves G ∈ Sh(XCO), F ∈ Sh(Xco).

Proof: The exactness of v∗ as well as the isomorphism G
∼−→ v∗v

∗G immediately
follow from the definitions. For the cohomological statements note that Γc(Xco,−) =
Γc(XCO,−) ◦ v∗ and that v∗ is exact and sends injectives to injectives. This implies
the first statement, while the second follows from the first because

H i
c(XCO, G)

∼−→H i
c(XCO, v∗v

∗G)
∼−→H i

c(Xco, v
∗G).

2

Lemma 3.2 Assume that X is a proper metric space. Then for every G ∈ Sh(XCO)
and all i there are canonical homomorphisms

H i(h∗) : H i
c(XCO, G)→ H i

c(Xtop, h
∗G).

In particular we have homomorphisms: H i
co(X,A)→ H i

c(Xtop, A) for all i and every
abelian group A.
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Proof: Without difficulties one observes that for any section s ∈ Γc(XCO, G) the
support (in the (top)-sense) of h∗(s) is bounded. Therefore, if X is proper, we have
a natural homomorphism

Γc(XCO, G)−→Γc(Xtop, h
∗G),

where Γc(Xtop,−) denotes the usual sections with compact support functor. Since h∗

is exact (by general reasons) we obtain associated homomorphisms
H i
c(XCO, G) → H i

c(Xtop, h
∗G). In particular if G = A is constant, we obtain maps

H i
co(X,A)→ H i

c(Xtop, A). 2

Remark: 1. For A = R the homomorphism above coincides with the character map c
defined in [5],(2.11).
2. Using corollary 4.2 below and standard properties of Čech cohomology for ”good”
covers one gets sufficient conditions under which this character map is an isomor-
phism, e.g. for X = Rn, see corollary 4.3 (see also [5] 3.4. for variants).

4 Coarse Čech cohomology

In this section we want to develop compactly supported Čech cohomology for the
coarse topology. We do this for proper metric spaces using the notion of an anti-Čech
system (cf. [5],(3.13)):

Definition: Let U be an open covering (in the (top)-sense) of X. We say that U is
locally finite if every bounded set only meets finitely many members of U. A sequence
{Un}n∈N of locally finite open coverings of X is called an anti-Čech system if there
is a sequence of real numbers Rn →∞ such that for all n

(i) Each set U ∈ Un has diameter less than Rn.

(ii) The covering Un+1 has a Lebesgue number greater than or equal to Rn, i.e. every
subset of diameter less than Rn is contained in at least one member of Un+1.

In particular Un is a refinement of Un+1 for all n. Anti-Čech systems exist for every
proper metric space (see [5] lemma 3.15).

Now we recall the definition of the compactly supported Čech complex associated
to a locally finite open covering U = {Ui}i∈I and a presheaf F ∈ Presh(XCO)(=
Presh(Xtop)). It is defined by

Cp
c (U, F ) :=

{s ∈
⊕

(i0,...,ip)∈Ip+1

F (Ui0 ∩ . . . ∩ Uip) | sσ(i0),...,σ(ip) = sgn(σ)s(i0,...,ip) for all σ ∈ Sp+1}

together with the usual alternating differential: d : Cp → Cp+1, where Sp+1 is the
symmetric group over p + 1 elements. (The compact support comes in via the ⊕
instead of

∏
.)
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Defining Ȟ i
c(U, F ) := H i(C∗c (U, F )), it is well known (cf. [1], I.(3.1)) that

Ȟ i
c(U, F ) = RiȞ0

c (U, F ).

Choosing an anti-Čech system Un, the refinement maps define inverse systems
{Ȟ i

c(Un, F )}n∈N. Denoting the category of inverse systems of abelian groups by AbN

and the canonical inclusion of Sh(XCO) to Presh(XCO) by i, we obtain the following
series of functors

Sh(XCO)
i−−−→Presh(XCO)

Ȟ0
c (U∗,−)−−−→ AbN

lim
←−−−→Ab.

An easy calculation shows that we have:

lim
←−
n

◦Ȟ0
c (Un,−) ◦ i = Γc(XCO,−)

as functors: Sh(XCO)−→Ab.

Lemma 4.1 (i) The functor Ȟ0
c (Un,−) sends injective presheaves to lim

←−
-acyclic in-

verse systems.

(ii) Ȟp
c (Un, R

qi) = 0 for all n, p and all q > 0.

Corollary 4.2 For every sheaf G ∈ Sh(XCO) and all p there is a short exact sequence

0−→ lim
←−
n

1Ȟp−1
c (Un, iG)−→Hp

c (XCO, G)−→ lim
←−
n

Ȟp
c (Un, iG)−→ 0.

Proof of the corollary: The functor i is left exact and sends injectives to injectives
and as is well known, lim

←−
k : AbN−→Ab is trivial for all k ≥ 2 (see [4] Sect.1 for the

basic properties of the category AbN and of the functor lim
←−

). Therefore, composing

the derived functors, the statement of the corollary follows from lemma 4.1. 2

Proof of lemma 4.1: (i) It suffices to show that every presheaf G can be embedded
into a presheaf G′ having lim

←−
-acyclic {Ȟ0

c (Un,−)}n∈N (G is a direct summand in G′,

if G is injective). We define G′ (which is the presheaf analogue of the first step of the
classical Godement resolution) by

G′(U) :=
∏
V⊂U

G(V ),

together with the obvious restriction maps and the canonical inclusion G ↪−→ G′. If
U = {Ui}i∈I is a locally finite open cover, then one obtains the following equality, in
which we denote by BU(X) the family of bounded open subset V ⊂ X, such that
V ⊂ Ui for at least one i ∈ I):

Ȟ0
c (U, G′) = {(sV ) ∈ ∏

V ∈BU(X) G(V ) | there exists a finite subset J ⊂ I

such that sV = 0 if V ⊂ Ui for one i 6∈ J}
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If V = {Vi′}i′∈I′ is a refinement of U, then it can be seen from the above identification
that the canonical refinement map

Ȟ0
c (U, G′)−→ Ȟ0

c (V, G′)

is surjective. Indeed, we can lift an s = (sV )V ∈BV(X) ∈ Ȟ0
c (V, G′) to an s′ =

(s′V )V ∈BU(X) ∈ Ȟ0
c (U, G′) setting

s′V =

 sV if V ⊂ Vi′ for an i′ ∈ I ′

0 otherwise.

The construction is correct because J ′ := {j′ ∈ I ′ |Vj′ ∩ Uj 6= ∅ for an j ∈ J} is a
finite subset of I ′ if J is a finite subset of I. As is well known, surjective systems are
lim
←−

-acyclic, hence we proved (i).

(ii) Recall that the sheafification functor a : Presh(XCO) → Sh(XCO) is exact and
that a ◦ i = idSh. Therefore, for every open U ⊂ X and every G ∈ Sh(XCO) we have
RqiG(U) = RiΓ(UCO, G). In particular RqiG(U) = 0 for q > 0 if U is bounded. This
implies (ii). 2

Following the terminology in [5],(3.28) we call a covering U a Leray covering if every
finite intersection U1 ∩ . . .∩Uk of elements of U is contractible. It is well known that
for every locally finite open Leray covering U of an locally compact Hausdorff space
X the canonical homomorphism Ȟ i

c(U, A) → H i
c(Xtop, A) is an isomorphism for all i

and every abelian group A. The exact sequence of corollary 4.2 therefore implies:

Corollary 4.3 Suppose that X is a proper metric space which admits an anti-Čech
system Un consisting of Leray coverings. Then for every abelian group A and every i
the canonical homomorphism

H i
co(X,A)−→H i

c(Xtop, A)

is an isomorphism.

5 Comparison with Roe’s cohomology

Since Roe used the notation HX∗ for his cohomology we will use the letter M for the
ground space in this chapter. Our aim is to prove the following theorem

Theorem 2 Assume that M is a proper metric space. Then there are canonical
isomorphisms for all i:

HX i(M)
∼−→H i

co(M,R)

between Roe’s cohomology and the coarse cohomology of the constant sheaf R.

Recall that Roe’s coarse (or ”eXotic”) cohomology HX i(M) is defined as the ith

cohomology group of the complex CX∗(M), which is given by

CXq(M) = {locally bounded Borel functions φ : M q+1 → R such that

supp(φ) ∩ Pen(∆q, R) is precompact in M q+1 for every R > 0},
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where Pen(∆q, R) = {(x0, . . . , xq) ∈ M q+1 | ∃x ∈ M : supi d(x, xi) ≤ R}. The
coboundary map d : CXq(M)→ CXq+1(M) is given by

dφ(x0, . . . , xq+1) =
q+1∑
i=0

(−1)iφ(x0, . . . , x̂i, . . . , xq+1).

One observes that CX∗(M) is just the complex of sections with compact support of
the complex CX∗M of CO-sheaves, which is defined by

CXq
M(U) = {locally bounded Borel functions φ : U q+1 → R}

together with the obvious boundary map. The complex CX∗M is a resolution of the
constant sheaf R in the category Sh(MCO). In order to compare Roe’s cohomology
with the coarse cohomology of the present paper, it therefore suffices to show that
the sheaves CXq

M are Γc-acyclic. For this we recall the following definitions:

Definition: Let F ∈ Presh(MCO)(= Presh(Mtop)). We say that F is fine if asso-
ciated to every locally finite open covering U there exists a partition of the unity for
F , i.e. there is a family {eU}U∈U of presheaf endomorphisms such that

(i) if V is open and V ∩ Ū = ∅, then eU |V : Presh(V )→ Presh(V ) is zero,

(ii) if V is precompact, then∑
U∈U

eU |V : Presh(V )→ Presh(V )

is the identity (only finitely many summands are non-trivial by (i)).

We say that a presheaf F is soft if for every precompact open set V and every open
U ⊃ V̄ we have

im(F (U)
resUV−→F (V )) = im(F (M)

resMV−→ F (V )) ⊂ F (V ).

It is well known that a fine sheaf in Sh(Xtop) is soft, but this is not true for CO-
sheaves.

Lemma 5.1 The CO-sheaves CXq
M defined above are fine and soft presheaves.

Proof: This follows easily using a partition of the unity on M . 2

Summarizing, the theorem is proved if we have shown the following

Proposition 5.2 Assume that F ∈ Sh(XCO) is fine and soft. Then F is Γc-acyclic,
i.e. we have

Hq
c (XCO, F ) = 0

for all q > 0.
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Proof: We choose an anti-Čech-system Un of locally finite open coverings, such that
all refinement inclusions Un ⊂ Un+1 for Un ∈ Un, Un+1 ∈ Un+1 have the property that
Un+1 ⊃ Ūn. (This is possible by [5],(3.15).) Then we apply corollary 4.2. Since F
is soft, all transition maps in the inverse systems {Ȟ i

c(Un, F )}n∈N are zero for i > 0
(see [6], 6.8. Thm.4 for ordinary cohomology and [5],(3.10) for the necessary changes
in the case of Ȟc). Further, since F is soft, the inverse system {Ȟ0

c (Un, F )}n∈N is a
Mittag-Leffler system, i.e. lim

←−
-acyclic. This completes the proof. 2

Remark: The same arguments are also valid for all variants (continuous functions,
antisymmetric functions,...) of the standard complex, as they are given in [5] 3.3 and
Theorem 3.23 of [5] implicitly already contains a statement about the Grothendieck
topology. However, theorem 3.23 of [5] should be modified, because the author applies
it to sheaves which are not flabby (but soft, indeed).

6 Mayer-Vietoris sequence

In this last section we give a proof of a Mayer-Vietoris sequence for the coarse coho-
mology, similar to that which has been shown for closed pairs and Roe’s cohomology
in [3].

Recall that for two closed subsets M,N of X with M ∪ N = X and for every
(top)-sheaf F on X we have the (top)-exact sequence

0→ F → iM∗i
∗
MF ⊕ iN∗i∗NF → iM∩N∗i

∗
M∩NF → 0,

in which i2 denotes the embedding of a closed subset. The exactness is easily verified
on stalks and this sequence is responsible for the topological Mayer-Vietoris sequence
for a pair of closed subsets.

Unfortunately the above sequence is never exact in the coarse topology. A first trivial
obstruction against the exactness is that no non-trivial pair M,N , M ∪N = X fulfills
the following property

”a bounded subset U which intersects M and N also intersects M ∩N”.

Hence there is no chance for the validity of a Mayer-Vietoris sequence for arbitrary
coarse sheaves.
Setting Pen(Z,R) = {x ∈ X | ∃z ∈ Z : d(x, z) ≤ R}, every subset Z ⊂ X is
bornotopy equivalent to Pen(Z,R) for every R. Therefore, by restricting to constant
sheaves and using the bornotopy invariance of coarse cohomology (corollary 2.2), one
can prove a Mayer-Vietoris sequence for constant coefficients and for pairs satisfying
an approximate form of the above property. Following [3] we define coarsely excisive
pairs:

Definition: We call a pair of subset M,N ⊂ X, M ∪ N = X coarsely excisive if
for every R > 0 there exists an S > 0 such that

Pen(M,R) ∩ Pen(N,R) ⊂ Pen(M ∩N,S).

12



Theorem 3 Assume that the pair M,N ⊂ X, M∪N = X is coarsely excisive. Then
for every abelian group A we have a long exact sequence

· · · → H i
co(X,A)→ H i

co(M,A)⊕H i
co(N,A)→ H i

co(M ∩N,A)→ · · · .

Proof: For a subset Z ⊂ X we introduce the following functor on Sh(Xco):

ΓZc (Xco, F ) := {s ∈ Γ(Xco, F ) | suppR(s) ∩ Z is bounded ∀R > 0}.

(Observe that ΓXc (Xco,−) = Γc(Xco,−) and ΓZc (Xco,−) = Γ(Xco,−) if Z is bounded.)
In order to proceed we need the following

Lemma 6.1 If M,N is coarsely excisive, then the sequence of functors

0→ Γc(Xco,−)→ ΓMc (Xco,−)⊕ ΓNc (Xco,−)→ ΓM∩Nc (Xco,−)→ 0

is exact on injectives.

Proof of the lemma: One easily verifies that the above sequence is well defined and
left exact. We proceed in a similar way as in the proof of lemma 4.1. In order to
complete the proof it suffices to show, that every sheaf F can be embedded into a
sheaf F ′ for which the right hand arrow is surjective (F is a direct summand in F ′ if
F is injective). We define F ′ (which is the natural coarse analogue to the first step
of the classical Godement resolution) by

F ′(U) :=
∏

V⊂Ubounded

F (V ),

together with the obvious restriction maps and the canonical inclusion F ↪−→ F ′.
Then F ′ is a coarse sheaf. Denoting the set of bounded subsets of X by B(X), let
F ∈ Sh(Xco) and s = {sV }V ∈B(X) ∈ ΓM∩Nc (Xco, F

′). Then by definition we have

suppR(s) =
⋃
{U | d(U) < R,∃V ⊂ U : sV 6= 0}.

Now choose a disjoint decomposition B(X) = BM(X) t BN(X) with the property:
U ∈ BM(X) ⇒ U ∩ N 6= ∅ and vice versa. Then we construct a pair (sM , sN) ∈
ΓMc (Xco, F

′)× ΓNc (Xco, F
′) with s = sM + sN . This is done by

sMV =

 sV for V ∈ BM(X)

0 otherwise

and symmetrically for sN . Obviously s = sM+sN and it remains to check that sM and
sN satisfy the required support condition. By symmetry we restrict to sM . However,
if R and S are chosen as in the definition of coarsely excisive pairs, a straightforward
verification shows

suppR(sM) ∩M ⊂ Pen(suppR+2S(s) ∩M ∩N,S).
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This completes the proof. 2

End of the proof of theorem 3: By the above lemma we have for every sheaf F ∈
Sh(Xco) a long exact sequence

· · · → H i
c(Xco, F )→ RiΓMc (Xco, F )⊕RiΓNc (Xco, F )→ RiΓM∩Nc (Xco, F )→ · · · .

Therefore the next lemma finishes the proof of theorem 3. 2

Lemma 6.2 For every subset Z ⊂ X and every abelian group A we have canonical
isomorphisms for all i

RiΓZc (Xco, A)
∼−→H i

co(Z,A).

Proof: Let F ∈ Sh(Xco) and s ∈ Γ(Xco, F ). For a pair n ≥ R > 0 a straightforward
verification shows

suppR(s) ∩ Z ⊂ suppR(s|Pen(Z,n)) ⊂ Pen(suppR+2n(s) ∩ Z, n+R).

Hence we have a canonical isomorphism of functors ΓZc (X,−) ∼= lim
←−
n

Γc(Pen(Z, n),−).

The fact that injective sheaves are sent to lim
←−

-acyclic systems can be verified on

sheaves of the form F ′ (compare the prove of lemma 6.1). Since Z is uniformly
dense in Pen(Z,R) for every R > 0, corollary 2.3 shows that all transition maps
H i
co(Pen(Z, n + 1), A) → H i

co(Pen(Z, n), A) are isomorphisms. This completes the
proof. 2

Final remark: Perhaps it would be more conceptual to treat coarse and classical
cohomology in a unified manner. Indeed, for every family V of subsets of X we can
find an appropriate Grothendieck topology such that the members of the family are
points. This can be achieved by defining a covering to be a family U of subsets, s.t.
every V ∈ V is contained in at least one U ∈ U. It is clear, which families give rise to
the classical resp. to the coarse topology. In this way one can define many different
topologies and associated cohomology theories, each of them adapted to a particular
way of filtering information.

References

[1] M.Artin Grothendieck topologies
Lect. Notes Harvard Univ. Math. Dept. Cambridge Mass. 1962

[2] M.Artin, A.Grothendieck, J.L.Verdier Thèorie des topos et cohomologie étale des
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