PRO-*p* GROUPS OF POSITIVE DEFICIENCY

JONATHAN A. HILLMAN AND ALEXANDER SCHMIDT

ABSTRACT. Let Γ be a finitely presentable pro-*p* group with a nontrivial finitely generated closed normal subgroup *N* of infinite index. Then def(Γ) ≤ 1 , and if def(Γ) = 1 then Γ is a pro-*p* duality group of dimension 2, *N* is a free pro-*p* group and Γ/N is virtually free. In particular, if the centre of Γ is nontrivial and def(Γ) ≥ 1 , then def(Γ) = 1, cd $G \leq 2$ and Γ is virtually a direct product $F \times \mathbb{Z}_p$, with *F* a finitely generated free pro-*p* group.

The deficiency $def(\mathcal{P})$ of a finite presentation \mathcal{P} of a group π is the difference q-r, where q and r are the numbers of generators and relations (respectively). Since $def(\mathcal{P})$ is bounded above by the rank of the abelianization π/π' , we may define the deficiency def(π) of a finitely presentable group π as the maximum over all deficiencies of presentations for π . A finite presentation \mathcal{P} determines a finite 2-complex $C(\mathcal{P})$ with $\pi_1(C(\mathcal{P})) \cong \pi$, and $\chi(C(\mathcal{P})) = 1 - \operatorname{def}(\mathcal{P})$. Thus $\operatorname{def}(\pi) \ge 1$ if and only if there is a finite 2-complex X with $\pi_1(X) \cong \pi$ and $\chi(X) < 0$. This property is inherited by subgroups of finite index, since the Euler characteristic is multiplicative. In conjunction with other group-theoretic hypotheses, this often leads to strong constraints on the group. For instance, if $def(\pi) \ge 1$ and $\beta_1^{(2)}(\pi) = 0$ then $def(\pi) = 1$ and $cd \ \pi = 2$ or $\pi \cong \mathbb{Z}$. (See Theorem 2.5 of [Hi1].) The L^2 -Betti number condition holds if π has a finitely generated infinite normal subgroup of infinite index, or if π has an infinite amenable normal subgroup. (See Chapter 7 of [Lue].)

We are interested in finding analogous results for pro-p groups. There is at present no good p-adic analogue of the von Neumann algebra, providing an invariant with the formal properties of the L^2 -Betti numbers in the discrete case. Nevertheless, we shall show that if a finitely presentable pro-p group Γ with def $(\Gamma) \geq 1$ has a nontrivial finitely generated closed normal subgroup N of infinite index then def $(\Gamma) = 1$, Γ is a pro-p duality group of dimension 2, N is a free pro-p group and Γ/N is virtually free. In particular, if a finitely presentable pro-p group has

²⁰⁰⁰ Mathematics Subject Classification. 20E18.

Key words and phrases. deficiency, normal subgroup, pro-p group.

a nontrivial finite normal subgroup then it has deficiency ≤ 0 . (We do not know whether the analogue of the latter result holds in the discrete case.) We derive two corollaries from the main result. Firstly, if the centre of Γ is nontrivial and def $(\Gamma) \geq 1$, then def $(\Gamma) = 1$, $cd \ \Gamma \leq 2$ and Γ is virtually a direct product $F \times \mathbb{Z}_p$, with F a finitely generated free pro-p group. Secondly, if Γ has a finitely generated abelian closed normal subgroup A and def $(\Gamma) \geq 1$, then def $(\Gamma) = 1$, $cd \ \Gamma \leq 2$ and $A \cong \mathbb{Z}_p$ or A has finite index in Γ and $A \cong \mathbb{Z}_p^2$.

If G is a pro-p group let $H^i(G) = H^i(G; \mathbb{F}_p)$ and $h^i(G) = \dim_{\mathbb{F}_p} H^i(G)$, where \mathbb{F}_p is the trivial G-module of order p. The following proposition is well-known. (See, for example, Proposition 3.9.4 of [NSW²].)

Proposition 1. Let p be a prime number and let G be a pro-p group. Then G is finitely presentable if and only if $h^1(G) < \infty$ and $h^2(G) < \infty$, and in this case def $(G) = h^1(G) - h^2(G)$.

If the numbers $h^i(G)$ are finite for i = 0, ..., n, we may define the *n*th partial Euler-Poincaré characteristic by $\chi_n(G) = \sum_{i=0}^n (-1)^i h^i(G)$. On applying Lemma 3.3.15 of [NSW²] (first ed. 3.3.12) and Shapiro's Lemma to the (co)induced module $A = \mathbb{F}_p[G/U] \cong \text{Hom}_U(\mathbb{F}_p[G], \mathbb{F}_p)$, we obtain the inequality

$$\chi_n(U)(-1)^n \le (G:U)\chi_n(G)(-1)^n$$

for every open subgroup $U \subseteq G$. In particular, $\chi_2(G) = 1 - \operatorname{def}(G)$ is submultiplicative: if U is an open subgroup of G then $\chi_2(U) \leq \chi_2(G)[G:U]$.

Theorem 2. Let Γ be a finitely presentable pro-p group with a nontrivial finite normal subgroup N. Then def $(\Gamma) \leq 0$.

Proof. Let $a \in N$ be an element of order p and set $A = \langle a \rangle \subset N$. Let $U = C_{\Gamma}(A)$ be the centralizer of A. Then U is a closed subgroup of finite index in Γ , and hence is also open. Since $A \cong \mathbb{F}_p$ is central, the group extension $0 \to A \to U \to U/A \to 1$ is classified by an element $\alpha \in H^2(U/A)$. Now $H^2(U/A) = \varinjlim H^2(U/V)$, where the limit is taken over open normal subgroups $V \leq U$ which contain A, and so α is in the image of $H^2(U/V)$ for some such V. Clearly the restriction of α to $H^2(V/A)$ vanishes. Then $V \cong A \times V/A$. As the Hochschild-Serre spectral sequence associated to a direct product degenerates at E^2 , see [Ja] or Theorem 2.4.6 of [NSW²], we obtain $h^1(V) = h^1(V/A) + 1$ and $h^2(V) = h^2(V/A) + 1 + h^1(V/A)$. This implies $\chi_2(V) > 0$, hence $\chi_2(\Gamma) > 0$ and def(Γ) ≤ 0 .

In the discrete case there is no general result asserting that torsion cohomology classes restrict to 0 on suitable finite-index subgroups. (This is however true if the group is a surface group. See [Hi2].)

Theorem 3. Let Γ be a finitely presentable pro-p group with a nontrivial finitely generated closed normal subgroup N of infinite index. Then $def(\Gamma) \leq 1$.

Proof. After passing to an open subgroup U we may assume that U/N acts trivially on the finite group $N/N^p[N, N]$ and that the corresponding extension splits: $U/N^p[N, N] \cong (U/N) \times N/N^p[N, N]$. Hence the transgression from $H^i(U/N; H^1(N))$ to $H^{i+2}(U/N)$ in the Hochschild-Serre spectral sequence for U as an extension of U/N by N is trivial. (See Theorem 2.4.4 of [NSW²], first ed. 2.1.8.) It follows that $h^1(U) = h^1(U/N) + h^1(N)$ and $h^2(U) \ge h^2(U/N) + h^1(U/N)h^1(N)$. Hence

$$\chi_2(U) \geq 1 - h^1(U/N) - h^1(N) + h^1(U/N)h^1(N) = (h^1(U/N) - 1)(h^1(N) - 1).$$

Since $h^1(U/N) \ge 1$ and $h^1(N) \ge 1$ it follows that $\chi_2(U) \ge 0$ and so $\chi_2(\Gamma) \ge 0$. Therefore def $(\Gamma) \le 1$.

A slight sharpening of the estimate for $h^2(U)$ gives a stronger result.

Theorem 4. Let Γ be a finitely presentable pro-p group with def $(\Gamma) = 1$ and with a nontrivial finitely generated closed normal subgroup N of infinite index. Then Γ is a pro-p duality group of dimension 2, N is a free pro-p group and Γ/N is virtually free. Moreover, either $N \cong \mathbb{Z}_p$ or Γ/N is virtually \mathbb{Z}_p .

Proof. We note first that N must be infinite, by Theorem 2. If U is an open subgroup of Γ then $U \cap N$ has finite index in N, and thus is a nontrivial finitely generated closed normal subgroup of infinite index in U. Hence def $(U) \leq 1$, by Theorem 3. Thus $0 \leq \chi_2(U) \leq \chi_2(\Gamma)[\Gamma : U] = 0$, by the submultiplicativity of χ_2 and the hypothesis that def $(\Gamma) = 1$. Therefore $\chi_2(U) = 0$ for all such subgroups U, and so $cd \Gamma \leq 2$, by Theorem 3.3.16 of [NSW²] (first ed. 3.3.13).

As in Theorem 3 there is an open subgroup U containing N such that $U/N^p[N, N] \cong (U/N) \times N/N^p[N, N]$. Let $d_3 : H^0(U/N; H^2(N)) \to H^3(U/N)$ be the d_3^{02} differential of the Hochschild-Serre spectral sequence, and let $c = \dim_{\mathbb{F}_p} \operatorname{Ker}(d_3)$. Then $h^1(U) = h^1(U/N) + h^1(N)$ and $h^2(U) = h^2(U/N) + h^1(U/N)h^1(N) + c$. Since $\chi_2(U) = 0$ it follows that

$$(h^{1}(N) - 1)(h^{1}(U/N) - 1) + h^{2}(U/N) + c = 0.$$

Since N and U/N are each nontrivial $h^1(N) \ge 1$ and $h^1(U/N) \ge 1$. Thus the three summands are all non-negative and so must be 0. Since $h^2(U/N) = 0$ the quotient U/N is a free pro-p group. In particular, Γ/N is virtually free. Since $H^3(U/N) = 0$ and c = 0, it follows that $H^0(U/N; H^2(N)) = 0$. Since U/N is a pro-p group and $H^2(N)$ is a discrete p-torsion module, it follows that $H^2(N) = 0$. (See Corollary 1.6.13 of [NSW²], first ed. 1.7.4.) Thus N is also a free pro-p group. (The fact that N is free if $h^1(U/N) = 1$ follows also from [Ko], since def(U) = 1 and N is finitely generated.)

In particular, U is an extension of finitely generated free pro-p groups. Hence U is a pro-p duality group of dimension 2, by [Ple] Theorem 3.9.¹ Since U is an open subgroup of Γ and $cd \Gamma \leq 2$, the group Γ is also a pro-p duality group of dimension 2, by [Ple] Theorem 3.8.

If $h^1(N) = 1$ then $N \cong \mathbb{Z}_p$; otherwise $h^1(U/N) = 1$ and so Γ/N is virtually \mathbb{Z}_p .

Corollary 5. Let Γ be a finitely presentable pro-p group with nontrivial centre $\zeta\Gamma$. Then def $(\Gamma) \leq 1$. If def $(\Gamma) = 1$ then either $\Gamma \cong \mathbb{Z}_p^2$ or $\zeta\Gamma \cong \mathbb{Z}_p$. Moreover, Γ is virtually a direct product $F \times \mathbb{Z}_p$, with F a finitely generated free pro-p group.

Proof. We may clearly assume that $def(\Gamma) \ge 1$, since there is nothing to prove if $def(\Gamma) < 1$.

If $[\Gamma : \zeta \Gamma]$ is finite the commutator subgroup $\Gamma' = [\Gamma, \Gamma]$ is finite, by a lemma of Schur. (See Proposition 10.1.4 of [Rob]. The argument given there for the discrete case extends without change to the pro-*p* case.) Hence $\Gamma' = 1$, by Theorem 2, and so Γ is abelian. Moreover, Γ is torsion-free, by Theorem 2 again. Therefore $\Gamma \cong \mathbb{Z}_p^2$ or \mathbb{Z}_p , since $def(\Gamma) \geq 1$. In particular, $\Gamma \cong F \times \mathbb{Z}_p$ with F free of rank 1 or 0.

Suppose now that $[\Gamma : \zeta \Gamma] = \infty$. Let *C* be a nontrivial finitely generated closed subgroup of $\zeta \Gamma$. Then *C* is a closed normal subgroup of infinite index in Γ , and is infinite, by Theorem 2. Hence def $(\Gamma) = 1$, *C* is free and Γ/C is virtually free, by Theorem 3. But then $C \cong \mathbb{Z}_p$ and $\zeta \Gamma/C$ is finite, since it is a central closed subgroup of infinite index in a virtually free pro-*p* group. Thus $\zeta \Gamma$ is also finitely generated and so $\zeta \Gamma \cong \mathbb{Z}_p$, by the same argument.

Let F be a free pro-p subgroup of finite index in $\Gamma/\zeta\Gamma$. Since $\Gamma/\zeta\Gamma$ is virtually free Γ has an open subgroup U containing $\zeta\Gamma$ and such that $F = U/\zeta\Gamma$ is a finitely generated free pro-p group. Since F is free and acts trivially on $\zeta\Gamma$ the extension splits, and so $U \cong F \times \mathbb{Z}_p$. \Box

¹The referee points out that the proofs of the main results in [Ple] are correct only for pro-p groups, but not for general profinite groups.

Such direct products $F \times \mathbb{Z}_p$ with F a finitely generated free pro-p group of rank > 1 clearly have deficiency 1 and centre \mathbb{Z}_p .

Corollary 6. Let Γ be a finitely presentable pro-p group with a nontrivial finitely generated closed abelian normal subgroup A. Then we have def(Γ) ≤ 1 . If def(Γ) = 1, then cd $\Gamma \leq 2$. Moreover, $A \cong \mathbb{Z}_p$ or A has finite index and $A \cong \mathbb{Z}_p^2$.

Proof. If A has a nontrivial torsion subgroup T, then T is finite, and so $\operatorname{def}(\Gamma) < 1$, by Theorem 2. So we may assume that $A \cong \mathbb{Z}_p^n$ for some $n \ge 1$. If A has infinite index in Γ , then $\operatorname{def}(\Gamma) \le 1$ by Theorem 3. So assume that $(\Gamma : A) < \infty$. Then $0 \le \chi_2(A) \le (\Gamma : A)\chi_2(\Gamma)$, implying $\chi_2(\Gamma) \ge 0$, hence $\operatorname{def}(\Gamma) \le 1$. The same argument shows $\operatorname{def}(\Gamma) < 1$ if $n \ge 3$.

Finally, assume that $\operatorname{def}(\Gamma) = 1$. If A has finite index in Γ , then $A \cong \mathbb{Z}_p$ or $A \cong \mathbb{Z}_p^2$ by the argument above. The open subgroups U of A are cofinal among the open subgroups of Γ and we have $\chi_2(U) = 0$. Since $\chi_2(\Gamma) = 1 - \operatorname{def}(\Gamma) = 0$, we obtain $cd \Gamma \leq 2$ by Theorem 3.3.16 of [NSW²] (first ed. 3.3.13).

If A has infinite index, it is free by Theorem 4. Hence $A \cong \mathbb{Z}_p$ in this case. Furthermore $cd \Gamma = 2$, again by Theorem 4.

The questions considered here can be traced back to Murasugi and Gottlieb. Murasugi [Mu] conjectured that if a finitely presentable (discrete) group π has nontrivial centre then def $(\pi) \leq 1$, with equality only if $\pi \cong \mathbb{Z}^2$ or $\zeta \pi \cong \mathbb{Z}$, and verified this for one-relator groups and classical link groups, while Gottlieb [Go] showed that if the fundamental group of an aspherical finite complex X has nontrivial centre then $\chi(X) = 0$.

Nakamura [Na] has given a direct analogue of Gottlieb's Theorem for pro-*p* groups: if *G* is a pro-*p* group with $\zeta G \neq 1$, $cd_pG < \infty$ and $\beta_i(G; \mathbb{F}_p) < \infty$ for all *i* then $\chi(G; \mathbb{F}_p) = 0$. (He uses a pro-*p* version of Stallings' argument involving universal trace functions.) This result and the above Corollary 5 overlap, but neither implies the other.

Amenable groups have no nonabelian free subgroups. The latter notion extends naturally to the pro-p case. If a finitely presentable discrete group has deficiency > 1 then it contains a nonabelian free group [Rom]. (In fact every such group is "large": it has a subgroup of finite index which maps onto a free group of rank 2 [BP].) If a finitely presentable pro-p group Γ with $h^1(\Gamma) = d > 1$ has no nonabelian free pro-p subgroup then $h^2(\Gamma) \ge d^2/4$ by [Ze]. Thus either d = 2 and Γ is a one-relator pro-p group or def $(\Gamma) \le 0$. Do either of these arguments extend to (discrete or pro-p) groups with infinite normal subgroups having no nonabelian free subgroup?

References

- [BP] Baumslag, B. and Pride, S.J. Groups with two more generators than relators, J. London Math. Soc. 17 (1978), 425–426.
- [Go] Gottlieb, D. H. A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840–856.
- [Hi1] Hillman, J. A. Four-Manifolds, Geometries and Knots, GT Monograph vol. 5, Geometry and Topology Publications, Coventry, University of Warwick 2002. Revision 2007.
- [Hi2] Hillman, J. A. Deficiencies of lattices in connected Lie groups, Bull. Austral. Math. Soc. 65 (2002), 393–397.
- [Ja] Jannsen, U. The splitting of the Hochschild-Serre spectral sequence for a product of groups, Canad. Math. Bull. 33 (1990) 181–183.
- [Ko] Kochloukova, D. H. On a conjecture of E. Rapaport Strasser about knotlike groups and its pro-*p* version, J. Pure App. Alg. 204 (2006), 536–554.
- [Lue] Lück, W. L²-Invariants: Theory and Applications to Geometry and K-Theory, Ergebnisse 3. Folge, Bd. 44, Springer-Verlag Berlin, Heidelberg, New York 2002.
- [Mu] Murasugi, K. On the centre of the group of a link, Proc. Amer. Math. Soc. 16 (1965), 1052–1057.
- [Na] Nakamura, H. On the pro-p Gottlieb Theorem, Proc. Japan Acad. Math. Sci. 68 (1992), 279–282.
- [NSW²] Neukirch, J., Schmidt, A. and Wingberg, K. Cohomology of Number Fields, 2nd ed., Grundlehren Bd. 323, Springer-Verlag Berlin, Heidelberg, New York 2008.
- [Ple] Pletch, A. Profinite duality groups. I, J. Pure Appl. Algebra 16 (1980), 55–74.
- [Rob] Robinson, D. S. A Course in the Theory of Groups, Graduate Texts in Mathematics 80, Springer-Verlag Berlin, Heidelberg, New York 1982.
- [Rom] Romanovskii, N. S. Free subgroups of finitely-presented groups, Algebra and Logic 16 (1977), 62–68.
- [Ze] Zelmanov, E. On groups satisfying the Golod-Shafarevich condition, in New Horizons in pro-p Groups (edited by Du Sautoy, M., Segal, D., and Shalev, A.), Birkhäuser Verlag Boston, Basel, Berlin 2000, 223–232.

School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, AUSTRALIA

E-mail address: jonh@maths.usyd.edu.au

NWF-I MATHEMATIK, UNIVERSITÄT REGENSBURG, D-93040 REGENSBURG, GERMANY

E-mail address: alexander.schmidt@mathematik.uni-regensburg.de