Circular sets of prime numbers and p-extensions of the rationals

by Alexander Schmidt

Abstract

Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. We prove that the group $G_{S}(\mathbb{Q})(p)$ has cohomological dimension 2 if the linking diagram attached to S and p satisfies a certain technical condition, and we show that $G_{S}(\mathbb{Q})(p)$ is a duality group in these cases. Furthermore, we investigate the decomposition behaviour of primes in the extension $\mathbb{Q}_{S}(p) / \mathbb{Q}$ and we relate the cohomology of $G_{S}(\mathbb{Q})(p)$ to the étale cohomology of the scheme $\operatorname{Spec}(\mathbb{Z})-S$. Finally, we calculate the dualizing module.

1 Introduction

Let k be a number field, p a prime number and S a finite set of places of k. The pro-p-group $G_{S}(k)(p)=G\left(k_{S}(p) / k\right)$, i.e. the Galois group of the maximal p-extension of k which is unramified outside S, contains valuable information on the arithmetic of the number field k. If all places dividing p are in S, then we have some structural knowledge on $G_{S}(k)(p)$, in particular, it is of cohomological dimension less or equal to 2 (if $p=2$ one has to require that S contains no real place, [Sc3]), and it is often a so-called duality group, see [NSW], X, §7. Furthermore, the cohomology of $G_{S}(k)(p)$ coincides with the étale cohomology of the arithmetic curve $\operatorname{Spec}\left(\mathcal{O}_{k}\right)-S$ in this case.

In the opposite case, when S contains no prime dividing p, only little is known. By a famous theorem of Golod and Šafarevič, $G_{S}(k)(p)$ may be infinite. A conjecture due to Fontaine and Mazur [FM] asserts that $G_{S}(k)(p)$ has no infinite quotient which is an analytic pro-p-group. So far, nothing was known on the cohomological dimension of $G_{S}(k)(p)$ and on the relation between its cohomology and the étale cohomology of the scheme $\operatorname{Spec}\left(\mathcal{O}_{k}\right)-S$.

Recently, J. Labute [La] showed that pro-p-groups with a certain kind of relation structure have cohomological dimension 2. By a result of H. Koch [Ko], $G_{S}(\mathbb{Q})(p)$ has such a relation structure if the set of prime numbers S satisfies a certain technical condition. In this way, Labute obtained first examples of pairs (p, S) with $p \notin S$ and $c d G_{S}(\mathbb{Q})(p)=2$, e.g. $p=3, S=\{7,19,61,163\}$.

The objective of this paper is to use arithmetic methods in order to extend Labute's result. First of all, we weaken the condition on S which implies cohomological dimension 2 (and strict cohomological dimension 3!) and we show that $G_{S}(\mathbb{Q})(p)$ is a duality group in these cases. Furthermore, we investigate the decomposition behaviour of primes in the extension $\mathbb{Q}_{S}(p) / \mathbb{Q}$ and we relate the cohomology of $G_{S}(\mathbb{Q})(p)$ to the étale cohomology of the scheme $\operatorname{Spec}(\mathbb{Z})-S$. Finally, we calculate the dualizing module.

2 Statement of results

Let p be an odd prime number, S a finite set of prime numbers not containing p and $G_{S}(p)=G_{S}(\mathbb{Q})(p)$ the Galois group of the maximal p-extension $\mathbb{Q}_{S}(p)$ of \mathbb{Q} which is unramified outside S. Besides p, only prime numbers congruent to 1 modulo p can ramify in a p-extension of \mathbb{Q}, and we assume that all primes in S have this property. Then $G_{S}(p)$ is a pro- p-group with n generators and n relations, where $n=\# S$ (see lemma 3.1).

Inspired by some analogies between knots and prime numbers (cf. [Mo]), J. Labute [La] introduced the notion of the linking diagram $\Gamma(S)(p)$ attached to p and S and showed that $c d G_{S}(p)=2$ if $\Gamma(S)(p)$ is a 'non-singular circuit'. Roughly speaking, this means that there is an ordering $S=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ such that $q_{1} q_{2} \cdots q_{n} q_{1}$ is a circuit in $\Gamma(S)(p)$ (plus two technical conditions, see section 7 for the definition).

We generalize Labute's result by showing
Theorem 2.1. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. Assume there exists a subset $T \subset S$ such that the following conditions are satisfied.
(i) $\Gamma(T)(p)$ is a non-singular circuit.
(ii) For each $q \in S \backslash T$ there exists a directed path in $\Gamma(S)(p)$ starting in q and ending with a prime in T.

Then $c d G_{S}(p)=2$.
Remarks. 1. Condition (ii) of Theorem 2.1 can be weakened, see section 7.
2. Given p, one can construct examples of sets S of arbitrary cardinality $\# S \geq 4$ with $c d G_{S}(p)=2$.

Example. For $p=3$ and $S=\{7,13,19,61,163\}$, the linking diagram has the following shape

The linking diagram associated to the subset $T=\{7,19,61,163\}$ is a nonsingular circuit, and we obtain $c d G_{S}(3)=2$ in this case.

The proof of Theorem 2.1 uses arithmetic properties of $G_{S}(p)$ in order to enlarge the set of prime numbers S without changing the cohomological dimension of $G_{S}(p)$. In particular, we show

Theorem 2.2. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. Assume that $G_{S}(p) \neq 1$ and $c d G_{S}(p) \leq 2$. Then the following holds.
(i) $c d G_{S}(p)=2$ and $s c d G_{S}(p)=3$.
(ii) $G_{S}(p)$ is a pro-p duality group (of dimension 2).
(iii) For all $\ell \in S, \mathbb{Q}_{S}(p)$ realizes the maximal p-extension of \mathbb{Q}_{ℓ}, i.e. (after choosing a prime above ℓ in $\overline{\mathbb{Q}})$, the image of the natural inclusion $\mathbb{Q}_{S}(p) \hookrightarrow \mathbb{Q}_{\ell}(p)$ is dense.
(iv) The scheme $X=\operatorname{Spec}(\mathbb{Z})-S$ is a $K(\pi, 1)$ for p and the étale topology, i.e. for any p-primary $G_{S}(p)$-module M, considered as a locally constant étale sheaf on X, the natural homomorphism

$$
H^{i}\left(G_{S}(p), M\right) \rightarrow H_{e t}^{i}(X, M)
$$

is an isomorphism for all i.
Remarks. 1. If S consists of a single prime number, then $G_{S}(p)$ is finite, hence $\# S \geq 2$ is necessary for the theorem. At the moment, we do not know examples of cardinality 2 or 3 .
2. The property asserted in Theorem 2.2 (iv) implies that the natural morphism of pro-spaces

$$
X_{e t}(p) \longrightarrow K\left(G_{S}(p), 1\right)
$$

from the pro- p-completion of the étale homotopy type $X_{e t}$ of X (see $\left.[\mathrm{AM}]\right)$ to the $K(\pi, 1)$-pro-space attached to the pro- p-group $G_{S}(p)$ is a weak equivalence. Since $G_{S}(p)$ is the fundamental group of $X_{e t}(p)$, this justifies the notion ' $K(\pi, 1)$ for p and the étale topology'. If S contains the prime number p, this property always holds (cf. [Sc2]).

We can enlarge the set of prime numbers S by the following
Theorem 2.3. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. Assume that $c d G_{S}(p)=2$. Let $\ell \notin S$ be another prime number congruent to 1 modulo p which does not split completely in the extension $\mathbb{Q}_{S}(p) / \mathbb{Q}$. Then $c d G_{S \cup\{\ell\}}(p)=2$.

3 Comparison with étale cohomology

In this section we show that cohomological dimension 2 implies the $K(\pi, 1)$ property.

Lemma 3.1. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. Then

$$
\operatorname{dim}_{\mathbb{F}_{p}} H^{i}\left(G_{S}(p), \mathbb{Z} / p \mathbb{Z}\right)=\left\{\begin{array}{cc}
1 & \text { if } i=0 \\
\# S & \text { if } i=1 \\
\# S & \text { if } i=2
\end{array}\right.
$$

Proof. The statement for H^{0} is obvious. [NSW], Theorem 8.7.11 implies the statement on H^{1} and yields the inequality

$$
\operatorname{dim}_{\mathbb{F}_{p}} H^{2}\left(G_{S}(p), \mathbb{Z} / p \mathbb{Z}\right) \leq \# S
$$

The abelian pro-p-group $G_{S}(p)^{a b}$ has $\# S$ generators. There is only one $\mathbb{Z}_{p^{-}}$ extension of \mathbb{Q}, namely the cyclotomic \mathbb{Z}_{p}-extension, which is ramified at p. Since p is not in $S, G_{S}(p)^{a b}$ is finite, which implies that $G_{S}(p)$ must have at least as many relations as generators. By [NSW], Corollary 3.9.5, the relation rank of $G_{S}(p)$ is $\operatorname{dim}_{\mathbb{F}_{p}} H^{2}\left(G_{S}(p), \mathbb{Z} / p \mathbb{Z}\right)$, which yields the remaining inequality for H^{2}.

Proposition 3.2. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. If $c d G_{S}(p) \leq 2$, then the scheme $X=\operatorname{Spec}(\mathbb{Z})-S$ is a $K(\pi, 1)$ for p and the étale topology, i.e. for any discrete p-primary $G_{S}(p)$-module M, considered as locally constant étale sheaf on X, the natural homomorphism

$$
H^{i}\left(G_{S}(p), M\right) \rightarrow H_{e t}^{i}(X, M)
$$

is an isomorphism for all i.
Proof. Let L / k be a finite subextension of k in $k_{S}(p)$. We denote the normalization of X in L by X_{L}. Then $H_{e t}^{i}\left(X_{L}, \mathbb{Z} / p \mathbb{Z}\right)=0$ for $i>3$ ([Ma], §3, Proposition C). Since flat and étale cohomology coincide for finite étale group schemes ([Mi1], III, Theorem 3.9), the flat duality theorem of Artin-Mazur ([Mi2], III Theorem 3.1) implies

$$
H_{e t}^{3}\left(X_{L}, \mathbb{Z} / p \mathbb{Z}\right)=H_{f l}^{3}\left(X_{L}, \mathbb{Z} / p \mathbb{Z}\right) \cong H_{f, c}^{0}\left(X_{L}, \mu_{p}\right)^{\vee}=0
$$

since a p-extension of \mathbb{Q} cannot contain a primitive p-th root of unity. Let \tilde{X} be the universal (pro-) p-covering of X. We consider the Hochschild-Serre spectral sequence

$$
E_{2}^{p q}=H^{p}\left(G_{S}(p), H_{e t}^{q}(\tilde{X}, \mathbb{Z} / p \mathbb{Z})\right) \Rightarrow H_{e t}^{p+q}(X, \mathbb{Z} / p \mathbb{Z})
$$

Étale cohomology commutes with inverse limits of schemes if the transition maps are affine (see [AGV], VII, 5.8). Therefore we have $H_{e t}^{i}(\tilde{X}, \mathbb{Z} / p \mathbb{Z})=0$ for $i \geq 3$, and for $i=1$ by definition. Hence $E_{2}^{i j}=0$ unless $i=0,2$. Using the assumption $c d G_{S}(p) \leq 2$, the spectral sequence implies isomorphisms $H^{i}\left(G_{S}(p), \mathbb{Z} / p \mathbb{Z}\right) \xrightarrow{\sim}$ $H_{e t}^{i}(X, \mathbb{Z} / p \mathbb{Z})$ for $i=0,1$ and a short exact sequence

$$
0 \rightarrow H^{2}\left(G_{S}(p), \mathbb{Z} / p \mathbb{Z}\right) \xrightarrow{\phi} H_{e t}^{2}(X, \mathbb{Z} / p \mathbb{Z}) \rightarrow H_{e t}^{2}(\tilde{X}, \mathbb{Z} / p \mathbb{Z})^{G_{S}(p)} \rightarrow 0
$$

Let $\bar{X}=\operatorname{Spec}(\mathbb{Z})$. By the flat duality theorem of Artin-Mazur, we have an isomorphism $H_{e t}^{2}(\bar{X}, \mathbb{Z} / p \mathbb{Z}) \cong H_{f l}^{1}\left(\bar{X}, \mu_{p}\right)^{\vee}$. The flat Kummer sequence $0 \rightarrow$ $\mu_{p} \rightarrow \mathbb{G}_{m} \rightarrow \mathbb{G}_{m} \rightarrow 0$, together with $H_{f}^{0}\left(\bar{X}, \mathbb{G}_{m}\right) / p=0={ }_{p} H_{f l}^{1}\left(\bar{X}, \mathbb{G}_{m}\right)$ implies $H_{e t}^{2}(\bar{X}, \mathbb{Z} / p \mathbb{Z})=0$. Furthermore, $H_{e t}^{3}(\bar{X}, \mathbb{Z} / p \mathbb{Z}) \cong H_{f f}^{0}\left(\bar{X}, \mu_{p}\right)^{\vee}=0$. Considering the étale excision sequence for the pair (\bar{X}, X), we obtain an isomorphism

$$
H_{e t}^{2}(X, \mathbb{Z} / p \mathbb{Z}) \xrightarrow{\sim} \bigoplus_{\ell \in S} H_{\ell}^{3}\left(\operatorname{Spec}\left(\mathbb{Z}_{\ell}\right), \mathbb{Z} / p \mathbb{Z}\right)
$$

The local duality theorem ([Mi2], II, Theorem 1.8) implies

$$
H_{\ell}^{3}\left(\operatorname{Spec}\left(\mathbb{Z}_{\ell}\right), \mathbb{Z} / p \mathbb{Z}\right) \cong \operatorname{Hom}_{\operatorname{Spec}\left(\mathbb{Z}_{\ell}\right)}\left(\mathbb{Z} / p \mathbb{Z}, \mathbb{G}_{m}\right)^{\vee}
$$

All primes $\ell \in S$ are congruent to 1 modulo p by assumption, hence \mathbb{Z}_{ℓ} contains a primitive p-th root of unity for $\ell \in S$, and we obtain $\operatorname{dim}_{\mathbb{F}_{p}} H_{e t}^{2}(X, \mathbb{Z} / p \mathbb{Z})=\# S$. Now Lemma 3.1 implies that ϕ is an isomorphism. We therefore obtain

$$
H_{e t}^{2}(\tilde{X}, \mathbb{Z} / p \mathbb{Z})^{G_{S}(p)}=0
$$

Since $G_{S}(p)$ is a pro- p-group, this implies ([NSW], Corollary 1.7.4) that

$$
H_{e t}^{2}(\tilde{X}, \mathbb{Z} / p \mathbb{Z})=0
$$

We conclude that the Hochschild-Serre spectral sequence degenerates to a series of isomorphisms

$$
H^{i}\left(G_{S}(p), \mathbb{Z} / p \mathbb{Z}\right) \xrightarrow{\sim} H_{e t}^{i}(X, \mathbb{Z} / p \mathbb{Z}), \quad i \geq 0
$$

If M is a finite p-primary $G_{S}(p)$-module, it has a composition series with graded pieces isomorphic to $\mathbb{Z} / p \mathbb{Z}$ with trivial $G_{S}(p)$-action ([NSW], Corollary 1.7.4), and the statement of the proposition for M follows from that for $\mathbb{Z} / p \mathbb{Z}$ and from the five-lemma. An arbitrary discrete p-primary $G_{S}(p)$-module is the filtered inductive limit of finite p-primary $G_{S}(p)$-modules, and the statement of the proposition follows since group cohomology ([NSW], Proposition 1.5.1) and étale cohomology ([AGV], VII, 3.3) commute with filtered inductive limits.

4 Proof of Theorem 2.2

In this section we prove Theorem 2.2. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. Assume that $G_{S}(p) \neq 1$ and $c d G_{S}(p) \leq 2$.

Let $U \subset G_{S}(p)$ be an open subgroup. The abelianization $U^{a b}$ of U is a finitely generated abelian pro-p-group. If $U^{a b}$ were infinite, it would have a quotient isomorphic to \mathbb{Z}_{p}, which corresponds to a \mathbb{Z}_{p}-extension K_{∞} of the number field $K=\mathbb{Q}_{S}(p)^{U}$ inside $\mathbb{Q}_{S}(p)$. By [NSW], Theorem 10.3.20 (ii), a \mathbb{Z}_{p}-extension of a number field is ramified at at least one prime dividing p. This contradicts $K_{\infty} \subset \mathbb{Q}_{S}(p)$ and we conclude that $U^{a b}$ is finite.

In particular, $G_{S}(p)^{a b}$ is finite. Hence $G_{S}(p)$ is not free, and we obtain $c d G_{S}(p)=2$. This shows the first part of assertion (i) of Theorem 2.2 and assertion (iv) follows from Proposition 3.2.

By Lemma 3.1, we know that for each prime number $\ell \in S$, the group $G_{S \backslash\{\ell\}}(p)$ is a proper quotient of $G_{S}(p)$, hence each $\ell \in S$ is ramified in the extension $\mathbb{Q}_{S}(p) / \mathbb{Q}$. Let $G_{\ell}\left(\mathbb{Q}_{S}(p) / \mathbb{Q}\right)$ denote the decomposition group of ℓ in $G_{S}(p)$ with respect to some prolongation of ℓ to $\mathbb{Q}_{S}(p)$. As a subgroup of $G_{S}(p), G_{\ell}\left(\mathbb{Q}_{S}(p) / \mathbb{Q}\right)$ has cohomological dimension less or equal to 2 . We have a natural surjection $G\left(\mathbb{Q}_{\ell}(p) / \mathbb{Q}_{\ell}\right) \rightarrow G_{\ell}\left(\mathbb{Q}_{S}(p) / \mathbb{Q}\right)$. By [NSW], Theorem 7.5.2, $G\left(\mathbb{Q}_{\ell}(p) / \mathbb{Q}_{\ell}\right)$ is the pro-p-group on two generators σ, τ subject to the relation $\sigma \tau \sigma^{-1}=\tau^{\ell} . \tau$ is a generator of the inertia group and σ is a Frobenius lift.

Therefore, $G\left(\mathbb{Q}_{\ell}(p) / \mathbb{Q}_{\ell}\right)$ has only three quotients of cohomological dimension less or equal to 2: itself, the trivial group and the Galois group of the maximal unramified p-extension of \mathbb{Q}_{ℓ}. Since ℓ is ramified in the extension $\mathbb{Q}_{S}(p) / \mathbb{Q}$, the $\operatorname{map} G\left(\mathbb{Q}_{\ell}(p) / \mathbb{Q}_{\ell}\right) \rightarrow G_{\ell}\left(\mathbb{Q}_{S}(p) / \mathbb{Q}\right)$ is an isomorphism, and hence $\mathbb{Q}_{S}(p)$ realizes the maximal p-extension of \mathbb{Q}_{ℓ}. This shows statement (iii) of Theorem 2.2.

Next we show the second part of statement (i). By [NSW], Proposition 3.3.3, we have $s c d G_{S}(p) \in\{2,3\}$. Assume that $s c d G=2$. We consider the $G_{S}(p)$-module

$$
D_{2}(\mathbb{Z})=\underset{U}{\lim _{\vec{~}}} U^{a b}
$$

where the limit runs over all open normal subgroups $U \triangleleft G_{S}(p)$ and for $V \subset$ U the transition map is the transfer Ver: $U^{a b} \rightarrow V^{a b}$, i.e. the dual of the corestriction map cor: $H^{2}(V, \mathbb{Z}) \rightarrow H^{2}(U, \mathbb{Z})$ (see [NSW], I, §5). By [NSW], Theorem 3.6.4 (iv), we obtain $G_{S}(p)^{a b}=D_{2}(\mathbb{Z})^{G_{S}(p)}$. On the other hand, $U^{a b}$ is finite for all U and the group theoretical version of the Principal Ideal Theorem (see [Ne], VI, Theorem 7.6) implies $D_{2}(\mathbb{Z})=0$. Hence $G_{S}(p)^{a b}=0$ which implies $G_{S}(p)=1$ producing a contradiction. Hence $s c d G_{S}(p)=3$ showing the remaining assertion of Theorem 2.2, (i).

It remains to show that $G_{S}(p)$ is a duality group. By [NSW], Theorem 3.4.6, it suffices to show that the terms

$$
D_{i}\left(G_{S}(p), \mathbb{Z} / p \mathbb{Z}\right)=\underset{U}{\lim _{\vec{~}}} H^{i}(U, \mathbb{Z} / p \mathbb{Z})^{\vee}
$$

are trivial for $i=0,1$. Here U runs through the open subgroups of $G_{S}(p)$, \checkmark denotes the Pontryagin dual and the transition maps are the duals of the corestriction maps. For $i=0$, and $V \varsubsetneqq U$, the transition map

$$
\operatorname{cor}^{\vee}: \mathbb{Z} / p \mathbb{Z}=H^{0}(V, \mathbb{Z} / p \mathbb{Z})^{\vee} \rightarrow H^{0}(U, \mathbb{Z} / p \mathbb{Z})^{\vee}=\mathbb{Z} / p Z
$$

is multiplication by $(U: V)$, hence zero. Since $G_{S}(p)$ is infinite, we obtain $D_{0}\left(G_{S}(p), \mathbb{Z} / p \mathbb{Z}\right)=0$. Furthermore,

$$
D_{1}\left(G_{S}(p), \mathbb{Z} / p \mathbb{Z}\right)=\underset{U}{\lim _{\vec{~}}} U^{a b} / p=0
$$

by the Principal Ideal Theorem. This finishes the proof of Theorem 2.2.

5 The dualizing module

Having seen that $G_{S}(p)$ is a duality group under certain conditions, it is interesting to calculate its dualizing module. The aim of this section is to prove

Theorem 5.1. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. Assume that $c d G_{S}(p)=2$. Then we have a natural isomorphism

$$
D \cong \operatorname{tor}_{p}\left(C_{S}\left(\mathbb{Q}_{S}(p)\right)\right)
$$

between the dualizing module D of $G_{S}(p)$ and the p-torsion submodule of the S-idèle class group of $\mathbb{Q}_{S}(p)$. There is a natural short exact sequence

$$
0 \rightarrow \bigoplus_{\ell \in S} \operatorname{Ind}_{G_{S}(p)}^{G_{\ell}} \mu_{p^{\infty}}\left(\mathbb{Q}_{\ell}(p)\right) \rightarrow D \rightarrow E_{S}\left(\mathbb{Q}_{S}(p)\right) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow 0
$$

in which G_{ℓ} is the decomposition group of ℓ in $G_{S}(p)$ and $E_{S}\left(\mathbb{Q}_{S}(p)\right)$ is the group of S-units of the field $\mathbb{Q}_{S}(p)$.

Working in a more general situation, let S be a non-empty set of primes of a number field k. We recall some well-known facts from class field theory and we give some modifications for which we do not know a good reference.
By k_{S} we denote the maximal extension of k which is unramified outside S and we denote $G\left(k_{S} / k\right)$ by $G_{S}(k)$. For an intermediate field $k \subset K \subset k_{S}$, let $C_{S}(K)$ denote the S-idèle class group of K. If S contains the set S_{∞} of archimedean primes of k, then the pair $\left(G_{S}(k), C_{S}\left(k_{S}\right)\right)$ is a class formation, see [NSW], Proposition 8.3.8. This remains true for arbitrary non-empty S, as can be seen as follows: We have the class formation

$$
\left(G_{S}(k), C_{S \cup S_{\infty}}\left(k_{S}\right)\right)
$$

Since k_{S} is closed under unramified extensions, the Principal Ideal Theorem implies $C l_{S}\left(k_{S}\right)=0$. Therefore we obtain the exact sequence

$$
0 \rightarrow \bigoplus_{v \in S_{\infty} \backslash S(k)} \operatorname{Ind}_{G_{S}(k)} k_{v}^{\times} \rightarrow C_{S \cup S_{\infty}}\left(k_{S}\right) \rightarrow C_{S}\left(k_{S}\right) \rightarrow 0
$$

Since the left term is a cohomologically trivial $G_{S}(k)$-module, we obtain that $\left(G_{S}(k), C_{S}\left(k_{S}\right)\right)$ is a class formation. Finally, if p is a prime number, then also $\left(G_{S}(k)(p), C_{S}\left(k_{S}(p)\right)\right.$ is a class formation.

Remark: An advantage of considering the class formation $\left(G_{S}(k)(p), C_{S}\left(k_{S}(p)\right)\right.$ for sets S of primes which do not contain S_{∞} is that we get rid of 'redundancy at infinity'. A technical disadvantage is the absence of a reasonable Hausdorff topology on the groups $C_{S}(K)$ for finite subextensions K of k in $k_{S}(p)$.

Next we calculate the module

$$
D_{2}\left(\mathbb{Z}_{p}\right)=\underset{U, n}{\lim _{\vec{~}}} H^{2}\left(U, \mathbb{Z} / p^{n} \mathbb{Z}\right)^{\vee}
$$

where n runs through all natural numbers, U runs through all open subgroups of $G_{S}(k)(p)$ and ${ }^{\vee}$ is the Pontryagin dual. If $c d G_{S}(p)=2$, then $D_{2}\left(\mathbb{Z}_{p}\right)$ is the dualizing module D of $G_{S}(k)(p)$.

Theorem 5.2. Let k be a number field, p an odd prime number and S a finite non-empty set of non-archimedean primes of k such that the norm $N(\mathfrak{p})$ of \mathfrak{p} is congruent to 1 modulo p for all $\mathfrak{p} \in S$. Assume that the scheme $X=$ $\operatorname{Spec}\left(\mathcal{O}_{k}\right)-S$ is a $K(\pi, 1)$ for p and the étale topology and that $k_{S}(p)$ realizes the maximal p-extension $k_{\mathfrak{p}}(p)$ of $k_{\mathfrak{p}}$ for all $\mathfrak{p} \in S$. Then $G_{S}(p)$ is a pro-pduality group of dimension 2 with dualizing module

$$
D \cong \operatorname{tor}_{p}\left(C_{S}\left(k_{S}(p)\right)\right.
$$

Remarks. 1. In view of Theorem 2.2, Theorem 5.2 shows Theorem 5.1.
2. In the case when S contains all primes dividing p, a similar result has been proven in [NSW], X, $\S 5$.

Proof of Theorem 5.2. We consider the schemes $\bar{X}=\operatorname{Spec}\left(\mathcal{O}_{k}\right)$ and $X=\bar{X}-S$ and we denote the natural embedding by $j: X \rightarrow \bar{X}$. As in the proof of Proposition 3.2, the flat duality theorem of Artin-Mazur implies

$$
H_{e t}^{3}(X, \mathbb{Z} / p \mathbb{Z}) \cong H_{f l, c}^{0}\left(X, \mu_{p}\right)^{\vee},
$$

and the group on the right vanishes since $k_{\mathfrak{p}}$ contains a primitive p-th root of unity for all $\mathfrak{p} \in S$. The $K(\pi, 1)$-property yields $c d G_{S}(k)(p) \leq 2$. Since $k_{S}(p)$ realizes the maximal p-extension $k_{\mathfrak{p}}(p)$ of $k_{\mathfrak{p}}$ for all $\mathfrak{p} \in S$, the inertia groups of these primes are of cohomological dimension 2 and we obtain $c d G_{S}(p)=2$.

Next we consider, for some $n \in \mathbb{N}$, the constant sheaf $\mathbb{Z} / p^{n} \mathbb{Z}$ on X. The duality theorem of Artin-Verdier shows an isomorphism

$$
H_{e t}^{i}\left(\bar{X}, j_{!}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)\right)=H_{c}^{i}\left(X, \mathbb{Z} / p^{n} \mathbb{Z}\right) \cong \operatorname{Ext} t_{X}^{3-i}\left(\mathbb{Z} / p^{n} \mathbb{Z}, \mathbb{G}_{m}\right)^{\vee}
$$

For $\mathfrak{p} \in S$, a standard calculation (see, e.g., [Mi2], II, Proposition 1.1) shows

$$
H_{\mathfrak{p}}^{i}\left(\bar{X}, j_{!}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right) \cong H^{i-1}\left(k_{\mathfrak{p}}, \mathbb{Z} / p^{n} \mathbb{Z}\right)\right.
$$

where $k_{\mathfrak{p}}$ is (depending on the readers preference) the henselization or the completion of k at \mathfrak{p}. The excision sequence for the pair (\bar{X}, X) and the sheaf $j!\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$ therefore implies a long exact sequence
$(*) \quad \cdots \rightarrow H_{e t}^{i}\left(X, \mathbb{Z} / p^{n} \mathbb{Z}\right) \rightarrow \bigoplus_{\mathfrak{p} \in S} H^{i}\left(k_{\mathfrak{p}}, \mathbb{Z} / p^{n} \mathbb{Z}\right) \rightarrow \operatorname{Ext}_{X}^{2-i}\left(\mathbb{Z} / p^{n} \mathbb{Z}, \mathbb{G}_{m}\right)^{\vee} \rightarrow \cdots$
The local duality theorem ([NSW], Theorem 7.2.6) yields isomorphisms

$$
H^{i}\left(k_{\mathfrak{p}}, \mathbb{Z} / p^{n} \mathbb{Z}\right)^{\vee} \cong H^{2-i}\left(k_{\mathfrak{p}}, \mu_{p^{n}}\right)
$$

for all $i \in \mathbb{Z}$. Furthermore,

$$
\operatorname{Ext}_{X}^{0}\left(\mathbb{Z} / p^{n} \mathbb{Z}, \mathbb{G}_{m}\right)=H^{0}\left(k, \mu_{p^{n}}\right)
$$

We denote by $E_{S}(k)$ and $C l_{S}(k)$ the group of S-units and the S-ideal class group of k, respectively. By $\operatorname{Br}(X)$, we denote the Brauer group of X. The short exact sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow 0$ together with

$$
\operatorname{Ext}_{X}^{i}\left(\mathbb{Z}, \mathbb{G}_{m}\right)=H_{e t}^{i}\left(X, \mathbb{G}_{m}\right)= \begin{cases}E_{S}(k) & \text { for } i=0 \\ C l_{S}(k) & \text { for } i=1 \\ B r(X) & \text { for } i=2\end{cases}
$$

and the Hasse principle for the Brauer group implies exact sequences

$$
0 \rightarrow E_{S}(k) / p^{n} \rightarrow \operatorname{Ext}_{X}^{1}\left(\mathbb{Z} / p^{n} \mathbb{Z}, \mathbb{G}_{m}\right) \rightarrow p^{n} C l_{S}(k) \rightarrow 0
$$

and

$$
0 \rightarrow C l_{S}(k) / p^{n} \rightarrow \operatorname{Ext}_{X}^{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}, \mathbb{G}_{m}\right) \rightarrow \bigoplus_{\mathfrak{p} \in S} p^{n} B r\left(k_{\mathfrak{p}}\right)
$$

The same holds, if we replace X by its normalization X_{K} in a finite extension K of k in $k_{S}(p)$. Now we go to the limit over all such K. Since $k_{S}(p)$ realizes the maximal p-extension of $k_{\mathfrak{p}}$ for all $\mathfrak{p} \in S$, we have

$$
\underset{K}{\lim } \bigoplus_{\mathfrak{p} \in S(K)} H^{i}\left(K_{\mathfrak{p}}, \mathbb{Z} / p^{n} \mathbb{Z}\right)^{\vee}=\underset{K}{\lim } \bigoplus_{\mathfrak{p} \in S(K)} H^{i}\left(K_{\mathfrak{p}}, \mu_{p^{n}}\right)=0
$$

for $i \geq 1$ and

$$
\underset{K}{\underset{p}{l} \in S(K)} \bigoplus_{p^{n}} B r\left(K_{\mathfrak{p}}\right)=0
$$

The Principal Ideal Theorem implies $C l_{S}\left(k_{S}(p)\right) / p=0$ and since this group is a torsion group, its p-torsion part is trivial. Going to the limit over the exact sequences $(*)$ for all X_{K}, we obtain $D_{i}(\mathbb{Z} / p \mathbb{Z})=0$ for $i=0,1$, hence $G_{S}(k)(p)$ is a duality group of dimension 2 . Furthermore, we obtain the exact sequence

$$
\begin{aligned}
& 0 \rightarrow \operatorname{tor}_{p}\left(E_{S}\left(k_{S}(p)\right)\right) \rightarrow \bigoplus_{\mathfrak{p} \in S} \operatorname{Ind}_{G_{S}(k)(p)}^{G_{\mathfrak{p}}} \operatorname{tor}_{p}\left(k_{\mathfrak{p}}(p)^{\times}\right) \rightarrow \\
& D \rightarrow E_{S}\left(k_{S}(p)\right) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow 0 .
\end{aligned}
$$

Let $U \subset G_{S}(k)(p)$ be an open subgroup and put $K=k_{S}(p)^{U}$. The invariant map

$$
\operatorname{inv}_{K}: H^{2}\left(U, C_{S}\left(k_{S}(p)\right)\right) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

induces a pairing

$$
\operatorname{Hom}_{U}\left(\mathbb{Z} / p^{n} \mathbb{Z}, C_{S}\left(k_{S}(p)\right)\right) \times H^{2}\left(U, \mathbb{Z} / p^{n} \mathbb{Z}\right) \xrightarrow{\cup} H^{2}\left(U, C_{S}(K)\right) \xrightarrow{\mathrm{inv}_{K}} \mathbb{Q} / \mathbb{Z}
$$

and therefore a compatible system of maps

$$
p^{n} C_{S}(K) \rightarrow H^{2}\left(U, \mathbb{Z} / p^{n} \mathbb{Z}\right)^{\vee}
$$

for all U and n. In the limit, we obtain a natural map

$$
\phi: \operatorname{tor}_{p}\left(C_{S}\left(k_{S}(p)\right) \longrightarrow D\right.
$$

By our assumptions, the idèle group $J_{S}\left(k_{S}(p)\right)$ is p-divisible. We therefore obtain the exact sequence

$$
\begin{aligned}
0 \rightarrow \operatorname{tor}_{p}\left(E_{S}\left(k_{S}(p)\right)\right) \rightarrow & \bigoplus_{\mathfrak{p} \in S} \\
& \operatorname{Ind}_{G_{S}(k)(p)}^{G_{\mathfrak{p}}} \operatorname{tor}_{p}\left(k_{\mathfrak{p}}(p)^{\times}\right) \rightarrow \\
& \operatorname{tor}_{p}\left(C_{S}\left(k_{S}(p)\right)\right) \rightarrow E_{S}\left(k_{S}(p)\right) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow 0
\end{aligned}
$$

which, via the just constructed map ϕ, compares to the similar sequence with D above. Hence ϕ is an isomorphism by the five lemma.

Finally, without any assumptions on $G_{S}(k)(p)$, we calculate the $G_{S}(k)(p)$ module $D_{2}\left(\mathbb{Z}_{p}\right)$ as a quotient of $\operatorname{tor}_{p}\left(C_{S}\left(k_{S}(p)\right)\right)$ by a subgroup of universal norms. We therefore can interpret Theorem 5.2 as a vanishing statement on universal norms.

Let us fix some notation. If G is a profinite group and if M is a G-module, we denote by $p^{n} M$ the submodule of elements annihilated by p^{n}. By $N_{G}(M) \subset M^{G}$ we denote the subgroup of universal norms, i.e.

$$
N_{G}(M)=\bigcap_{U} N_{G / U}\left(M^{U}\right),
$$

where U runs through the open normal subgroups of G and $N_{G / U}\left(M^{U}\right) \subset M^{G}$ is the image of the norm map

$$
N: M^{U} \rightarrow M^{G}, m \mapsto \sum_{\sigma \in G / U} \sigma m .
$$

Proposition 5.3. Let S be a non-empty finite set of non-archimedean primes of k and let p be an odd prime number such that S contains no prime dividing p. Then

$$
D_{2}\left(G_{S}(k)(p), \mathbb{Z}_{p}\right) \cong \underset{K, n}{\lim _{\vec{n}}} p^{n} C_{S}(K) / N_{G\left(k_{S}(p) / K\right)}\left(p^{n} C_{S}(K)\right),
$$

where n runs through all natural numbers and K runs through all finite subextension of k in $k_{S}(p)$.

Proof. We want to use Poitou's duality theorem ([Sc2], Theorem 1). But the class module $C_{S}\left(k_{S}(p)\right)$ is not level-compact and we cannot apply the theorem directly. Instead, we consider the level-compact class formation

$$
\left(G_{S}(k)(p), C_{S \cup S_{\infty}}^{0}\left(k_{S}(p)\right)\right)
$$

where $C_{S \cup S_{\infty}}^{0}\left(k_{S}(p)\right) \subset C_{S \cup S_{\infty}}\left(k_{S}(p)\right)$ is the subgroup of idèle classes of norm 1 . By [Sc2], Theorem 1, we have for all natural numbers n and all finite subextensions K of k in $k_{S}(p)$ a natural isomorphism

$$
H^{2}\left(G_{S}(K)(p), \mathbb{Z} / p^{n} \mathbb{Z}\right)^{\vee} \cong \hat{H}^{0}\left(G_{S}(K)(p),{ }_{p^{n}} C_{S \cup S_{\infty}}^{0}\left(k_{S}(p)\right)\right),
$$

where \hat{H}^{0} is Tate-cohomology in dimension 0 (cf. [Sc2]). The exact sequence

$$
0 \rightarrow \bigoplus_{v \in S_{\infty}(K)} K_{v}^{\times} \rightarrow C_{S \cup S_{\infty}}(K) \rightarrow C_{S}(K) \rightarrow 0
$$

and the fact that K_{v}^{\times}is p-divisible for archimedean v, implies for all n and all finite subextensions K of k in $k_{S}(p)$ an exact sequence of finite abelian groups

$$
0 \rightarrow \bigoplus_{v \in S_{\infty}(K)} \mu_{p^{n}}\left(K_{v}\right) \rightarrow p^{n} C_{S \cup S_{\infty}}(K) \rightarrow p^{n} C_{S}(K) \rightarrow 0
$$

[Sc2], Proposition 7 therefore implies isomorphisms

$$
\hat{H}^{0}\left(G_{S}(K)(p),{ }_{p^{n}} C_{S \cup S_{\infty}}\left(k_{S}(p)\right)\right) \cong \hat{H}^{0}\left(G_{S}(K)(p),{ }_{p^{n}} C_{S}\left(k_{S}(p)\right)\right)
$$

for all n and K. Furthermore, the exact sequence

$$
0 \rightarrow C_{S \cup S_{\infty}}^{0}(K) \rightarrow C_{S \cup S_{\infty}}(K) \xrightarrow{\|} \mathbb{R}_{+}^{\times} \rightarrow 0
$$

shows $\left.\left.{ }_{p^{n}} C_{S \cup S_{\infty}}^{0}(K)\right)={ }_{p^{n}} C_{S \cup S_{\infty}}(K)\right)$ for all n and all finite subextensions K of k in $k_{S}(p)$. Finally, [Sc 2], Lemma 5 yields isomorphisms

$$
\hat{H}^{0}\left(G_{S}(K)(p), p_{p^{n}} C_{S}\left(k_{S}(p)\right)\right) \cong{ }_{p^{n}} C_{S}(K) / N_{G\left(k_{S}(p) / K\right)}\left(p_{p^{n}} C_{S}(K)\right)
$$

Going to the limit over all n and K, we obtain the statement of the Proposition.

6 Going up

The aim of this section is to prove Theorem 2.3. We start with the following lemma.

Lemma 6.1. Let $\ell \neq p$ be prime numbers. Let \mathbb{Q}_{ℓ}^{h} be the henselization of \mathbb{Q} at ℓ and let K be an algebraic extension of \mathbb{Q}_{ℓ}^{h} containing the maximal unramified p-extension $\left(\mathbb{Q}_{\ell}^{h}\right)^{n r, p}$ of \mathbb{Q}_{ℓ}^{h}. Let $Y=\operatorname{Spec}\left(\mathcal{O}_{K}\right)$, and denote the closed point of Y by y. Then the local étale cohomology group $H_{y}^{i}(Y, \mathbb{Z} / p \mathbb{Z})$ vanishes for $i \neq 2$ and we have a natural isomorphism

$$
H_{y}^{2}(Y, \mathbb{Z} / p \mathbb{Z}) \cong H^{1}(G(K(p) / K), \mathbb{Z} / p \mathbb{Z})
$$

Proof. Since K contains $\left(\mathbb{Q}_{\ell}^{h}\right)^{n r, p}$, we have $H_{e t}^{i}(Y, \mathbb{Z} / p \mathbb{Z})=0$ for $i>0$. The excision sequence shows $H_{y}^{i}(Y, \mathbb{Z} / p \mathbb{Z})=0$ for $i=0,1$ and $H_{y}^{i}(Y, \mathbb{Z} / p \mathbb{Z}) \cong$ $H^{i-1}(G(\bar{K} / K), \mathbb{Z} / p \mathbb{Z})$ for $i \geq 2$. By [NSW], Proposition 7.5.7, we have

$$
H^{i-1}(G(\bar{K} / K), \mathbb{Z} / p \mathbb{Z})=H^{i-1}(G(K(p) / K), \mathbb{Z} / p \mathbb{Z})
$$

But $G(K(p) / K)$ is a free pro- p-group (either trivial or isomorphic to \mathbb{Z}_{p}). This concludes the proof.

Let k be a number field and let S be finite set of primes of k. For a (possibly infinite) algebraic extension K of k we denote by $S(K)$ the set of prolongations of primes in S to K. Now assume that $M / K / k$ is a tower of pro-p Galois extensions. We denote the inertia group of a prime $\mathfrak{p} \in S(K)$ in the extension M / K by $T_{\mathfrak{p}}(M / K)$. For $i \geq 0$ we write

$$
\bigoplus_{\mathfrak{p} \in S(K)}^{\prime} H^{i}\left(T_{\mathfrak{p}}(M / K), \mathbb{Z} / p \mathbb{Z}\right) \stackrel{d f}{=} \underset{k^{\prime} \subset K}{\lim _{\mathfrak{p} \in S\left(k^{\prime}\right)}} \bigoplus^{i}\left(T_{\mathfrak{p}}\left(M / k^{\prime}\right), \mathbb{Z} / p \mathbb{Z}\right),
$$

where the limit on the right hand side runs through all finite subextensions k^{\prime} of k in K. The $G(K / k)$-module $\bigoplus_{\mathfrak{p} \in S(K)}^{\prime} H^{i}\left(T_{\mathfrak{p}}(M / K), \mathbb{Z} / p \mathbb{Z}\right)$ is the maximal discrete submodule of the product $\prod_{\mathfrak{p} \in S(K)} H^{i}\left(T_{\mathfrak{p}}(M / K), \mathbb{Z} / p \mathbb{Z}\right)$.
Proposition 6.2. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p such that $c d G_{S}(p)=2$. Let $\ell \notin S$ be another prime number congruent to 1 modulo p which does not split completely in the extension $\mathbb{Q}_{S}(p) / \mathbb{Q}$. Then, for any prime \mathfrak{p} dividing ℓ in $\mathbb{Q}_{S}(p)$, the inertia group of \mathfrak{p} in the extension $\mathbb{Q}_{S \cup\{\ell\}}(p) / \mathbb{Q}_{S}(p)$ is infinite cyclic. Furthermore,

$$
H^{i}\left(G\left(\mathbb{Q}_{S \cup\{\ell\}}(p) / \mathbb{Q}_{S}(p)\right), \mathbb{Z} / p \mathbb{Z}\right)=0
$$

for $i \geq 2$. For $i=1$ we have a natural isomorphism

$$
H^{1}\left(G\left(\mathbb{Q}_{S \cup\{\ell\}}(p) / \mathbb{Q}_{S}(p)\right), \mathbb{Z} / p \mathbb{Z}\right) \cong \bigoplus_{\mathfrak{p} \in S_{\ell}\left(\mathbb{Q}_{S}(p)\right)}^{\prime} H^{1}\left(T_{\mathfrak{p}}\left(\mathbb{Q}_{S \cup\{\ell\}}(p)\right) / \mathbb{Q}_{S}(p), \mathbb{Z} / p \mathbb{Z}\right)
$$

where $S_{\ell}\left(\mathbb{Q}_{S}(p)\right)$ denotes the set of primes of $\mathbb{Q}_{S}(p)$ dividing ℓ. In particular, $G\left(\mathbb{Q}_{S \cup\{\ell\}}(p) / \mathbb{Q}_{S}(p)\right)$ is a free pro-p-group.

Proof. Since ℓ does not split completely in $\mathbb{Q}_{S}(p) / \mathbb{Q}$ and since $c d G_{S}(p)=2$, the decomposition group of ℓ in $\mathbb{Q}_{S}(p) / \mathbb{Q}$ is a non-trivial and torsion-free quotient of $\mathbb{Z}_{p} \cong G\left(\mathbb{Q}_{\ell}^{n r, p} / \mathbb{Q}_{\ell}\right)$. Therefore $\mathbb{Q}_{S}(p)$ realizes the maximal unramified p extension of $\mathbb{Q}_{\dot{\tilde{}}}$. We consider the scheme $X=\operatorname{Spec}(\mathbb{Z})-S$ and its universal pro- p covering \tilde{X} whose field of functions is $\mathbb{Q}_{S}(p)$. Let Y be the subscheme of \tilde{X} obtained by removing all primes of residue characteristic ℓ. We consider the étale excision sequence for the pair (\tilde{X}, Y). By Theorem 3.2, we have $H_{e t}^{i}(\tilde{X}, \mathbb{Z} / p \mathbb{Z})=$ 0 for $i>0$, which implies isomorphisms

$$
H_{e t}^{i}(Y, \mathbb{Z} / p \mathbb{Z}) \xrightarrow{\sim} \bigoplus_{\mathfrak{p} \mid \ell}^{\prime} H_{\mathfrak{p}}^{i+1}\left(Y_{\mathfrak{p}}^{h}, \mathbb{Z} / p \mathbb{Z}\right)
$$

for $i \geq 1$. By Lemma 6.1, we obtain $H_{e t}^{i}(Y, \mathbb{Z} / p \mathbb{Z})=0$ for $i \geq 2$. The universal p-covering \tilde{Y} of Y has $\mathbb{Q}_{S \cup\{\ell\}}(p)$ as its function field, and the Hochschild-Serre spectral sequence for \tilde{Y} / Y yields an inclusion

$$
H^{2}\left(G\left(\mathbb{Q}_{S \cup\{\ell\}}(p) / \mathbb{Q}_{S}(p)\right), \mathbb{Z} / p \mathbb{Z}\right) \hookrightarrow H_{e t}^{2}(Y, \mathbb{Z} / p \mathbb{Z})=0
$$

Hence $G\left(\mathbb{Q}_{S \cup\{\ell\}}(p) / \mathbb{Q}_{S}(p)\right)$ is a free pro- p-group and for H^{1} we obtain

$$
\begin{aligned}
H^{1}\left(G\left(\mathbb{Q}_{S \cup\{\ell\}}(p) / \mathbb{Q}_{S}(p)\right), \mathbb{Z} / p \mathbb{Z}\right) & \xrightarrow[\rightarrow]{ } H_{e t}^{1}(Y, \mathbb{Z} / p \mathbb{Z}) \\
& \cong \bigoplus_{\mathfrak{p} \in S_{\ell}\left(\mathbb{Q}_{S}(p)\right)}^{\prime} H^{1}\left(G\left(\mathbb{Q}_{S}(p)_{\mathfrak{p}}(p) / \mathbb{Q}_{S}(p)_{\mathfrak{p}}\right), \mathbb{Z} / p \mathbb{Z}\right)
\end{aligned}
$$

This shows that each $\mathfrak{p} \mid \ell$ ramifies in $\mathbb{Q}_{S \cup\{\ell\}}(p) / \mathbb{Q}_{S}(p)$, and since the Galois group is free, $\mathbb{Q}_{S \cup\{\ell\}}(p)$ realizes the maximal p-extension of $\mathbb{Q}_{S}(p)_{\mathfrak{p}}$. In particular,

$$
H^{1}\left(G\left(\mathbb{Q}_{S}(p)_{\mathfrak{p}}(p) / \mathbb{Q}_{S}(p)_{\mathfrak{p}}\right), \mathbb{Z} / p \mathbb{Z}\right) \cong H^{1}\left(T_{\mathfrak{p}}\left(\mathbb{Q}_{S \cup\{\ell\}}(p) / \mathbb{Q}_{S}(p)\right), \mathbb{Z} / p \mathbb{Z}\right)
$$

for all $\mathfrak{p} \mid \ell$, which finishes the proof.
Let us mention in passing that the above calculations imply the validity of the following arithmetic form of Riemann's existence theorem.
Theorem 6.3. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p such that $c d G_{S}(p)=2$. Let $T \supset S$ be another set of prime numbers congruent to 1 modulo p. Assume that all $\ell \in T \backslash S$ do not split completely in the extension $\mathbb{Q}_{S}(p) / \mathbb{Q}$. Then the inertia groups in $\mathbb{Q}_{T}(p) / \mathbb{Q}_{S}(p)$ of all primes $\mathfrak{p} \in T \backslash S\left(\mathbb{Q}_{S}(p)\right)$ are infinite cyclic and the natural homomorphism

$$
\phi: \underset{\mathfrak{p} \in T \backslash S\left(\mathbb{Q}_{S}(p)\right)}{*} T_{\mathfrak{p}}\left(\mathbb{Q}_{T}(p) / \mathbb{Q}_{S}(p)\right) \longrightarrow G\left(\mathbb{Q}_{T}(p) / \mathbb{Q}_{S}(p)\right)
$$

is an isomorphism.
Remark: A similar theorem holds in the case that S contains p, see [NSW], Theorem 10.5.1.

Proof. By Proposition 6.2 and by the calculation of the cohomology of a free product ([NSW], 4.3.10 and 4.1.4), ϕ is a homomorphism between free pro- p groups which induces an isomorphism on mod p cohomology. Therefore ϕ is an isomorphism.

Proof of theorem 2.3. We consider the Hochschild-Serre spectral sequence

$$
E_{2}^{i j}=H^{i}\left(G_{S}(p), H^{j}\left(G\left(\mathbb{Q}_{S \cup\{\ell\}}(p) / \mathbb{Q}_{S}(p)\right), \mathbb{Z} / p \mathbb{Z}\right) \Rightarrow H^{i+j}\left(G_{S \cup\{\ell\}}(p), \mathbb{Z} / p \mathbb{Z}\right)\right.
$$

By Proposition 6.2, we have $E_{2}^{i j}=0$ for $j \geq 2$ and

$$
\begin{gathered}
H^{1}\left(G\left(\mathbb{Q}_{S \cup\{\ell\}}(p) / \mathbb{Q}_{S}(p)\right), \mathbb{Z} / p \mathbb{Z}\right) \cong \bigoplus_{\mathfrak{p} \mid \ell}^{\prime} H^{1}\left(T_{\mathfrak{p}}\left(\mathbb{Q}_{S \cup\{\ell\}}(p) / \mathbb{Q}_{S}(p)\right), \mathbb{Z} / p \mathbb{Z}\right) \\
\cong \operatorname{Ind}_{G_{S}(p)}^{G_{\ell}} H^{1}\left(T_{\ell}\left(\mathbb{Q}_{S \cup\{\ell\}}(p) / \mathbb{Q}_{S}(p)\right), \mathbb{Z} / p \mathbb{Z}\right),
\end{gathered}
$$

where $G_{\ell} \cong \mathbb{Z}_{p}$ is the decomposition group of ℓ in $G_{S}(p)$. We obtain $E_{2}^{i, 1}=0$ for $i \geq 2$. By assumption, $c d G_{S}(p)=2$, hence $E_{2}^{0, j}=0$ for $j \geq 3$. This implies $H^{3}\left(G_{S \cup\{\ell\}}(p), \mathbb{Z} / p \mathbb{Z}\right)=0$, and hence $c d G_{S \cup\{\ell\}}(p) \leq 2$. Finally, the decomposition group of ℓ in $G_{S \cup\{\ell\}}(p)$ is full, i.e. of cohomological dimension 2. Therefore, $c d G_{S \cup\{\ell\}}(p)=2$.

We obtain the following
Corollary 6.4. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. Let $\ell \notin S$ be a another prime number congruent to 1 modulo p. Assume that there exists a prime number $q \in S$ such that the order of ℓ in $(\mathbb{Z} / q \mathbb{Z})^{\times}$is divisible by p (e.g. ℓ is not a p-th power modulo q). Then $c d G_{S}(p)=2$ implies $c d G_{S \cup\{\ell\}}(p)=2$.
Proof. Let K_{q} be the maximal subextension of p-power degree in $\mathbb{Q}\left(\mu_{q}\right) / \mathbb{Q}$. Then K_{q} is a non-trivial finite subextension of \mathbb{Q} in $\mathbb{Q}_{S}(p)$ and ℓ does not split completely in K_{q} / \mathbb{Q}. Hence the result follows from Theorem 2.3.

Remark. One can sharpen Corollary 6.4 by finding weaker conditions on a prime ℓ not to split completely in $\mathbb{Q}_{S}(p)$.

7 Proof of Theorem 2.1

In this section we prove Theorem 2.1. We start by recalling the notion of the linking diagram attached to S and p from [La]. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. Let $\Gamma(S)(p)$ be the directed graph with vertices the primes of S and edges the pairs $(r, s) \in S \times S$ with r not a p-th power modulo s. We now define a function ℓ on the set of pairs of distinct primes of S with values in $\mathbb{Z} / p \mathbb{Z}$ by first choosing a primitive root g_{s} modulo s for each $s \in S$. Let $\ell_{r s}=\ell(r, s)$ be the image in $\mathbb{Z} / p \mathbb{Z}$ of any integer c satisfying

$$
r \equiv g_{s}^{-c} \bmod s
$$

The residue class $\ell_{r s}$ is well-defined since c is unique modulo $s-1$ and $p \mid s-1$. Note that (r, s) is an edge of $\Gamma(S)(p)$ if and only if $\ell_{r s} \neq 0$. We call $\ell_{r s}$ the linking number of the pair (r, s). This number depends on the choice of primitive roots, if g is another primitive root modulo s and $g_{s} \equiv g^{a} \bmod s$, then the linking number attached to (r, s) would be multiplied by a if g were used instead of g_{s}. The directed graph $\Gamma(S)(p)$ together with ℓ is called the linking diagram attached to S and p.

Definition 7.1. We call a finite set S of prime numbers congruent to 1 modulo p strictly circular with respect to p (and $\Gamma(S)(p)$ a non-singular circuit), if there exists an ordering $S=\left\{q_{1}, \ldots, q_{n}\right\}$ of the primes in S such that the following conditions hold.
(a) The vertices q_{1}, \ldots, q_{n} of $\Gamma(S)(p)$ form a circuit $q_{1} q_{2} \cdots q_{n} q_{1}$.
(b) If i, j are both odd, then $q_{i} q_{j}$ is not an edge of $\Gamma(S)(p)$.
(c) If we put $\ell_{i j}=\ell\left(q_{i}, q_{j}\right)$, then

$$
\ell_{12} \ell_{23} \cdots \ell_{n-1, n} \ell_{n 1} \neq \ell_{1 n} \ell_{21} \cdots \ell_{n, n-1}
$$

Note that condition (b) implies that n is even ≥ 4 and that (c) is satisfied if there is an edge $q_{i} q_{j}$ of the circuit $q_{1} q_{2} \cdots q_{n} q_{1}$ such that $q_{j} q_{i}$ is not an edge of $\Gamma(S)(p)$. Condition (c) is independent of the choice of primitive roots since the condition can be written in the form

$$
\frac{\ell_{1 n}}{\ell_{n-1, n}} \frac{\ell_{21}}{\ell_{n 1}} \frac{\ell_{32}}{\ell_{12}} \cdots \frac{\ell_{n, n-1}}{\ell_{n-2, n-1}} \neq 1
$$

where each ratio in the product is independent of the choice of primitive roots.
If p is an odd prime number and if $S=\left\{q_{1}, \ldots, q_{n}\right\}$ is a finite set of prime numbers congruent to 1 modulo p, then, by a result of Koch [Ko], the group $G_{S}(p)$ has a minimal presentation $G_{S}(p)=F / R$, where F is a free pro- p group on generators x_{1}, \ldots, x_{n} and R is the minimal normal subgroup in F on generators r_{1}, \ldots, r_{n}, where

$$
r_{i} \equiv x_{i}^{q_{i}-1} \prod_{j \neq i}\left[x_{i}, x_{j}\right]^{\ell_{i j}} \bmod F_{3}
$$

Here F_{3} is the third step of the lower p-central series of F and the $\ell_{i j}=\ell\left(q_{i}, q_{j}\right)$ are the linking numbers for some choice of primitive roots. If S is strictly circular, Labute ([La], Theorem 1.6) shows that $G_{S}(p)$ is a so-called 'mild' pro-p-group, and, in particular, is of cohomological dimension 2 ([La], Theorem 1.2).

Proof of Theorem 2.1. By [La], Theorem 1.6, we have $c d G_{T}(p)=2$. By assumption, we find a series of subsets

$$
T=T_{0} \subset T_{1} \subset \cdots \subset T_{r}=S
$$

such that for all $i \geq 1$, the set $T_{i} \backslash T_{i-1}$ consists of a single prime number q congruent to 1 modulo p and there exists a prime number $q^{\prime} \in T_{i-1}$ with q not a p-th power modulo q^{\prime}. An inductive application of Corollary 6.4 yields the result.

Remark. Labute also proved some variants of his group theoretic result [La], Theorem 1.6. The same proof as above shows corresponding variants of Theorem 2.1, by replacing condition (i) by other conditions on the subset T as they are described in [La], $\S 3$.

A straightforward applications of Čebotarev's density theorem shows that, given $\Gamma(S)(p)$, a prime number q congruent to 1 modulo p can be found with the additional edges of $\Gamma(S \cup\{q\})(p)$ arbitrarily prescribed (cf. [La], Proposition 6.1). We therefore obtain the following corollaries.

Corollary 7.2. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p, containing a strictly circular subset $T \subset S$. Then there exists a prime number q congruent to 1 modulo p with

$$
c d G_{S \cup\{q\}}(p)=2 .
$$

Corollary 7.3. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. Then we find a finite set T of prime numbers congruent to 1 modulo p such that

$$
c d G_{S \cup T}(p)=2
$$

References

[AM] M. Artin and B. Mazur Étale homotopy. Lecture Notes in Math. No. 100 Springer-Verlag, Berlin-New York 1969
[AGV] M. Artin, A. Grothendieck and J.-L. Verdier Théorie des Topos et Cohomologie Étale des Schémas. Lecture Notes in Math. 269, 270, 305, Springer, Heidelberg, 1972/73.
[FM] J.-M. Fontaine and B. Mazur Geometric Galois representations. In Elliptic curves, modular forms, \& Fermat's last theorem (Hong Kong, 1993), 41-78, Internat. Press, Cambridge, MA, 1995.
[Ko] H. Koch l-Erweiterungen mit vorgegebenen Verzweigungsstellen. J. Reine Angew. Math. 219 (1965), 30-61.
[La] J. P. Labute: Mild pro-p-groups and Galois groups of p-extensions of \mathbb{Q}. Preprint 2005, to appear in J. Reine Angew. Math.
[Ma] B. Mazur Notes on étale cohomology of number fields. Ann. Sci. École Norm. Sup. (4) 6 (1973), 521-552.
[Mi1] J.S. Milne Étale Cohomology. Princeton University Press 1980.
[Mi2] J.S. Milne Arithmetic duality theorems. Academic Press 1986.
[Mo] M. Morishita On certain analogies between knots and primes. J. Reine Angew. Math. 550 (2002), 141-167.
[Ne] J. Neukirch Algebraic Number Theory. Grundlehren der math. Wissenschaften Bd. 322, Springer 1999.
[NSW] J. Neukirch, A. Schmidt and K. Wingberg: Cohomology of Number Fields. Grundlehren der math. Wissenschaften Bd. 323, Springer 2000.
[Sc1] A. Schmidt Extensions with restricted ramification and duality for arithmetic schemes. Compositio Math. 100 (1996), 233-245.
[Sc2] A. Schmidt On Poitou's duality theorem. J. Reine Angew. Math. 517 (1999), 145-160.
[Sc3] A. Schmidt On the relation between 2 and ∞ in Galois cohomology of number fields. Compositio Math. 133 (2002), no. 3, 267-288.

Alexander Schmidt, NWF I - Mathematik, Universität Regensburg, D-93040 Regensburg,
Deutschland. email: alexander.schmidt@mathematik.uni-regensburg.de

