Circular sets of prime numbers and p-extensions of the rationals

by Alexander Schmidt

Abstract: Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. We prove that the group $G_S(\mathbb{Q})(p)$ has cohomological dimension 2 if the linking diagram attached to S and p satisfies a certain technical condition, and we show that $G_S(\mathbb{Q})(p)$ is a duality group in these cases. Furthermore, we investigate the decomposition behaviour of primes in the extension $\mathbb{Q}_S(p)/\mathbb{Q}$ and we relate the cohomology of $G_S(\mathbb{Q})(p)$ to the étale cohomology of the scheme $\text{Spec}(\mathbb{Z}) - S$. Finally, we calculate the dualizing module.

1 Introduction

Let k be a number field, p a prime number and S a finite set of places of k. The pro-p-group $G_S(k)(p) = G(k_S(p)/k)$, i.e. the Galois group of the maximal p-extension of k which is unramified outside S, contains valuable information on the arithmetic of the number field k. If all places dividing p are in S, then we have some structural knowledge on $G_S(k)(p)$, in particular, it is of cohomological dimension less or equal to 2 (if $p = 2$ one has to require that S contains no real place, [Sc3]), and it is often a so-called duality group, see [NSW], X, §7. Furthermore, the cohomology of $G_S(k)(p)$ coincides with the étale cohomology of the arithmetic curve $\text{Spec}(\mathcal{O}_k) - S$ in this case.

In the opposite case, when S contains no prime dividing p, only little is known. By a famous theorem of Golod and Šafarevič, $G_S(k)(p)$ may be infinite. A conjecture due to Fontaine and Mazur [FM] asserts that $G_S(k)(p)$ has no infinite quotient which is an analytic pro-p-group. So far, nothing was known on the cohomological dimension of $G_S(k)(p)$ and on the relation between its cohomology and the étale cohomology of the scheme $\text{Spec}(\mathcal{O}_k) - S$.

Recently, J. Labute [La] showed that pro-p-groups with a certain kind of relation structure have cohomological dimension 2. By a result of H. Koch [Ko], $G_S(\mathbb{Q})(p)$ has such a relation structure if the set of prime numbers S satisfies a certain technical condition. In this way, Labute obtained first examples of pairs (p, S) with $p \notin S$ and $\text{cd} G_S(\mathbb{Q})(p) = 2$, e.g. $p = 3$, $S = \{7, 19, 61, 163\}$.

The objective of this paper is to use arithmetic methods in order to extend Labute’s result. First of all, we weaken the condition on S which implies cohomological dimension 2 (and strict cohomological dimension 3!) and we show that $G_S(\mathbb{Q})(p)$ is a duality group in these cases. Furthermore, we investigate the decomposition behaviour of primes in the extension $\mathbb{Q}_S(p)/\mathbb{Q}$ and we relate the cohomology of $G_S(\mathbb{Q})(p)$ to the étale cohomology of the scheme $\text{Spec}(\mathbb{Z}) - S$. Finally, we calculate the dualizing module.
2 Statement of results

Let \(p \) be an odd prime number, \(S \) a finite set of prime numbers not containing \(p \) and \(G_S(p) = G_S(\mathbb{Q})(p) \) the Galois group of the maximal \(p \)-extension \(\mathbb{Q}_S(p) \) of \(\mathbb{Q} \) which is unramified outside \(S \). Besides \(p \), only prime numbers congruent to 1 modulo \(p \) can ramify in a \(p \)-extension of \(\mathbb{Q} \), and we assume that all primes in \(S \) have this property. Then \(G_S(p) \) is a pro-\(p \)-group with \(n \) generators and \(n \) relations, where \(n = \#S \) (see lemma 3.1).

Inspired by some analogies between knots and prime numbers (cf. [Mo]), J. Labute [La] introduced the notion of the linking diagram \(\Gamma(S)(p) \) attached to \(p \) and \(S \) and showed that \(cd G_S(p) = 2 \) if \(\Gamma(S)(p) \) is a ‘non-singular circuit’.

Roughly speaking, this means that there is an ordering \(S = \{q_1, q_2, \ldots, q_n\} \) such that \(q_1q_2\cdots q_nq_1 \) is a circuit in \(\Gamma(S)(p) \) (plus two technical conditions, see section 7 for the definition).

We generalize Labute’s result by showing

Theorem 2.1. Let \(p \) be an odd prime number and let \(S \) be a finite set of prime numbers congruent to 1 modulo \(p \). Assume there exists a subset \(T \subset S \) such that the following conditions are satisfied.

(i) \(\Gamma(T)(p) \) is a non-singular circuit.

(ii) For each \(q \in S \setminus T \) there exists a directed path in \(\Gamma(S)(p) \) starting in \(q \) and ending with a prime in \(T \).

Then \(cd G_S(p) = 2 \).

Remarks.

1. Condition (ii) of Theorem 2.1 can be weakened, see section 7.

2. Given \(p \), one can construct examples of sets \(S \) of arbitrary cardinality \(\#S \geq 4 \) with \(cd G_S(p) = 2 \).

Example. For \(p = 3 \) and \(S = \{7, 13, 19, 61, 163\} \), the linking diagram has the following shape

![Linking Diagram](image)

The linking diagram associated to the subset \(T = \{7, 19, 61, 163\} \) is a non-singular circuit, and we obtain \(cd G_S(3) = 2 \) in this case.

The proof of Theorem 2.1 uses arithmetic properties of \(G_S(p) \) in order to enlarge the set of prime numbers \(S \) without changing the cohomological dimension of \(G_S(p) \). In particular, we show
Theorem 2.2. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. Assume that $G_S(p) \neq 1$ and $cd G_S(p) \leq 2$. Then the following holds.

(i) $cd G_S(p) = 2$ and $scd G_S(p) = 3$.

(ii) $G_S(p)$ is a pro-p duality group (of dimension 2).

(iii) For all $\ell \in S$, $Q_S(p)$ realizes the maximal p-extension of Q_ℓ, i.e. (after choosing a prime above ℓ in \overline{Q}), the image of the natural inclusion $Q_S(p) \hookrightarrow Q_\ell(p)$ is dense.

(iv) The scheme $X = \text{Spec} \mathbb{Z} - S$ is a $K(\pi,1)$ for p and the étale topology, i.e. for any p-primary $G_S(p)$-module M, considered as a locally constant étale sheaf on X, the natural homomorphism

$$H^i(G_S(p), M) \rightarrow H^i_{et}(X, M)$$

is an isomorphism for all i.

Remarks. 1. If S consists of a single prime number, then $G_S(p)$ is finite, hence $\# S \geq 2$ is necessary for the theorem. At the moment, we do not know examples of cardinality 2 or 3.

2. The property asserted in Theorem 2.2 (iv) implies that the natural morphism of pro-spaces

$$X_{et}(p) \longrightarrow K(G_S(p), 1)$$

from the pro-p-completion of the étale homotopy type X_{et} of X (see [AM]) to the $K(\pi,1)$-pro-space attached to the pro-p-group $G_S(p)$ is a weak equivalence. Since $G_S(p)$ is the fundamental group of $X_{et}(p)$, this justifies the notion ‘$K(\pi,1)$ for p and the étale topology’. If S contains the prime number p, this property always holds (cf. [Sc2]).

We can enlarge the set of prime numbers S by the following

Theorem 2.3. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. Assume that $cd G_S(p) = 2$. Let $\ell \notin S$ be another prime number congruent to 1 modulo p which does not split completely in the extension $Q_S(p)/\mathbb{Q}$. Then $cd G_{S \cup \{\ell\}}(p) = 2$.

3 Comparison with étale cohomology

In this section we show that cohomological dimension 2 implies the $K(\pi,1)$-property.

Lemma 3.1. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. Then

$$\dim_{\mathbb{Z}} H^i(G_S(p), \mathbb{Z}/p\mathbb{Z}) = \begin{cases} 1 & \text{if } i = 0 \\ \# S & \text{if } i = 1 \\ \# S & \text{if } i = 2. \end{cases}$$
Proof. The statement for H^0 is obvious. [NSW], Theorem 8.7.11 implies the statement on H^1 and yields the inequality

$$\dim_{\mathbb{F}_p} H^2(G_S(p), \mathbb{Z}/p\mathbb{Z}) \leq \#S.$$

The abelian pro-p-group $G_S(p)^{ab}$ has $\#S$ generators. There is only one \mathbb{Z}_p-extension of \mathbb{Q}, namely the cyclotomic \mathbb{Z}_p-extension, which is ramified at p. Since p is not in S, $G_S(p)^{ab}$ is finite, which implies that $G_S(p)$ must have at least as many relations as generators. By [NSW], Corollary 3.9.5, the relation rank of $G_S(p)$ is $\dim_{\mathbb{F}_p} H^2(G_S(p), \mathbb{Z}/p\mathbb{Z})$, which yields the remaining inequality for H^2.

Proposition 3.2. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. If $cd G_S(p) \leq 2$, then the scheme $X = \text{Spec}(\mathbb{Z}) - S$ is a $K(\pi, 1)$ for p and the étale topology, i.e. for any discrete p-primary $G_S(p)$-module M, considered as locally constant étale sheaf on X, the natural homomorphism

$$H^i(G_S(p), M) \to H^i_{\text{et}}(X, M)$$

is an isomorphism for all i.

Proof. Let L/k be a finite subextension of k in $k_S(p)$. We denote the normalization of X in L by X_L. Then $H^i_{\text{et}}(X_L, \mathbb{Z}/p\mathbb{Z}) = 0$ for $i > 3$ ([Ma], §3, Proposition C). Since flat and étale cohomology coincide for finite étale group schemes ([Mi], III, Theorem 3.9), the flat duality theorem of Artin-Mazur ([Mi2], III Theorem 3.1) implies

$$H^1_{\text{et}}(X_L, \mathbb{Z}/p\mathbb{Z}) = H^3_{\text{et}}(X_L, \mathbb{Z}/p\mathbb{Z}) \cong H^0_{\text{fl}}(X_L, \mathbb{Z}/p\mathbb{Z}),$$

since a p-extension of \mathbb{Q} cannot contain a primitive p-th root of unity. Let \tilde{X} be the universal (pro-)-p-covering of X. We consider the Hochschild-Serre spectral sequence

$$E^{pq}_2 = H^p(G_S(p), H^q_{\text{et}}(\tilde{X}, \mathbb{Z}/p\mathbb{Z})) \Rightarrow H^{p+q}_{\text{et}}(X, \mathbb{Z}/p\mathbb{Z}).$$

Étale cohomology commutes with inverse limits of schemes if the transition maps are affine (see [AGV], VII, 5.8). Therefore we have $H^i_{\text{et}}(\tilde{X}, \mathbb{Z}/p\mathbb{Z}) = 0$ for $i \geq 3$, and for $i = 1$ by definition. Hence $E^{0q}_2 = 0$ unless $i = 0, 2$. Using the assumption $cd G_S(p) \leq 2$, the spectral sequence implies isomorphisms $H^{i}(G_S(p), \mathbb{Z}/p\mathbb{Z}) \cong H^{i}_{\text{et}}(\tilde{X}, \mathbb{Z}/p\mathbb{Z})$ for $i = 0, 1$ and a short exact sequence

$$0 \to H^{2}(G_S(p), \mathbb{Z}/p\mathbb{Z}) \to H^{2}_{\text{et}}(X, \mathbb{Z}/p\mathbb{Z}) \to H^{2}_{\text{et}}(\tilde{X}, \mathbb{Z}/p\mathbb{Z})G_{S}(p) \to 0.$$

Let $\bar{X} = \text{Spec}(\mathbb{Z})$. By the flat duality theorem of Artin-Mazur, we have an isomorphism $H^{2}_{\text{et}}(\bar{X}, \mathbb{Z}/p\mathbb{Z}) \cong H^{1}_{\text{fl}}(\bar{X}, \mathbb{Z}/p\mathbb{Z})$. The flat Kummer sequence $0 \to \mu_p \to \mathbb{G}_m \to \mathbb{G}_m \to 0$, together with $H^{1}_{\text{fl}}(\bar{X}, \mathbb{G}_m)/p = 0 = H^{1}(\bar{X}, \mathbb{G}_m)$ implies $H^{2}_{\text{et}}(\bar{X}, \mathbb{Z}/p\mathbb{Z}) = 0$. Furthermore, $H^{2}_{\text{et}}(\bar{X}, \mathbb{Z}/p\mathbb{Z}) \cong H^{0}_{\text{fl}}(\bar{X}, \mathbb{Z}/p\mathbb{Z}) = 0$. Considering the étale excision sequence for the pair (\bar{X}, X), we obtain an isomorphism

$$H^{2}_{\text{et}}(X, \mathbb{Z}/p\mathbb{Z}) \cong \bigoplus_{i \in S} H^{2}_{\text{et}}(\text{Spec}(\mathbb{Z}), \mathbb{Z}/p\mathbb{Z}).$$
The local duality theorem ([Mi2], II, Theorem 1.8) implies

$$H^1_c(\text{Spec}(\mathbb{Z}_\ell), \mathbb{Z}/p\mathbb{Z}) \cong \text{Hom}_{\text{Spec}(\mathbb{Z}_\ell)}(\mathbb{Z}/p\mathbb{Z}, G_m)^\vee.$$

All primes $\ell \in S$ are congruent to 1 modulo p by assumption, hence \mathbb{Z}_ℓ contains a primitive p-th root of unity for $\ell \in S$, and we obtain $\dim_{\mathbb{F}_p} H^2_c(X, \mathbb{Z}/p\mathbb{Z}) = |S|$. Now Lemma 3.1 implies that ϕ is an isomorphism. We therefore obtain

$$H^2_c(X, \mathbb{Z}/p\mathbb{Z})^{G_S(p)} = 0.$$

Since $G_S(p)$ is a pro-p-group, this implies ([NSW], Corollary 1.7.4) that

$$H^2_c(\hat{X}, \mathbb{Z}/p\mathbb{Z}) = 0.$$

We conclude that the Hochschild-Serre spectral sequence degenerates to a series of isomorphisms

$$H^i(G_S(p), \mathbb{Z}/p\mathbb{Z}) \xrightarrow{\sim} H^i_c(X, \mathbb{Z}/p\mathbb{Z}), \quad i \geq 0.$$

If M is a finite p-primary $G_S(p)$-module, it has a composition series with graded pieces isomorphic to $\mathbb{Z}/p\mathbb{Z}$ with trivial $G_S(p)$-action ([NSW], Corollary 1.7.4), and the statement of the proposition for M follows from that for $\mathbb{Z}/p\mathbb{Z}$ and from the five-lemma. An arbitrary discrete p-primary $G_S(p)$-module is the filtered inductive limit of finite p-primary $G_S(p)$-modules, and the statement of the proposition follows since group cohomology ([NSW], Proposition 1.5.1) and étale cohomology ([AGV], VII, 3.3) commute with filtered inductive limits.

4 Proof of Theorem 2.2

In this section we prove Theorem 2.2. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. Assume that $G_S(p) \neq 1$ and $cd G_S(p) \leq 2$.

Let $U \subset G_S(p)$ be an open subgroup. The abelianization U^{ab} of U is a finitely generated abelian pro-p-group. If U^{ab} were infinite, it would have a quotient isomorphic to \mathbb{Z}_p^∞, which corresponds to a \mathbb{Z}_p-extension K_{∞} of the number field $K = Q_S(p)^et$ inside $Q_S(p)$. By [NSW], Theorem 10.3.20 (ii), a \mathbb{Z}_p-extension of a number field is ramified at at least one prime dividing p. This contradicts $K_{\infty} \subset Q_S(p)$ and we conclude that U^{ab} is finite.

In particular, $G_S(p)^{ab}$ is finite. Hence $G_S(p)$ is not free, and we obtain $cd G_S(p) = 2$. This shows the first part of assertion (i) of Theorem 2.2 and assertion (iv) follows from Proposition 3.2.

By Lemma 3.1, we know that for each prime number $\ell \in S$, the group $G_{S \setminus \{\ell\}}(\ell)$ is a proper quotient of $G_S(p)$, hence each $\ell \in S$ is ramified in the extension $Q_S(p)/\mathbb{Q}$. Let $G_\ell(Q_S(p)/\mathbb{Q})$ denote the decomposition group of ℓ in $G_S(p)$ with respect to some prolongation of ℓ to $Q_S(p)$. As a subgroup of $G_S(p)$, $G_\ell(Q_S(p)/\mathbb{Q})$ has cohomological dimension less or equal to 2. We have a natural surjection $G(Q_\ell(p)/\mathbb{Q}) \twoheadrightarrow G_\ell(Q_S(p)/\mathbb{Q})$. By [NSW], Theorem 7.5.2, $G(Q_\ell(p)/\mathbb{Q})$ is the pro-p-group on two generators σ, τ subject to the relation $\sigma \tau \sigma^{-1} = \tau^p$. τ is a generator of the inertia group and σ is a Frobenius lift.
Therefore, $G(\mathbb{Q}_p(p) / \mathbb{Q}_p)$ has only three quotients of cohomological dimension less or equal to 2: itself, the trivial group and the Galois group of the maximal unramified p-extension of \mathbb{Q}_p. Since ℓ is ramified in the extension $\mathbb{Q}_p(\ell)/\mathbb{Q}_p$, the map $G(\mathbb{Q}_p(\ell)/\mathbb{Q}_p) \to G(\mathbb{Q}_p(\ell)/\mathbb{Q}_p)$ is an isomorphism, and hence $\mathbb{Q}_p(\ell)$ realizes the maximal p-extension of \mathbb{Q}_p. This shows statement (iii) of Theorem 2.2.

Next we show the second part of statement (i). By [NSW], Proposition 3.3.3, we have $scd G_S(p) \in \{2, 3\}$. Assume that $scd G = 2$. We consider the $G_S(p)$-module

$$D_2(\mathbb{Z}) = \lim_{\mathcal{U}} U^{ab},$$

where the limit runs over all open normal subgroups $U \triangleleft G_S(p)$ and for $V \subset U$ the transition map is the transfer $\text{Ver}: U^{ab} \to V^{ab}$, i.e. the dual of the corestriction map $\text{cor}: H^2(V, \mathbb{Z}) \to H^2(U, \mathbb{Z})$ (see [NSW], I, §5). By [NSW], Theorem 3.6.4 (iv), we obtain $G_S(p)^{ab} = D_2(\mathbb{Z})^{G_S(p)}$. On the other hand, U^{ab} is finite for all U and the group theoretical version of the Principal Ideal Theorem (see [Ne], VI, Theorem 7.6) implies $D_2(\mathbb{Z}) = 0$. Hence $G_S(p)^{ab} = 0$ which implies $G_S(p) = 1$ producing a contradiction. Hence $scd G_S(p) = 3$ showing the remaining assertion of Theorem 2.2, (i).

It remains to show that $G_S(p)$ is a duality group. By [NSW], Theorem 3.4.6, it suffices to show that the terms

$$D_i(G_S(p), \mathbb{Z}/p\mathbb{Z}) = \lim_{\mathcal{U}} H^i(U, \mathbb{Z}/p\mathbb{Z})$$

are trivial for $i = 0, 1$. Here U runs through the open subgroups of $G_S(p)$, \lor denotes the Pontryagin dual and the transition maps are the duals of the corestriction maps. For $i = 0$, and $V \not\subsetneq U$, the transition map

$$\text{cor}^\lor: \mathbb{Z}/p\mathbb{Z} = H^0(V, \mathbb{Z}/p\mathbb{Z})^\lor \to H^0(U, \mathbb{Z}/p\mathbb{Z}) = \mathbb{Z}/p\mathbb{Z}$$

is multiplication by $(U : V)$, hence zero. Since $G_S(p)$ is infinite, we obtain $D_0(G_S(p), \mathbb{Z}/p\mathbb{Z}) = 0$. Furthermore,

$$D_1(G_S(p), \mathbb{Z}/p\mathbb{Z}) = \lim_{\mathcal{U}} U^{ab}/p = 0$$

by the Principal Ideal Theorem. This finishes the proof of Theorem 2.2.

5 The dualizing module

Having seen that $G_S(p)$ is a duality group under certain conditions, it is interesting to calculate its dualizing module. The aim of this section is to prove

Theorem 5.1. Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. Assume that $cd G_S(p) = 2$. Then we have a natural isomorphism

$$D \cong \text{tor}_p(C_S(\mathbb{Q}_S(p)))$$

between the dualizing module D of $G_S(p)$ and the p-torsion submodule of the S-adèlic class group of $\mathbb{Q}_S(p)$. There is a natural short exact sequence

$$0 \to \bigoplus_{\ell \in S} \text{Ind}_{G_S(p)}^{G_S(\ell)} \mu_{p^\infty}(\mathbb{Q}_\ell(p)) \to D \to E_S(\mathbb{Q}_S(p)) \otimes \mathbb{Q}_p/\mathbb{Z}_p \to 0,$$
in which \(G_\ell \) is the decomposition group of \(\ell \) in \(G_S(p) \) and \(E_S(\mathbb{Q}_S(p)) \) is the group of \(S \)-units of the field \(\mathbb{Q}_S(p) \).

Working in a more general situation, let \(S \) be a non-empty set of primes of a number field \(k \). We recall some well-known facts from class field theory and we give some modifications for which we do not know a good reference.

By \(k_S \) we denote the maximal extension of \(k \) which is unramified outside \(S \) and we denote \(G(k_S/k) \) by \(G_S(k) \). For an intermediate field \(k \subset K \subset k_S \), let \(C_S(K) \) denote the \(S \)-idéle class group of \(K \). If \(S \) contains the set \(S_\infty \) of archimedean primes of \(k \), then the pair \((G_S(k),C_S(k_S)) \) is a class formation, see [NSW], Proposition 8.3.8. This remains true for arbitrary non-empty \(S \), as can be seen as follows: We have the class formation

\[
(G_S(k), C_{S:S_\infty}(k_S)).
\]

Since \(k_S \) is closed under unramified extensions, the Principal Ideal Theorem implies \(Cl(k_S) = 0 \). Therefore we obtain the exact sequence

\[
0 \to \bigoplus_{v \in S_\infty \setminus S(k)} \text{Ind}_{G_S(k)}^{k_v} C_{S:S_\infty}(k_S) \to C_{S:S_\infty}(k_S) \to C_S(k_S) \to 0.
\]

Since the left term is a cohomologically trivial \(G_S(k) \)-module, we obtain that \((G_S(k), C_S(k_S)) \) is a class formation. Finally, if \(p \) is a prime number, then also \((G_S(k)(p), C_S(k_S(p))) \) is a class formation.

Remark: An advantage of considering the class formation \((G_S(k)(p), C_S(k_S(p))) \) for sets \(S \) of primes which do not contain \(S_\infty \) is that we get rid of ‘redundancy at infinity’. A technical disadvantage is the absence of a reasonable Hausdorff topology on the groups \(C_S(K) \) for finite subextensions \(K \) of \(k \) in \(k_S \).

Next we calculate the module

\[
D_2(\mathbb{Z}_p) = \lim_{\to \atop U,n} H^2(U, \mathbb{Z}/p^n \mathbb{Z})^\vee,
\]

where \(n \) runs through all natural numbers, \(U \) runs through all open subgroups of \(G_S(k)(p) \) and \(\vee \) is the Pontryagin dual. If \(cd G_S(p) = 2 \), then \(D_2(\mathbb{Z}_p) \) is the dualizing module \(D \) of \(G_S(k)(p) \).

Theorem 5.2. Let \(k \) be a number field, \(p \) an odd prime number and \(S \) a finite non-empty set of non-archimedean primes of \(k \) such that the norm \(N(p) \) of \(p \) is congruent to 1 modulo \(p \) for all \(p \in S \). Assume that the scheme \(X = \text{Spec} \mathcal{O}_k - S \) is a \(K(\pi,1) \) for \(p \) and the étale topology and that \(k_S(p) \) realizes the maximal \(p \)-extension \(k_\pi(p) \) of \(k_\pi \) for all \(\pi \in S \). Then \(G_S(p) \) is a pro-\(p \)-duality group of dimension 2 with dualizing module

\[
D \cong \text{tor}_p(C_S(k_S(p))).
\]

Remarks. 1. In view of Theorem 2.2, Theorem 5.2 shows Theorem 5.1.
2. In the case when \(S \) contains all primes dividing \(p \), a similar result has been proven in [NSW], X, §5.
Proof of Theorem 5.2. We consider the schemes $\bar{X} = \text{Spec}(O_K)$ and $X = \bar{X} - S$ and we denote the natural embedding by $j : X \to \bar{X}$. As in the proof of Proposition 3.2, the flat duality theorem of Artin-Mazur implies

$$H^2_{\text{fl}}(X, \mathbb{Z}/p\mathbb{Z}) \cong H^0_{\mu}(X, \mu_p)^\vee,$$

and the group on the right vanishes since k_p contains a primitive p-th root of unity for all $p \in S$. The $K(\pi, 1)$-property yields $cd G_{S}(k)(p) \leq 2$. Since $k_S(p)$ realizes the maximal p-extension $k_p(p)$ of k_p for all $p \in S$, the inertia groups of these primes are of cohomological dimension 2 and we obtain $cd G_S(p) = 2$.

Next we consider, for some $n \in \mathbb{N}$, the constant sheaf $\mathbb{Z}/p^n\mathbb{Z}$ on X. The duality theorem of Artin-Verdier shows an isomorphism

$$H^i(\bar{X}, j_i(\mathbb{Z}/p^n\mathbb{Z})) = H^i_X(X, \mathbb{Z}/p^n\mathbb{Z}) \cong \text{Ext}^3_{\mathbb{X}}((\mathbb{Z}/p^n\mathbb{Z}, G_m))^\vee.$$

For $p \in S$, a standard calculation (see, e.g., [Mi2], II, Proposition 1.1) shows

$$H^i_p(\bar{X}, j_i(\mathbb{Z}/p^n\mathbb{Z}) \cong H^{i-1}(k_p, \mathbb{Z}/p^n\mathbb{Z}),$$

where k_p is (depending on the readers preference) the henselization or the completion of k at p. The excision sequence for the pair (\bar{X}, X) and the sheaf $j_!(\mathbb{Z}/p^n\mathbb{Z})$ therefore implies a long exact sequence

$$(*) \quad \cdots \to H^i(\bar{X}, \mathbb{Z}/p^n\mathbb{Z}) \to \bigoplus_{p \in S} H^i(k_p, \mathbb{Z}/p^n\mathbb{Z}) \to \text{Ext}^2_{\mathbb{X}}((\mathbb{Z}/p^n\mathbb{Z}, G_m))^\vee \to \cdots$$

The local duality theorem ([NSW], Theorem 7.2.6) yields isomorphisms

$$H^i(k_p, \mathbb{Z}/p^n\mathbb{Z})^\vee \cong H^{2-i}(k_p, \mu_{p^n})$$

for all $i \in \mathbb{Z}$. Furthermore,

$$\text{Ext}^0_{\mathbb{X}}(\mathbb{Z}/p^n\mathbb{Z}, G_m) = H^0(k, \mu_{p^n}).$$

We denote by $E_S(k)$ and $Cl_S(k)$ the group of S-units and the S-ideal class group of k, respectively. By $Br(X)$, we denote the Brauer group of X. The short exact sequence $0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z} \to 0$ together with

$$\text{Ext}^i_X(\mathbb{Z}, G_m) = H^i_{\text{et}}(X, G_m) = \begin{cases} E_S(k) & \text{for } i = 0 \\ Cl_S(k) & \text{for } i = 1 \\ Br(X) & \text{for } i = 2 \end{cases}$$

and the Hasse principle for the Brauer group implies exact sequences

$$0 \to E_S(k)/p^n \to \text{Ext}^1_X(\mathbb{Z}/p^n\mathbb{Z}, G_m) \to p^n Cl_S(k) \to 0$$

and

$$0 \to Cl_S(k)/p^n \to \text{Ext}^2_X(\mathbb{Z}/p^n\mathbb{Z}, G_m) \to \bigoplus_{p \in S} p^n Br(k_p).$$

The same holds, if we replace X by its normalization X_K in a finite extension K of k in $k_S(p)$. Now we go to the limit over all such K. Since $k_S(p)$ realizes the maximal p-extension of k_p for all $p \in S$, we have

$$\lim_{K} \bigoplus_{p \in S(K)} H^i(K_p, \mathbb{Z}/p^n\mathbb{Z})^\vee = \lim_{K} \bigoplus_{p \in S(K)} H^i(K_p, \mu_{p^n}) = 0$$
for $i \geq 1$ and
\[
\lim_{K} \bigoplus_{p \in S(K)} p^i \text{Br}(K_p) = 0.
\]

The Principal Ideal Theorem implies $Cl_S(k_S(p))/p = 0$ and since this group is a torsion group, its p-torsion part is trivial. Going to the limit over the exact sequences (\ast) for all X_K, we obtain $D_i(\mathbb{Z}/p\mathbb{Z}) = 0$ for $i = 0, 1$, hence $G_S(k(p))$ is a duality group of dimension 2. Furthermore, we obtain the exact sequence
\[
0 \to \text{tor}_p(E_S(k_S(p))) \to \bigoplus_{p \in S} \text{Ind}_{G_S(k(p))} G_p \text{tor}_p(k_p(p)^\times) \to D \to E_S(k_S(p)) \otimes \mathbb{Q}_p/\mathbb{Z}_p \to 0.
\]

Let $U \subset G_S(k(p))$ be an open subgroup and put $K = k_S(p)^U$. The invariant map
\[
\text{inv}_K : H^2(U, C_S(k_S(p))) \to \mathbb{Q}/\mathbb{Z}
\]
induces a pairing
\[
\text{Hom}_U(\mathbb{Z}/p^n\mathbb{Z}, C_S(k_S(p))) \times H^2(U, \mathbb{Z}/p^n\mathbb{Z}) \to H^2(U, C_S(K)) \to \mathbb{Q}/\mathbb{Z},
\]
and therefore a compatible system of maps
\[
p^n C_S(K) \to H^2(U, \mathbb{Z}/p^n\mathbb{Z})^U
\]
for all U and n. In the limit, we obtain a natural map
\[
\phi : \text{tor}_p(C_S(k_S(p))) \to D.
\]

By our assumptions, the idele group $J_S(k_S(p))$ is p-divisible. We therefore obtain the exact sequence
\[
0 \to \text{tor}_p(E_S(k_S(p))) \to \bigoplus_{p \in S} \text{Ind}_{G_S(k(p))} G_p \text{tor}_p(k_p(p)^\times) \to \\
\text{tor}_p(C_S(k_S(p))) \to E_S(k_S(p)) \otimes \mathbb{Q}_p/\mathbb{Z}_p \to 0
\]
which, via the just constructed map ϕ, compares to the similar sequence with D above. Hence ϕ is an isomorphism by the five lemma.

Finally, without any assumptions on $G_S(k(p))$, we calculate the $G_S(k(p))$-module $D_2(\mathbb{Z}_p)$ as a quotient of $\text{tor}_p(C_S(k_S(p)))$ by a subgroup of universal norms. We therefore can interpret Theorem 5.2 as a vanishing statement on universal norms.

Let us fix some notation. If G is a profinite group and if M is a G-module, we denote by $p^\infty M$ the submodule of elements annihilated by p^n. By $N_G(M) \subset M^G$ we denote the subgroup of universal norms, i.e.
\[
N_G(M) = \bigcap_U N_{G/U}(M^U),
\]
where U runs through the open normal subgroups of G and $N_{G/U}(M^U) \subset M^G$ is the image of the norm map
\[
N : M^U \to M^G, \quad m \mapsto \sum_{\sigma \in G/U} \sigma m.
\]
Proposition 5.3. Let S be a non-empty finite set of non-archimedean primes of k and let p be an odd prime number such that S contains no prime dividing p. Then

$$D_2(G_S(k)(p), \mathbb{Z}_p) \cong \lim_{K \to K_n} p^nC_S(K)/N_{G(k_S(p)/K)}(p^nC_S(K)),$$

where n runs through all natural numbers and K runs through all finite subextensions of k in $k_S(p)$.

Proof. We want to use Poitou’s duality theorem ([Sc2], Theorem 1). But the class module $C_S(k_S(p))$ is not level-compact and we cannot apply the theorem directly. Instead, we consider the level-compact class formation

$$(G_S(k)(p), C^0_{S\cup S_\infty}(k_S(p))),$$

where $C^0_{S\cup S_\infty}(k_S(p))$ is the subgroup of idèle classes of norm 1. By [Sc2], Theorem 1, we have for all natural numbers n and all finite subextensions K of k in $k_S(p)$ a natural isomorphism

$$H^2(G_S(K)(p), \mathbb{Z}/p^n\mathbb{Z})^\vee \cong \hat{H}^0(G_S(K)(p), p^nC^0_{S\cup S_\infty}(k_S(p))),$$

where \hat{H}^0 is Tate-cohomology in dimension 0 (cf. [Sc2]). The exact sequence

$$0 \to \bigoplus_{v \in S_\infty(K)} K_v^\times \to C^p_{S\cup S_\infty}(K) \to C_S(K) \to 0$$

and the fact that K_v^\times is p-divisible for archimedean v, implies for all n and all finite subextensions K of k in $k_S(p)$ an exact sequence of finite abelian groups

$$0 \to \bigoplus_{v \in S_\infty(K)} \mu_{p^n}(K_v) \to p^nC^p_{S\cup S_\infty}(K) \to p^nC_S(K) \to 0.$$

[Sc2], Proposition 7 therefore implies isomorphisms

$$\hat{H}^0(G_S(K)(p), p^nC^p_{S\cup S_\infty}(k_S(p))) \cong \hat{H}^0(G_S(K)(p), p^nC_S(k_S(p)))$$

for all n and K. Furthermore, the exact sequence

$$0 \to p^nC^0_{S\cup S_\infty}(K) \to C^p_{S\cup S_\infty}(K) \xrightarrow{\sim} \mathbb{R}_p^\times \to 0$$

shows $p^nC^0_{S\cup S_\infty}(K) = p^nC^p_{S\cup S_\infty}(K)$ for all n and all finite subextensions K of k in $k_S(p)$. Finally, [Sc2], Lemma 5 yields isomorphisms

$$\hat{H}^0(G_S(K)(p), p^nC_S(k_S(p))) \cong p^nC_S(K)/N_{G(k_S(p)/K)}(p^nC_S(K)).$$

Going to the limit over all n and K, we obtain the statement of the Proposition. \(\square\)
6 Going up

The aim of this section is to prove Theorem 2.3. We start with the following lemma.

Lemma 6.1. Let \(\ell \neq p \) be prime numbers. Let \(\mathbb{Q}_\ell^h \) be the henselization of \(\mathbb{Q} \) at \(\ell \) and let \(K \) be an algebraic extension of \(\mathbb{Q}_\ell^h \) containing the maximal unramified \(p \)-extension \((\mathbb{Q}_\ell^h)^{nr,p} \) of \(\mathbb{Q}_\ell^h \). Let \(Y = \text{Spec}(\mathcal{O}_K) \), and denote the closed point of \(Y \) by \(y \). Then the local étale cohomology group \(H^i_y(Y, \mathbb{Z}/p\mathbb{Z}) \) vanishes for \(i \neq 2 \) and we have a natural isomorphism

\[
H^2_y(Y, \mathbb{Z}/p\mathbb{Z}) \cong H^1(G(K(p)/K), \mathbb{Z}/p\mathbb{Z}).
\]

Proof. Since \(K \) contains \((\mathbb{Q}_\ell^h)^{nr,p} \), we have \(H^2_y(Y, \mathbb{Z}/p\mathbb{Z}) = 0 \) for \(i > 0 \). The excision sequence shows \(H^0_y(Y, \mathbb{Z}/p\mathbb{Z}) = 0 \) for \(i = 0 \), and \(H^1_y(Y, \mathbb{Z}/p\mathbb{Z}) \cong H^{i-1}(G(K/K), \mathbb{Z}/p\mathbb{Z}) \) for \(i \geq 2 \). By [NSW], Proposition 7.5.7, we have

\[
H^{i-1}(G(K/K), \mathbb{Z}/p\mathbb{Z}) = H^{i-1}(G(K(p)/K), \mathbb{Z}/p\mathbb{Z})
\]

But \(G(K(p)/K) \) is a free pro-\(p \)-group (either trivial or isomorphic to \(\mathbb{Z}_p \)). This concludes the proof.

Let \(k \) be a number field and let \(S \) be finite set of primes of \(k \). For a (possibly infinite) algebraic extension \(K \) of \(k \) we denote by \(S(K) \) the set of prolongations of primes in \(S \) to \(K \). Now assume that \(M/K/k \) is a tower of pro-\(p \) Galois extensions. We denote the inertia group of a prime \(p \in S(K) \) in the extension \(M/K \) by \(T_p(M/K) \). For \(i \geq 0 \) we write

\[
\bigoplus'_{p \in S(K)} H^i(T_p(M/K), \mathbb{Z}/p\mathbb{Z}) \cong \lim_{k' \subset K \text{ finite}} \bigoplus_{p \in S(k')} H^i(T_p(M/k'), \mathbb{Z}/p\mathbb{Z}),
\]

where the limit on the right hand side runs through all finite subextensions \(k' \) of \(k \) in \(K \). The \(G(K/k) \)-module \(\bigoplus'_{p \in S(k)} H^i(T_p(M/K), \mathbb{Z}/p\mathbb{Z}) \) is the maximal discrete submodule of the product \(\prod_{p \in S(k)} H^i(T_p(M/K), \mathbb{Z}/p\mathbb{Z}) \).

Proposition 6.2. Let \(p \) be an odd prime number and let \(S \) be a finite set of prime numbers congruent to 1 modulo \(p \) such that \(\text{cd} \ G_S(p) = 2 \). Let \(\ell \notin S \) be another prime number congruent to 1 modulo \(p \) which does not split completely in the extension \(\mathbb{Q}_S(p)/\mathbb{Q} \). Then, for any prime \(p \) dividing \(\ell \) in \(\mathbb{Q}_S(p) \), the inertia group of \(p \) in the extension \(\mathbb{Q}_{S \cup \{\ell\}}(p)/\mathbb{Q}_S(p) \) is infinite cyclic. Furthermore, \(H^i(G(\mathbb{Q}_{S \cup \{\ell\}}(p)/\mathbb{Q}_S(p)), \mathbb{Z}/p\mathbb{Z}) = 0 \) for \(i \geq 2 \). For \(i = 1 \) we have a natural isomorphism

\[
H^1(G(\mathbb{Q}_{S \cup \{\ell\}}(p)/\mathbb{Q}_S(p)), \mathbb{Z}/p\mathbb{Z}) \cong \bigoplus_{p \in S_l(\mathbb{Q}_S(p))} H^1(T_p(\mathbb{Q}_{S \cup \{\ell\}}(p))/\mathbb{Q}_S(p), \mathbb{Z}/p\mathbb{Z}),
\]

where \(S_l(\mathbb{Q}_S(p)) \) denotes the set of primes of \(\mathbb{Q}_S(p) \) dividing \(\ell \). In particular, \(G(\mathbb{Q}_{S \cup \{\ell\}}(p)/\mathbb{Q}_S(p)) \) is a free pro-\(p \)-group.
Proof. Since ℓ does not split completely in \(\mathbb{Q}_\ell(p)/\mathbb{Q} \) and since \(cdG_S(p) = 2 \), the decomposition group of ℓ in \(\mathbb{Q}_\ell(p)/\mathbb{Q} \) is a non-trivial and torsion-free quotient of \(\mathbb{Z}_p \cong G(\mathbb{Q}_\ell^\text{et}/\mathbb{Q}_\ell) \). Therefore \(\mathbb{Q}_\ell(p) \) realizes the maximal unramified \(p \)-extension of \(\mathbb{Q}_\ell \). We consider the scheme \(X = \text{Spec}(\mathbb{Z}) - S \) and its universal \(p \)-covering \(\tilde{X} \) whose field of functions is \(\mathbb{Q}_\ell(p) \). Let \(Y \) be the subscheme of \(\tilde{X} \) obtained by removing all primes of residue characteristic \(\ell \). We consider the étale excision sequence for the pair \((\tilde{X}, Y)\). By Theorem 3.2, we have \(H^i_{\text{et}}(\tilde{X}, \mathbb{Z}/p\mathbb{Z}) = 0 \) for \(i > 0 \), which implies isomorphisms

\[
H^i_{\text{et}}(Y, \mathbb{Z}/p\mathbb{Z}) \sim \bigoplus_{p|\ell} H^{i+1}_{\text{et}}(Y^h_p, \mathbb{Z}/p\mathbb{Z})
\]

for \(i \geq 1 \). By Lemma 6.1, we obtain \(H^i_{\text{et}}(Y, \mathbb{Z}/p\mathbb{Z}) = 0 \) for \(i \geq 2 \). The universal \(p \)-covering \(\tilde{Y} \) of \(Y \) has \(\mathbb{Q}_{S \cup \{\ell\}}(p) \) as its function field, and the Hochschild-Serre spectral sequence for \(\tilde{Y}/Y \) yields an inclusion

\[
H^2(G(\mathbb{Q}_{S \cup \{\ell\}}(p)/\mathbb{Q}_S(p)), \mathbb{Z}/p\mathbb{Z}) \hookrightarrow H^2_{\text{et}}(Y, \mathbb{Z}/p\mathbb{Z}) = 0.
\]

Hence \(G(\mathbb{Q}_{S \cup \{\ell\}}(p)/\mathbb{Q}_S(p)) \) is a free pro-\(p \)-group and for \(H^1 \) we obtain

\[
H^1(G(\mathbb{Q}_{S \cup \{\ell\}}(p)/\mathbb{Q}_S(p)), \mathbb{Z}/p\mathbb{Z}) \sim H^1_{\text{et}}(Y, \mathbb{Z}/p\mathbb{Z}) \cong \bigoplus_{p \in S(\mathbb{Q}_S(p))} H^1(G(\mathbb{Q}_S(p)_p(\mathbb{Q}_S(p)), \mathbb{Z}/p\mathbb{Z}).
\]

This shows that each \(p \mid \ell \) ramifies in \(\mathbb{Q}_{S \cup \{\ell\}}(p)/\mathbb{Q}_S(p) \), and since the Galois group is free, \(\mathbb{Q}_{S \cup \{\ell\}}(p) \) realizes the maximal \(p \)-extension of \(\mathbb{Q}_S(p)_p \). In particular,

\[
H^1(G(\mathbb{Q}_S(p)_p(\mathbb{Q}_S(p)), \mathbb{Z}/p\mathbb{Z}) \cong H^1(T_p(\mathbb{Q}_{S \cup \{\ell\}}(p)/\mathbb{Q}_S(p)), \mathbb{Z}/p\mathbb{Z})
\]

for all \(p \mid \ell \), which finishes the proof.

Let us mention in passing that the above calculations imply the validity of the following arithmetic form of Riemann’s existence theorem.

Theorem 6.3. Let \(p \) be an odd prime number and let \(S \) be a finite set of prime numbers congruent to 1 modulo \(p \) such that \(cdG_S(p) = 2 \). Let \(T \supset S \) be another set of prime numbers congruent to 1 modulo \(p \). Assume that all \(\ell \in T \setminus S \) do not split completely in the extension \(\mathbb{Q}_S(p)/\mathbb{Q} \). Then the inertia groups in \(\mathbb{Q}_T(p)/\mathbb{Q}_S(p) \) of all primes \(p \in T \setminus S(\mathbb{Q}_S(p)) \) are infinite cyclic and the natural homomorphism

\[
\phi : \bigstar_{p \in T \setminus S(\mathbb{Q}_S(p))} T_p(\mathbb{Q}_T(p)/\mathbb{Q}_S(p)) \longrightarrow G(\mathbb{Q}_T(p)/\mathbb{Q}_S(p))
\]

is an isomorphism.

Remark: A similar theorem holds in the case that \(S \) contains \(p \), see [NSW], Theorem 10.5.1.

Proof. By Proposition 6.2 and by the calculation of the cohomology of a free product ([NSW], 4.3.10 and 4.1.4), \(\phi \) is a homomorphism between free pro-\(p \)-groups which induces an isomorphism on mod \(p \) cohomology. Therefore \(\phi \) is an isomorphism.
Proof of theorem 2.3. We consider the Hochschild-Serre spectral sequence

\[E_2^{ij} = H^i(G_S(p), H^j(G_{Q_{S \cup \{ \ell \}}}(p)/Q_S(p)), \mathbb{Z}/p\mathbb{Z}) \Rightarrow H^{i+j}(G_{Q_{S \cup \{ \ell \}}}(p), \mathbb{Z}/p\mathbb{Z}). \]

By Proposition 6.2, we have \(E_2^{ij} = 0 \) for \(j \geq 2 \) and

\[H^1(G_{Q_{S \cup \{ \ell \}}}(p)/Q_S(p)), \mathbb{Z}/p\mathbb{Z}) \cong \bigoplus_{p|\ell} H^1(T_p(Q_{S \cup \{ \ell \}}(p)/Q_S(p)), \mathbb{Z}/p\mathbb{Z}) \]

\[\cong \Ind_{G_S(p)}^{G_{\ell}} H^1(T_\ell(Q_{S \cup \{ \ell \}}(p)/Q_S(p)), \mathbb{Z}/p\mathbb{Z}), \]

where \(G_\ell \cong \mathbb{Z}_p \) is the decomposition group of \(\ell \) in \(G_S(p) \). We obtain \(E_2^{1,1} = 0 \) for \(i \geq 2 \). By assumption, \(cd G_S(p) = 2 \), hence \(E_2^{0,j} = 0 \) for \(j \geq 3 \). This implies \(H^1(G_{Q_{S \cup \{ \ell \}}}(p), \mathbb{Z}/p\mathbb{Z}) = 0 \), and hence \(cd G_{Q_{S \cup \{ \ell \}}}(p) \leq 2 \). Finally, the decomposition group of \(\ell \) in \(G_{Q_{S \cup \{ \ell \}}}(p) \) is full, i.e. of cohomological dimension 2. Therefore, \(cd G_{Q_{S \cup \{ \ell \}}}(p) = 2 \).

We obtain the following

Corollary 6.4. Let \(p \) be an odd prime number and let \(S \) be a finite set of prime numbers congruent to 1 modulo \(p \). Let \(\ell \notin S \) be another prime number congruent to 1 modulo \(p \). Assume that there exists a prime number \(q \in S \) such that the order of \(\ell \) in \(\mathbb{Z}/q\mathbb{Z} \) is divisible by \(p \) (e.g. \(\ell \) is not a \(p \)-th power modulo \(q \)). Then \(cd G_S(p) = 2 \) implies \(cd G_{Q_{S \cup \{ \ell \}}}(p) = 2 \).

Proof. Let \(K_q \) be the maximal subextension of \(p \)-power degree in \(\mathbb{Q}(\mu_q)/\mathbb{Q} \). Then \(K_q \) is a non-trivial finite subextension of \(\mathbb{Q} \) in \(Q_S(p) \) and \(\ell \) does not split completely in \(K_q/\mathbb{Q} \). Hence the result follows from Theorem 2.3. \(\square \)

Remark. One can sharpen Corollary 6.4 by finding weaker conditions on a prime \(\ell \) not to split completely in \(Q_S(p) \).

7 Proof of Theorem 2.1

In this section we prove Theorem 2.1. We start by recalling the notion of the linking diagram attached to \(S \) and \(p \) from [La]. Let \(p \) be an odd prime number and let \(S \) be a finite set of prime numbers congruent to 1 modulo \(p \). Let \(\Gamma(S)(p) \) be the directed graph with vertices the primes of \(S \) and edges the pairs \((r, s) \in S \times S \) with \(r \) not a \(p \)-th power modulo \(s \). We now define a function \(\ell \) on the set of pairs of distinct primes of \(S \) with values in \(\mathbb{Z}/p\mathbb{Z} \) by first choosing a primitive root \(g_s \) modulo \(s \) for each \(s \in S \). Let \(\ell_{rs} = \ell(r, s) \) be the image in \(\mathbb{Z}/p\mathbb{Z} \) of any integer \(c \) satisfying

\[r \equiv g_s^{-c} \mod s. \]

The residue class \(\ell_{rs} \) is well-defined since \(c \) is unique modulo \(s - 1 \) and \(p \mid s - 1 \).

Note that \((r, s) \) is an edge of \(\Gamma(S)(p) \) if and only if \(\ell_{rs} \neq 0 \). We call \(\ell_{rs} \) the linking number of the pair \((r, s) \). This number depends on the choice of primitive roots, if \(g \) is another primitive root modulo \(s \) and \(g_s \equiv g^a \mod s \), then the linking number attached to \((r, s) \) would be multiplied by \(a \) if \(g \) were used instead of \(g_s \). The directed graph \(\Gamma(S)(p) \) together with \(\ell \) is called the linking diagram attached to \(S \) and \(p \).
Definition 7.1. We call a finite set S of prime numbers congruent to 1 modulo p strictly circular with respect to p (and $\Gamma(S)(p)$ a non-singular circuit), if there exists an ordering $S = \{q_1, \ldots, q_n\}$ of the primes in S such that the following conditions hold.

(a) The vertices q_1, \ldots, q_n of $\Gamma(S)(p)$ form a circuit $q_1q_2 \cdots q_nq_1$.

(b) If i, j are both odd, then q_iq_j is not an edge of $\Gamma(S)(p)$.

(c) If we put $\ell_{ij} = \ell(q_i, q_j)$, then

$$\ell_{12}\ell_{23} \cdots \ell_{n-1,n}\ell_{n1} \neq \ell_{1n}\ell_{21} \cdots \ell_{n,n-1}.$$

Note that condition (b) implies that n is even ≥ 4 and that (c) is satisfied if there is an edge q_iq_j of the circuit $q_1q_2 \cdots q_nq_1$ such that q_jq_i is not an edge of $\Gamma(S)(p)$. Condition (c) is independent of the choice of primitive roots since the condition can be written in the form

$$\frac{\ell_{1n}}{\ell_{n-1,n}}\frac{\ell_{21}}{\ell_{n1}} \cdots \frac{\ell_{n,n-1}}{\ell_{n-2,n-1}} \neq 1,$$

where each ratio in the product is independent of the choice of primitive roots.

If p is an odd prime number and if $S = \{q_1, \ldots, q_n\}$ is a finite set of prime numbers congruent to 1 modulo p, then, by a result of Koch [Ko], the group $G_S(p) = F/R$, where F is a free pro-p-group on generators x_1, \ldots, x_n and R is the minimal normal subgroup in F on generators r_1, \ldots, r_n, where

$$r_i \equiv x_i^{q_i-1}\prod_{j \neq i}[x_i, x_j]^{\ell_{ij}} \mod F_3.$$

Here F_3 is the third step of the lower p-central series of F and the ℓ_{ij} are the linking numbers for some choice of primitive roots. If S is strictly circular, Labute ([La], Theorem 1.6) shows that $G_S(p)$ is a so-called ‘mild’ pro-p-group, and, in particular, is of cohomological dimension 2 ([La], Theorem 1.2).

Proof of Theorem 2.1. By [La], Theorem 1.6, we have $cd G_T(p) = 2$. By assumption, we find a series of subsets

$$T = T_0 \subset T_1 \subset \cdots \subset T_r = S,$$

such that for all $i \geq 1$, the set $T_i \setminus T_{i-1}$ consists of a single prime number q congruent to 1 modulo p and there exists a prime number $q' \in T_{i-1}$ with q not a p-th power modulo q'. An inductive application of Corollary 6.4 yields the result.

Remark. Labute also proved some variants of his group theoretic result [La], Theorem 1.6. The same proof as above shows corresponding variants of Theorem 2.1, by replacing condition (i) by other conditions on the subset T as they are described in [La], §3.

A straightforward applications of Čebotarev’s density theorem shows that, given $\Gamma(S)(p)$, a prime number q congruent to 1 modulo p can be found with the additional edges of $\Gamma(S \cup \{q\})(p)$ arbitrarily prescribed (cf. [La], Proposition 6.1). We therefore obtain the following corollaries.

14
Corollary 7.2. Let \(p \) be an odd prime number and let \(S \) be a finite set of prime numbers congruent to 1 modulo \(p \), containing a strictly circular subset \(T \subset S \). Then there exists a prime number \(q \) congruent to 1 modulo \(p \) with
\[
\text{cd} G_{S \cup \{q\}}(p) = 2.
\]

Corollary 7.3. Let \(p \) be an odd prime number and let \(S \) be a finite set of prime numbers congruent to 1 modulo \(p \). Then we find a finite set \(T \) of prime numbers congruent to 1 modulo \(p \) such that
\[
\text{cd} G_{S \cup T}(p) = 2.
\]

References

