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Abstract: Let p be an odd prime number and let S be a finite set of prime numbers
congruent to 1 modulo p. We prove that the group GS(Q)(p) has cohomological
dimension 2 if the linking diagram attached to S and p satisfies a certain technical
condition, and we show that GS(Q)(p) is a duality group in these cases. Further-
more, we investigate the decomposition behaviour of primes in the extension QS(p)/Q
and we relate the cohomology of GS(Q)(p) to the étale cohomology of the scheme
Spec(Z)− S. Finally, we calculate the dualizing module.

1 Introduction

Let k be a number field, p a prime number and S a finite set of places of k.
The pro-p-group GS(k)(p) = G(kS(p)/k), i.e. the Galois group of the maximal
p-extension of k which is unramified outside S, contains valuable information
on the arithmetic of the number field k. If all places dividing p are in S,
then we have some structural knowledge on GS(k)(p), in particular, it is of
cohomological dimension less or equal to 2 (if p = 2 one has to require that
S contains no real place, [Sc3]), and it is often a so-called duality group, see
[NSW], X, §7. Furthermore, the cohomology of GS(k)(p) coincides with the
étale cohomology of the arithmetic curve Spec(Ok)− S in this case.

In the opposite case, when S contains no prime dividing p, only little is
known. By a famous theorem of Golod and Šafarevič, GS(k)(p) may be infinite.
A conjecture due to Fontaine and Mazur [FM] asserts that GS(k)(p) has no
infinite quotient which is an analytic pro-p-group. So far, nothing was known
on the cohomological dimension of GS(k)(p) and on the relation between its
cohomology and the étale cohomology of the scheme Spec(Ok)− S.

Recently, J. Labute [La] showed that pro-p-groups with a certain kind of
relation structure have cohomological dimension 2. By a result of H. Koch [Ko],
GS(Q)(p) has such a relation structure if the set of prime numbers S satisfies a
certain technical condition. In this way, Labute obtained first examples of pairs
(p, S) with p /∈ S and cd GS(Q)(p) = 2, e.g. p = 3, S = {7, 19, 61, 163}.

The objective of this paper is to use arithmetic methods in order to extend
Labute’s result. First of all, we weaken the condition on S which implies co-
homological dimension 2 (and strict cohomological dimension 3!) and we show
that GS(Q)(p) is a duality group in these cases. Furthermore, we investigate
the decomposition behaviour of primes in the extension QS(p)/Q and we relate
the cohomology of GS(Q)(p) to the étale cohomology of the scheme Spec(Z)−S.
Finally, we calculate the dualizing module.
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2 Statement of results

Let p be an odd prime number, S a finite set of prime numbers not containing
p and GS(p) = GS(Q)(p) the Galois group of the maximal p-extension QS(p)
of Q which is unramified outside S. Besides p, only prime numbers congruent
to 1 modulo p can ramify in a p-extension of Q, and we assume that all primes
in S have this property. Then GS(p) is a pro-p-group with n generators and n
relations, where n = #S (see lemma 3.1).

Inspired by some analogies between knots and prime numbers (cf. [Mo]),
J. Labute [La] introduced the notion of the linking diagram Γ(S)(p) attached
to p and S and showed that cd GS(p) = 2 if Γ(S)(p) is a ‘non-singular circuit’.
Roughly speaking, this means that there is an ordering S = {q1, q2, . . . , qn}
such that q1q2 · · · qnq1 is a circuit in Γ(S)(p) (plus two technical conditions, see
section 7 for the definition).

We generalize Labute’s result by showing

Theorem 2.1. Let p be an odd prime number and let S be a finite set of prime
numbers congruent to 1 modulo p. Assume there exists a subset T ⊂ S such
that the following conditions are satisfied.

(i) Γ(T )(p) is a non-singular circuit.

(ii) For each q ∈ S\T there exists a directed path in Γ(S)(p) starting in q and
ending with a prime in T .

Then cd GS(p) = 2.

Remarks. 1. Condition (ii) of Theorem 2.1 can be weakened, see section 7.
2. Given p, one can construct examples of sets S of arbitrary cardinality #S ≥ 4
with cd GS(p) = 2 .

Example. For p = 3 and S = {7, 13, 19, 61, 163}, the linking diagram has the
following shape
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The linking diagram associated to the subset T = {7, 19, 61, 163} is a non-
singular circuit, and we obtain cd GS(3) = 2 in this case.

The proof of Theorem 2.1 uses arithmetic properties of GS(p) in order to en-
large the set of prime numbers S without changing the cohomological dimension
of GS(p). In particular, we show
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Theorem 2.2. Let p be an odd prime number and let S be a finite set of prime
numbers congruent to 1 modulo p. Assume that GS(p) 6= 1 and cd GS(p) ≤ 2.
Then the following holds.

(i) cd GS(p) = 2 and scd GS(p) = 3.

(ii) GS(p) is a pro-p duality group (of dimension 2).

(iii) For all ` ∈ S, QS(p) realizes the maximal p-extension of Q`, i.e. (af-
ter choosing a prime above ` in Q̄), the image of the natural inclusion
QS(p) ↪→ Q`(p) is dense.

(iv) The scheme X = Spec(Z) − S is a K(π, 1) for p and the étale topology,
i.e. for any p-primary GS(p)-module M , considered as a locally constant
étale sheaf on X, the natural homomorphism

Hi(GS(p),M) → Hi
et(X, M)

is an isomorphism for all i.

Remarks. 1. If S consists of a single prime number, then GS(p) is finite, hence
#S ≥ 2 is necessary for the theorem. At the moment, we do not know examples
of cardinality 2 or 3.
2. The property asserted in Theorem 2.2 (iv) implies that the natural morphism
of pro-spaces

Xet(p) −→ K(GS(p), 1)

from the pro-p-completion of the étale homotopy type Xet of X (see [AM]) to
the K(π, 1)-pro-space attached to the pro-p-group GS(p) is a weak equivalence.
Since GS(p) is the fundamental group of Xet(p), this justifies the notion ‘K(π, 1)
for p and the étale topology’. If S contains the prime number p, this property
always holds (cf. [Sc2]).

We can enlarge the set of prime numbers S by the following

Theorem 2.3. Let p be an odd prime number and let S be a finite set of prime
numbers congruent to 1 modulo p. Assume that cd GS(p) = 2. Let ` /∈ S be
another prime number congruent to 1 modulo p which does not split completely
in the extension QS(p)/Q. Then cd GS∪{`}(p) = 2.

3 Comparison with étale cohomology

In this section we show that cohomological dimension 2 implies the K(π, 1)-
property.

Lemma 3.1. Let p be an odd prime number and let S be a finite set of prime
numbers congruent to 1 modulo p. Then

dimFpHi(GS(p),Z/pZ) =





1 if i = 0
#S if i = 1
#S if i = 2 .
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Proof. The statement for H0 is obvious. [NSW], Theorem 8.7.11 implies the
statement on H1 and yields the inequality

dimFp
H2(GS(p),Z/pZ) ≤ #S .

The abelian pro-p-group GS(p)ab has #S generators. There is only one Zp-
extension of Q, namely the cyclotomic Zp-extension, which is ramified at p.
Since p is not in S, GS(p)ab is finite, which implies that GS(p) must have at
least as many relations as generators. By [NSW], Corollary 3.9.5, the relation
rank of GS(p) is dimFpH2(GS(p),Z/pZ), which yields the remaining inequality
for H2.

Proposition 3.2. Let p be an odd prime number and let S be a finite set of
prime numbers congruent to 1 modulo p. If cd GS(p) ≤ 2, then the scheme
X = Spec(Z)− S is a K(π, 1) for p and the étale topology, i.e. for any discrete
p-primary GS(p)-module M , considered as locally constant étale sheaf on X, the
natural homomorphism

Hi(GS(p),M) → Hi
et(X, M)

is an isomorphism for all i.

Proof. Let L/k be a finite subextension of k in kS(p). We denote the normal-
ization of X in L by XL. Then Hi

et(XL,Z/pZ) = 0 for i > 3 ([Ma], §3, Proposi-
tion C). Since flat and étale cohomology coincide for finite étale group schemes
([Mi1], III, Theorem 3.9), the flat duality theorem of Artin-Mazur ([Mi2], III
Theorem 3.1) implies

H3
et(XL,Z/pZ) = H3

fl (XL,Z/pZ) ∼= H0
fl ,c(XL, µp)∨ = 0,

since a p-extension of Q cannot contain a primitive p-th root of unity. Let X̃ be
the universal (pro-)p-covering of X. We consider the Hochschild-Serre spectral
sequence

Epq
2 = Hp(GS(p),Hq

et(X̃,Z/pZ)) ⇒ Hp+q
et (X,Z/pZ).

Étale cohomology commutes with inverse limits of schemes if the transition maps
are affine (see [AGV], VII, 5.8). Therefore we have Hi

et(X̃,Z/pZ) = 0 for i ≥ 3,
and for i = 1 by definition. Hence Eij

2 = 0 unless i = 0, 2. Using the assumption
cd GS(p) ≤ 2, the spectral sequence implies isomorphisms Hi(GS(p),Z/pZ) ∼→
Hi

et(X,Z/pZ) for i = 0, 1 and a short exact sequence

0 → H2(GS(p),Z/pZ)
φ→ H2

et(X,Z/pZ) → H2
et(X̃,Z/pZ)GS(p) → 0.

Let X̄ = Spec(Z). By the flat duality theorem of Artin-Mazur, we have an
isomorphism H2

et(X̄,Z/pZ) ∼= H1
fl (X̄, µp)∨. The flat Kummer sequence 0 →

µp → Gm → Gm → 0, together with H0
fl (X̄,Gm)/p = 0 = pH

1
fl (X̄,Gm) implies

H2
et(X̄,Z/pZ) = 0. Furthermore, H3

et(X̄,Z/pZ) ∼= H0
fl (X̄, µp)∨ = 0. Consider-

ing the étale excision sequence for the pair (X̄,X), we obtain an isomorphism

H2
et(X,Z/pZ) ∼−→

⊕

`∈S

H3
` (Spec(Z`),Z/pZ).
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The local duality theorem ([Mi2], II, Theorem 1.8) implies

H3
` (Spec(Z`),Z/pZ) ∼= HomSpec(Z`)(Z/pZ,Gm)∨.

All primes ` ∈ S are congruent to 1 modulo p by assumption, hence Z` contains a
primitive p-th root of unity for ` ∈ S, and we obtain dimFpH2

et(X,Z/pZ) = #S.
Now Lemma 3.1 implies that φ is an isomorphism. We therefore obtain

H2
et(X̃,Z/pZ)GS(p) = 0.

Since GS(p) is a pro-p-group, this implies ([NSW], Corollary 1.7.4) that

H2
et(X̃,Z/pZ) = 0.

We conclude that the Hochschild-Serre spectral sequence degenerates to a series
of isomorphisms

Hi(GS(p),Z/pZ) ∼−→ Hi
et(X,Z/pZ), i ≥ 0.

If M is a finite p-primary GS(p)-module, it has a composition series with graded
pieces isomorphic to Z/pZ with trivial GS(p)-action ([NSW], Corollary 1.7.4),
and the statement of the proposition for M follows from that for Z/pZ and from
the five-lemma. An arbitrary discrete p-primary GS(p)-module is the filtered
inductive limit of finite p-primary GS(p)-modules, and the statement of the
proposition follows since group cohomology ([NSW], Proposition 1.5.1) and étale
cohomology ([AGV], VII, 3.3) commute with filtered inductive limits.

4 Proof of Theorem 2.2

In this section we prove Theorem 2.2. Let p be an odd prime number and
let S be a finite set of prime numbers congruent to 1 modulo p. Assume that
GS(p) 6= 1 and cd GS(p) ≤ 2.

Let U ⊂ GS(p) be an open subgroup. The abelianization Uab of U is a
finitely generated abelian pro-p-group. If Uab were infinite, it would have a
quotient isomorphic to Zp, which corresponds to a Zp-extension K∞ of the
number field K = QS(p)U inside QS(p). By [NSW], Theorem 10.3.20 (ii), a
Zp-extension of a number field is ramified at at least one prime dividing p. This
contradicts K∞ ⊂ QS(p) and we conclude that Uab is finite.

In particular, GS(p)ab is finite. Hence GS(p) is not free, and we obtain
cd GS(p) = 2. This shows the first part of assertion (i) of Theorem 2.2 and
assertion (iv) follows from Proposition 3.2.

By Lemma 3.1, we know that for each prime number ` ∈ S, the group
GS\{`}(p) is a proper quotient of GS(p), hence each ` ∈ S is ramified in the
extension QS(p)/Q. Let G`(QS(p)/Q) denote the decomposition group of `
in GS(p) with respect to some prolongation of ` to QS(p). As a subgroup of
GS(p), G`(QS(p)/Q) has cohomological dimension less or equal to 2. We have
a natural surjection G(Q`(p)/Q`) ³ G`(QS(p)/Q). By [NSW], Theorem 7.5.2,
G(Q`(p)/Q`) is the pro-p-group on two generators σ, τ subject to the relation
στσ−1 = τ `. τ is a generator of the inertia group and σ is a Frobenius lift.
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Therefore, G(Q`(p)/Q`) has only three quotients of cohomological dimension
less or equal to 2: itself, the trivial group and the Galois group of the maximal
unramified p-extension of Q`. Since ` is ramified in the extension QS(p)/Q, the
map G(Q`(p)/Q`) ³ G`(QS(p)/Q) is an isomorphism, and hence QS(p) realizes
the maximal p-extension of Q`. This shows statement (iii) of Theorem 2.2.

Next we show the second part of statement (i). By [NSW], Proposition
3.3.3, we have scd GS(p) ∈ {2, 3}. Assume that scd G = 2. We consider the
GS(p)-module

D2(Z) = lim−→
U

Uab,

where the limit runs over all open normal subgroups U ¢ GS(p) and for V ⊂
U the transition map is the transfer Ver : Uab → V ab, i.e. the dual of the
corestriction map cor : H2(V,Z) → H2(U,Z) (see [NSW], I, §5). By [NSW],
Theorem 3.6.4 (iv), we obtain GS(p)ab = D2(Z)GS(p). On the other hand,
Uab is finite for all U and the group theoretical version of the Principal Ideal
Theorem (see [Ne], VI, Theorem 7.6) implies D2(Z) = 0. Hence GS(p)ab = 0
which implies GS(p) = 1 producing a contradiction. Hence scd GS(p) = 3
showing the remaining assertion of Theorem 2.2, (i).

It remains to show that GS(p) is a duality group. By [NSW], Theorem 3.4.6,
it suffices to show that the terms

Di(GS(p),Z/pZ) = lim−→
U

Hi(U,Z/pZ)∨

are trivial for i = 0, 1. Here U runs through the open subgroups of GS(p),
∨ denotes the Pontryagin dual and the transition maps are the duals of the
corestriction maps. For i = 0, and V $ U , the transition map

cor∨ : Z/pZ = H0(V,Z/pZ)∨ → H0(U,Z/pZ)∨ = Z/pZ

is multiplication by (U : V ), hence zero. Since GS(p) is infinite, we obtain
D0(GS(p),Z/pZ) = 0. Furthermore,

D1(GS(p),Z/pZ) = lim−→
U

Uab/p = 0

by the Principal Ideal Theorem. This finishes the proof of Theorem 2.2.

5 The dualizing module

Having seen that GS(p) is a duality group under certain conditions, it is inter-
esting to calculate its dualizing module. The aim of this section is to prove

Theorem 5.1. Let p be an odd prime number and let S be a finite set of prime
numbers congruent to 1 modulo p. Assume that cd GS(p) = 2. Then we have a
natural isomorphism

D ∼= torp

(
CS(QS(p))

)

between the dualizing module D of GS(p) and the p-torsion submodule of the
S-idèle class group of QS(p). There is a natural short exact sequence

0 →
⊕

`∈S

Ind G`

GS(p) µp∞(Q`(p)) → D → ES(QS(p))⊗Qp/Zp → 0,
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in which G` is the decomposition group of ` in GS(p) and ES(QS(p)) is the
group of S-units of the field QS(p).

Working in a more general situation, let S be a non-empty set of primes of
a number field k. We recall some well-known facts from class field theory and
we give some modifications for which we do not know a good reference.

By kS we denote the maximal extension of k which is unramified outside S and
we denote G(kS/k) by GS(k). For an intermediate field k ⊂ K ⊂ kS , let CS(K)
denote the S-idèle class group of K. If S contains the set S∞ of archimedean
primes of k, then the pair (GS(k), CS(kS)) is a class formation, see [NSW],
Proposition 8.3.8. This remains true for arbitrary non-empty S, as can be seen
as follows: We have the class formation

(GS(k), CS∪S∞(kS)).

Since kS is closed under unramified extensions, the Principal Ideal Theorem
implies ClS(kS) = 0. Therefore we obtain the exact sequence

0 →
⊕

v∈S∞\S(k)

IndGS(k)k
×
v → CS∪S∞(kS) → CS(kS) → 0.

Since the left term is a cohomologically trivial GS(k)-module, we obtain that
(GS(k), CS(kS)) is a class formation. Finally, if p is a prime number, then also
(GS(k)(p), CS(kS(p)) is a class formation.

Remark: An advantage of considering the class formation (GS(k)(p), CS(kS(p))
for sets S of primes which do not contain S∞ is that we get rid of ‘redundancy
at infinity’. A technical disadvantage is the absence of a reasonable Hausdorff
topology on the groups CS(K) for finite subextensions K of k in kS(p).

Next we calculate the module

D2(Zp) = lim−→
U,n

H2(U,Z/pnZ)∨,

where n runs through all natural numbers, U runs through all open subgroups
of GS(k)(p) and ∨ is the Pontryagin dual. If cd GS(p) = 2, then D2(Zp) is the
dualizing module D of GS(k)(p).

Theorem 5.2. Let k be a number field, p an odd prime number and S a finite
non-empty set of non-archimedean primes of k such that the norm N(p) of
p is congruent to 1 modulo p for all p ∈ S. Assume that the scheme X =
Spec(Ok) − S is a K(π, 1) for p and the étale topology and that kS(p) realizes
the maximal p-extension kp(p) of kp for all p ∈ S. Then GS(p) is a pro-p-
duality group of dimension 2 with dualizing module

D ∼= torp

(
CS(kS(p)

)
.

Remarks. 1. In view of Theorem 2.2, Theorem 5.2 shows Theorem 5.1.
2. In the case when S contains all primes dividing p, a similar result has been
proven in [NSW], X, §5.
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Proof of Theorem 5.2. We consider the schemes X̄ = Spec(Ok) and X = X̄ −S
and we denote the natural embedding by j : X → X̄. As in the proof of
Proposition 3.2, the flat duality theorem of Artin-Mazur implies

H3
et(X,Z/pZ) ∼= H0

fl ,c(X, µp)∨,

and the group on the right vanishes since kp contains a primitive p-th root of
unity for all p ∈ S. The K(π, 1)-property yields cd GS(k)(p) ≤ 2. Since kS(p)
realizes the maximal p-extension kp(p) of kp for all p ∈ S, the inertia groups of
these primes are of cohomological dimension 2 and we obtain cd GS(p) = 2.

Next we consider, for some n ∈ N, the constant sheaf Z/pnZ on X. The
duality theorem of Artin-Verdier shows an isomorphism

Hi
et(X̄, j!(Z/pnZ)) = Hi

c(X,Z/pnZ) ∼= Ext3−i
X (Z/pnZ,Gm)∨.

For p ∈ S, a standard calculation (see, e.g., [Mi2], II, Proposition 1.1) shows

Hi
p(X̄, j!(Z/pnZ) ∼= Hi−1(kp,Z/pnZ),

where kp is (depending on the readers preference) the henselization or the com-
pletion of k at p. The excision sequence for the pair (X̄,X) and the sheaf
j!(Z/pnZ) therefore implies a long exact sequence

(∗) · · · → Hi
et(X,Z/pnZ) →

⊕

p∈S

Hi(kp,Z/pnZ) → Ext2−i
X (Z/pnZ,Gm)∨ → · · ·

The local duality theorem ([NSW], Theorem 7.2.6) yields isomorphisms

Hi(kp,Z/pnZ)∨ ∼= H2−i(kp, µpn)

for all i ∈ Z. Furthermore,

Ext0X(Z/pnZ,Gm) = H0(k, µpn).

We denote by ES(k) and ClS(k) the group of S-units and the S-ideal class group
of k, respectively. By Br(X), we denote the Brauer group of X. The short exact
sequence 0 → Z→ Z→ Z/pnZ→ 0 together with

Exti
X(Z,Gm) = Hi

et(X,Gm) =





ES(k) for i = 0
ClS(k) for i = 1
Br(X) for i = 2

and the Hasse principle for the Brauer group implies exact sequences

0 → ES(k)/pn → Ext1X(Z/pnZ,Gm) → pnClS(k) → 0

and
0 → ClS(k)/pn → Ext2X(Z/pnZ,Gm) →

⊕

p∈S

pnBr(kp).

The same holds, if we replace X by its normalization XK in a finite extension
K of k in kS(p). Now we go to the limit over all such K. Since kS(p) realizes
the maximal p-extension of kp for all p ∈ S, we have

lim−→
K

⊕

p∈S(K)

Hi(Kp,Z/pnZ)∨ = lim−→
K

⊕

p∈S(K)

Hi(Kp, µpn) = 0
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for i ≥ 1 and
lim−→
K

⊕

p∈S(K)

pnBr(Kp) = 0.

The Principal Ideal Theorem implies ClS(kS(p))/p = 0 and since this group is
a torsion group, its p-torsion part is trivial. Going to the limit over the exact
sequences (∗) for all XK , we obtain Di(Z/pZ) = 0 for i = 0, 1, hence GS(k)(p)
is a duality group of dimension 2. Furthermore, we obtain the exact sequence

0 → torp

(
ES(kS(p))

) →
⊕

p∈S

Ind Gp

GS(k)(p) torp

(
kp(p)×

) →

D → ES(kS(p))⊗Qp/Zp → 0.

Let U ⊂ GS(k)(p) be an open subgroup and put K = kS(p)U . The invariant
map

invK : H2(U,CS(kS(p))) → Q/Z
induces a pairing

HomU (Z/pnZ, CS(kS(p)))×H2(U,Z/pnZ) ∪→ H2(U,CS(K)) invK→ Q/Z,

and therefore a compatible system of maps

pnCS(K) → H2(U,Z/pnZ)∨

for all U and n. In the limit, we obtain a natural map

φ : torp

(
CS(kS(p)

) −→ D.

By our assumptions, the idèle group JS(kS(p)) is p-divisible. We therefore
obtain the exact sequence

0 → torp

(
ES(kS(p))

) →
⊕

p∈S

Ind Gp

GS(k)(p) torp

(
kp(p)×

) →

torp

(
CS(kS(p))

) → ES(kS(p))⊗Qp/Zp → 0

which, via the just constructed map φ, compares to the similar sequence with
D above. Hence φ is an isomorphism by the five lemma.

Finally, without any assumptions on GS(k)(p), we calculate the GS(k)(p)-
module D2(Zp) as a quotient of torp

(
CS(kS(p))

)
by a subgroup of universal

norms. We therefore can interpret Theorem 5.2 as a vanishing statement on
universal norms.

Let us fix some notation. If G is a profinite group and if M is a G-module, we
denote by pnM the submodule of elements annihilated by pn. By NG(M) ⊂ MG

we denote the subgroup of universal norms, i.e.

NG(M) =
⋂

U

NG/U (MU ),

where U runs through the open normal subgroups of G and NG/U (MU ) ⊂ MG

is the image of the norm map

N : MU → MG, m 7→
∑

σ∈G/U

σm.

9



Proposition 5.3. Let S be a non-empty finite set of non-archimedean primes
of k and let p be an odd prime number such that S contains no prime dividing p.
Then

D2(GS(k)(p),Zp) ∼= lim−→
K,n

pnCS(K)/NG(kS(p)/K)(pnCS(K)),

where n runs through all natural numbers and K runs through all finite subex-
tension of k in kS(p).

Proof. We want to use Poitou’s duality theorem ([Sc2], Theorem 1). But the
class module CS(kS(p)) is not level-compact and we cannot apply the theorem
directly. Instead, we consider the level-compact class formation

(
GS(k)(p), C0

S∪S∞(kS(p))
)
,

where C0
S∪S∞(kS(p)) ⊂ CS∪S∞(kS(p)) is the subgroup of idèle classes of norm 1.

By [Sc2], Theorem 1, we have for all natural numbers n and all finite subexten-
sions K of k in kS(p) a natural isomorphism

H2(GS(K)(p),Z/pnZ)∨ ∼= Ĥ0(GS(K)(p), pnC0
S∪S∞(kS(p))),

where Ĥ0 is Tate-cohomology in dimension 0 (cf. [Sc2]). The exact sequence

0 →
⊕

v∈S∞(K)

K×
v → CS∪S∞(K) → CS(K) → 0

and the fact that K×
v is p-divisible for archimedean v, implies for all n and all

finite subextensions K of k in kS(p) an exact sequence of finite abelian groups

0 →
⊕

v∈S∞(K)

µpn(Kv) → pnCS∪S∞(K) → pnCS(K) → 0.

[Sc2], Proposition 7 therefore implies isomorphisms

Ĥ0(GS(K)(p), pnCS∪S∞(kS(p))) ∼= Ĥ0(GS(K)(p), pnCS(kS(p)))

for all n and K. Furthermore, the exact sequence

0 → C0
S∪S∞(K) → CS∪S∞(K)

| |→ R×+ → 0

shows pnC0
S∪S∞(K)) = pnCS∪S∞(K)) for all n and all finite subextensions K of

k in kS(p). Finally, [Sc2], Lemma 5 yields isomorphisms

Ĥ0(GS(K)(p), pnCS(kS(p))) ∼= pnCS(K)/NG(kS(p)/K)(pnCS(K)).

Going to the limit over all n and K, we obtain the statement of the Proposition.
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6 Going up

The aim of this section is to prove Theorem 2.3. We start with the following
lemma.

Lemma 6.1. Let ` 6= p be prime numbers. Let Qh
` be the henselization of Q at

` and let K be an algebraic extension of Qh
` containing the maximal unramified

p-extension (Qh
` )nr,p of Qh

` . Let Y = Spec(OK), and denote the closed point of
Y by y. Then the local étale cohomology group Hi

y(Y,Z/pZ) vanishes for i 6= 2
and we have a natural isomorphism

H2
y (Y,Z/pZ) ∼= H1(G(K(p)/K),Z/pZ).

Proof. Since K contains (Qh
` )nr,p, we have Hi

et(Y,Z/pZ) = 0 for i > 0. The
excision sequence shows Hi

y(Y,Z/pZ) = 0 for i = 0, 1 and Hi
y(Y,Z/pZ) ∼=

Hi−1(G(K̄/K),Z/pZ) for i ≥ 2. By [NSW], Proposition 7.5.7, we have

Hi−1(G(K̄/K),Z/pZ) = Hi−1(G(K(p)/K),Z/pZ)

But G(K(p)/K) is a free pro-p-group (either trivial or isomorphic to Zp). This
concludes the proof.

Let k be a number field and let S be finite set of primes of k. For a (possibly
infinite) algebraic extension K of k we denote by S(K) the set of prolongations
of primes in S to K. Now assume that M/K/k is a tower of pro-p Galois
extensions. We denote the inertia group of a prime p ∈ S(K) in the extension
M/K by Tp(M/K). For i ≥ 0 we write

⊕′

p∈S(K)

Hi(Tp(M/K),Z/pZ)
df
= lim−→

k′⊂K

⊕

p∈S(k′)

Hi(Tp(M/k′),Z/pZ),

where the limit on the right hand side runs through all finite subextensions k′

of k in K. The G(K/k)-module
⊕′

p∈S(K) Hi(Tp(M/K),Z/pZ) is the maximal
discrete submodule of the product

∏
p∈S(K) Hi(Tp(M/K),Z/pZ).

Proposition 6.2. Let p be an odd prime number and let S be a finite set of
prime numbers congruent to 1 modulo p such that cd GS(p) = 2. Let ` /∈ S be
another prime number congruent to 1 modulo p which does not split completely in
the extension QS(p)/Q. Then, for any prime p dividing ` in QS(p), the inertia
group of p in the extension QS∪{`}(p)/QS(p) is infinite cyclic. Furthermore,

Hi(G(QS∪{`}(p)/QS(p)),Z/pZ) = 0

for i ≥ 2. For i = 1 we have a natural isomorphism

H1(G(QS∪{`}(p)/QS(p)),Z/pZ) ∼=
⊕′

p∈S`(QS(p))

H1(Tp(QS∪{`}(p))/QS(p),Z/pZ),

where S`(QS(p)) denotes the set of primes of QS(p) dividing `. In particular,
G(QS∪{`}(p)/QS(p)) is a free pro-p-group.
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Proof. Since ` does not split completely in QS(p)/Q and since cdGS(p) = 2, the
decomposition group of ` in QS(p)/Q is a non-trivial and torsion-free quotient
of Zp

∼= G(Qnr,p
` /Q`). Therefore QS(p) realizes the maximal unramified p-

extension of Q`. We consider the scheme X = Spec(Z) − S and its universal
pro-p covering X̃ whose field of functions is QS(p). Let Y be the subscheme of X̃
obtained by removing all primes of residue characteristic `. We consider the étale
excision sequence for the pair (X̃, Y ). By Theorem 3.2, we have Hi

et(X̃,Z/pZ) =
0 for i > 0, which implies isomorphisms

Hi
et(Y,Z/pZ) ∼→

⊕′

p|`
Hi+1

p (Y h
p ,Z/pZ)

for i ≥ 1. By Lemma 6.1, we obtain Hi
et(Y,Z/pZ) = 0 for i ≥ 2. The universal

p-covering Ỹ of Y has QS∪{`}(p) as its function field, and the Hochschild-Serre
spectral sequence for Ỹ /Y yields an inclusion

H2(G(QS∪{`}(p)/QS(p)),Z/pZ) ↪→ H2
et(Y,Z/pZ) = 0.

Hence G(QS∪{`}(p)/QS(p)) is a free pro-p-group and for H1 we obtain

H1(G(QS∪{`}(p)/QS(p)),Z/pZ) ∼→ H1
et(Y,Z/pZ)

∼=
⊕′

p∈S`(QS(p))

H1(G(QS(p)p(p)/QS(p)p),Z/pZ).

This shows that each p | ` ramifies in QS∪{`}(p)/QS(p), and since the Galois
group is free, QS∪{`}(p) realizes the maximal p-extension of QS(p)p. In partic-
ular,

H1(G(QS(p)p(p)/QS(p)p),Z/pZ) ∼= H1(Tp(QS∪{`}(p)/QS(p)),Z/pZ)

for all p | `, which finishes the proof.

Let us mention in passing that the above calculations imply the validity of
the following arithmetic form of Riemann’s existence theorem.

Theorem 6.3. Let p be an odd prime number and let S be a finite set of
prime numbers congruent to 1 modulo p such that cd GS(p) = 2. Let T ⊃ S be
another set of prime numbers congruent to 1 modulo p. Assume that all ` ∈ T\S
do not split completely in the extension QS(p)/Q. Then the inertia groups in
QT (p)/QS(p) of all primes p ∈ T\S(QS(p)) are infinite cyclic and the natural
homomorphism

φ : ∗
p∈T\S(QS(p))

Tp(QT (p)/QS(p)) −→ G(QT (p)/QS(p))

is an isomorphism.

Remark: A similar theorem holds in the case that S contains p, see [NSW],
Theorem 10.5.1.

Proof. By Proposition 6.2 and by the calculation of the cohomology of a free
product ([NSW], 4.3.10 and 4.1.4), φ is a homomorphism between free pro-p-
groups which induces an isomorphism on mod p cohomology. Therefore φ is an
isomorphism.
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Proof of theorem 2.3. We consider the Hochschild-Serre spectral sequence

Eij
2 = Hi(GS(p),Hj(G(QS∪{`}(p)/QS(p)),Z/pZ) ⇒ Hi+j(GS∪{`}(p),Z/pZ).

By Proposition 6.2, we have Eij
2 = 0 for j ≥ 2 and

H1(G(QS∪{`}(p)/QS(p)),Z/pZ) ∼=
⊕′

p|`
H1(Tp(QS∪{`}(p)/QS(p)),Z/pZ)

∼= IndG`

GS(p)H
1(T`(QS∪{`}(p)/QS(p)),Z/pZ),

where G`
∼= Zp is the decomposition group of ` in GS(p). We obtain Ei,1

2 = 0
for i ≥ 2. By assumption, cd GS(p) = 2, hence E0,j

2 = 0 for j ≥ 3. This
implies H3(GS∪{`}(p),Z/pZ) = 0, and hence cd GS∪{`}(p) ≤ 2. Finally, the
decomposition group of ` in GS∪{`}(p) is full, i.e. of cohomological dimension 2.
Therefore, cd GS∪{`}(p) = 2.

We obtain the following

Corollary 6.4. Let p be an odd prime number and let S be a finite set of
prime numbers congruent to 1 modulo p. Let ` /∈ S be a another prime number
congruent to 1 modulo p. Assume that there exists a prime number q ∈ S such
that the order of ` in (Z/qZ)× is divisible by p (e.g. ` is not a p-th power
modulo q). Then cd GS(p) = 2 implies cd GS∪{`}(p) = 2.

Proof. Let Kq be the maximal subextension of p-power degree in Q(µq)/Q.
Then Kq is a non-trivial finite subextension of Q in QS(p) and ` does not split
completely in Kq/Q. Hence the result follows from Theorem 2.3.

Remark. One can sharpen Corollary 6.4 by finding weaker conditions on a prime
` not to split completely in QS(p).

7 Proof of Theorem 2.1

In this section we prove Theorem 2.1. We start by recalling the notion of the
linking diagram attached to S and p from [La]. Let p be an odd prime number
and let S be a finite set of prime numbers congruent to 1 modulo p. Let
Γ(S)(p) be the directed graph with vertices the primes of S and edges the pairs
(r, s) ∈ S × S with r not a p-th power modulo s. We now define a function `
on the set of pairs of distinct primes of S with values in Z/pZ by first choosing
a primitive root gs modulo s for each s ∈ S. Let `rs = `(r, s) be the image in
Z/pZ of any integer c satisfying

r ≡ g−c
s mod s .

The residue class `rs is well-defined since c is unique modulo s− 1 and p | s− 1.
Note that (r, s) is an edge of Γ(S)(p) if and only if `rs 6= 0. We call `rs the linking
number of the pair (r, s). This number depends on the choice of primitive roots,
if g is another primitive root modulo s and gs ≡ ga mod s, then the linking
number attached to (r, s) would be multiplied by a if g were used instead of
gs. The directed graph Γ(S)(p) together with ` is called the linking diagram
attached to S and p.
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Definition 7.1. We call a finite set S of prime numbers congruent to 1 modulo
p strictly circular with respect to p (and Γ(S)(p) a non-singular circuit), if there
exists an ordering S = {q1, . . . , qn} of the primes in S such that the following
conditions hold.

(a) The vertices q1, . . . , qn of Γ(S)(p) form a circuit q1q2 · · · qnq1.

(b) If i, j are both odd, then qiqj is not an edge of Γ(S)(p).

(c) If we put `ij = `(qi, qj), then

`12`23 · · · `n−1,n`n1 6= `1n`21 · · · `n,n−1.

Note that condition (b) implies that n is even ≥ 4 and that (c) is satisfied if
there is an edge qiqj of the circuit q1q2 · · · qnq1 such that qjqi is not an edge of
Γ(S)(p). Condition (c) is independent of the choice of primitive roots since the
condition can be written in the form

`1n

`n−1,n

`21
`n1

`32
`12

· · · `n,n−1

`n−2,n−1
6= 1,

where each ratio in the product is independent of the choice of primitive roots.

If p is an odd prime number and if S = {q1, . . . , qn} is a finite set of prime
numbers congruent to 1 modulo p, then, by a result of Koch [Ko], the group
GS(p) has a minimal presentation GS(p) = F/R, where F is a free pro-p-
group on generators x1, . . . , xn and R is the minimal normal subgroup in F on
generators r1, . . . , rn, where

ri ≡ xqi−1
i

∏

j 6=i

[xi, xj ]`ij mod F3.

Here F3 is the third step of the lower p-central series of F and the `ij = `(qi, qj)
are the linking numbers for some choice of primitive roots. If S is strictly
circular, Labute ([La], Theorem 1.6) shows that GS(p) is a so-called ‘mild’ pro-
p-group, and, in particular, is of cohomological dimension 2 ([La], Theorem 1.2).

Proof of Theorem 2.1. By [La], Theorem 1.6, we have cd GT (p) = 2. By as-
sumption, we find a series of subsets

T = T0 ⊂ T1 ⊂ · · · ⊂ Tr = S,

such that for all i ≥ 1, the set Ti\Ti−1 consists of a single prime number q
congruent to 1 modulo p and there exists a prime number q′ ∈ Ti−1 with q not
a p-th power modulo q′. An inductive application of Corollary 6.4 yields the
result.

Remark. Labute also proved some variants of his group theoretic result [La],
Theorem 1.6. The same proof as above shows corresponding variants of Theo-
rem 2.1, by replacing condition (i) by other conditions on the subset T as they
are described in [La], §3.

A straightforward applications of Čebotarev’s density theorem shows that,
given Γ(S)(p), a prime number q congruent to 1 modulo p can be found with
the additional edges of Γ(S ∪ {q})(p) arbitrarily prescribed (cf. [La], Proposi-
tion 6.1). We therefore obtain the following corollaries.
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Corollary 7.2. Let p be an odd prime number and let S be a finite set of prime
numbers congruent to 1 modulo p, containing a strictly circular subset T ⊂ S.
Then there exists a prime number q congruent to 1 modulo p with

cd GS∪{q}(p) = 2.

Corollary 7.3. Let p be an odd prime number and let S be a finite set of prime
numbers congruent to 1 modulo p. Then we find a finite set T of prime numbers
congruent to 1 modulo p such that

cd GS∪T (p) = 2.
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