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1 Introduction
Let X be a (possibly singular) separated scheme of finite type over an algebraically closed
field k of characteristic p ≥ 0 and let m be a natural number. We construct a pairing
between the first mod m algebraic singular homology HS

1 (X,Z/mZ) and the first mod m
tame étale cohomology group H1

t (X,Z/mZ). For πt,ab1 (X) = H1
t (X,Q/Z)∗ we prove

the following analogue of Hurewicz’s theorem in algebraic topology:

Theorem 1.1. The induced homomorphism

recX : HS
1 (X,Z/mZ) −→ πt,ab1 (X)/m

is surjective. It is an isomorphism of finite abelian groups if (m, p) = 1, and for general m
if resolution of singularities holds for schemes of dimension ≤ dimX + 1 over k.

For p - m, the groups HS
1 (X,Z/mZ) and πt,ab1 (X)/m are known to be isomorphic by

the work of Suslin and Voevodsky [SV1]. Theorem 1.1 above provides an explicit isomor-
phism which extends to the case p | m (under resolution of singularities). Moreover, in the
last section we show that for p - m our isomorphism coincides with the one constructed in
[SV1].

The motivation for constructing our pairing between the groups HS
1 (X,Z/mZ) and

H1
t (X,Z/mZ) comes from topology: For a locally contractible Hausdorff space X and a

natural number m, the canonical duality pairing

〈·, ·〉 : Hsing
1 (X,Z/mZ)×H1(X,Z/mZ) −→ Z/mZ,

between singular homology and sheaf cohomology with mod m coefficients can be given
explicitly in the following way: represent b ∈ H1(X,Z/mZ) by a Z/mZ-torsor T → X

and a ∈ Hsing
1 (X,Z/mZ) by a 1-cycle α in the singular complex of X . Then

〈a, b〉 = Φ−1
par ◦ Φtaut ∈ Z/mZ, where Φtaut ,Φpar : α∗(T )|0

∼→ α∗(T )|1

are the isomorphisms between the fibres over 0 and 1 of the pull-back torsor α∗(T ) →
∆1 = [0, 1] given tautologically (0∗α = 1∗α) and by parallel transport (every Z/mZ-
torsor on [0, 1] is trivial).
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For a variety X , the pairing between HS
1 (X,Z/mZ) and H1

t (X,Z/mZ) inducing the
homomorphism recX of our Main Theorem 1.1 will be constructed in the same way. How-
ever, 1-cycles in the algebraic singular complex are not linear combinations of morphisms
but finite correspondences from ∆1 to X . In order to mimic the above construction, we
thus have to define the pull-back of a torsor along a finite correspondence, which requires
the construction of the push-forward torsor along a finite surjective morphism.

To prove Theorem 1.1, we first consider the case of a smooth curve C. If A is the
Albanese variety of C, then we have isomorphisms

HS
1 (C,Z/mZ)

δ−→
∼ mH

S
0 (C,Z) ∼= mA(k). (1)

The first isomorphism follows from the coefficient sequence together with the divisibility
of HS

1 (C,Z), and the second from the Abel-Jacobi theorem. On the other hand,

Hom(mA(k),Z/mZ)
τ−→
∼

H1
t (C,Z/mZ). (2)

This follows because the maximal étale subcovering Ã → A of the m-multiplication map
A m→ A is the quotient of A by the connected component of the finite group scheme mA,
and the maximal abelian tame étale covering of C with Galois group annihilated by m is
C̃ := C ×A Ã. The heart of the proof of Theorem 1.1 for smooth curves is to show that
under the above identifications, our pairing agrees with the evaluation map.

We then show surjectivity of recX for general X by reducing to the case of smooth
curves. Finally, we use duality theorems to show that both sides of recX have the same
order: For the p-primary part, we use resolution of singularities to reduce to the smooth
projective case considered in [Ge3]. For (m, char(k)) = 1, Suslin and Voevodsky [SV1]
construct an isomorphism

αX : H1
et(X,Z/mZ)

∼→ H1
S(X,Z/mZ).

Hence the source and the target of recX have the same order and therefore recX is an
isomorphism. In Section 7 we show that recX is dual to the map αX . Thus, for char(k) -
m, our construction gives an explicit description of the Suslin-Voevodsky isomorphism
αX , which zig-zags through Ext-groups in various categories and is difficult to understand.

The authors thank Takeshi Saito and Changlong Zhong for discussions during the early
stages of the project. It is a pleasure to thank Johannes Anschütz whose comments on an
earlier version of this paper led to a substantial simplification of the proof of Theorem 4.1.

2 Torsors and finite correspondences

All occurring schemes in this section are separated schemes of finite type over a field k.
For any abelian group A and a finite surjective morphism π : Z → X with Z integral and
X normal, connected, we have transfer maps

π∗ : Hi
et(Z,A)→ Hi

et(X,A)

for all i ≥ 0 (see [MVW], 6.11, 6.21). The groupH1
et(Z,A) classifies isomorphism classes

of étale A-torsors (i.e., principal homogeneous spaces) over the scheme Z. We are going
to construct a functor

π∗ : PHS(Z,A) −→ PHS(X,A)

from the category of étale A-torsors on Z to the category of étale A-torsors on X , which
induces the transfer map π∗ : H1

et(Z,A)→ H1
et(X,A) above on isomorphism classes.
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We recall how to add and subtract torsors. For an abelian group A and A-torsors T1, T2

on a scheme Y , define
T1 + T2

to be the quotient scheme of T1 ×Y T2 by the action of A given by (t1, t2) + a = (t1 +
a, t2 − a). It carries the structure of an A-torsor by setting

(t1, t2) + a := (t1 + a, t2) (= (t1, t2 + a)).

The functor

+ : PHS(Y,A)× PHS(Y,A) −→ PHS(Y,A), (T1, T2) 7−→ T1 + T2,

lifts the addition in H1
et(Y,A) to torsors (cf. [Mi], III, Rem. 4.8 (b)). Note that “+” is

associative and commutative up to natural functor isomorphisms. In particular, we can
multiply a torsor by any natural number m, putting m · T = T + · · · + T (m times). If
mA = 0, then we have a natural isomorphism of torsors

m · T ∼−→ Y ×A, (t1, . . . , tm) 7→ (t2 − t1) + · · ·+ (tm − t1) ∈ A, (3)

where Y × A is the trivial A-torsor on Y representing the constant sheaf A over Y . Here
ti − tj denotes the unique element a ∈ A with ti = tj + a.

Furthermore, given a torsor T , define (−T ) to be the torsor which is isomorphic to T
as a scheme and on which a ∈ A acts as −a. This yields a functor

(−1) : PHS(Y,A) −→ PHS(Y,A), T 7−→ (−T ),

which lifts multiplication by (−1) from H1
et(Y,A) to an endofunctor of PHS(Y,A). We

have a natural isomorphism of torsors

T + (−T )
∼−→ Y ×A, (t1, t2) 7→ t1 − t2 ∈ A. (4)

Now let π : Z → X be finite and surjective, Z integral, X normal, connected, and let
T be an A-torsor on Z. For every point x ∈ X , the base change Z ×X Xsh

x is a product of
strictly henselian local schemes. Therefore we find an étale cover (Ui → X)i∈I of X such
that T trivializes over the pull-back étale cover (π−1(Ui)→ Z)i∈I of Z.

Next choose a pseudo-Galois covering π̃ : Z̃ → X dominatingZ → X . Recall that this
means that k(Z̃)|k(X) is a normal field extension and that the natural map AutX(Z̃) →
Autk(X)(k(Z̃)) is bijective (cf. [SV1], Lemma 5.6). Let πin : Xin → X be the quotient
scheme Z̃/G, where G = AutX(Z̃). Then Xin is the normalization of X in the maximal
purely inseparable subextension k(X)in/k(X) of k(Z̃)/k(X). Consider the object

T̃ :=
∑

ϕ∈MorX(Z̃,Z)

ϕ∗(T ) ∈ PHS(Z̃, A),

which is defined up to unique isomorphism. Starting from any trivialization of T over
(π−1(Ui)→ Z)i∈I , we obtain a trivialization of the restriction of T̃ to (π̃−1(Ui)→ Z̃)i∈I
of the form

Ũ |π̃−1(Ui)
∼= π̃−1(Ui)×A,

where G = AutX(Z̃) acts on the right hand side in the canonical way on π̃−1(Ui) and
trivially on A. Therefore the quotient scheme T̃ /G is an A-torsor on Z̃/G = Xin in a
natural way. Since Xin → X is a topological isomorphism, T̃ /G comes by base change
from a unique A-torsor T ′ on X .
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Definition 2.1. The push-forward A-torsor π∗(T ) on X is defined by

π∗(T ) = [k(Z) : k(X)]in · T ′.

The assignment T 7→ π∗(T ) defines a functor

π∗ : PHS(Z,A) −→ PHS(X,A).

The functor π∗ is additive in the sense that it commutes with the functors “+” and “(−1)”
up to a natural functor isomorphism.

Let T ∈ PHS(Z,A) and assume that there exists a section s : Z → T to the projec-
tion T → Z (so T is trivial and s gives a trivialization). Let again π : Z → X be finite
and surjective, Z integral, X normal, connected. Then

T̃ :=
∑

ϕ∈MorX(Z̃,Z)

ϕ∗(T ) ∈ PHS(Z̃, A)

has the canonical section
∑
ϕ∈MorX(Z̃,Z) ϕ

∗(s) over Z̃. It descends to a section of T /G
over Z̃/G = Xin. Descending to X and multiplying by [k(Xin : k(X)], we obtain a
section

π∗(s) : X → π∗(T ).

In other words, we obtain a map

π∗ : Γ(Z, T ) −→ Γ(X,π∗(T ));

hence every trivialization of T gives a trivialization of π∗(T ) in a natural way.

In order to see that π∗ induces the transfer map π∗ : H1
et(Z,A) → H1

et(X,A) after
passing to isomorphism classes, we formulate the construction of π∗ on the level of Čech
1-cocycles. As explained above, we find an étale cover (Ui → X)i∈I such that T trivializes
over the étale cover (π−1(Ui) → Z)i∈I of Z. We fix a trivialization and obtain a Čech 1-
cocycle

a = (aij ∈ Γ(π−1(Ui ×X Uj), A))

over (π−1(Ui) → Z)i∈I which defines T . As before choose a pseudo-Galois covering
π̃ : Z̃ → X dominating Z → X . Now for all i, j consider the element∑

ϕ∈MorX(Z̃,Z)

ϕ∗(aij) ∈ Γ(π̃−1(Ui ×X Uj), A)

which, by Galois invariance, lies in

Γ(π−1
in (Ui ×X Uj), A) = Γ(Ui ×X Uj , A).

The Čech 1-cocycle given by

[k(Z) : k(X)]in ·
( ∑
ϕ∈MorX(Z̃,Z)

ϕ∗(aij)
)
∈ Γ(Ui ×X Uj , A).

now defines a trivialization of π∗(T ) over (Ui → X)i∈I . Since the transfer map on étale
cohomology is defined on Čech cocycles in exactly this way (see [MVW], 6.11, 6.21), we
obtain
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Lemma 2.2. Passing to isomorphism classes, the functor π∗ : PHS(Z,A)→ PHS(X,A)
constructed above induces the transfer homomorphism

π∗ : H1
et(Z,A)→ H1

et(X,A).

If any finite subset of points of X is contained in an affine open (e.g., if X is quasi-
projective), another description of the push-forward for torsors is the following: Associated
with the finite morphism π : Z → X of degree d, there is a section sπ : X → Symd(Z/X)
to the natural projection Symd(Z/X) → X (see ([SV1], p. 81). We denote the composite
of sπ with pr : Symd(Z/X) → Symd(Z) by Sπ . Defining f : Z̃ → Symd(Z/X) by
repeating each element in MorX(Z̃, Z) exactly [k(Z) : k(X)]in-times, the diagram

Z̃ Symd(Z/X) Symd(Z)

X

f

π̃

pr

sπ
Sπ

commutes. For an A-torsor T → Z, the quotient of T ×k · · · ×k T (d times) by the action
of the symmetric group Sd is an Ad-torsor over Symd(Z) in a natural way. Taking the
quotient by the Ad−1-action

(a1, . . . , ad−1)(t1, . . . , td) = (t1 + a1, t2 − a1 + a2, t3 − a2 + a3, . . . , td − ad−1),

we obtain an A-torsor over Symd(Z) and denote it by Symd(T ). We obtain natural iso-
morphisms in PHS(Z̃, A):

[k(Z) : k(X)]in ·
∑

ϕ∈MorX(Z̃,Z)

ϕ∗(T ) ∼= (pr ◦ f)∗ Symd(T )

∼= π̃∗ ◦ (pr ◦ sπ)∗ Symd(T ).

By our construction of π∗(T ) we obtain

Lemma 2.3. We have a natural isomorphism in PHS(X,A):

π∗(T ) ∼= S∗π(Symd(T )),

where Sπ = pr ◦ sπ : X → Symd(Z).

Assume now that X is regular and Y arbitrary. The group of finite correspondences
Cor(X,Y ) is defined as the free abelian group on the set of integral subschemes Z ⊂
X × Y which project finitely and surjectively to a connected component of X . For such a
Z, we define p[Z→X] ∗ : PHS(Z,A)→ PHS(X,A) by extending (ifX is not connected)
the push-forward torsor defined above in a trivial way to those connected components of
X which are not dominated by Z. We consider the functor

[Z]∗ = p[Z→X] ∗ ◦ p∗[Z→Y ] : PHS(Y,A) −→ PHS(X,A).

Using the operations “+” and “(−1)” we extend this construction to arbitrary finite corre-
spondences.
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Definition 2.4. Let X be regular, Y arbitrary and α =
∑
niZi ∈ Cor(X,Y ) a finite

correspondence. Then

α∗ : PHS(Y,A) −→ PHS(X,A)

is defined by setting
α∗(T ) :=

∑
ni[Zi]

∗(T ).

Using the isomorphism (4) above, we immediately obtain

Lemma 2.5. For α1, α2 ∈ Cor(X,Y ) and T1, T2 ∈ PHS(Y,A), n1, n2 ∈ Z, we have a
natural isomorphism

(α1 + α2)∗(n1T1 + n2T2) ∼= n1α
∗
1(T1) + n1α

∗
2(T1) + n2α

∗
1(T2) + n2α

∗
2(T2).

If X and Y are regular and Z is arbitrary, we have a natural composition law

Cor(X,Y )× Cor(Y,Z) −→ Cor(X,Z), (α, β) 7→ β ◦ α,

(see [MVW], Lecture 1). A straightforward but lengthy computation unfolding the defini-
tions shows

Proposition 2.6. Let X and Y be regular and Z arbitrary. Let α ∈ Cor(X,Y ) and β ∈
Cor(Y,Z). Then, for any T ∈ PHS(Z,A), we have a canonical isomorphism

α∗(β∗(T )) ∼= (β ◦ α)∗(T ).

Finally, assume thatmA = 0 for some natural numberm. Then (using the isomorphism
(3) above), we have for any α, β ∈ Cor(X,Y ), T ∈ PHS(Y,A), a natural isomorphism

(α+mβ)∗(T ) ∼= α∗(T ).

Therefore, we have an A-torsor

ᾱ∗(T ) ∈ PHS(X,A)

given up to unique isomorphism for any ᾱ ∈ Cor(X,Y ) ⊗ Z/mZ. In other words, we
obtain the

Lemma 2.7. Assume that mA = 0, and let α, β ∈ Cor(X,Y ) have the same image in
Cor(X,Y )⊗Z/mZ. Then there is a natural isomorphism of functors

α∗ ∼= β∗ : PHS(Y,A)→ PHS(X,A).

For a regular connected curve C we consider the subgroup H1
t (C,A) ⊆ H1

et(C,A) of
tame cohomology classes (corresponding to those continuous homomorphisms πet

1 (C) →
A which factor through the tame fundamental group πt1(C̄, C̄ −C), where C̄ is the unique
regular compactification of C).
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For a general scheme X over k we call a cohomology class in a ∈ H1
et(X,A) curve-

tame (or just tame) if for any morphism f : C → X with C a regular curve, we have
f∗(a) ∈ H1

t (C,A). The tame cohomology classes form a subgroup

H1
t (X,A) ⊆ H1

et(X,A).

The groups coincide if X is proper or if p = 0 or if p > 0 and A is p-torsion free, where p
is the characteristic of the base field k.

Definition 2.8. We call an étale A-torsor T on X tame if its isomorphism class lies in
H1
t (X,A) ⊆ H1

et(X,A).

Lemma 2.9. Let Z be integral, X normal, connected, π : Z → X finite, surjective and
f : Z → Y any morphism. Let T be a tame torsor on Y . Then π∗(f∗(T )) is a tame torsor
on X .

Proof. By definition, f∗ preserves curve-tameness. So we may assume Z = Y , f = id.
Again by the definition of curve-tameness and using Proposition 2.6, we may reduce to
the case that X is a regular curve. Since étale cohomology commutes with direct limits of
coefficients, we may assume that A is a finitely generated abelian group. Furthermore, we
may assume that char(k) = p > 0 and A = Z/prZ, r ≥ 1.

Let Z̄ be the canonical compactification ofZ, i.e., the unique proper curve over k which
contains Z as a dense open subscheme and such that all points of Z̄ r Z are regular points
of Z̄. By the definition of tame coverings of curves, T extends to a Z/prZ-torsor on Z̄.
Hence also π∗(T ) extends to the canonical compactification X̄ of X and so is tame.

Proposition 2.10. Let X̄ be a proper and regular scheme over k and let X ⊂ X̄ be a dense
open subscheme. Let p = char(k) > 0. Then for any r ≥ 1 the natural inclusion

H1
et(X̄,Z/p

rZ) ↪→ H1
et(X,Z/p

rZ)

induces an isomorphism

H1
et(X̄,Z/p

rZ) = H1
t (X̄,Z/prZ)

∼−→ H1
t (X,Z/prZ) ⊆ H1

et(X,Z/p
rZ).

Proof. Let T0 be any connected component of a tame Z/prZ-torsor T on X . Then the
morphism T0 → X is curve-tame in the sense of [KS], §4, and T0 is the normalization of
X in the abelian field extension of p-power degree k(T0)/k(X). By [KS], Thm. 5.4. (b),
T0 → X is numerically tamely ramified along X̄rX . This means that the inertia groups in
Gal(k(T0)/k(X)) of all points x̄ ∈ X̄rX are of order prime to p, hence trivial. Therefore
T0, and thus T extends to X̄ .

Corollary 2.11. Let ∆n = Spec(k[T0, . . . , Tn]/
∑
Ti = 1) be the n-dimensional standard

simplex over k and let A be an abelian group. Then

H1
t (∆n, A) ∼= H1

et(k,A).

In particular, H1
t (∆n, A) = 0 if k is separably closed.

7



Proof. Since tame cohomology commutes with direct limits of coefficients, and since
H1

et(∆
n,Z) = 0, we may assume that A ∼= Z/mZ for some m ≥ 1. If p - m, we

obtain:
H1
t (∆n,Z/mZ) ∼= H1

et(A
n,Z/mZ) ∼= H1

et(k,Z/mZ).

If p = char(k) > 0 and m = pr, r ≥ 1, Proposition 2.10 yields

H1
t (∆n,Z/prZ) ∼= H1

t (An,Z/prZ)
∼← H1

t (Pn,Z/prZ) = H1
et(P

n,Z/prZ).

Finally note that H1
et(P

n,Z/prZ) ∼= H1
et(k,Z/p

rZ).

In the following, let k be an algebraically closed field of characteristic p ≥ 0 and let X
be a separated scheme of finite type over k. Let HS

i (X,Z/mZ) denote the mod-m Suslin
homology, i.e., the i-th homology group of the complex

Cor(∆•, X)⊗Z/mZ.

Let A be an abelian group with mA = 0. We are going to construct a pairing

HS
1 (X,Z/mZ)×H1

t (X,A) −→ A

as follows: let T → X be a tame A-torsor representing a class in H1
t (X,A) and let

α ∈ Cor(∆1, X) be a finite correspondence representing a 1-cocycle in the mod-m Suslin
complex. Then

α∗(T )

is a torsor over ∆1. Since α is a cocycle modulo m, (0∗ − 1∗)(α) is of the form m · z for
some z ∈ Cor(∆0, X) = Z(X(k)). We therefore obtain a canonical identification

Φtaut : 0∗(α∗(T ))
∼−→ 1∗(α∗(T ))

of A-torsors over ∆0 = Spec(k). Furthermore, by Corollary 2.11, the tame torsor α∗(T )
on ∆1 is trivial, hence a disjoint union of copies of ∆1. By parallel transport, we obtain
another identification

Φpar : 0∗(α∗(T ))
∼−→ 1∗(α∗(T )).

Hence there is a unique γ(α, T ) ∈ A such that

Φpar = (translation by γ(α, T )) ◦ Φtaut .

Proposition 2.12. The element γ(α, T ) ∈ Z/mZ only depends on the class of T in
H1
t (X,A) and on the class of α in HS

1 (X,Z/mZ). We obtain a bilinear pairing

〈·, ·〉 : HS
1 (X,Z/mZ)×H1

t (X,A) −→ A.

Proof. Replacing T by another torsor isomorphic to T does not change anything. The
nontrivial statement is that 〈α, T 〉 only depends on the class of α in HS

1 (X,Z/mZ). For
β ∈ Cor(∆1, X), we have

〈α+mβ, T 〉 = 〈α, T 〉+m〈β, T 〉 = 〈α, T 〉.

It therefore remains to show that

〈∂∗(Φ), T 〉 = 0,

for all Φ ∈ Cor(∆2, X), where ∂i : ∆1 → ∆2, i = 0, 1, 2, are the face maps and ∂∗(Φ) =
Φ ◦ ∂0 − Φ ◦ ∂1 + Φ ◦ ∂2. Considering ∂ = ∂0 − ∂1 + ∂2 as a finite correspondence from
∆1 to ∆2, it represents a cocycle in the singular complex Cor(∆•,∆2). Proposition 2.6
implies that

〈∂∗(Φ), T 〉 = 〈Φ ◦ ∂, T 〉 = 〈∂,Φ∗(T )〉.
By Corollary 2.11, the tame torsor Φ∗(T ) is trivial on ∆2. Hence 〈∂,Φ∗(T )〉 = 0.
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In the following, we use the notation πt,ab1 (X) := H1
t (X,Q/Z)∗. If X is connected,

then πt,ab1 (X) is the abelianized (curve-)tame fundamental group of X , see [KS], §4.

Definition 2.13. For m ≥ 1 we define

recX : HS
1 (X,Z/mZ) −→ πt,ab1 (X)/m

as the homomorphism induced by the pairing of Proposition 2.12 for A = Z/mZ com-
bined with the isomorphism H1

t (X,Z/mZ)∗ ∼= πt,ab1 (X)/m.

The statement of the next lemma immediately follows from the definition of rec.

Lemma 2.14. Let f : X ′ → X be a morphism of separated schemes of finite type over k.
Then the induced diagram

HS
1 (X ′,Z/mZ) πt,ab1 (X ′)/m

HS
1 (X,Z/mZ) πt,ab1 (X)/m

recX′

f∗ f∗

recX

commutes.

3 Rigid Čech complexes
We consider étale sheaves F on the category Sch/k of separated schemes of finite type
over a field k. By a result of M. Artin, Čech cohomology Ȟ•(X,F ) and sheaf cohomology
H•et(X,F ) coincide in degree≤ 1 and in arbitrary degree ifX is quasi-projective (cf. [Mi],
III Thm. 2.17). Comparing the Čech complex for a covering U and that for a finer covering
V , the refinement homomorphism

Č•(U , F ) −→ Č•(V, F )

is canonical only up to chain homotopy and hence only the induced map Ȟ•(U , F ) →
Ȟ•(V, F ) is well-defined. We can remedy this problem in the spirit of Friedlander [Fr],
chap.4, by using rigid coverings:

We fix an algebraic closure k̄/k. A rigid étale covering U of X is a family of pointed
separated étale morphisms

(Ux, ux) −→ (X,x), x ∈ X(k̄),

with Ux connected and ux ∈ Ux(k̄) mapping to x. For an étale sheaf F the rigid Čech
complex is defined by

Č•(U , F ) : Čn(U , F ) =
∏

(x0,...,xn)∈X(k̄)n+1

Γ(Ux0
×X · · · ×X Uxn , F )

with the usual differentials. It is clear what it means for a rigid covering V to be a refine-
ment of U . Because the marked points map to each other, there is exactly one refinement
morphism, hence we obtain a canonical refinement morphism on the level of complexes

Č•(U , F )→ Č•(V, F ).
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The set of rigid coverings is cofiltered (form the fibre product for each x ∈ X(k̄) and
restrict to the connected components of the marked points). Therefore we can define the
rigid Čech complex of X with values in F as the filtered direct limit

Č•(X,F ) := lim−→
U
Č•(U , F ),

where U runs through all rigid coverings ofX . Forgetting the marking, we can view a rigid
covering as a usual covering. Every covering can be refined by a covering which arises
by forgetting the marking of a rigid covering. Hence the cohomology of the rigid Čech
complex coincides with the usual Čech cohomology of X with values in F .

For a morphism f : Y → X and a rigid Čech covering U/X , we obtain a rigid Čech
covering f∗U/Y by taking base extension to Y and restricting to the connected compo-
nents of the marked points, and in the limit we obtain a homomorphism

f∗ : Č•(X,F ) −→ Č•(Y, F ).

Lemma 3.1. If π : Y → X is quasi-finite, then the rigid coverings of the form π∗U are
cofinal among the rigid coverings of Y .

Proof. This is an immediate consequence of the fact that a quasi-finite and separated
scheme Y over the spectrumX of a henselian ring is of the form Y = Y0tY1t. . .tYr with
Y0 → X not surjective and Yi → X finite surjective with Yi the spectrum of a henselian
ring, i = 1, . . . , r, cf. [Mi], I, Thm. 4.2.

Lemma 3.2. If F is qfh-sheaf on Sch/k, then for any n ≥ 0 the presheaf Č
n
(−, F ) given

by
X 7−→ Čn(X,F )

is a qfh-sheaf. The obvious sequence

0→ F → Č
0
(−, F )→ Č

1
(−, F )→ Č

2
(−, F )→ · · ·

is exact as a sequence of étale (and hence also of qfh) sheaves.

Proof. We show that each Č
n
(−, F ) is a qfh-sheaf. For this, let π : Y → X be a qfh-

covering, i.e., a quasi-finite universal topological epimorphism. We denote the projection
by Π : Y ×X Y → X . By Lemma 3.1, we have to show that the sequence

lim−→
U
Čn(U , F )→ lim−→

U
Čn(π∗U , F ) ⇒ lim−→

U
Čn(Π∗U , F )

is an equalizer, where U runs through the rigid coverings of X . Since filtered colimits
commute with finite limits, it suffices to show the exactness for a single, sufficiently small
U . This, however, follows from the assumption that F is a qfh-sheaf.

Finally, the exactness of 0 → F → Č
0
(−, F ) → Č

1
(−, F ) → · · · as a sequence of

étale sheaves follows by considering stalks.

Being qfh-sheaves, the sheaves F and Č
n
(−, F ) admit transfer maps, see [SV1], §5. For

later use, we make the relation between the transfers of F and of Č
n
(−, F ) explicit: Let

Z be integral, X regular and π : Z → X finite and surjective. Let F be a qfh-sheaf on
Sch/k. For x ∈ X(k̄) we have

Xsh
x ×X Z =

∐
z∈π−1(x)

Zshz ,

10



where π−1(x) denotes the set of morphisms z : Spec(k̄) → Z with π ◦ z = x. For
sufficiently small étale (Ux, ux) → (X,x), the set of connected components of Ux ×X Z
is in 1-1-correspondence with the set π−1(x), and to each family of étale morphisms

(Vz, vz) −→ (Z, z), z ∈ π−1(x),

there is (after possibly making Ux smaller) a unique morphism

Ux ×X Z −→
∐

z∈π−1(x)

Vz,

over Z, which sends the connected component associated with z of Ux ×X Z to Vz , and
the point (ux, z) to vz .

In this way we obtain, for finitely many points (x0, . . . , xn), n ≥ 0, and for every
family

(Vzi,vzi ) −→ (Z, zji ), zji ∈ π
−1(xi),

and sufficiently small chosen

(Uxi , uxi) −→ (X,xi), i = 0, . . . , n,

a homomorphism∏
i=0,...,n

zji∈π
−1(xi)

Γ
(
Vzj0
×Z · · · ×Z Vzjn , F

)
−→ Γ

(
Ux0 ×X · · · ×X Uxn ×X Z,F

)
.

Since F is a qfh-sheaf, we can compose this with the transfer map associated with the finite
morphism

Ux0
×X · · · ×X Uxn ×X Z → Ux0

×X · · · ×X Uxn .

Forming for fixed n the product over all (x0, . . . , xn) ∈ X(k̄)n+1 and passing to the limit
over all rigid coverings, we obtain the transfer homomorphism

π∗ : Č•(Z,F ) −→ Č•(X,F ).

Passing to cohomology, we obtain the usual transfer on étale cohomology in degree 0 and
1, and in any degree if the schemes are quasi-projective.

Next we give the pairing

〈·, ·〉 : HS
1 (X,Z/mZ)×H1

t (X,A) −→ A.

constructed in Proposition 2.12 for k algebraically closed and an abelian group A with
mA = 0 the following interpretation in terms of the rigid Čech complex:

Let a ∈ HS
1 (X,Z/mZ) and b ∈ H1

t (X,A) be given, and let α ∈ Cork(∆1, X) and
β ∈ ker(Č1(X,A)

d→ Č2(X,A)) be representing elements. Note that (0∗ − 1∗)(α) ∈
mCor(∆0, X) by assumption. Consider the diagram

Č0(X,A) Č1(X,A) Č2(X,A)

Č0(∆1, A) Č1(∆1, A) Č2(∆1, A)

A Č0(∆0, A) Č1(∆0, A) Č2(∆0, A)

d d

d d

d d

α∗ α∗ α∗

0∗ − 1∗ 0∗ − 1∗ 0∗ − 1∗

11



Since β represents a tame torsor T onX , α∗(β) represents the torsor α∗(T ), which is tame
by Lemma 2.9. By Corollary 2.11, there exists γ ∈ Č0(∆1, A) with dγ = α∗(β). Since

d(0∗ − 1∗)(γ) = (0∗ − 1∗)α∗(β) = 0,

we conclude that (0∗ − 1∗)(γ) lies in

A = H0(∆0, A) = ker(Č0(∆0, A)
d→ Č1(∆0, A)).

It is easy to verify that the assignment

〈·, ·〉 : (a, b) 7−→ (0∗ − 1∗)(γ) ∈ A

does not depend on the choices made. By the explicit geometric relation between Čech
1-cocycles and torsors, and since our construction of finite push-forwards of torsors is
compatible with the construction of transfers for qfh-sheaves given in [SV1], §5, we see
that the pairing constructed above coincides with the one constructed in Proposition 2.12.

Finally, let
A ↪→ I0 → I1 → I2 (5)

be a (partial) injective resolution of the constant sheaf A in the category of Z/mZ-module
sheaves on (Sch/k)qfh. Let φ : (Sch/k)qfh → (Sch/k)et denote the natural map of sites.
Since φ∗ is exact, φ∗ sends injective sheaves to injective sheaves. By [SV1], Thm. 10.2,
we have R0φ∗(A) = A and Riφ∗(A) = 0 for i ≥ 1. Hence (5) is also a partial resolution
of A by injective, étale sheaves of Z/mZ-modules. We choose a quasi-isomorphism

[0→ Č
0
(−, A)→ Č

1
(−, A)→ Č

2
(−, A)] −→ [0→ I0 → I1 → I2]

of complexes of qfh-sheaves. Since Čech- and étale cohomology agree in dimension ≤ 1,
the induced map on global sections is a quasi-isomorphism, too. Hence the pairing of
Proposition 2.12 can also be obtained by the same procedure as above but using the diagram

I0(X) I1(X) I2(X)

I0(∆1) I1(∆1) I2(∆1)

A I0(∆0) I1(∆0) I2(∆0).

d d

d d

d d

α∗ α∗ α∗

0∗ − 1∗ 0∗ − 1∗ 0∗ − 1∗

By [SV1], Theorem 10.7, the same argument applies with a partial injective resolution of
the constant sheaf A in the category of Z/mZ-module sheaves on (Sch/k)h.

4 The case of smooth curves
In this section we prove Theorem 1.1 in the case that X = C is a smooth curve.

Let k be an algebraically closed field of characteristic p ≥ 0, and let C be a smooth, but
not necessarily projective, curve over k. Let the semi-abelian variety A be the generalized
Jacobian of C with respect to the modulus given by the sum of the points on the boundary
of the regular compactification C̄ of C (cf. [Se], Ch. 5). The group A(k) is the subgroup
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of degree zero elements of the relative Picard group Pic(C̄, C̄ r C). By [SV1], Thm. 3.1
(see [Li], for the case C = C̄), there is an isomorphism

HS
0 (C,Z)0 := ker(HS

0 (C,Z)
deg−→ Z) ∼= A(k),

in particular, A(k) is a quotient of the group of zero cycles of degree zero on C. From the
coefficient sequence together with the divisibility of HS

1 (C,Z) (which is isomorphic to k×

if C is proper and zero otherwise), we obtain an isomorphism

HS
1 (C,Z/mZ)

δ−→
∼ mH

S
0 (C,Z) ∼= mA(k). (6)

After fixing a closed point P0 of C, the morphism C → A, P 7→ P − P0, is universal for
morphisms of C to semi-abelian varieties, i.e., A is the generalized Albanese variety of C
([Se], V, Th. 2).

Consider the m-multiplication map A m→ A. Its maximal étale subcovering Ã → A is
the quotient of A by the connected component of the finite group scheme mA (if (p,m) =

1, the connected component is trivial). The projection A → Ã induces an isomorphism
A(k)

∼→ Ã(k) on rational points, and we identify A(k) and Ã(k) via this isomorphism.
With respect to this identification, the projection Ã(k) → A(k) is the m-multiplication
map on A(k).

By [Se], Ch. IV, C̃ := C ×A Ã is the maximal abelian tame étale covering of C with
Galois group annihilated by m. Because AutA(Ã) ∼= mA(k), we obtain an isomorphism

Hom(mA(k), A)
τ−→
∼

H1
t (C,A) (7)

for any finite abelian group A with mA = 0.

Theorem 4.1. For any finite abelian group A with mA = 0, the diagram

HS
1 (C,Z/mZ) × H1

t (C,A) A

mA(k) × Hom(mA(k), A) A

〈 , 〉

∼

δ ∼ τ
eval

where 〈 , 〉 is the pairing from Proposition 2.12 and eval is the evaluation map, commutes.
In particular, the upper pairing is perfect and the induced homomorphismHS

1 (C,Z/mZ)→
πt,ab1 (C)/m is an isomorphism.

Proof. We have to show that φ(δ(ζ)) = 〈ζ, τ(φ)〉 for any ζ ∈ HS
1 (C,Z/mZ) and any φ ∈

Hom(mA(k), A). By functoriality, it suffices to consider the universal case A = mA(k),
φ = id. In this case τ(id) is the torsor π̃ : C̃ → C.

LetC ′ be the regular compactification ofC. By [SV1], Thm. 3.1, δ(ζ) ∈ mH
S
0 (C,Z) =

mA(k) is the class [z] of some z ∈ Z0(C) (the group of zero-cycles on C) such that

mz = γ∗(0)− γ∗(1)

for some finite morphism γ : C ′ → P1 with C ′ r C ⊂ γ−1(∞). The diagram

C ′ r γ−1(∞) C C ′

∆1 P1

γ|C′rγ−1(∞)
γ

13



shows that γ induces a finite correspondence, say g, from ∆1 to C. The class of g in
HS

1 (C,Z/mZ) is a pre-image of δ(ζ) under HS
1 (C,Z/mZ)

∼→ mH
S
0 (C,Z), i.e., ζ is

represented by g. It therefore suffices to show that

[z] = 〈g, C̃〉.

Let d be the degree of γ and γ∗(0) =
∑d
i=1 Pi, γ

∗(1) =
∑d
i=1Qi. Each point in γ∗(0)

and γ∗(1) occurs with multiplicity divisible by m, in particular d = mr for some integer
r. After reindexing, we may assume that Pi = Pj and Qi = Qj for i ≡ j mod r, hence

z =

r∑
i=1

Pi −
r∑
i=1

Qi.

On the level of closed points, C̃ = C ×A Ã can be identified with the set of a ∈ Ã(k) =
A(k) such that ma = P −P0 for some point P ∈ C (a projects to P in C, i.e., π̃(a) = P ).
The mA(k)-principal homogeneous space 0∗g∗C̃ can be identified with the quotient of the
set

d∏
i=1

π̃−1(Pi)

by the action of mA(k)d−1 given by

(β1, . . . , βd−1)(a1, . . . , ad) = (a1 + β1, a2 − β1 + β2, . . . , ad − βd−1).

We fix points a1, . . . , ad ∈ C̃ over P1, . . . , Pd subject to the condition ai = aj for Pi = Pj .
Then 0∗g∗C̃ is identified with the quotient of the set

(a1 + mA(k))× · · · × (ad + mA(k))

by the action of mA(k)d−1. Since each ai occurs with multiplicity divisible by m, the
trivialization 0∗g∗(C̃)

∼→ mA(k) given by

(a1 + α1, . . . , ad + αd) 7−→ α1 + · · ·+ αd ∈ mA(k)

does not depend on the choice of the ai. We do the same with 1∗g∗(C̃) by choosing bi ∈ C̃
over Qi. Then we see that the tautological identification Φtaut : 0∗g∗(C̃)

∼→ 1∗g∗(C̃) is
given by

(a1 + α1, . . . , ad + αd) 7−→ (b1 + α1, . . . , bd + αd).

Now consider the morphism

Σ : Symd(C) −→ A, (x1, . . . , xd) 7−→ [
∑

(xi − P0)].

The commutative diagram

Symd(C̃) Ã

Symd(C) A

Σ

Σ

induces a map (hence an isomorphism) of mA(k)-torsors Symd(C̃)
∼→ Ã ×A Symd(C).

Consider the morphism Sg : ∆1
k → Symd(C) associated with the finite correspondence g.

Since the generalized Jacobian of ∆1
k
∼= A1

k is Spec(k), the composite

∆1
k

Sg−→ Symd(C)
Σ−→ A

14



is constant with value a := [
∑d
i=1(Pi−P0)] = [

∑d
i=1(Qi−P0)] ∈ A(k). By Lemma 2.3,

we obtain an isomorphism

g∗(C̃) = S∗g (Symd(C̃)) = Σ∗S∗g Ã = ∆1
k × π̃−1(a)

(giving a trivialization after choosing a point in π̃−1(a)). On the fibre over 0 it is given by

(a1 + α1, . . . , ad + αd) 7−→
d∑
i=1

(ai + αi) ∈ π̃−1(a) ⊂ Ã

and similarly on the fibre over 1. We conclude that Φpar ◦ Φ−1
taut is translation by

d∑
i=1

(ai − bi) =

r∑
i=1

m(ai − bi) =

r∑
i=1

[Pi −Qi] = [z].

This concludes the proof.

5 The blow-up sequences
All schemes in this section are separated schemes of finite type over the spectrum of a
perfect field k. A curve on a scheme X is a closed one-dimensional subscheme. The
normalization of a curve C is denoted by C̃.

Now let

Z ′ X ′

Z X

π

i

be an abstract blow-up square, i.e., a cartesian diagram of schemes such that π : X ′ → X
is proper, i : Z → X is a closed embedding and π induces an isomorphism (X ′rZ ′)red

∼→
(X r Z)red.

Proposition 5.1. Given an abstract blow-up square and an abelian group A, assume that π
is finite or A is torsion. Then there is a natural exact sequence

0→ H0
et(X,A)→ H0

et(X
′, A)⊕H0

et(Z,A)→ H0
et(Z

′, A)

δ→ H1
t (X,A)→ H1

t (X ′, A)⊕H1
t (Z,A)→ H1

t (Z ′, A).

Proof. We call an abstract blow-up square trivial, if i is surjective (i.e., sred is an isomor-
phism) or if πred : X ′red → Xred has a section. Every abstract blow-up square with X a
connected regular curve is trivial.

Now let an arbitrary abstract blow-up square be given. If A is torsion, the proper base
change theorem implies (cf. [Ge2], 3.2 and 3.6) that we have a long exact sequence

· · · → Hi
et(X,A)→ Hi

et(X
′, A)⊕Hi

et(Z,A)→ Hi
et(Z

′, A)→ Hi+1
et (X,A)→ · · ·

If π is finite, the same is true for arbitrary A since π∗ is exact. If the blow-up square
is trivial, this long exact sequence splits into short exact sequences 0 → Hi

et(X,A) →
Hi

et(X
′, A)⊕Hi

et(Z,A)→ Hi
et(Z

′, A)→ 0 for all i.
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Next we show the exact sequence of the proposition. We omit the coefficients A and
put H0

t (X) = H0
et(X). We first show, that the image of the boundary map δ : H0

et(Z
′)→

H1
et(X) has image in H1

t (X), thus showing the existence of H0
t (Z ′) → H1

t (X) and, at
the same time, the exactness of the sequence at H1

t (X). Let C̃ → X be the normalization
of a curve in X . The base change

Z ′
C̃

X ′
C̃

ZC̃ C̃

π̃

ĩ

of our abstract blow-up square to C̃ is a trivial abstract blow-up square. Therefore, for any
α ∈ H0

et(Z
′), the pull-back of α to H0

et(Z
′
C̃

) lies in the image of H0
et(X

′
C̃

)⊕H0
et(ZC̃)→

H0
et(Z

′
C̃

) and has therefore trivial image under δ : H0
et(Z

′
C̃

)→ H1
et(C̃). Therefore, δ(α) ∈

H1
et(X) has trivial image inH1

et(C̃) for every curveC ⊂ X , in particular, it lies inH1
t (X).

It remains to show exactness at H1
t (X ′) ⊕H1

t (Z). Let α be in this group with trivial
image in H1

t (Z ′). Then there exists β ∈ H1
et(X) mapping to α and it remains to show that

β lies in the subgroup H1
t (X). But this is clear, because for every curve C ⊂ X we have

H1
t (C̃) = ker(H1

t (X ′
C̃

)⊕H1
t (ZC̃)→ H1

t (Z ′
C̃

)).

Proposition 5.2. Given an abstract blow-up square

Z ′ X ′

Z X

π

i

and an abelian group A, there is a natural exact sequence of Suslin homology groups

HS
1 (Z ′, A)→ HS

1 (X ′, A)⊕HS
1 (Z,A)→ HS

1 (X,A)

δ→ HS
0 (Z ′, A)→ HS

0 (X ′, A)⊕HS
0 (Z,A)→ HS

0 (X,A)→ 0.

Proof. Consider the exact sequences

C•(Z
′, A) ↪→ C•(X

′, A)⊕ C•(Z,A)→ C•(X,A) � KA
•

and
C•(Z

′) ↪→ C•(X
′)⊕ C•(Z)→ C•(X) � K•,

where KA
• and K• are defined to make the sequences exact. Since the complexes C•(−)

consist of free abelian groups, in order the show the statement of the proposition, it suffices
to show that Hi(K•) = 0 for i ≤ 2. Let Sm/k be the full subcategory of Sch/k consisting
of smooth schemes. For Y ∈ Sch/k we consider the presheaf c(Y ) on Sm/k given by
c(Y )(U) = Cor(U, Y ). Then, by [SV2], Thm. 5.2, 4.7 and its proof, the sequence

0→ c(Z ′)→ c(X ′)⊕ c(Z)
(π∗,i∗)→ c(X)

is exact and F := coker(π∗, i∗) has the property that, for any U ∈ Sm/k of dimension≤ 2
and any x ∈ F (U), there exists a proper birational morphism φ : V → U with V smooth
such that φ∗(x) = 0. Let F• be the complex of presheaves given by Fn(U) = F (U ×∆n)
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with the obvious differentials and let (F•)Nis be the associated complex of sheaves on
(Sm/k)Nis. Then by [SS], Thm. 2.4, the Nisnevich sheaves

Hi((F•)Nis)

vanish for i ≤ 2. Evaluating at U = Spec(k) yields the result.

Now assume that k is algebraically closed. Let

rec1,X : HS
1 (X,Z/mZ)→ H1

t (X,Z/mZ)∗

be the reciprocity map constructed in Section 2 and let

rec0,X : HS
0 (X,Z/mZ)→ H0

et(X,Z/mZ)∗

be the homomorphism induced by the pairing

〈·, ·〉 : HS
0 (X,mZ)×H0

et(X,Z/mZ) −→ Z/mZ

defined as follows: Given a ∈ HS
0 (X,Z/mZ) and b ∈ H0

et(X,Z/mZ), we represent a
by a correspondence α ∈ Cor(∆0, X) and put 〈a, b〉 = α∗(b) ∈ H0

et(∆
0,Z/mZ) ∼=

Z/mZ. This is well-defined since the homomorphisms 0∗, 1∗ : H0
et(∆

1,Z/mZ) →
H0

et(∆
0,Z/mZ) agree.

Lemma 5.3. For any m, rec0,X is an isomorphism.

Proof. For connected X , we have the commutative diagram

HS
0 (X,Z/mZ) H0

et(X,Z/mZ)∗

HS
0 (k,Z/mZ) H0

et(k,Z/mZ)∗.

deg

rec0,X

o

rec0,k

∼

Hence, for connected X , it suffices by functoriality to consider the mod m degree map.
In particular, rec0,X is surjective for arbitrary X and is an isomorphism if dimX = 0.
If X is a smooth connected curve, then HS

0 (X,Z) = Pic(X̄, X̄ r X), where X̄ is the
smooth compactification of X (cf. [SV1], Thm. 3.1). The subgroup Pic0(X̄, X̄ r X) of
degree zero elements is the group of k-rational points of the Albanese of X , and hence
divisible. Therefore, rec0,X is an isomorphism for connected, and hence for all smooth
curves. Considering the normalization morphism of an arbitrary scheme of dimension 1
and the exact sequences of Propositions 5.1 and 5.2, the five-lemma shows that rec0,X is a
isomorphism for dimX ≤ 1.

It remains to show that rec0,X is injective for arbitrary X . We may assume X to be
connected. Let a ∈ ker(rec0,X) and let α ∈ Z0(X) be a representing 0-cycle. Since
supp(α) is finite, we can find a connected 1-dimensional closed subscheme Z ⊂ X con-
taining supp(α) (use, e.g., [Mu], II §6 Lemma). Since rec0,Z is injective and a is in the
image of HS

0 (Z,Z/mZ)→ HS
0 (X,Z/mZ), we conclude that a = 0.

Corollary 5.4. Let k be an algebraically closed field and let X ∈ Sch/k be connected.
Then the kernel of the degree map

deg : HS
0 (X,Z) −→ HS

0 (k,Z) ∼= Z

is divisible.
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Proposition 5.5. Let k be algebraically closed and let

Z ′ X ′

Z X

i′

π′ π

i

be an abstract blow-up square. Then for any integer m ≥ 1 the diagram

HS
1 (X,Z/mZ) HS

0 (Z ′,Z/mZ)

H1
t (X,Z/mZ)∗ H0

et(Z
′,Z/mZ)∗,

δ

rec1,X

δ∗

rec0,X

commutes. Here δ is the boundary map of Proposition 5.2 and δ∗ is the dual of the boundary
map of Proposition 5.1.

Proof. We have to show that the diagram

HS
1 (X,Z/mZ) × H1

t (X,Z/mZ) Z/mZ

HS
0 (Z ′,Z/mZ) × H0

et(Z
′,Z/mZ) Z/mZ

〈 , 〉

〈 , 〉

δ δ

commutes. Given a ∈ HS
1 (X,Z/mZ) and b ∈ H0

et(Z
′,Z/mZ), we choose a representing

correspondence α ∈ C1(X,Z/mZ) = Cor(∆1, X) ⊗ Z/mZ in such a way that it has a
pre-image α̂ ∈ C1(X ′,Z/mZ) ⊕ C1(Z,Z/mZ) (see the proof of Proposition 5.2). By
definition, δa ∈ HS

0 (Z ′,Z/mZ) is represented by a correspondence γ ∈ C0(Z ′,Z/mZ)
such that the diagram

∆0 ∆1

Z ′ X ′ q Z

0− 1

γ

i′ − π′
α̂

of correspondences commutes modulo m. Next choose an injective resolution Z/mZ →
I• of Z/mZ in the category of sheaves of Z/mZ-modules on (Sch/k)h in order to com-
pute the pairings (cf. the end of section 3). Consider the following diagram
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I0(X ′)⊕ I0(Z) I0(Z ′)

I1(X) I1(X ′)⊕ I1(Z) I1(Z ′)

I0(∆1) I1(∆1) I1(∆1) I2(∆1)

I0(∆0) I1(∆0) I1(∆0) I2(∆0)

α̂∗
d

i′∗−π′∗

d

(π∗,i∗)

α∗

i′∗−π′∗

α̂∗

d

0∗−1∗ 0∗−1∗ 0∗−1∗

d

0∗−1∗

d d

By the argument of [MVW] Lemma 12.7, the sequence

0→ F (X)→ F (X ′)⊕ F (Z)→ F (Z ′)

is exact for every h-sheaf F . Therefore the second line in the diagram is exact. The proper
base change theorem implies (cf. [Ge2], 3.2 and 3.6) that

I•(X) −→ I•(X ′)⊕ I•(Z) −→ I•(Z ′)
[1]−→

is an exact triangle in D(Ab). For the exact sequence of complexes

0→ I•(X)→ I•(X ′)⊕ I•(Z)→ I•(Z ′)→ coker• → 0,

this implies that the complex coker• is exact. Therefore, b ∈ ker(I0(Z ′)→ I1(Z ′)) has a
pre-image β̂ ∈ I0(X ′)⊕ I0(Z). Then

dβ̂ ∈ ker(I1(X ′)⊕ I1(Z)→ I1(Z ′)),

and there exists a unique ε ∈ I1(X) with (π∗, i∗)(ε) = dβ̂ representing δb ∈ H1
t (X). We

see that α̂∗(dβ̂) = α∗(ε). It follows that

d(α̂∗(β̂)) = α̂∗(dβ̂) = α∗(ε) ∈ ker(I1(∆1)
0∗−1∗−−−−→ I1(∆0)).

By definition of 〈 , 〉, we obtain

〈a, δ(b)〉 = (0∗ − 1∗)α̂∗β̂ ∈ ker(I0(∆0)→ I1(∆0)) = Z/mZ.

On the other hand, 〈δa, b〉 = γ∗(b) ∈ H0
et(∆

0) is represented by γ∗β ∈ I0(∆0) and the
commutative diagram of correspondences above implies

γ∗β = γ∗(i′∗ − π′∗)(β̂) = (0∗ − 1∗)α̂∗β̂.

This finishes the proof.

Proposition 5.6. Let X be a normal, generically smooth, connected scheme of finite type
over a field k and let A ⊆ H1

et(X,Z/mZ) be a finite subgroup. Then there exists a regular
curve C over k and a finite morphism φ : C → X such that A has trivial intersection with
the kernel of φ∗ : H1

et(X,Z/mZ)→ H1
et(C,Z/mZ).
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Proof. For any normal scheme Z and dense open subscheme Z ′ ⊂ Z, the induced map
H1

et(Z,Z/mZ) → H1
et(Z

′,Z/mZ) is injective. Hence we may replace X by an open
subscheme and assume that X is smooth. Let Y → X be the finite abelian étale covering
corresponding to the kernel of πab

1 (X) � A∗. We have to find a regular curve C and a
finite morphism C → X such that C ×X Y is connected.

Choose a separating transcendence basis t1, . . . , td of k(X) over k. This yields a
rational map X → Pdk. Let t be another indeterminate and let Xt (resp. Yt) be the
base change of X (resp. Y ) to the rational function field k(t). Consider the composition
φ : Yt → Xt → Pdk(t). Since k(t) is Hilbertian [FJ], Thm. 12.10, we can find a rational
point P ∈ Pdk(t) over which φ is defined and such that P has exactly one pre-image yt in
Yt. The image xt ∈ Xt of yt has exactly one pre-image in Yt. Let x be the image of xt in
X . If trdegkk(x) = 1 put x′ = x, if trdegkk(x) = 0 (i.e., x is a closed point in X) choose
any x′ ∈ X with trdegkk(x′) = 1 such that x is a regular point of the closure of x′. In
both cases the normalization C of the closure of x′ in X is a regular curve with the desired
property.

6 Proof of the main theorem
In this section we prove our main result. We say that “resolution of singularities holds for
schemes of dimension ≤ d over k” if the following two conditions are satisfied.

(1) For any integral separated scheme of finite type X of dimension ≤ d over k, there
exists a projective birational morphism Y → X with Y smooth over k which is an
isomorphism over the regular locus of X .

(2) For any integral smooth schemeX of dimension≤ d over k and any birational proper
morphism Y → X there exists a tower of morphisms Xn → Xn−1 → · · · → X0 =
X , such that Xn → Xn−1 is a blow-up with a smooth center for i = 1, . . . , n, and
such that the composite morphism Xn → X factors through Y → X .

Theorem 6.1 (=Theorem 1.1). Let k be an algebraically closed field of characteristic p ≥
0, X a separated scheme of finite type over k and m a natural number. Then

recX : HS
1 (X,Z/mZ) −→ πt,ab1 (X)/m

is surjective. It is an isomorphism of finite abelian groups if (m, p) = 1, and for general m
if resolution of singularities holds for schemes of dimension ≤ dimX + 1 over k.

The proof will occupy the rest of this section. Following the notation of Section 5, we
write H0

t = H0
et and consider the maps

reci,X : HS
i (X,Z/mZ)→ Hi

t(X,Z/mZ)∗

for i = 0, 1 (i.e., recX = rec1,X ). Given a morphism X ′ → X , we have a commutative
diagram of pairings defining reci for i = 0, 1.

HS
i (X ′,Z/mZ) × Hi

t(X
′,Z/mZ) Z/mZ

HS
i (X,Z/mZ) × Hi

t(X,Z/mZ) Z/mZ.

〈 , 〉

〈 , 〉

φ∗ φ∗

Step 1: rec1,X is surjective for arbitrary X .
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We may assume that X is reduced and proceed by induction on d = dimX . The case
dimX = 0 is trivial. Consider the normalization morphism X ′ → X , which is an iso-
morphism outside a closed subscheme Z ⊂ X of dimension ≤ d − 1. Using the exact
sequences of Propositions 5.1 and 5.2, which are compatible by Proposition 5.5 and the
fact that rec0,X is an isomorphism by Lemma 5.3, a diagram chase shows that it suffices to
show surjectivity of rec1,X for normal schemes.

Let X be normal. Since H1
t (X,Z/mZ) is finite, it suffices to show that the pairing

defining rec1,X has a trivial right kernel. We may assume that X is connected. Let b ∈
H1
t (X,Z/mZ) be arbitrary but non-zero. By Proposition 5.6, we find a morphism φ :

C → X with C a smooth curve such that φ∗(b) ∈ H1
et(C,Z/mZ) is non-zero. Since the

pairing for C is perfect by Theorem 4.1, the pairing for X has a trivial right kernel.

Step 2: Theorem 6.1 holds if (m, p) = 1.

If (m, p) = 1, HS
1 (X,Z/mZ) and H1

et(X,Z/mZ)∗ are isomorphic finite abelian groups
by [SV1]. In particular, they have the same order. Hence the surjective homomorphism
rec1,X is an isomorphism.

Step 3: Theorem 6.1 holds for arbitrary X if m = pr and resolution of singularities holds
for schemes of dimension ≤ dimX + 1 over k.

We may assume that X is reduced. Using resolution of singularities and Chow’s Lemma,
we obtain a morphism X ′ → X with X ′ smooth and quasi-projective, which is an isomor-
phism over a dense open subscheme of X . Using the exact sequences of Propositions 5.1
and 5.2, Lemma 5.3, Step 1, induction on the dimension and the five-lemma, it suffices to
show the result for smooth, quasi-projective schemes.

Let X be smooth, quasi-projective and let X̄ be a smooth, projective variety containing
X as a dense open subscheme. Then we have isomorphisms

H1
et(X̄,Z/p

rZ)∗ ∼= CH0(X̄, 1,Z/prZ) [Ge3, §5],

CH0(X̄, 1,Z/prZ) ∼= HS
1 (X̄,Z/prZ) [SS,Thm. 2.7].

By Proposition 6.2 below the natural homomorphism

HS
1 (X,Z/prZ)→ HS

1 (X̄,Z/prZ)

is an isomorphism of finite abelian groups and by Proposition 2.10, we have an isomor-
phism

H1
et(X̄,Z/p

rZ)
∼→ H1

t (X,Z/prZ).

Hence the finite abelian groups H1
t (X,Z/prZ)∗ and HS

1 (X,Z/prZ) are isomorphic, in
particular, they have the same order. Since rec1,X is surjective, it is an isomorphism.

In order to conclude the proof of Theorem 6.1 it remains to show

Proposition 6.2. Let k be a perfect field, X ∈ Sch/k smooth, U ⊂ X a dense open
subscheme and n ≥ 0 an integer. Assume that resolution of singularities holds for schemes
of dimension ≤ dimX + n over k. Then for any r ≥ 1 the natural map

HS
i (U,Z/prZ)→ HS

i (X,Z/prZ)

is an isomorphism of finite abelian groups for i = 0, . . . , n.

Remark 6.3. A proof of Proposition 6.2 for n = 1 and k algebraically closed independent
of the assumption on resolution of singularities would relax the condition in Theorem 6.1
to:
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There exists a smooth, projective scheme X̄ ′ ∈ Sch/k, dense open subschemes U ′ ⊂
X ′ ⊂ X̄ ′, U ⊂ X , and a surjective, proper morphism X ′ → X which induces an isomor-
phism U ′red → Ured .
In particular, Theorem 6.1 would hold for dimX ≤ 3 without any assumption on resolution
of singularities [CV].

Proof of Proposition 6.2. We set R = Z/prZ. By [MVW], Lecture 14, we have

HS
i (X,R) = HomDMeff,−

Nis (k,R)(R[i],M(X,R)).

Let d = dimX . Choose a series of open subschemes U = Xd ⊂ · · ·X1 ⊂ X0 = X such
that Zj := Xj r Xj+1 is smooth of dimension j for j = 0, . . . , d − 1. Using the exact
Gysin triangles [MVW, 15.15]

M(Xj+1, R)→M(Xj , R)→M(Zj)(d− j)[2d− 2j]
[1]→M(Xj+1, R)[1]

and induction, it suffices to show that

HomDMeff,−
Nis (k,R)(R[i],M(Zj , R)(s)[2s]) = 0

for j = 0, . . . , d − 1, i = 0, . . . , n + 1 and s ≥ 1. Using smooth compactifications of the
Zj and induction again, it suffices to show

HomDMeff,−
Nis (k,R)(R[i],M(Z,R)(s)[2s]) = 0

for Z connected, smooth, projective, i = 0, . . . , d− dZ + n and s ≥ 1.
By the comparison of higher Chow groups and motivic cohomology [V] and by [GL],

Thm. 8.5, the restriction of R(s) to the small Nisnevich site of a smooth scheme Y is
isomorphic to νsr [−s], where νsr is the logarithmic de Rham Witt sheaf of Milne and Illusie.
In particular, R(s)|Y is trivial for s > dimY .

For an étale k-scheme Z we obtain

HomDMeff,−
Nis (k,R)(R[i],M(Z,R)(s)[2s]) = H2s−i

Nis (Z,R(s)) = 0

for s ≥ 1 and all i ≥ 0. Now assume dimZ ≥ 1. Using resolution of singularities for
schemes of dimension ≤ d + n, the same method as in the proof of [SS], Thm. 2.7 yields
isomorphisms

HomDMeff,−
Nis (k,R)(R[i],M(Z,R)) ∼= CHdZ (Z, i, R)

for i = 0, . . . , d− 1 + n. Applying this to Z × Ps and using the decompositions given by
the projective bundle theorem on both sides implies isomorphisms

HomDMeff,−
Nis (k,R)(R[i],M(Z,R)(s)[2s]) ∼= CHdZ+s(Z, i, R)

for i = 0, . . . , d− 1 + n. By [V], the latter group is isomorphic to

HomDMeff,−
Nis (k,R)(M(Z,R)[2dZ + 2s− i], R(dZ + s)) ∼= H2dZ+2s−i

Nis (Z,R(dZ + s)),

which vanishes for s ≥ 1. This finishes the proof.

Remark 6.4. The assertion of Proposition 6.2 remains true for non-smoothX ifU contains
the singular locus of X (see [Ge4], Prop. 3.3).
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7 Comparison with the isomorphism of Suslin-Voevodsky
Theorem 7.1. Let k be an algebraically closed field, X ∈ Sch/k and m an integer prime
to char(k). Then the reciprocity isomorphism

recX : HS
1 (X,Z/mZ) −→ πab

1 (X)/m

is the dual of the isomorphism

αX : H1
et(X,Z/mZ) −→ H1

S(X,Z/mZ)

of [SV1], Cor. 7.8.

The proof will occupy the rest of this section. Let i : Z/mZ ↪→ I0 be an injec-
tion into an injective sheaf in the category of Z/mZ-module sheaves on (Sch/k)qfh and
put J1 = coker(i). Then (see the end of section 3) the pairing between HS

1 (X,Z/mZ)
and H1

et(X,Z/mZ) constructed in Proposition 2.12 can be given as follows: For a ∈
HS

1 (X,Z/mZ) choose a representing correspondence α ∈ Cor(∆1, X) and for b ∈
H1

et(X,Z/mZ) a pre-image β ∈ J1(X). Consider the diagram

I0(X) J1(X)

I0(∆1) J1(∆1) (8)

Z/mZ I0(∆0) J0(∆0).

α∗ α∗

0∗ − 1∗ 0∗ − 1∗

Then α∗(β) is the image of some element γ ∈ I0(∆1) and (0∗ − 1∗)(γ) ∈ Z/mZ =
ker(I0(∆0)→ J1(∆0)) equals 〈a, b〉.

For Y ∈ Sch/k letZqfh
Y be the free qfh-sheaf generated by Y . We setA = Z[1/char(k)]

and LY = Z
qfh
Y ⊗A. For smooth U the homomorphism

Cor(U,X)⊗A→ Homqfh(LU , LX)

is an isomorphism by [SV1], Thm. 6.7. We have

H1
et(X,Z/mZ) = H1

qfh(X,Z/mZ) = Ext1
qfh(LX ,Z/mZ)

= coker(Homqfh(LX , I
0)→ Homqfh(LX , J

1)).

The diagram (8) can be rewritten in terms of Hom-groups as follows:

Homqfh(LX , I
0) Homqfh(LX , J

1)

Homqfh(L∆1 , I0) Homqfh(L∆1 , J1) (9)

Z/mZ Homqfh(L∆0 , I0) Homqfh(L∆0 , J1).

α∗ α∗

0∗ − 1∗ 0∗ − 1∗
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We denote the morphism LX → J1 corresponding to β ∈ J1(X) ∼= Homqfh(LX , J
1) by

the same letter β. Putting E := I0 ×J1,β LX , the extension

0 −→ Z/mZ −→ E −→ LX −→ 0

represents b ∈ Ext1
qfh(LX ,Z/mZ). Consider the diagram

Homqfh(LX , E) Homqfh(LX , LX)

Homqfh(L∆1 , E) Homqfh(L∆1 , LX) (10)

Z/mZ Homqfh(L∆0 , E) Homqfh(L∆0 , LX).

α∗ α∗

0∗ − 1∗ 0∗ − 1∗

Because diagram (10) maps to diagram (9) via β∗ and id ∈ Homqfh(LX , LX) maps under
β∗ to β ∈ Homqfh(LX , J

1), we can calculate the pairing using diagram (10) after replacing
β by id. Since id maps to α ∈ Homqfh(L∆1 , LX) under α∗, we see, writing the lower part
of diagram (10) in the form

Z/mZ E(∆1) LX(∆1)

Z/mZ E(∆0) LX(∆0),

0∗ − 1∗ 0∗ − 1∗0
h

(11)

that
〈a, b〉 = h(α) mod m ∈ ker(E(∆0)/m→ LX(∆0)/m) = Z/mZ,

where h is the unique homomorphism making diagram (11) commutative. We consider the
complex C•(X) = Cor(∆•, X) ⊗ A = LX(∆•) with the obvious differentials. By the
above considerations, the homomorphism induced by the pairing of Proposition 2.12

H1
et(X,Z/mZ) = H1

qfh(X,Z/mZ) −→

HS
1 (X,Z/mZ)∗ = Ext1

A(C•(X),Z/mZ) = HomD(A)(C•(X),Z/mZ[1]),

is given by sending an extension class [Z/mZ ↪→ E � LX ] to the morphism C•(X) →
Z/mZ[1] in the derived category of A-modules represented by the morphism

C•(X)→ [0→ E(∆0)→ LX(∆0)→ 0]

which is given by id : LX(∆0)→ LX(∆0) in degree zero and by h : LX(∆1)→ E(∆0)
in degree one.

The same construction works for any qfh-sheaf of A-modules F instead of LX , i.e.,
setting C•(F ) = F (∆•) and starting from an element

[Z/mZ ↪→ E � F ] ∈ Ext1
qfh(F,Z/mZ),

we get a map C•(F ) → Z/mZ[1] in the derived category of A-modules. We thus con-
structed a homomorphism

Ext1
qfh(F,Z/mZ) −→ Ext1(C•(F ),Z/mZ), (12)
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which for F = LX and under the canonical identifications coincides with the map

H1
et(X,Z/mZ) −→ HS

1 (X,Z/mZ)∗

induced by the pairing constructed in Proposition 2.12.

Now we compare the map (12) with the map

αX : Ext1
qfh(F,Z/mZ) −→ Ext1

A(C•(F ),Z/mZ) (13)

constructed by Suslin-Voevodsky [SV1] (cf. [Ge1] for the case of positive characteristic).
Let F∼• be the complex of qfh-sheaves associated with the complex of presheaves F•(U) =
F (U ×∆•). By [SV1], the inclusion F → F∼• induces an isomorphism

Ext1
qfh(F∼• ,Z/mZ)

∼−→ Ext1
qfh(F,Z/mZ), (14)

and evaluation at Spec(k) induces an isomorphism

Ext1
qfh(F∼• ,Z/mZ)

∼−→ Ext1
A(C•(F ),Z/mZ). (15)

The map (13) of Suslin-Voevodsky is the composite of the inverse of (14) with (15).

We construct the inverse of (14). Let a class [Z/mZ ↪→ E � F ] ∈ Ext1
qfh(F,Z/mZ) be

given. As a morphism in the derived category this class is given by the homomorphism

0 0 F 0

0 E F 0 .

id

We therefore have to construct a homomorphism F1 −→ E making the diagram

F2 F1 F0 0

0 E F 0

id

commutative. The construction is a sheafified version of what we did before. Let U ∈
Sch/k be arbitrary. Consider the diagram

0 Z/mZ(U) E(U ×∆2) F (U ×∆2) 0

0 Z/mZ(U) E(U ×∆1) F (U ×∆1) 0

0 Z/mZ(U) E(U) F (U) 0 .

δ0 − δ1 + δ2δ0 − δ1 + δ2id

0 0∗ − 1∗0∗ − 1∗
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Let α1 ∈ F (U × ∆1) be given. By the smooth base change theorem and since
H1

et(∆
1,Z/mZ) = 0, we can lift α1 to E(U × ∆1) after replacing U by a sufficiently

fine étale cover. Applying 0∗ − 1∗ to this lift, we get an element in E(U). This gives the
homomorphism F1 → E. Now let α2 ∈ F (U ×∆2) be arbitrary. After replacing U by a
sufficiently fine étale cover, we can lift α2 toE(U×∆2). Since (0∗−1∗)(δ0−δ1+δ2) = 0
this shows that (δ0 − δ1 + δ2)(α2) maps to zero in E(U).

This describes the inverse isomorphism to (14). Evaluating at U = Spec(k) gives back
our original construction, hence (12) and (13) are the same maps. This finishes the proof.

References
[CV] V. Cossart, O. Piltant Resolution of singularities of threefolds in positive charac-

teristic. II. J. Algebra 321 (2009), no. 7, 1836–1976.

[Fr] E. M. Friedlander Etale homotopy of simplicial schemes. Ann. of Math. Studies
104 Princeton Univ. Press 1982

[Ge1] T. Geisser Applications of de Jong’s theorem on alterations. In H. Hauser, J. Lip-
man, F. Oort, A. Quirós (eds.): Resolution of Singularities. In tribute of Oscar
Zariski. Progress in Math., Birkhäuser 1999

[Ge2] T. Geisser Arithmetic cohomology over finite fields and special values of ζ-
functions. Duke Math. J. 133 (2006), no. 1, 27–57.

[Ge3] T. Geisser Duality via cycle complexes. Ann. of Math. (2) 172 (2010), no. 2,
1095–1126.

[Ge4] T. Geisser On Suslin’s singular homology and cohomology. Doc. Math. 2010,
Extra volume: Andrei A. Suslin’s sixtieth birthday, 223–249.

[GL] T. Geisser, M. Levine The p-part of K-theory of fields in characteristic p. Inv.
Math. 139 (2000), 459–494.

[FJ] M. D. Fried, M. Jarden Field arithmetic. Ergebnisse der Mathematik und ihrer
Grenzgebiete. (3), 11. Springer-Verlag, Berlin, 1986.

[KS] M. Kerz, A. Schmidt On different notions of tameness in arithmetic geometry.
Math. Ann. 346 (2010), 641–668.

[Li] S. Lichtenbaum Suslin homology and Deligne 1-motives. in P. G. Goerss, J. F. Jar-
dine (ed.): Algebraic K-theory and Algebraic Topology 1993, 189–196.

[MVW] C. Mazza, V. Voevodsky and Ch. Weibel Lectures on Motivic Cohomology. Clay
Monographs in Math. 2, AMS 2006.

[Mi] J. S. Milne Étale Cohomology. Princeton University Press 1980.

[Mu] D. Mumford Abelian varieties. Tata Institute of Fundamental Research Studies in
Mathematics, No. 5, Oxford University Press, London 1970.

[SS] A. Schmidt, M. Spieß Singular homology and class field theory of varieties over
finite fields. J. reine angew. Math. 527 (2000) 13–37.

[Se] J.-P. Serre Groupes algébriques et corps de classes. Deuxième édition. Hermann,
Paris, 1975.

[SV1] A. Suslin, V. Voevodsky Singular homology of abstract algebraic varieties. In-
vent. Math. 123 (1996), 61–94.

26



[SV2] A. A. Suslin, V. Voevodsky Bloch-Kato conjecture and motivic cohomology with
finite coefficients. The arithmetic and geometry of algebraic cycles (Banff, AB,
1998), 117-189, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ.,
Dordrecht, 2000.

[V] V. Voevodsky Motivic cohomology groups are isomorphic to higher Chow groups
in any characteristic. Int. Math. Res. Not. 2002, no. 7, 351–355.

GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY FUROCHO, CHIKUSAKU,
NAGOYA, JAPAN 464-8602

E-mail address: geisser@math.nagoya-u.ac.jp

UNIVERSITÄT HEIDELBERG, MATHEMATISCHES INSTITUT, IM NEUENHEIMER FELD 288,
D-69120 HEIDELBERG, DEUTSCHLAND

E-mail address: schmidt@mathi.uni-heidelberg.de

27


