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1. Introduction

The étale fundamental group of a scheme plays a similar role in algebraic geometry
as the topological fundamental group in algebraic topology. For a scheme X of
characteristic p > 0 however, the p-part of πet

1 (X) is not well-behaved, e.g., it is not
(A1-)homotopy invariant. Therefore the tame fundamental group has been studied
in positive and mixed characteristic (Grothendieck-Murre [GM71], Kerz-Schmidt
[KS10]). Unfortunately, lacking an associated tame cohomology theory, sometimes
ad hoc arguments have to be used in applications. It would be helpful to have
a tame Grothendieck topology whose associated fundamental group is the tame
fundamental group. Such a topology would provide a tame cohomology theory
and, in addition, higher tame homotopy groups. The latter seem to be even more
desirable because the higher étale homotopy groups of a�ne varieties vanish in
positive characteristic (Achinger [Ach17]). In this paper we give a de�nition of a
tame site that hopefully will prove useful as a tool to separate tame from wild
phenomena in scheme theory.

Let X be a scheme over a �xed base scheme S. The tame site (X/S)t which will
be de�ned below has the same underlying category as the small étale site Xet but
less coverings. Every Nisnevich covering is tame, so we have natural morphisms of
sites

Xet
α−→ (X/S)t

β−→ XNis.
1
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Tameness of a covering should be thought of as �at most tamely rami�ed along the
boundary of compacti�cations over S�. We will use the associated valuation space
as a convenient technical tool to make this precise.

A technical advantage of the tame site sitting between the étale and the Nisnevich
site is that motivic techniques like sheaves with transfers à la Voevodsky and the A1-
homotopy category of Morel-Voevodsky work essentially without change also for the
tame site. A technical disadvantage is that the topology is not local enough in the
sense that we cannot su�ciently separate the valuations that occur in the de�nition
of tameness. We will resolve this problem by comparing the tame cohomology of
an S-scheme X with the tame cohomology of the adic space Spa(X,S) as de�ned
in Hübner [Hüb18].

Our wish list of properties one would expect of an �ideal� tame site (X/S)t
contains the following:

(1) (Topological invariance) If X ′ → X is a universal homeomorphism of S-
schemes, then the sites (X/S)t and (X ′/S)t are isomorphic.

(2) (Comparison with étale cohomology for invertible coe�cients) Let F ∈
Shet(X) be an abelian sheaf with mF = 0 for some m which is invertible
on S. Then the natural morphism α : Xet → (X/S)t induces isomorphisms

Hn
t (X/S, α∗F ) ∼= Hn

et(X,F ) for all n ≥ 0.

(3) (Comparison with étale cohomology for proper schemes) Let F ∈ Shet(X)
be an abelian sheaf and assume that X/S is proper. Then

Hn
t (X/S, α∗F ) ∼= Hn

et(X,F ) for all n ≥ 0.

(4) (Homotopy invariance of cohomology): The projection p : A1
X → X induces

isomorphisms

Hn
t (X/S, F ) −→∼ Hn

t (A1
X/S, p

∗F )

for all n ≥ 0 and all torsion sheaves F ∈ Sht(X/S).
(5) (Excision) Let π : X ′ → X be an étale morphism and Z ↪→ X, Z ′ ↪→ X ′

closed immersions with open complements U = X r Z, U ′ = X ′ r Z ′.
Assume that π(U ′) ⊂ U and that π induces an isomorphism Z ′red −→

∼ Zred.
Then the induced homomorphisms between tame cohomology groups with
supports

Hn
t,Z(X/S, F ) −→ Hn

t,Z′(X
′/S, π∗F )

are isomorphisms for every F ∈ Sht(X/S) and all n ≥ 0.
(6) (Purity, locally constant coe�cients) If X is regular and of �nite type

over S, S is pure of characteristic p>0, U ⊂ X is a dense open subscheme
and F is a locally constant p-torsion sheaf, then

Hn
t (X/S, F ) ∼= Hn

t (U/S, F |U ).

for all n ≥ 0.
Moreover, we expect tame versions of the proper and the smooth base change

theorem and purity for deRham-Witt sheaves. In addition, we expect �niteness
properties of tame cohomology groups and cohomological dimension in those cases
where they hold for the étale cohomology (e.g., schemes of �nite type over Z or
over separably closed �elds).

In this paper we will prove properties (1), (2), (3) and (5) in general. Assuming
resolution of singularities (in the version of De�nition 15.1 below), we prove (6)
and (4) for locally constant coe�cients. If X is locally noetherian, we show that
the (curve-)tame fundamental group as de�ned in [KS10] occurs as the natural
fundamental group of the site (X/S)t. For schemes of dimension less or equal to
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one, we prove �niteness properties in Section 9. Purity for deRham-Witt sheaves
on curves has been addressed in [Hüb20].

The essential point in proving (4) and (6) is the comparison theorem 14.8 be-
tween the tame cohomology of an S-schemeX and the cohomology of the associated
adic space Spa(X,S). At the moment, we can prove this only in pure characteris-
tic. The method is to compare the associated �ech cohomologies. To prove that
the corresponding sheaf and the �ech cohomologies coincide, we adapt M. Artin's
method of joins of hensel rings [Art71] to the respective situations. In the adic case
this is rather involved and requires a careful analysis of relative Riemann-Zariski
spaces as introduced by M. Temkin [Tem11].

Finally, in Section 16 we give an application to Suslin homology which in fact was
the initial motivation for our construction of the tame site. We �x an algebraically
closed �eld k and assume that resolution of singularities holds over k. For a scheme
X of �nite type over k, we construct natural maps from tame to Suslin cohomology

βn : Hn
t (X,Z/mZ) −→ Hn

S (X,Z/mZ), n ≥ 0, m ≥ 1.

We conjecture that all βn are isomorphisms. This extends work of Suslin-Voevodsky
[SV96] in the case (m, char(k)) = 1 and of Geisser-Schmidt [GS16] for n = 1 and
general m.

Acknowledgement: The authors want to thank M. Temkin for helpful discussions
on Riemann-Zariski points. The construction of the map between tame and Suslin
cohomology arose from discussions of the second author with T. Geisser while writ-
ing [GS16]. We would like to thank the referee, whose constructive criticism has
helped to improve the presentation.

2. Definition of the tame site

By a valuation on a �eldK we mean a non-archimedean valuation, not necessarily
discrete or of �nite rank. The trivial valuation is included. If v is a valuation on K,
we denote by Ov,mv and k(v) the valuation ring, its maximal ideal and the residue
�eld. By Ohv and Osh

v we denote the henselization and strict henselization of Ov
and by Kh

v and Ksh
v their quotient �elds.

Let v be a valuation on K and w an extension of v to a �nite separable extension
�eld L/K. We call w/v unrami�ed if Ov → Ow is étale, i.e., Lsh

w = Ksh
v , and tamely

rami�ed if the �eld extension Lsh
w /K

sh
v is of degree prime to the residue characteris-

tic p = char k(v). In this case Lsh
w /K

sh
v is automatically Galois with abelian Galois

group of order prime to p. If L/K is Galois, then w/v is unrami�ed (resp. tamely
rami�ed) if and only if the inertia group Tw(L/K) (resp. the rami�cation group
Rw(L/K)) is trivial. (See [Ray70] and [EP05].)

De�nition 2.1. An S-valuation on an S-scheme X is a valuation v on the residue
�eld k(x) of some point x ∈ X such that there exists a morphism ϕ : Spec(Ov)→ S
making the diagram

Spec(k(x)) X

Spec(Ov) S

f

ϕ

commutative (if S is separated, ϕ is unique if it exists). The set of all S-valuations
is denoted by ValS X.

We denote elements of ValS X in the form (x, v), x ∈ X, v ∈ ValS(k(x)).
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Remarks 2.2. (1) Directly by de�nition, we have a disjoint union decompo-
sition

ValS X =
∐
x∈X

ValS(k(x)).

(2) If S = Spec k for a �eld k, then S-valuations are the valuations with trivial
restriction to k.

(3) If S = SpecZ, then every valuation is an S-valuation.

Given a commutative square of scheme morphisms

X ′ X

S′ S,

f ′

ϕ

f

ψ

there is an associated map

Valψ ϕ : ValS′ X
′ −→ ValS X, (x′, v′) 7−→ (x = ϕ(x′), v = v′|k(x)).

De�nition 2.3. The tame site (X/S)t consists of the following data:

The category Cat(X/S)t is the category of étale morphisms p : U → X.

A family (Ui → U)i∈I of morphisms in Cat(X/S)t is a covering if it is an étale
covering and for every point (u, v) ∈ ValS U there exists an index i and a point
(ui, vi) ∈ ValS Ui mapping to (u, v) such that vi/v is tamely rami�ed.

We will use the notation ShSetst (X/S) resp. Sht(X/S) for the category of sheaves
of sets resp. abelian groups on (X/S)t.

Remark 2.4. There are obvious morphisms of sites

Xet
α−→ (X/S)t

β−→ XNis.

In particular, every étale sheaf is a tame sheaf. We mention the following special
cases:

For an abelian group A, the presheaf (constant Zariski-sheaf)

U 7−→ A(U) := Mapcts(U,A)

is a tame sheaf.
For a quasi-coherent sheaf Q on XZar, the presheaf W (Q) given by

W (Q)(U
h→ X) :=

(
h∗Zar(Q)⊗h∗Zar(OX) OU

)
(U)

is a sheaf on (X/S)t.

Consider a commutative diagram

X ′ X

S′ S

of scheme morphisms. Then the pullback (U → X) 7→ (U ′ = U ×X X ′ → X ′)
induces a morphism of sites ϕ : (X ′/S′)t → (X/S)t.

Lemma 2.5. The inverse image functors ϕ∗
Sets

: ShSets

t (X/S) → ShSets

t (X ′/S′)
and ϕ∗ : Sht(X/S) → Sht(X

′/S′) are exact. The direct image functor ϕ∗ :
Sht(X

′/S′)→ Sht(X/S) sends injective abelian sheaves to injective abelian sheaves.
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Proof. The underlying categories of the tame sites are the same as for the small
étale sites. Hence the �rst statement follows in the same way as for the étale
topology from the fact that the index categories for the colimits which de�ne the
presheaf-pullback are �ltered (cf. [Art62, II, Thm. 4.14]). The second assertion is a
formal consequence of the adjunction ϕ∗ a ϕ∗. �

Lemma 2.6. Let X
f−→ S

g−→ T be scheme morphisms. If g is proper, then the
natural morphism of sites

(X/S)t −→ (X/T )t

is an isomorphism.

Proof. If g : S → T is proper, then the valuative criterion for properness implies
ValS U = ValT U for every p : U → X étale. Whence the statement. �

De�nition 2.7. A tame point of (X/S)t is a pair (x̄, v̄) where x̄ : Spec k(x̄)→ X is
a morphism from the spectrum of a �eld to X and v̄ is an S-valuation on k(x̄) such
that k(x̄) does not admit a nontrivial, �nite, separable extension to which v̄ has a
tamely rami�ed extension. In other words, k(x̄) is strictly henselian with respect
to v̄ and the absolute Galois group of k(x̄) is a pro-p group, where p is the residue
characteristic of v̄ (if p = 0 this means that the group is trivial).

If v̄ is the trivial valuation, we call the point (x̄, v̄) trivial point. Note that
(regardless of the residue characteristic) the �eld k(x̄) of a trivial point is separably
closed.

A tame point (x̄, v̄) induces a morphism of sites

x̄ : (Spec k(x̄)/SpecOv̄)t −→ (X/S)t.

By Lemma 2.5, the inverse image sheaf functor x̄∗ is exact. Since every tame
covering of Spec(k(x̄)) splits, the global sections functor on (Spec k(x̄)/SpecOv̄)t is
exact. Therefore the functor �stalk at x̄�

F 7−→ Fx̄ := Γ(Spec k(x̄), x̄∗F ),

is a topos-theoretical point of (X/S)t. The trivial points correspond to the usual
geometric points of the étale site (followed by α : Xet → (X/S)t).

Remark 2.8. The stalk of the structure sheaf at a point of the Nisnevich resp.
étale site is the henselization resp. the strict henselization of the local ring of the
underlying scheme theoretic point.

Let (x̄, v̄) be a tame point ofX/S with underlying scheme theoretic point x0 ∈ X.
Let k(x̄)s/k(x0) be the relative separable algebraic closure of k(x0) in k(x̄) and
choose a separable algebraic closure ks/k(x̄)s. Denote the strict henselization of
OX,x0 with respect to ks/k(x0) by OshX,x̄. Then the stalk OX,(x̄,v̄) of the structure
sheaf at (x̄, v̄) is the unique ind-étale subextension of

OhX,x0
↪→ OshX,x̄

which corresponds to the subextension k(x̄)s of ks/k(x0).

De�nition 2.9. We call the ring OX,(x̄,v̄) described in Remark 2.8 the tame hen-

selization of X at the point (x̄, v̄).

Lemma 2.10. The site (X/S)t has enough points.

Proof. We �x a separable closure k(x)s of k(x) for every point x ∈ X. For each
S-valuation v on k(x) we choose a prolongation v̄ to k(x)s and consider the �xed
�eld Kv := (k(x)s)Rv̄ of its rami�cation group. Then the tame points (x̄L, v̄|L)
with

x̄L : SpecL −→ Spec k(x) −→ X,
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where x runs through the points of X, v runs through the S-valuations of k(x)
and L runs through the �nite subextensions of k(x)s/Kv establish a conservative
set of points. Indeed, this follows immediately from the de�nition of coverings in
(X/S)t. �

We learn that exactness of sequences of tame sheaves can be checked stalkwise
at tame points. As in the étale case, we obtain

Lemma 2.11. Let π : X ′ → X be a �nite morphism between S-schemes. Then

π∗ : Sht(X
′/S)→ Sht(X/S)

is exact. For F ′ ∈ Sht(X
′/S) we have Hq

t (X/S, π∗F
′) ∼= Hq

t (X ′/S, F ′) for all q ≥ 0.

Proof. The proof is similar to that for the étale topology: The �rst statement
follows by considering the stalks of π∗F ′ and using the fact that a �nite algebra
over a local henselian ring is a �nite product of local henselian rings. From this we
obtain Rqπ∗F ′ = 0 for q > 0 and the second statement follows from the Leray-Serre
spectral sequence. �

3. Topological invariance and excision

We start by collecting properties of the tame site which follow from or in a similar
way as the corresponding properties of the small étale site.

Proposition 3.1 (Topological invariance). Let f : X0 → X be a universal homeo-
morphism of S-schemes. Then the tame sites (X0/S)t and (X/S)t are isomorphic.
In particular, there are isomorphisms

Hn
t (X/S, F ) −→∼ Hn

t (X0/S, f
∗F )

for all n ≥ 0 and F ∈ Sht(X/S).

Proof. By the topological invariance of the small étale site [EGA4.4, Theorem
18.1.2], Y 7→ Y ×X X0 de�nes an equivalence f−1 : Cat(X/S)t −→∼ Cat(X0/S)t of
the underlying categories. By [SP, TAG 04DF], f is integral. Hence, for any point
x0 ∈ X0 with image x ∈ X, the induced �eld extension k(x0)/k(x) is algebraic
and a universal homeomorphism, hence purely inseparable. This implies that every
S-valuation on k(x) has a unique extension to k(x0). By [Sch20, Lemma 1.1], for
a valuation v0 on k(x0) with restriction v to k(x), the induced homomorphism on
rami�cation groups is an isomorphism. Hence, f−1 respects tame coverings. The
result follows. �

Let X → S be an S-scheme, i : Z ↪→ X a closed immersion and U = X r Z
the open complement. The right derivatives of the left exact functor �sections with
support in Z�

F 7→ ker(F (X)→ F (U))

are called the tame cohomology groups with support in Z. Notation: H∗t,Z(X/S, F ).
Exactly in the same way as in the étale case ([Art62, III, (2.11)]), one shows the

existence of a long exact sequence

. . .→ Hp
t,Z(X/S, F )→ Hp

t (X/S, F )→ Hp
t (U/S, F )→ Hp+1

t,Z (X/S, F )→ . . .

Proposition 3.2 (Excision). Let π : X ′ → X be a morphism of S-schemes, Z ↪→
X, Z ′ ↪→ X ′ closed immersions and U = XrZ, U ′ = X ′rZ ′ the open complements.
Assume that

• π : X ′ → X is étale,
• π induces an isomorphism Z ′red −→

∼ Zred,
• π(U ′) ⊂ U .
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Then the induced homomorphism

Hp
t,Z(X/S, F ) −→∼ Hp

t,Z′(X
′/S, π∗F )

is an isomorphism for every sheaf F ∈ Sht(X/S) and all p ≥ 0.

Proof. The standard proof for the étale topology applies: Since π belongs to
Cat(X/S)t, π∗ has the exact left adjoint �extension by zero�. Hence π∗ sends
injectives to injectives. Since π∗ is exact, it su�ces to deal with the case p = 0.
Without changing the statement, we can replace all occurring schemes by their
reductions (see Proposition 3.1). By assumption, X ′ tU → X, is a tame covering.
For α ∈ H0

t,Z(X,F ) mapping to zero in H0
t,Z′(X

′, π∗F ) we therefore obtain α = 0.
Now let α′ ∈ H0

t,Z′(X
′, π∗F ) be given. We show that α′ and 0 ∈ H0

t (U,F ) glue
to an element in H0

t,Z(X,F ). The only nontrivial compatibility on intersections is
p∗1(α′) = p∗2(α′) for p1, p2 : X ′ ×X X ′ → X ′. This can be checked on stalks noting
that Z ′ −→∼ Z implies that the two projections Z ′ ×Z Z ′ → Z ′ are the same. �

4. Continuity

The aim of this section is to prove theorems 4.5 and 4.6 below, which deal with
the cohomology of colimits and limits. We start with the following �niteness result:

Theorem 4.1. Assume that S is quasi-compact and quasi-separated and let X
be a quasi-compact S-scheme. Then every tame covering of X admits a �nite
subcovering.

For the proof we need some preparations. The de�nition of the tame site suggests
to tackle the problem by endowing ValS X with a suitable topology and then to
apply a compactness argument. A convenient way to do this is to move the problem
to the setting of adic spaces, where it was solved in [Hüb18].

Following M. Temkin [Tem11], we associate with a morphism of schemes f :
X → S the set Spa(X,S), whose elements are triples (x, v, ε), where x is a point
of X, v is a valuation of k(x) and ε : SpecOv → S is a morphism compatible with
Spec k(x) → S. If S is separated, then ε is uniquely determined (if it exists) by
(x, v). In other words, we have a natural forgetful map

Spa(X,S) −→ ValS X,

which is bijective if S is separated. Here, ValS X is the earlier de�ned space of pairs
(x, v) with x ∈ X and v a valuation of k(x) with center in S (but we do not specify
a homomorphism SpecOv → S).

Remark 4.2. Note that the space ValX(S) de�ned in [Tem11] is not the same as
our ValS X. Temkin's ValX(S) denotes the relative Riemann-Zariski space of X
over S. It can be viewed as the subspace of all Riemann-Zariski points (see De�ni-
tion 10.1 below) of Spa(X,S).

If X = SpecA and S = SpecR are a�ne, then Spa(X,S) coincides with the set
of points of R. Huber's a�noid adic space Spa(A,A+), where A+ ist the integral
closure of R in A and A and A+ are equipped with the discrete topology, cf. [Hub96].
By patching, we obtain on Spa(X,S) the structure of a discretely ringed adic space.
If

X ′ X

S′ S

ϕ

is a commutative diagram of scheme morphisms, then

Spa(ϕ) : Spa(X ′, S′) −→ Spa(X,S)



8 KATHARINA HÜBNER AND ALEXANDER SCHMIDT

is a morphism of adic spaces, in particular it is continuous. The topology of
Spa(X,S) is generated by the images of Spa(X ′, S′) in Spa(X,S) coming from
commutative diagrams as above with X ′ and S′ a�ne, X ′ → X an open immersion
and S′ → S locally of �nite type.

Recall that a topological space is called spectral if it is homeomorphic to Spec(R)
for some commutative ring R.

Lemma 4.3. If S and X are quasi-compact and quasi-separated, then Spa(X,S)
is a spectral space. In particular, Spa(X,S) is a quasi-compact and quasi-separated
topological space.

Proof. By [Hoc69, Corollary toProposition 7], we have to show that Spa(X,S) is
locally spectral, quasi-compact and quasi-separated. Let

S =
⋃
i

Si and X ×S Si =
⋃
ji

Xji

be �nite coverings by open, a�ne subschemes. Then

Spa(X,S) =
⋃
i,ji

Spa(Xji , Si).

The spaces Spa(Xji , Si) are spectral by [Hub93, Theorem 3.5]. Hence, Spa(X,S)
is locally spectral and quasi-compact. In order to show quasi-separateness, �x i, i′

and ji, j′i′ . The intersection

Spa(Xji , Si) ∩ Spa(Xj′
i′
, Si′) = Spa((Xji ∩Xj′

i′
), Si ∩ Si′)

is quasi-compact by what we just saw and the quasi-separateness assumptions on S
and X. Therefore, Spa(X,S) is quasi-separated. �

If ϕ : Y → X is an étale morphism of S-schemes, then Spa(ϕ) : Spa(Y, S) →
Spa(X,S) is an étale morphism of adic spaces in the sense of [Hub96, De�ni-
tion 1.6.5]. By de�nition [Hüb18, De�nition 3.1], Spa(ϕ) is tame if for every point
(y, v, ε) of Spa(Y, S), the valuation v is (at most) tamely rami�ed in the �nite sep-
arable �eld extension k(y)/k(ϕ(y)). In particular, tameness at a point of Spa(Y, S)
only depends on its image in ValS Y . The following proposition is essential for us:

Proposition 4.4 (Openness of the tame locus, [Hüb18, Corollary 4.4]). Let ϕ :
Y → X be an étale morphism of S-schemes. Then the set of points where the
morphism of adic spaces Spa(ϕ) : Spa(Y, S)→ Spa(X,S) is tame is an open subset
of Spa(Y, S).

Proof of Theorem 4.1. Since X admits a �nite Zariski-covering by a�ne schemes,
we may assume that X is a�ne. Let (Ui → X) be a tame covering. By Propo-
sition 4.4, the tame locus of Spa(Ui, S) → Spa(X,S) is an open subspace Ui of
Spa(Ui, S) for all i. By [Hub96, 1.10.12. i)], étale morphisms of adic spaces are
open, hence the images Wi ⊂ Spa(X,S) of the Ui are open. As (Ui → X) is a tame
covering, the Wi cover Spa(X,S). Since X is a�ne, Spa(X,S) is a spectral space
by Lemma 4.3. In particular, Spa(X,S) is quasi-compact.

We conclude that there is a �nite subset J ⊂ I with Spa(X,S) =
⋃
j∈J Wj .

Therefore, (Uj →W )j∈J is a �nite subcovering of (Ui → X)i∈I . �

As in [SGA4, VII, 3.2] for the étale site, we de�ne the restricted tame site

(X/S)res
t

as the restriction of (X/S)t to the subcategory of all U ∈ Cat(X/S)t such that
U → X is of �nite presentation.
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Assume that X is quasi-compact and quasi-separated. Then the same is true for
any such U and Theorem 4.1 shows that the restricted site is noetherian. Moreover,
the categories of sheaves on (X/S) and (X/S)res

t are naturally equivalent. Hence
the same argument as in the étale case [SGA4, VII, Proposition 3.3] shows

Theorem 4.5. Assume that S and X are quasi-compact and quasi-separated and
let (Fi) be a �ltered direct system of abelian sheaves on (X/S)t. Then

colim
i

Hq
t (X/S, Fi) ∼= Hq

t (X/S, colim
i

Fi)

for all q ≥ 0.

Now we consider limits of schemes. The main result is:

Theorem 4.6. Let (fi : Xi → Si)i∈I be a �ltered inverse system of scheme mor-
phisms with a�ne transition morphisms and assume that all Si and Xi are quasi-
compact and quasi-separated. Denote by X → S its inverse limit. Then, for every
étale surjection U → X of �nite presentation which is a tame covering with respect
to S, there exists an index i ∈ I and an étale surjection Ui → Xi of �nite presen-
tation which is a tame covering with respect to Si and whose base change to X is
U → X.

The natural map from (X/S)res
t to the limit topology of the (Xi/Si)

res
t is an

isomorphism.

Proof. By [SGA4, VII, 5.6], there is i ∈ I such that U → X is the pullback of an
étale surjection Ui → Xi. For every j ≥ i denote by Uj → Xj its pullback to Xj .
We have to show that there is j ≥ i such that Uj → Xj is tame over Sj . By
Proposition 4.4, the set of points in Spa(Uj , Sj) where Spa(Uj , Sj) → Spa(Xj , Sj)
is tame is open. Denote by Zj ⊂ Spa(Xj , Sj) the complement of the image of this
set. It consist of all points (xj , vj , εj) ∈ Spa(Xj , Sj) such that there is no point
(uj , wj , µj) ∈ Spa(Uj , Sj) lying over (xj , vj , εj) such that wj/vj is tamely rami�ed
in k(uj)/k(vj). Since étale morphisms of adic spaces are open, Zj is a closed
subset of Spa(Xj , Sj). Since tameness is stable under base change, for k ≥ j ≥ i
the transition map Spa(Xk, Sk)→ Spa(Xj , Sj) sends Zk to Zj .

For (u,w, µ) ∈ Spa(U, S) with images (uj , wj , µj) ∈ Spa(Uj , Sj) lying over
(x, v, ε) ∈ Spa(X,S) with images (xj , vj , εj) ∈ Spa(Xj , Sj) we have k(u) =

⋃
k(uj)

and k(x) =
⋃
k(xj). For su�ciently large j, we have k(u) = k(uj)k(x) (compositum

in k(u)).
Let K be the Galois closure of k(u)/k(x) in some separable closure of k(u)s

of k(u) and Kj the Galois closure of k(uj)/k(xj) in k(u)s. Then K =
⋃
Kj and

G(K/k(x))→ G(Kj/k(xj)) is an isomorphism for su�ciently large j. Let w′ be a
valuation on K with w′|k(u) = w and let w′j = w′|Kj

, so that w′j |k(uj) = wj . Then
the induced homomorphism of rami�cation groups Rw′(K/k(x))→ Rw′j (Kj/k(xj))

is an isomorphism for su�ciently large j. If w/v is tame, then Rw′(K/k(x)) ⊂
G(K/k(u)), hence Rw′j (Kj/k(xj)) ⊂ G(Kj/k(uj)) and wj/vj is tame for su�ciently
large j. As U → X is a tame covering, we conclude that

lim
j≥i

Zj = ∅.

By Lemma 4.3, Spa(Xj , Sj) is spectral and hence by [SP, TAG 0901] compact in
its constructible topology. In particular, the Zj are compact in the constructible
topology. Since the inverse limit of nonempty compact spaces is nonempty, we
conclude that Zj = ∅ for large enough j. In other words Uj → Xj is a tame
covering. This shows the �rst statement.

For the second statement note that every tame covering in the limit topology of
the (Xi/Si)t de�nes a covering in (X/S)t. To show the equivalence, it su�ces to
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show that every morphisms
U → V

of étale X-schemes of �nite presentation which is a tame covering with respect to S
comes by base change from a �nite level. This follows from the �rst statement �

As an immediate consequence we obtain:

Theorem 4.7. In the situation of Theorem 4.6 assume that i0 ∈ I is a �nal object.
Let F0 be a sheaf of abelian groups on (Xi0/Si0)t. For i ∈ I denote by Fi its pullback
to (Xi/Si)t and by F its pullback to (X/S)t. Then the natural map

colim
i∈I

Hn
t (Xi/Si, Fi) −→ Hn

t (X/S, F )

is an isomorphism for all n ≥ 0.

5. The tame fundamental group

In this section we assume that X is locally noetherian. Then the small étale
site of X is locally connected [AM69, Prop. 9.5] and, having the same underlying
category, the same is true for the site (X/S)t. Therefore by [AM69, �9], after
choosing a tame base point (x̄, v̄), we have the tame homotopy (pro)groups

πtn(X/S, (x̄, v̄)).

We call the �rst tame homotopy group πt1(X/S, (x̄, v̄)) the tame fundamental group.
IfX is connected, then by [AM69, Corollary 10.7], it classi�es pointed torsors for the
tame topology. Moreover, by [AM69, Corollary 10.8], there is a natural equivalence
between the category of locally constant abelian tame sheaves and the category of
abelian groups A with a homomorphism (of pro-groups) πt1(X/S, (x̄, v̄))→ Aut(A).

For a group G, the set of isomorphism classes of tame G-torsors is a subset of the
set of isomorphism classes of étaleG-torsors. Hence, for a trivial point x̄ = (x̄, vtriv ),
the morphism of pointed sites

(X, x̄)et −→ (X/S, x̄)t

induces a surjection πet
1 (X, x̄)� πt1(X/S, x̄) (here πet

1 denotes the étale fundamental
group of [AM69], which coincides with the pro-groupe fondamentale élargi of [SGA3,
X, �6]). We conclude that the �nite quotients of πt1(X/S, x̄) correspond to pointed,
�nite, connected étale Galois covers f : (Y, ȳ) → (X, x̄) that are coverings for the
tame site. Since the Galois group acts transitively on the �bres, this means that
for every y ∈ Y and w ∈ ValS k(y) the extension k(y)/k(f(y)) is at most tamely
rami�ed at w. We will call such covers tame Galois covers. If X is geometrically
unibranch, then the group πet

1 (X, x̄) is pro�nite by [AM69, Theorem11.1], and
hence the same holds for its factor group πt1(X/S, x̄).

From now on we assume that S is integral, pure-dimensional (i.e., dimS = dimOS,s
for every closed point s ∈ S), separated and excellent. Furthermore, we assume
that X → S is separated and of �nite type. For integral X we put

dimS X := deg.tr.(k(X)/k(T )) + dimKrull T,

where T is the closure of the image of X in S. If the image of X in S contains
a closed point of T , then dimS X = dimKrullX by [EGA4.4, 5.6.5]. We call X an
S-curve, if dimS X = 1. For a regular connected S-curve C, let C̄ be the unique
regular compacti�cation of C over S. Then the �nite tame Galois covers of C are
exactly those étale Galois covers which are tamely rami�ed along C̄ r C in the
classical sense (e.g. [GM71]). We recall the notion of curve-tameness from [KS10]:
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De�nition 5.1. Let Y → X be an étale cover of separated S-schemes of �nite
type. We say that Y → X is curve-tame if for any morphism C → X with C a
regular S-curve, the base change Y ×X C → C is tamely rami�ed along C̄ r C.

After choosing a geometric point x̄, we obtain the curve-tame fundamental group

πct1 (X, x̄), which is the pro�nite quotient of πet
1 (X, x̄) which classi�es �nite curve-

tame Galois covers. This curve-tame fundamental group was considered in [Sch07],
[KS09], [GS16].

Proposition 5.2. The curve-tame fundamental group is the pro�nite completion
of the tame fundamental group. If X is geometrically unibranch, then both are
isomorphic:

πt1(X, x̄) ∼= πct1 (X, x̄).

For the proof we recall the �Key Lemma�, Lemma 2.4 of [KS10]. The normaliza-
tion of an integral scheme Z in its function �eld is denoted by Z̃.

Lemma 5.3. Let A be a local, normal and excellent ring and letX ′ ⊂ X = Spec(A)
be a nonempty open subscheme. Let Y ′ → X ′ be an étale Galois cover of prime
degree p. Assume that XrX ′ contains an irreducible component D of codimension
one in X such that Y ′ → X ′ is rami�ed along the generic point of D. Then
there exists an integral, closed subscheme C of X of Krull-dimension one with
C ′ := C ∩X ′ 6= ∅ such that the base change Y ′ ×X′ C̃ ′ → C̃ ′ is rami�ed along a
point of C̃ r C̃ ′.

Proof of Proposition 5.2. We have to show that a �nite étale Galois cover is tame
if and only if it is curve-tame. Both notions coincide for regular S-curves and are
stable under base change. Hence �nite tame Galois covers are curve-tame and it
remains to show the converse.

So let f : Y → X be a �nite étale Galois cover, y ∈ Y a point, x = f(y) and
w ∈ ValS k(y) such that w is wildly rami�ed in k(y)/k(x). We have to �nd an
S-curve C and a morphism ϕ : C → X such that C ×X Y → C is wildly rami�ed
at some point in C̄ r C.

We �rst assume that Gal(Y/X) is cyclic of order p := char k(w). Then, since w
is rami�ed, k(y)/k(x) is also of degree p. Let X ′ be the closure of {x} in X with
reduced scheme structure and Y ′ = X ′ ×X Y . In order to �nd ϕ : C → X, we may
replace X by X ′ and Y by the connected component of y in Y ′, i.e., we may assume
that x and y are the generic points of the integral schemes X and Y . Replacing X
by its normalization X̃ and Y by its base change along X̃ → X, we may assume
that X and Y are normal.

By quasi-purity of the branch locus [Sch20], we �nd a geometric discrete rank-
one S-valuation v on k(y) with char k(v) = p that is (wildly) rami�ed in k(y)/k(x).
Then we can �nd a normal compacti�cation (over S) X̄ of X such that the center
D of v on X̄ is of codimension one. Applying Lemma 5.3 to the local ring of some
closed point of X̄ contained in D, we obtain a morphism ϕ : C → X with the
required property.

It remains to reduce the general case to the cyclic-order-p-case. For this let

A ⊂ Rw(k(y)/k(x)) ⊂ Gal(k(y)/k(x))

be a subgroup of order p (here Rw denotes the rami�cation group) and let X ′ = YA.
Then Y/X ′ is wildly rami�ed and we �nd a morphism ϕ : C → X ′ with the required
property. Then the composite of ϕ with the projection X ′ → X yields what we
need. �
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6. Joins of hensel rings

In this section we recall some results of M. Artin [Art71]. We need them in
slightly higher generality, therefore we have to go into a little more detail.

Let A be a normal integral domain, and p, q prime ideals in A. Suppose we are
given embeddings of the henselizations Ahp , A

h
q into a separable closure K̄ of K. We

call the ring D = [Ahp , A
h
q ] ⊂ K̄ generated by Ahp and Ahq their join (with respect

to the chosen embeddings to K̄):

K̄

D = [Ahp , A
h
q ]

Ahp Ahq

A

Artin's main technical result is the following.

Theorem 6.1 ([Art71, Theorems 2.2, 2.5]). The join D = [Ahp , A
h
q ] is a local

henselian ring. If neither of the primes p, q contains the other, then D is strictly
henselian and the pullback of its maximal ideal to A is strictly contained in p
and q. �

The following lemma will prove useful.

Lemma 6.2. Let A ⊂ D be an extension of integral domains and assume that D
contains Ahp and Ahq for primes p, q ⊂ A such that none of p, q contains the other.
Then −1 is a sum of squares in D. In particular, no residue �eld of D is formally
real.

Proof. We follow the argument of [Art71, Proof of Theorem 2.5] with a small mod-
i�cation. Assume char k(p) = p > 0. Then Ahp either contains Fp or the ring of
algebraic p-adic integers. In both cases, −1 is a sum of squares in Ahp . It therefore
remains the case that the residue �elds of both p and q have characteristic zero.

If p + q = A, then we can choose a ∈ A with a ≡ 1 mod p and a ≡ −1 mod q.
Then a is a unit and a square in Ahp and −a is a square in Ahq . Hence −1 = a−1(−a)
is a square in D.

Finally, assume that p + q 6= A. Choose g ∈ pr q, h ∈ qr p and set f = g + h.
Then f ∈ p + q but f /∈ p ∪ q. Replacing A by A[f−1] ⊂ Ap ∩ Aq ⊂ D does not
change Ahp and Ahq . Since p and q are coprime in A[f−1], the argument of the last
paragraph applies to show that −1 is a square in D. �

Let A be a ring. The connected components of Spec(A) are of the form Spec(Ā),
where Ā is a colimit of rings of the form A/eA with idempotent elements e ∈ A.
We call the rings Ā occurring in this way the components of A.

Following M. Artin [Art71], we call a ring A quasi-acyclic if every component
of A is a local henselian ring. By [Art71, Proposition 3.3], �ltered colimits of
quasi-acyclic rings and �nite algebras over quasi-acyclic rings are quasi-acyclic. In
particular, an integral algebra over a quasi-acyclic ring is quasi-acyclic. The main
result of [Art71] (though formulated as the slightly weaker statement Theorem 3.4
there) is the following:
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Theorem 6.3 (Artin). Let A be a ring, p1, p2 ⊂ A prime ideals and, for i = 1, 2,
Ahpi

the henselization of the local ring Api
. Let, for i = 1, 2, Bi be local, integral

Ahpi
-algebras. Then

B = B1 ⊗A B2

is quasi-acyclic. Let D be a component of B. Then one of the following holds.

(1) If both ring homomorphism Bi → D are not local, then the residue �eld
D/mD of D is separably closed.

(2) If, say, B1 → D is local, it is integral. In particular, D/mD is an algebraic
�eld extension of B1/mB1

.

Proof. Because B is integral over Ahp1
⊗A Ahp2

, we may assume that Bi = Ahpi
.

We follow the arguments given in [Art71]: If A is a factor ring of a ring A′ and
the statement holds for A′, then it holds for A. Therefore we may assume that A
is a normal domain. Let K be the quotient �eld of A, K̄/K a separable closure
and Ā the integral closure of A in K̄. Then every component D of B is the limit
of étale A-algebras, hence a normal domain. Therefore, we can embed D into K̄.
The induced maps Ahp1

→ D and Ahp2
→ D generate D because D is a quotient of

B = Ahp1
⊗A Ahp2

. Hence we are in the situation of Theorem 6.1 and this theorem
implies that D is a local henselian ring. Now let p̄1, p̄2 ⊂ Ā be the unique extensions
of p1 and p2 to Ā, such that p̄iĀpi

∩ Ahpi
= piA

h
pi
. For a subextension K ′/K of

K̄/K we let A′ be the normalization of A in K̄ and p′i = p̄i ∩A′.
If, say, p̄1 ⊂ p̄2, then p1 ⊂ p2 and we are in case (2). Otherwise there is a

�nite �eld extension K ′/K such that p′1 and p′2 are not contained in one another.
Then D′ = [A′hp′1

, A′hp′2
] is the integral closure of D in the quotient �eld of D′. By

Theorem 6.1, D′ is henselian with separably closed residue �eld D′/mD′ . Since the
extensions of the residue �elds is �nite, we conclude that D/mD is separably closed,
as well. Here, we have to exclude the possibility that D/mD is real closed but not
separably closed. This cannot happen by Lemma 6.2. �

We call a ring homomorphism f : A → B ind-étale if it is a �ltered colimit
of étale ring homomorphisms fi : A → Bi. If A → B is ind-étale with B local,
henselian, then B is an integral Ahp-algebra for some prime ideal p ⊂ A. Hence the
following Theorem 6.4 is an immediate consequence of Theorem 6.3.

Theorem 6.4 (Artin). Let A be a ring and let B1, . . . , Bn be ind-étale quasi-acyclic
A-algebras. Then their tensor product

B = B1 ⊗A . . .⊗A Bn

is quasi-acyclic. For a maximal ideal m ⊂ B one of the following holds

(1) B/m is separably closed, or
(2) B/m is a separable, algebraic extension of Bi/mi, where mi ⊂ Bi is a

maximal ideal for some i, 1 ≤ i ≤ n.

7. Comparison with �ech cohomology

In this section we assume that all rings and schemes lie over a �xed quasi-compact
and quasi-separated base scheme S.

De�nition 7.1. A ring homomorphism f : A→ B is called tame if it is étale and
for every prime ideal p ⊂ A and every S-valuation v of k(p) there exists a prime
ideal q ⊂ B over p and an S-valuation w of k(q) over v such that w/v is tamely
rami�ed (in particular, f is faithfully �at).
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Remark 7.2. A ring homomorphism A→ B is tame if and only if the associated
morphism Spec(B)→ Spec(A) is a covering in (Spec(A)/S)t. The composite of tame
morphisms is tame. Tame ring homomorphisms are stable under base change. The
tensor product of tame A-algebras is a tame A-algebra.

De�nition 7.3. A ring A is tamely henselian if Spec(A) is connected and every
tame ring homomorphism A→ B splits.

Example 7.4. The tame henselizations of De�nition 2.9 are tamely henselian rings.

Remark 7.5. A is tamely henselian if and only if Spec(A) is connected and every
tame covering of Spec(A) splits. This follows since every tame covering of Spec(A)
has a �nite subcovering by Theorem 4.1.

Lemma 7.6. The following are equivalent.
(i) A is tamely henselian
(ii) A is local, henselian and there exists an S-valuation v of the residue �eld

k = A/mA such that k does not admit any nontrivial, �nite separable �eld
extension k′/k which is tamely rami�ed at some extension w of v to k′.

Proof. (ii)⇒(i): Let A→ B be a tame homomorphism. Since A is local henselian,
we have a decomposition

B = B0 ×B1 × · · · ×Bn,
such that the maximal ideal m of A is not in the image of SpecB0 → SpecA, and
A → Bi is �nite étale with Bi local henselian for i = 1, . . . , n. Since A → B is
tame, we can �nd an index i such that there is a valuation w of Bi/mi lying over v
such that w/v is tamely rami�ed. By assumption A/m→ Bi/mi is an isomorphism,
hence A→ Bi splits.
(i)⇒(ii): Let A be tamely henselian. Assume that A is not local henselian and let
m ⊂ A be a maximal ideal. Then (by the construction of the henselization) there
exists an étale A-Algebra B such that there is exactly one maximal ideal n ⊂ B
over m, A/m → B/n is a �eld isomorphism and A → B does not split. Then
(SpecA r {m}) ∪ SpecB → SpecA is a tame covering of Spec(A) which does not
split. Hence A is not tamely henselian by Remark 7.5. We conclude that A is local
henselian.

Assume now that for every S-valuation v of k = A/m there is a �nite, separable
�eld extension kv/k which is tamely rami�ed at some extension w of v to kv. Then∐

v∈ValS(k)

Spec kv −→ Spec k

is a tame covering. By Theorem 4.1, there exists a �nite subcovering. Hence we
�nd a �nite tame k-algebra k → R which does not split. Let A → B be the �nite
étale morphism lifting k → R. Then (SpecA r {m}) ∪ SpecB → SpecA is a tame
covering of SpecA which does not split. Contradiction. �

Corollary 7.7. A �nite algebra over a tamely henselian ring is the �nite product
of tamely henselian rings.

Proof. A �nite algebra over a local henselian ring is the �nite product of local
henselian rings. Moreover, the property of the residue �eld that it is closed under
extensions which are tamely rami�ed with respect to a �xed valuation extends to
�nite �eld extensions. �

De�nition 7.8. A scheme X is étale (resp. tamely) acyclic if every étale resp.
tame covering X ′ → X splits. A ring A is étale resp. tamely acyclic if the scheme
SpecA is étale (resp. tamely) acyclic.
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Proposition 7.9. A ring A is étale (resp. tamely) acyclic if and only if every
component of A is a strictly (resp. tamely) henselian ring.

Proof. The assertion in the étale case is given in [Art71, Proposition 3.2]. The
proof in the tame case is word by word the same. �

From Theorem 6.4, we obtain

Theorem 7.10. Let A be a ring and let B1, . . . , Bn be ind-étale A-algebras which
are étale (resp. tamely) acyclic . Then their tensor product

B = B1 ⊗A . . .⊗A Bn

is étale (resp. tamely) acyclic.

Proof. By Theorem 6.4, B is quasi-acyclic. It remains to show that every compo-
nent is strictly (resp. tamely) henselian. We already know that the components
are local henselian. Hence it su�ces to show that the residue �elds are separably
closed (resp. tamely closed with respect to some S-valuation). This is clear in case
(1) of Theorem 6.4, where the residue �eld is separably closed and follows in case
(2) from the assumption on the Bi. �

De�nition 7.11. We call a ring homomorphism f : A → B ind-tame if it is a
�ltered colimit of tame homomorphisms fi : A→ Bi.

Since an inverse limit of �nite nonempty sets is nonempty, f is ind-tame if and
only if it is ind-étale and for every prime ideal p ⊂ A and every S-valuation v of
k(p) there exists a prime ideal q ⊂ B over p and an S-valuation w of k(q) over v
such that w/v is tamely rami�ed. In particular, f is faithfully �at.

Proposition 7.12. For every ring A there exists a faithfully �at ind-étale (resp.
ind-tame) A-algebra Ã which is étale (resp. tamely) acyclic.

Proof. We restrict to the tame case and follow the method of Bhatt-Scholze, [BS15,
Proof of Lemma 2.2.7]. Let I be the set of isomorphism classes of tame A-algebras.
For each i ∈ I pick a representative A→ Bi and set A1 to be their tensor product,
i.e.,

A1 := colim
J⊂I �nite

⊗
j∈J

Bj ,

where the tensor product is taken over A and the (�ltered) colimit is indexed by
the poset of �nite subsets of I. There is an obvious ind-tame map A → A1, and
it is clear from the construction that any tame A-algebra B admits a map to A1,
i.e., the map A→ B splits after base change to A1. Iterating the construction with
A1 replacing A and proceeding inductively de�nes a tower A→ A1 → A2 → · · · of
A-algebras with ind-tame transition maps. Set Ã = colimAn. As tame morphisms
of rings are �nitely presented, one checks that any tame Ã-algebra has a section,
so Ã is tamely acyclic. �

We will make use of the following topological observation:

Proposition 7.13. LetX be a spectral space such that every connected component
of X contains a unique closed point. Then the composition

Xc ↪→ X � π0(X)

from the subspace of closed points of X to the quotient space of connected compo-
nents is a homeomorphism of pro�nite sets.
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Proof. By [SP, TAG 0906], π0(X) is pro�nite. By assumption, Xc → π0(X) is
bijective (and continuous). We conclude that Xc is Hausdor�. Moreover, being
homeomorphic to Specm(R) for some commutative ring R, Xc is quasi-compact.
Therefore Xc is compact and the continuous bijection is a homeomorphism. �

By an a�ne, pro-étale X-scheme, we mean an inverse limit of a�ne étale X-
schemes. This is more restrictive than `pro-étale' in the sense of [BS15].

Proposition 7.14. Let X be a scheme having the property that every �nite subset
of X is contained in an a�ne open. Suppose we are given a�ne pro-étaleX-schemes
Ui = SpecAi, i = 1, . . . , n, and let

U = U1 ×X · · · ×X Un

be their �bre product.
(i) If all Ai are étale acyclic, then U is a�ne, U = SpecA with A étale acyclic.
(ii) LetX be an S-scheme. If allAi are tamely acyclic, then U is a�ne, U = SpecA

with A tamely acyclic.

Remark 7.15. A scheme having the property that every �nite subset is contained
in an a�ne open is separated ([SP, TAG 01KP]).

Proof of Proposition 7.14. If there is an a�ne Zariski-open subscheme V ⊂ X such
that all Ui map to V , the result follows from Theorem 7.10.

In the general case, let pi ∈ Ui, i = 1, . . . , n, be closed points. By assumption,
there is an a�ne, Zariski-open subscheme V = SpecB ⊂ X containing the images
of p1, . . . , pn. Since Ui is quasi-acyclic, every connected component of Ui has a
unique closed point and it maps to V if and only if its closed point maps to V .
By Proposition 7.13, ϕi : SpecmAi → π0(Ui) is a homeomorphism of pro�nite
spaces. Therefore, we �nd a closed and open subset Wi ⊂ SpecmAi which contains
pi and maps to V . Then also the preimage Vi ⊂ Ui of ϕi(Wi) ⊂ π0(Ui) under
Ui → π0(Ui) maps to V . Hence Vi is a closed and open subset of Ui containing pi and
mapping to V . Being closed and open in Ui, Vi is the spectrum of an ind-étale, étale
(resp. tamely) acyclic B-algebra. By the �rst part of the proof, V (p1, . . . , pn) :=
V1 ×X · · · ×X Vn is a closed and open subscheme of U , a�ne, ind-étale and étale
(resp. tamely) acyclic. Varying the points p1, . . . , pn, the V (p1, . . . , pn) cover U .
Since U is quasi-compact, we �nd a �nite subcovering. Replacing the V (p1, . . . , pn)
by closed and open subschemes, which are ind-étale and étale (resp. tamely) acyclic,
we may assume that the �nite union is disjoint. Hence U is a�ne, ind-étale and
étale (resp. tamely) acyclic. �

Next we generalize Artin's theorem on the comparison between étale �ech and
sheaf cohomology to the tame case. We also obtain a slightly sharper statement for
the étale case by weakening the Noetherian assumption to quasi-compactness.

Theorem 7.16 (Comparison with �ech cohomology). Let X be a quasi-compact
scheme having the property that every �nite subset of X is contained in an a�ne
open, S a quasi-compact and quasi-separated scheme and X → S a morphism.
Then, for every presheaf P of abelian groups on Xet with étale resp. tame shea��-
cation P#et resp. P#t, the natural maps

Ȟn
et(X,P )→ Hn

et(X,P
#et) and Ȟn

t (X/S, P )→ Hn
t (X/S, P#t)

are isomorphisms for all n ≥ 0.

Proof. We give the argument in the tame case, the étale case is analogous. The
statement of the theorem is a formal consequence of the assertion

(†) Ȟn
t (X/S, P ) = 0 for all n ≥ 0 and every presheaf P with P#t = 0.
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Indeed, if (†) holds, then Ȟ•t (X/S,−) is a δ-functor on sheaves. Since injec-
tive sheaves are injective as presheaves, the functor is also erasing. This shows
Ȟn
t (X/S, F ) ∼= Hn

t (X/S, F ) for every sheaf F . It remains to see that Ȟn
t (X/S, P )→

Ȟn
t (X/S, P#t) is an isomorphism for every presheaf P . Splitting the presheaf ho-

momorphism P → P#t into

0→ K → P → G→ 0, 0→ G→ P#t → C → 0,

we have K#t = 0 = C#t and the statement follows from the long exact sequence
for �ech cohomology of presheaves.

To prove (†), we cover X by �nitely many a�ne Zariski-open schemes. By
Proposition 7.12, and forming the disjoint union, we �nd an a�ne, tamely acyclic,
pro-tame covering U → X, i.e., U = limUi is a limit of a�ne, tame coverings
Ui → X. Since every tame covering of U splits, the system (Ui) is co�nal in the
system of all tame coverings of X (partially ordered by re�nement). For the �ech
cohomology, we obtain

Ȟp
t (X/S, P ) = colim

i
Ȟp(Ui → X,P ) = Hp(colim

i
Č•(Ui → X,P )).

For an X-scheme Y , we denote by Y n the n-th self �bre product over X. Then,
for n ≥ 1, Un = limi U

n
i is tamely acyclic by Proposition 7.14. Since P has trivial

shea��cation, we obtain colimi P (Uni ) = 0. Hence the colimit of the �ech complexes
Č•(Ui → X,P ) vanishes. In particular, the colimit has trivial cohomology. �

8. Comparison with étale cohomology

In this section we compare tame and étale cohomology in two situations. First,
when the coe�cients are invertible on S and second, if X → S is proper.

Since the étale site is �ner than the tame site and has the same underlying
category, any étale sheaf can be considered as a tame sheaf. To put this more
formal, we denote the natural morphism of sites by α : Xet → (X/S)t. Then α∗F
is the same presheaf as F but considered as a tame sheaf.

Proposition 8.1 (Invertible coe�cients). Let m ≥ 1 be an integer invertible on S
and let F be an étale sheaf of Z/mZ-modules on X. Then

Hn
t (X/S, α∗F ) ∼= Hn

et(X,F )

for all n ≥ 0.

Proof. Using the Leray-Serre spectral sequence, it su�ces to show that the higher
direct image sheaves Rqα∗F vanish for q ≥ 1. This can be checked on stalks at the
conservative family of tame points of described in Lemma 2.10.

Let x ∈ X be a (scheme-)point, k(x)s a separable closure of k(x), v an S-
valuation on k(x), v̄ a prolongation to k(x)s, Kv := (k(x)s)Rv̄ the �xed �eld of its
rami�cation group and L a �nite subextensions of k(x)s/Kv. Let x̄L : Spec(L)→ X
be the induced morphism and (x̄L, v̄|L) the associated tame point of X. Since, by
[SGA4, VI, 5.8], étale cohomology commutes with inverse limits of quasi-compact
and quasi-separated schemes with a�ne transition maps, we have an isomorphism

(Rqα∗F )(x̄L,v̄|L)
∼= Hq

et(SpecO(x̄L,v̄|L), F ),

where O(x̄L,v̄|L) is the stalk of the structure sheaf at (x̄L, v̄|L) described in Re-
mark 2.8. This ring is henselian with residue �eld L, hence

(Rqα∗F )(x̄L,v̄|L)
∼= Hq

et(SpecL, (x̄L)∗F ).

Let p be the residue characteristics of v. Then the absolute Galois group of L
is a pro-p-group and since (p,m) = 1, Hq

et(SpecL, (x̄L)∗F ) vanishes for q ≥ 1 by
[NSW08, (1.6.2)]. �
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Proposition 8.2 (Proper morphisms). Let X be a quasi-compact scheme having
the property that every �nite subset of X is contained in an a�ne open, S a quasi-
compact and quasi-separated scheme and X → S a proper morphism. Then, for
every sheaf F of abelian groups on (X/S)t with étale shea��cation F#et the natural
map

Hn
t (X/S, F )→ Hn

et(X,F
#et)

is an isomorphism for all n ≥ 0.

Proof. By Theorem 7.16, the horizontal arrows in the commutative diagram

Ȟn
t (X/S, F ) Hn

t (X/S, F )

Ȟn
et(X,F ) Hn

et(X,F
#et)

are isomorphisms. Since X → S is proper, every étale covering of X is a tame
covering. Hence the left vertical arrow is an isomorphism and therefore also the
right one. �

9. Finiteness in dimension 1

We consider the arithmetic case.

Lemma 9.1. Let K/Q be a number �eld, p ⊂ OK a prime ideal, OhK,p the hense-
lization of OK,p and Kh

p its quotient �eld.
Let X = SpecOhK,p, x ∈ X the closed point, η ∈ X the generic point, and put

S = SpecZ. Then for every tame torsion sheaf F on X/S, we have Hq
t (X/S, F ) = 0

for q > 1, Hq
t (η/S, F ) = 0 for q > 2 and Hq

t,{x}(X/S, F ) = 0 for q > 3. If F has
�nite stalks, these groups are �nite for all q.

Proof. The only valuation on the �nite �eld k(x) = OK/p is the trivial one. Since
Kh

p is an algebraic extension of Q, every valuation on k(η) = Kh
p is trivial or of

rank one. First, we have the valuation vp associated to the valuation ring OhK,p.
Let Kt

p/K
h
p be the maximal tamely rami�ed extension (with respect to vp) of the

henselian local �eld Kh
p in an algebraic closure K̄.

Then, by [NSW08, 7.2.5], G = Gal(Kt
p/K

h
p ) is the semidirect product of Ẑ with

Ẑ(p′) =
∏
6̀=p Ẑ`, where p is the prime number below p. In particular, G has

cohomological dimension 2 and the cohomology of G with values in �nite discrete
modules is �nite.

Let v be another valuation on Kh
p . If v is trivial, every extension of Kh

p is tame
with respect to v. If v is nontrivial, then, since di�erent decomposition groups in
the absolute Galois group of a number �eld have trivial intersection by [NSW08,
12.1.3], v is completely decomposed in K̄/Kh

p . We conclude that SpecKt
p/SpecK

h
p

is a pro�nite tame cover of Kh
p with respect to S = SpecZ. Moreover, every

tame cover of SpecKt
p splits. Hence for every sheaf F ∈ Sht(SpecK

t
p/SpecZ) the

Hochschild-Serre spectral sequence induces isomorphisms

Hq
t (SpecKh

p /S, F ) ∼= Hq(G,Γ(SpecKt
p, F )).

This shows that these groups are trivial for q > 2 if F is a torsion sheaf and �nite
for all q if Γ(SpecKt

p, F ), which is the stalk of F at (η, vp), is �nite.
A similar argument with Gal(Osh

K,p/OhK,p) ∼= Ẑ shows that Hq
t (SpecOhK,p/S, F )

is trivial for q > 1 if F is a torsion sheaf, and �nite for all q if F has �nite stalks.
Finally, the statement on the cohomology groups with support follows from the
result for the cohomology of SpecOhK,p and SpecKh

p , and the long exact sequence
connecting them. �
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Theorem 9.2. Let X → S = SpecZ be quasi-�nite and let F ∈ Sht(X/S) be a
torsion sheaf. Assume that F has �nite stalks and its étale shea��cation F#et is
constructible. Then the tame cohomology groups

Hq
t (X/S, F )

are �nite for all q. For an arbitrary torsion sheaf F ∈ Sht(X/S) the following holds.

(i) If dimX = 0, then Hq
t (X/S, F ) = 0 for q > 1.

(ii) If dimX = 1 assume that X(R) = ∅ or that F has trivial 2-torsion. Then
Hq
t (X/S, F ) = 0 for q > 3.

Proof. Using Mayer-Vietoris and induction on the cardinality of a covering by sep-
arated open subschemes, we may assume that X is separated. By the topological
invariance of tame cohomology (Proposition 3.1), we may assume thatX is reduced.
If dimX = 0, X is �nite over SpecZ. If dimX = 1, we can �nd a scheme X̄ which
is �nite over SpecZ, contains X as a dense open subscheme and is regular at all
points x ∈ X̄ rX. We denote the open immersion by j : X ↪→ X̄. Then excision
for the sheaf j!F on X̄ yields the long exact sequence

· · · →
⊕

x∈X̄rX

Hq
t,{x}(X̄

h
x/S, j!F )→ Hq

t (X̄/S, j!F )→ Hq
t (X/S, F )→ · · ·

In view of Lemma 9.1, we are reduced to showing the result for X = X̄.
For �nite X, the assertion of the theorem follows by Proposition 8.2 from the

corresponding well-known result for étale cohomology [Maz73]. �

The same arguments also show

Theorem 9.3. Let k be a separably closed (resp. �nite) �eld and X → S = Spec k
a separated scheme of �nite type of dimension ≤ 1. Then for every torsion sheaf
F ∈ Sht(X/S) the tame cohomology groups

Hq
t (X/S, F )

are zero for q > 2 (resp. q>3). If F has �nite stalks and its étale shea��cation F#et

is constructible, these groups are �nite for all q.

10. Review of Huber pairs

We refer to [Hub96] for basic notions on adic spaces and to [Hüb18] for the
de�nition of the tame site on such spaces.

In this paper, by a Huber pair we mean a pair of rings (A,A+) with A+ ⊂ A
an integrally closed subring. We equip A and A+ with the discrete topology. We
call an adic space X discretely ringed, if it is locally of the form Spa(A,A+) with
(A,A+) a Huber pair.

Points of Spa(A,A+) are by de�nition (multiplicatively written) valuations v :
A→ Γv∪{0} such that v(a+) ≤ 1 for all a+ ∈ A+. We will frequently consider v also
as a valuation on the quotient �eld Q(A/supp v), where supp v = {a ∈ A | v(a) = 0}
is the support of v. The topology on Spa(A,A+) is generated by the sets

{v ∈ Spa(A,A+) | v(a) ≤ v(b) 6= 0} (a, b ∈ A).

Recall that a subgroup H of the ordered group Γv is convex if each γ with 1 ≤ γ ≤
δ ∈ H already belongs to H. A convex subgroup H ⊂ Γv bounds A if for all a ∈ A
there exists an h ∈ H with v(a) ≤ h. In this case, the assignment

v|H : A→ H ∪ {0}, a 7→
{
v(a) if v(a) ∈ H

0 if v(a) /∈ H
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de�nes a valuation in Spa(A,A+) which is a specialization of v. We have supp v ⊂
supp v|H and v|H is called a horizontal (or primary) specialization of v. The set
of horizontal specializations of v is totally ordered and has a minimal element v̄
corresponding to the �characteristic subgroup� cΓv of Γv, the convex subgroup
generated by the subset {v(a) | a ∈ A, v(a) ≥ 1}.

De�nition 10.1. v ∈ Spa(A,A+) is a Riemann-Zariski point if it has no nontrivial
horizontal specializations.

Remark 10.2. The terminology �Riemann-Zariski� is motivated by the fact that
these points are in bijection to the points of the relative Riemann-Zariski space of
SpecA+ with respect to SpecA, cf. [Tem11, Corollary 3.4.7].

The minimal horizontal specialization v̄ of v is the unique Riemann-Zariski point
among the horizontal specializations of v. Assume that v̄ = trp is the trivial
valuation on its support p = supp v̄. Then for any q ∈ Spec(A), p ⊂ q, the trivial
valuation trq with support q is a specialization of v̄, hence of v. A generalized

horizontal specialization is a horizontal specialization or a specialization v  trq as
above.

For an arbitrary convex subgroup H ⊂ Γv the assignment

v/H : A→ (Γ/H) ∪ {0}, a 7→
{
v(a) mod H if v(a) 6= 0
0 if v(a) = 0

de�nes a valuation with supp(v/H) = supp v and v/H is a generalization of v. A
specialization of type v/H  v is called a vertical (or secondary) specialization.

Lemma 10.3. Let (A,A+) be a Huber pair and let v, w ∈ Spa(A,A+).

(i) w is a vertical specialization of v if and only if supp v = suppw and Ow ⊂
Ov ⊂ Q(A/ supp v). In this case Ov is the localization of Ow at some prime
ideal.

(ii) w is a horizontal specialization of v if and only if there is a prime ideal p ⊂ Ov
such that

(a) A/ supp v ⊂ (Ov)p (as subrings in Q(A/ supp v)),
(b) suppw is the preimage of p under A� A/ supp v ↪→ (Ov)p, and
(c) Ow = (Ov/p) ∩Q(A/ suppw) (intersection in Q(Ov/p)).

Ov Ov/p

(Ov)p Q(Ov/p) Ow

Q(A/ supp v) A/ supp v Q(A/ suppw).

Proof. (i) is obvious by valuation theory.
(ii) Let w be a horizontal specialization of v and let cΓv ⊂ H ⊂ Γv be a convex
subgroup as in the de�nition. Let p ⊂ Q(A/ supp v) be the set of all x with
v(x) /∈ H. Since H ⊃ cΓv, we have p ⊂ Ov.

(1) a ∈ Ov, b ∈ p ⇒ ab ∈ p: Otherwise, v(ab) ∈ H and v(ab) ≤ v(b) ≤ 1 would
imply v(b) ∈ H, a contradiction.

(2) a, b ∈ p ⇒ a + b ∈ p: v(a + b) ≤ max(v(a), v(b)) ≤ 1: By convexity,
v(a+ b) ∈ H implies (v(a) ∈ H) ∨ (v(b) ∈ H).

(3) a, b /∈ p ⇒ ab /∈ p: clear since v(ab) = v(a)v(b) and H is a group.
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We conclude that p ⊂ Ov is a prime ideal. For a ∈ A/ supp v with v(a) ≤ 1 we have
a ∈ Ov by de�nition. If v(a) > 1, then v(a) ∈ H, hence v(a−1) ∈ H and v(a−1) ≤ 1.
We conclude a−1 ∈ Ov r p, hence a ∈ (Ov)p. This shows (a). Moreover, suppw =
{a ∈ A | v(a) /∈ H} is the preimage of p under A → A/ supp v ⊂ Q(A/ supp v),
showing (b). Finally, Ov/p is the valuation ring of the valuation v′ on Q(Ov/p)
given on Ov by v′(a) = 0 for v(a) /∈ H and v(a) otherwise. We conclude that w is
the restriction of v′ to Q(A/ suppw), hence Ow = Ov/p ∩Q(A/ suppw).

Conversely, assume there exists a prime ideal p ⊂ Ov such that (a)�(c) hold.
As is known from valuation theory, there is a convex subgroup H ⊂ Γv such that
p = {x ∈ Ov | v(x) /∈ H}. By (a), for all x ∈ A, there is a b ∈ Ov r p with xb ∈ Ov.
We conclude that v(x) ≤ v(b−1) ∈ H, hence H bounds A. By (b) we see that
suppw = supp v|H, and then c implies w = v|H. �

Corollary 10.4. Every vertical generalization of a Riemann-Zariski point is a Rie-
mann-Zariski point.

Proof. If v′ is a vertical generalization of v, then by Lemma 10.3 (i), supp v =
supp v′ and Ov′ = (Ov)q for some prime ideal q ⊂ Ov. Assume that v′ has a
non-trivial horizonal specialization. Then there exist a prime (0) ( p ⊂ O′v as in
Lemma 10.3 (ii). But (Ov′)p = (Ov)P for some prime P ⊂ Ov with (0) ( P ⊂
q. The diagram in Lemma 10.3 (ii) shows that there is a non-trivial horizontal
specialization of v, as well. �

We will use the following fact below:

Proposition 10.5 ([HK94, Proposition 1.2.4]). Any specialization in Spa(A,A+)
is a vertical specialization of a generalized horizontal specialization. �

A homomorphism of Huber pairs f : (A,A+)→ (B,B+) is a ring homomorphism
f : A → B with f(A+) ⊂ B+. It is called integral, if A → B and A+ → B+ are
integral. It is called �nite, if it is integral and A → B is �nite. A homomorphism
of Huber pairs is called étale, tame or strongly étale if the associated morphism of
adic spaces Spa(B,B+)→ Spa(A,A+) has this property. Explicitly, this means the
following:

The homomorphism f : (A,A+) → (B,B+) is étale if A → B is an étale ring
homomorphism and B+ is the integral closure in B of a �nitely generated A+-
subalgebra.

The homomorphism f is tame, resp. strongly étale if it is étale and for every
point w of Spa(B,B+) with image v ∈ Spa(A,A+) the extension of valuations
w/v is tamely rami�ed resp. unrami�ed in the separable algebraic �eld extension
k(suppw)/k(supp v).

Remark 10.6. In contrast to the scheme case, we do not assume that Spa(B,B+)→
Spa(A,A+) is a tame covering. Instead, we require tameness at every point of
Spa(B,B+).

Let A be a local ring and A+ ⊂ A the preimage of a valuation ring O of the
residue �eld k of A. Then A+ is local and, since valuation rings are integrally closed,
A+ is integrally closed in A. Hence (A,A+) is a Huber pair. We call such Huber
pairs local. If (A,A+) is a local Huber pair, then mA is a prime ideal of A+ and the
natural map A+

mA
= (A+ r mA)−1A+ → A is an isomorphism. A homomorphism

f : (A,A+) → (B,B+) of local Huber pairs is local if A+ → B+ and A → B are
local ring homomorphisms.

For a Huber pair (A,A+) and v ∈ Spa(A,A+) we denote by (A,A+)v the localiza-
tion of (A,A+) at v. It is obtained as follows. Let B := Asupp v be the localization
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of A at supp v. In its residue �eld k we have the valuation ring O corresponding
to v. Let B+ be the pre-image of O in B. Then (A,A+)v = (B,B+).

The adic space Spa((A,A+)v) is the intersection of all open neighborhoods of v
in Spa(A,A+). A point w ∈ Spa(A,A+) specializes to v if and only if (A,A+) →
(A,A+)w factors through (A,A+)→ (A,A+)v.

We start the discussion of henselizations with the following observation.

Lemma 10.7. Let A be a local ring with residue �eld k, pr : A→ k the projection
and O ⊂ k a local subring. Set

A+ = pr−1(O) ⊂ A.

Then A+ is henselian if and only if A and O are henselian.

Proof. First observe that mA is a prime ideal of A+. If O and A are henselian,
then applying Hensel's lemma twice shows that A+ is henselian: Let f be a monic
polynomial over A+ and f = gh modulo mA+ a decomposition with g mod mA+

and h mod mA+ monic and coprime. We have A+/mA+ = O/mO and we can lift
the decomposition to O. Since A is henselian with residue �eld k ⊃ O, we can lift
the decomposition to A and the coe�cients lie modulo mA in O. Hence they are
in A+.

Now assume that A+ is henselian. Then, being a quotient ring of A+, also O is
henselian. Assume that A→ A′ is �nite with A′ connected. Then A′ is semi-local
and, in order to show that A is henselian, we have to show that A′ is local. For
this it su�ces to show that A′/mAA′ is local. Since this ring is a �nite algebra
over the �eld A/mA, it su�ces to show that A′/mAA′ is connected. Let A′+ be
the integral closure of A+ in A′. Since all idempotents of A′ lie in A′+ and A′ is
connected, A′+ is connected, as well. Hence A′+ is local henselian and the same
holds for A′+/mAA′+.

Claim: The image of φ : A′+/mAA
′+ → A′/mAA

′ ist integrally closed in A′/mAA′.

Using the claim we see that im(φ) has the same connected components as A′/mAA′.
But im(φ) is (henselian) local, hence connected, showing that A′/mAA′ is con-
nected.

It remains to show the claim. First we observe that mAA′ ⊂ A′+. Now assume that
for x ∈ A′ there exists a monic polynomial f ∈ A′+[T ] with f(x) = a′ ∈ mAA

′ ⊂
A′+. Then x is a zero of f − a′ ∈ A′+[T ], hence x ∈ A′+. �

De�nition 10.8. Let (A,A+) be a local Huber pair, k = A/mA and O the image
of A+ in k.

(1) (A,A+) is called henselian if A+ is a henselian ring. By Lemma 10.7, this
is equivalent to A and O being henselian.

(2) (A,A+) is called strongly henselian if A+ is a strictly henselian ring. By
Lemma 10.7, this is equivalent to A being henselian and O being strictly
henselian.

(3) (A,A+) is called tamely henselian if (A,A+) is henselian and k does not ad-
mit any nontrivial, �nite separable �eld extension which is tamely rami�ed
with respect to the (henselian) valuation corresponding to O. Equivalently:
(A,A+) is strongly henselian and k is separably closed if the residue �eld
κ of O has characteristic zero, resp. the absolute Galois group of k is a
pro-p-group if κ has characteristic p > 0.

(4) (A,A+) is called strictly henselian if A is a strictly henselian ring. In this
case O, and, by Lemma 10.7, also A+ is strictly henselian.
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Lemma 10.9. Let (A,A+) be a Huber pair such that X = Spa(A,A+) is con-
nected. Then
(i) (A,A+) is local if and only if every open covering of X splits.
(ii) (A,A+) is strongly henselian if and only if every strongly étale covering of X

splits.
(iii) (A,A+) is tamely henselian if and only if every tame covering of X splits.
(iv) (A,A+) is strictly henselian if and only if every étale covering of X splits.

Proof. That the properties local, etc. imply the corresponding splitting property
follows directly from the de�nitions.

Assume that every open covering of X splits. Then X has exactly one closed
point, say v, to which all other points specialize. Every open neighborhood of v is
equal to X , hence (A,A+) = (A,A+)v is local. This shows (i) and that (A,A+) is
local in cases (ii)�(iv). We denote the image of A+ in k = A/mA by O (a valuation
ring of k).

Now assume that every strongly étale covering of X splits. We �rst show that
A is henselian. Let SpecB → SpecA be a connected étale covering such that
there is a point y ∈ SpecB lying over supp v with trivial residue �eld extension
k(y) = k(supp v). Let B+ be the integral closure of A+ in B. Then the natural
projection f : Spa(B,B+) → X is étale and strongly étale at every point with
support y. Let Y ⊂ Spa(B,B+) be the strongly étale locus of f , which is open by
[Hüb18, Corollary 4.3]. Then f(Y ) is open in X and contains v, hence f(Y ) = X .
We conclude that f |Y : Y → X is a strongly étale covering, hence admits a
splitting. This induces a splitting of SpecB → SpecA. We conclude that A is a
local henselian ring. In order to show (ii), it remains to show that O is strictly
henselian.

If O were not strictly henselian, there would exist a connected étale O-algebra
O′ which does not split. Being normal and connected, O′ is a domain. Let k′

denote its quotient �eld. Then k′/k is a nontrivial �nite separable extension (and
O′ is a localization of the normalization of O in k′). Let A→ B be the �nite étale
extension of local henselian rings associated with k′/k. Let O′ = O[x̄1, . . . , x̄n],
x1, . . . , xn preimages of the x̄i in B, and B+ ⊂ B the integral closure in B of
A[x1, . . . , xn]. Then Spa(B,B+) → X is étale and strongly étale over the closed
point v. Since the strongly étale locus is open, we obtain a strongly étale covering
of X which does not split. This shows (ii).

Finally, using (ii), the veri�cation of (iii) and (iv) is easy and left to the reader.
�

For a Huber pair (A,A+) and a point x ∈ Spa(A,A+) the henselization of
(A,A+) at x is obtained as follows: Let Ah be the henselization of A at suppx. In its
residue �eld k we have the valuation ring O corresponding to x. The henselization
Oh of O is a valuation ring, its quotient �eld kh is a separable algebraic �eld
extension of k. We de�ne C as the ind-(�nite étale) Ah-algebra corresponding to
kh/k and C+ as the preimage of Oh in C.

De�nition 10.10. We call (A,A+)hx := (C,C+) the henselization of (A,A+) at x.

The induced homomorphism (A,A+)x → (A,A+)hx is universal for local homo-
morphisms of (A,A+)x to henselian Huber pairs.

Now we �x a separable closure k̄/kh. The henselian valuation of kh associated
with Oh has a unique extension to k̄. Inside this we have the maximal tamely
rami�ed and unrami�ed extensions kt/knr/kh. The normalization of Oh in knr is
the strict henselization Osh of Oh. We denote the normalization of Oh in kt by Ot
and call it the tame henselization. Denoting the normalization of Oh in k̄ by Ō, we
obtain local ring extensions Oh ↪→ Onr ↪→ Ot ↪→ Ō.
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De�nition 10.11. The strong henselization (B,B+) = (A,A+)shx is given by set-
ting B the unique ind-(�nite étale) subextension of Ash/Ah (strict henselization
and henselization of A at suppx) associated to knr/k and B+ the preimage of
Osh ⊂ knr in B.

The tame henselization (B,B+) = (A,A+)tx is given by setting B the unique
ind-(�nite étale) subextension of Ash/Ah associated to kt/k and B+ the preimage
of Ot ⊂ kt in B.

The strict henselization (B,B+) = (A,A+)strictx is given by setting B = Ash

(strict henselization of A at suppx) and B+ the preimage of Ō ⊂ k̄ in B.

The homomorphisms

(A,A+)hx → (A,A+)shx → (A,A+)tx → (A,A+)strict

are integral by Lemma 10.13 (ii) below.

Lemma 10.12. Let (A,A+) be a henselian Huber pair and (A,A+) → (B,B+)
a homomorphism of Huber pairs with A → B integral, ind-étale and local. Then
mB ⊂ B+.

Proof. Every element of x ∈ mB satis�es an equation of the form xn + an−1x
n−1 +

· · ·+a0 = 0 with a0, . . . , an−1 ∈ mA (the ai are up to sign the elementary symmetric
functions in the conjugates of x in some Galois closure of B/A). Since mA ⊂ A+,
x is integral over A+, hence x ∈ B+. �

Lemma 10.13. Let f : (A,A+) → (B,B+) be a local homomorphism of local
Huber pairs.

(i) If (A,A+) is henselian (resp. strongly, tamely or strictly henselian) and f is
integral, then (B,B+) is henselian (resp. strongly, tamely or strictly hense-
lian).

(ii) If f is ind-étale and (A,A+) and (B,B+) are henselian, then f is integral.

Proof. (i) B+, being an integral, local algebra over the henselian ring A+, is hen-
selian, as well. If A+ is strictly henselian, then also B+ is strictly henselian. Let
kA be the residue �eld of A and kB that of B. Then kB/kA is an algebraic �eld
extension. We obtain an injection GkB ⊂ GkA of absolute Galois groups showing
the statement also in the strict and tame case.

(ii) We may assume that f is étale. Since f is local and A is henselian, B is a
local, �nite étale A-algebra. Let A′ be the integral closure of A+ in B. We have to
show that the inclusion A′ → B+ is surjective. By Lemma 10.12, we have mB ⊂ A′.
It therefore su�ces to show that A′/mB → B+/mB is surjective. Both are subrings
of the �eld B/mB = kB , which is a �nite separable extension of kA = A/mA.

We claim that A′/mB is the integral closure of A+/mA ⊂ kA in kB . By de�nition
of A′, every element of A′/mB is integral over A+/mA. On the other hand, if for
y ∈ B the element ȳ ∈ kB is integral over A+/mA, then there is a congruence
yn + an−1 + · · · + a0 ≡ 0 mod mB with all ai ∈ A+. Since mB ⊂ A′, y is integral
over A′ and hence y ∈ A′.

By assumption, A+/mA is a henselian valuation ring, hence so is A′/mB . There-
fore A′/mB → B+/mB is a local homomorphism of valuation rings with the same
quotient �eld, hence an isomorphism. This concludes the proof. �

Now we consider Huber pairs (A,A+) via their adic spectrum Spa(A,A+).

De�nition 10.14. A Huber pair (A,A+) is étale (strongly étale, tamely) acyclic
if every étale (strongly étale, tame) covering of Spa(A,A+) splits.
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Proposition 10.15. A Huber pair (A,A+) is étale (strongly étale, tamely) acyclic
if and only if every connected component of Spa(A,A+) is the adic spectrum of a
strictly (strongly, tamely) henselian Huber pair.

Proof. We consider the canonical inclusion SpecA ↪→ Spa(A,A+), x 7→ (x, trx).
Then SpecA carries the subspace topology and is dense in Spa(A,A+). Hence the
connected components of Spa(A,A+) are in bijection with the connected compo-
nents of SpecA.

Let p ⊂ A be a prime ideal and let e run through all idempotents of A contained
in p. Then the connected component of p ∈ SpecA is equal to SpecB with B =
lim−→e

A/e. Note that B can also be obtained from A by inverting all elements 1− e.
Since A+ is integrally closed in A, all idempotents of A are in A+. Therefore the
components of Spa(A,A+) are of the form Spa(B,B+), where B = lim−→e

A/e is a
component of A and B+ = lim−→e

A+/e.
Now the statement of the proposition reduces to Lemma 10.9 by exactly the

same limit argument as in the proof of the analogous statement for schemes [Art71,
Proposition 3.2]. �

We call a Huber pair (A,A+) quasi-acyclic if every connected component of
Spa(A,A+) is the adic spectrum of a henselian Huber pair.

11. Joins of henselian Huber pairs

Our next aim is to compare the tame cohomology of an S-scheme X with the
tame cohomology of its associated adic space Spa(X,S). This is rather easy for
�ech cohomology and we have proven in Section 7 that tame cohomology coincides
with tame �ech cohomology for many schemes. Hence our next task is to prove
a similar statement for discretely ringed adic spaces. This turns out to be more
complicated as the analysis of joins is more involved.

Let (A,A+) be a Huber pair such that A is a normal domain. Let K = Q(A)
and K̄/K a separable closure. Let v1, v2 ∈ Spa(A,A+) be points and (Bi, B

+
i ) =

(A,A+)hvi . We embed B1 and B2 into K̄, hence also B+
1 and B+

2 are embedded
into K̄. Let D = [B1, B2] ⊂ K̄ be the subring over A generated by B1 and B2

and let D+ ⊂ D be the integral closure of [B+
1 , B

+
2 ] in D. We call the Huber pair

(D,D+) the join of the Huber pairs (B1, B
+
1 ) and (B2, B

+
2 ) (with respect to the

chosen embeddings into K̄):

K̄

(D,D+) = [(B1, B
+
1 ), (B2, B

+
2 )]

(B1, B
+
1 ) (B2, B

+
2 )

(A,A+)

Now we can formulate the adic analogue of Artin's Theorem 6.1.

Theorem 11.1. With the assumptions above, the join (D,D+) is a henselian
Huber pair. If v1, v2 are Riemann-Zariski points such that none of the vi specializes
to the other, then (D,D+) is the strong henselization of (A,A+) at some Riemann-
Zariski point w ∈ Spa(A,A+): (D,D+) = (A,A+)shw .
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We start with some lemmas.

Lemma 11.2. Let (A,A+) be a Huber pair such that A is of �nite type over
A+. Then any �nite subset M of Spa(A,A+) has a common a�noid neighborhood
Spa(B,B+) such that SpecB+ → SpecB is an open immersion. Moreover, any
open a�noid contained in Spa(B,B+) has this property.

Proof. Let SpecA
i
↪→ S

p→ SpecA+ be a compacti�cation with an open immersion
i and p projective. Let {cm}m∈M be the set of centers in S of the points in M .
Then we can �nd a common open a�ne neighborhood SpecB′ of the cm's. Setting
B = B′⊗A+A and B+ the normalization of B′ in B, we obtain the required a�noid
neighborhood Spa(B,B+).

For an a�noid open Spa(C,C+) ⊂ Spa(B,B+) consider the diagram

SpecC SpecB

SpecC+ SpecB+.

The upper horizontal and the right vertical arrows are open immersions. Hence, so
is the left vertical arrow. �

Lemma 11.3. Let M be a �nite set of Riemann-Zariski points of an a�noid adic
space Spa(A,A+). Assume that no element of M specializes to another. Then
among all open a�noid neighborhoods Spa(B,B+) of M those are co�nal where
the centers cm of the elements m ∈M in SpecB+ do not satisfy any specialization
relation.

Proof. Consider the map

c : Spa(A,A+) −→ limS,

where S runs through all SpecA-modi�cations of SpecA+, i.e., factorizations

SpecA
i
↪→ S

p→ SpecA+

with i an open dense immersion and p proper, and the map c is given by sending
a valuation to the system of its centers on the various S. Let RZ(A,A+) be the
subspace of all Riemann-Zariski points in Spa(A,A+). By [Tem11, Corollary 3.4.7],
the restriction of c to RZ(A,A+) is a homeomorphism

RZ(A,A+)
∼−→ limS.

By Temkin's generalization of Chow's Lemma, [Tem11, Corollary 3.4.8], among
the modi�cations, those with p : S → SpecA+ projective are co�nal. Since the
m ∈ M ⊂ RZ(A,A+) do not specialize to each other, we �nd a projective SpecA-
modi�cation S → SpecA+ such that the centers (cm)m∈M on S do not specialize
to each other. Now choose a common open a�ne neighborhood SpecB′ ⊂ S of
the cm. Set B = B′ ⊗A+ A and B+ the normalization of B′ in B. This provides
the required open a�noid neighborhood Spa(B,B+). It is clear that any smaller
open a�noid neighborhood of M has the same property. �

Lemma 11.4. Let K be a �eld.

(i) If O ⊂ K is a henselian valuation ring of K and O′ ⊃ O is an overring of O
in K, then also O′ is a henselian valuation ring.

(ii) If O,O′ ⊂ K are henselian valuation rings of K such that none of O,O′
contains the other, then their join OO′ is strictly henselian.
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Proof. (i) Being an overring of O, O′ is a valuation ring. Let us denote the associ-
ated valuations by v, v′. Then v′ is a generalization of v and O′ is the localization
of O at some prime ideal p. In order to show that v′ is henselian, we have to show
that there is at most one extension of v′ to L in any �nite separable �eld extension
L/K. Let A be the normalization of O in L. Since O is henselian, A is local, hence
a valuation ring of L. The extensions of v′ to L are in bijection to the prime ideals
of A lying over p ⊂ O. But there is only one since there are no containment rela-
tions between those primes and the set of primes of the valuation ring A is totally
ordered with respect to inclusion.

(ii) Let m ⊂ O and m′ ⊂ O′ be the maximal ideals. Put A = O ∩ O′ and
p = m ∩ A, p′ = m′ ∩ A. By [EP05, Lemma 3.2.6], we have O = Ap, O′ = Ap′ .
Since none of O,O′ contains the other, none of p, p′ contains the other. Hence the
statement follows from Theorem 6.1. �

Proof of Theorem 11.1. By Theorem 6.3, D is local, henselian.
Assume we are in case (1) of Theorem 6.3. Then both ring homomorphisms B1 →
D, B2 → D are not local and k is separably closed by loc. cit. Let m1, m2 be
the maximal ideals of B1 and B2. Since the homomorphisms are not local, the
ideal m1m2 ⊂ D is not contained in mD. Hence it is the whole ring D. Since
B+

1 and B+
2 contain m1 and m2, respectively, we conclude that D+ = D. Hence

(D,D+) is strongly henselian (it is the strong henselization of (A,A+) at some
trivial valuation).
Assume we are in case (2) of Theorem 6.3 and, say, B1 → D is a local, integral
and ind-étale ring homomorphism. By Lemma 10.12, we have mD ⊂ D+. Let
O := D+/mD ⊂ k = D/mD and O1 = B+

1 /m1 ⊂ k1 = B1/m1. Then O contains
the integral closure O′1 of O1 in the �eld extension k/k1. Since O1 is a henselian
valuation ring, the same is true for O′1. Hence O is an overring of a henselian
valuation ring of k, hence itself a henselian valuation ring by Lemma 11.4(i). For
x ∈ D with x mod mB ∈ O, we �nd y ∈ D+ with x − y ∈ mD ⊂ D+. This shows
that D+ is the full pre-image of O in D. Hence (D,D+) is local. We conclude that
(D,D+) is a henselian Huber pair.
For the rest of the proof we assume that v1, v2 are Riemann-Zariski and that we
are in case (2) of Theorem 6.3. Let w′ be the unique closed point of Spa(D,D+)
and let w ∈ Spa(A,A+) be its image. Let Ā and Ā+ be the integral closures of A
and A+ in K̄. Let v′i be the unique closed point of (Bi, B

+
i ). Then v′i maps to vi

in Spa(A,A+). On the other hand, since (Bi, B
+
i ) is henselian, there is a unique

point v̄i ∈ Spa(Ā, Ā+) lying over v′i.
By assumption, none of v̄1, v̄2 specializes to each other. The ring D is a compo-

nent of the tensor product B1 ⊗A B2 (and every component of the tensor product
arises in this way). It remains to show that D+ ⊂ D is the pre-image of a strictly
henselian valuation ring O ⊂ k = D/mD. Since Spa(D,D+) is henselian, there is a
unique point w̄ ∈ Spa(Ā, Ā+) over w′. We learn:

1. Since (A,A+)→ (D,D+) is ind-strongly étale and (D,D+) is henselian, (D,D+)
lies somewhere between (A,A+)hw and (A,A+)shw . (We want to show that (D,D+) =
(A,A+)shw .)
2. w̄ is a vertical generalization of v̄1 and a generalization of v̄2.
3. We are in the case that B1 → D is local, hence (cf. the proof of Theorem 6.3) in
the case supp v̄1  supp v̄2 in Spec(Ā).

If supp v̄1 = supp v̄2, then the statement reduces to the case of valuations rings,
where it follows from Lemma 11.4. Hence we may assume that supp v̄1 $ supp v̄2.
Since v1 is a Riemann-Zariski point, the same is true for v̄1 and hence w̄ is a
Riemann-Zariski point by Corollary 10.4(ii). But v̄2 is a specialization of w̄. By
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Proposition 10.5, this is only possible if w̄ = trsupp w̄ and the specialization w̄  v̄2

is of the form trsupp w̄  trsupp v̄2
 v̄2, where the second specialization is vertical.

We learn that D = D+ and have to show that this henselian ring is strictly
henselian. By a straightforward limit argument, we may assume that A is �nitely
generated over Z, in particular, A is Nagata. Using Lemma 6.2, we may replace A
by the normalization of A/ supp v1, i.e., we may assume that supp v1 is the generic
point of SpecA and D = D+ is a �eld. Since v1 does not specialize to v2, v1 is not
the trivial valuation (moreover, in this case the assertion would be true by trivial
reasons).

Let v̄3 be the trivial valuation with support supp v̄2, v3 the restriction of v̄3 to A
and (B3, B

+
3 ) = (A,A+)hv3

. Then B2 is an integral étale extension of B3 = B+
3 . In

order to show the assertion, we therefore may replace v2 by the trivial valuation v3.

After all these reductions, we arrive at the following situation:

• A is a normal domain of �nite type over Z with quotient �eld K
• supp v1 is the generic point of SpecA, (B1, B

+
1 ) = (A,A+)hv1

• B1 is a �eld (intermediate extension of K̄/K) and B+
1 $ B1 a valuation ring

• v2 is a trivial valuation, (B2, B
+
2 ) = (A,A+)hv2

, i.e., B2 = B+
2 = Ahsupp v2

• D = D+ is a �eld (intermediate extension of K̄/B1).

Furthermore, by Lemma 11.2 we may assume that SpecA → SpecA+ is an open
immersion and by Lemma 11.3 we may assume that the centers c1, c2 ∈ SpecA+ of
v1, v2 do not specialize to each other.

Moreover, by Lemma 6.2, we are still permitted to replace (A,A+) by its normal-
ization in a �nite �eld extension L/K inside K̄ (and replace v1, v2 by points over
them).

The local homomorphisms A+
c1 → Ov1

, A+
c2

∼→ Asupp v2
induce maps A+h

c1 → B+
1 ,

A+h
c2

∼→ B+
2 , hence a homomorphism

C := [A+h
c1 , A

+h
c2 ] ↪→ D = [B1, B2].

By Theorem 6.1, C is strictly henselian. Since C is the inductive limit of étale A+-
algebras, it is the strict henselization of A+ at some prime p+. As A ⊂ Asupp v2 =
A+
c2 ⊂ C, the morphism SpecC → SpecA+ factors through the open subset SpecA

of SpecA+. Hence C can also be obtained as the strict henselization of A at
p = p+A. In particular, C is noetherian and has �nite Krull-dimension. If C
were a (separably closed) �eld, the inclusions A ⊂ C ⊂ D ⊂ K̄ would prove that
D is separably closed, hence our assertion. We will achieve this by decreasing
induction on dimC. Assume dimC > 0. Then p is not the zero ideal, i.e., we �nd
0 6= x ∈ p ⊂ A.

The support of v1 is the generic point of SpecA, hence Ov1
⊂ K. By valuation

theory, the join [Ov1
, A] ⊂ K is the localization of Ov1

at some prime ideal. If
[Ov1

, A] were a proper subring of K, Lemma 10.3(ii) would imply the existence of
a nontrivial horizontal specialization of v1. Since v1 is Riemann-Zariski, we obtain

K = [Ov1
, A].

Hence we can write
x−1 =

∑
�nite

yizi, yi ∈ Ov1 , zi ∈ A.

Now the homeomorphism RZ(A,A+) ∼= limS above respects stalks. This means
for a Riemann-Zariski point v ∈ Spa(A,A+) with (A,A+)v = (E,E+), the ring E+

is the colimit of the (scheme-) stalks of the models at the respective centers, i.e.,
E+ = colimOS,c(v). Applying this to v1, we can (in the manner as we did above),
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modify (A,A+) to (A′, A′+) to achieve that all yi lie in A′c1 . De�ning C
′ similar to

C but for (A′, A′+), we obtain the commutative diagram

D = D+

C C ′

A A′,

in which the lower horizontal map induces an open immersion on Spec. Since all
yi, zi are in C ′, x is invertible in C ′, hence the image of the closed point of SpecC ′

in SpecA is a nontrivial generalization of p. This process stops since A has �nite
Krull-dimension. �

Recall that the tensor product of Huber pairs

(B,B+) = (B1, B
+
1 )⊗(A,A+) . . .⊗(A,A+) (Bn, B

+
n )

is de�ned as follows: B is the (usual) tensor product B1 ⊗A · · · ⊗A Bn and B+ is
the integral closure of B+

1 ⊗A+ · · · ⊗A+ B+
n in B.

Theorem 11.5. Let (A,A+) be a Huber pair, v1, v2 ∈ Spa(A,A+) and, for i = 1, 2,
(Bi, B

+
i ) a local, integral (A,A+)hvi-algebra. Then

(B,B+) = (B1, B
+
1 )⊗(A,A+) (B2, B

+
2 )

is quasi-acyclic. Assume that v1, v2 ∈ Spa(A,A+) are Riemann-Zariski points and
let (D,D+) be a component of (B,B+). Then the closed point of (D,D+) maps
to a Riemann-Zariski point of Spa(A,A+) and one of the following holds.

(1) If both homomorphisms (Bi, B
+
i )→ (D,D+) are not local, then the residue

�eld D+/mD+ of D+ is separably closed.
(2) If, say, (B1, B

+
1 )→ (D,D+) is local, it is integral. In particular, D+/mD+

is an algebraic �eld extension of B+
1 /mB+

1
.

Proof. This follows in exactly the same way from Theorem 11.1 as Theorem 6.3
follows from Theorem 6.1. �

We call a homomorphism of Huber pairs f : (A,A+)→ (B,B+) ind-étale if it is
a �ltered colimit of étale homomorphisms fi : (A,A+)→ (Bi, B

+
i ).

Theorem 11.6. Let (A,A+) be a Huber pair and let (B1, B
+
1 ), . . . , (Bn, B

+
n ) be

ind-étale (A,A+)-algebras which are quasi-acyclic. Then the tensor product

(B,B+) = (B1, B
+
1 )⊗(A,A+) . . .⊗(A,A+) (Bn, B

+
n )

is an ind-étale quasi-acyclic (A,A+)-algebra. Suppose that all closed points of the
Spa(Bi, B

+
i ) map to Riemann-Zariski points in Spa(A,A+). Then the closed points

of Spa(B,B+) map to Riemann-Zariski points in Spa(A,A+). For a component
(D,D+) of (B,B+) one of the following holds

(1) D+/mD+ is separably closed, or
(2) D+/mD+ is an algebraic extension of D+

i /mD+
i
, where (Di, D

+
i ) is a com-

ponent of (Bi, B
+
i ) for some i, 1 ≤ i ≤ n.

Proof. Regarding Lemma 10.13(ii), this follows in exactly the same way from The-
orem 11.5 as Theorem 6.4 follows from Theorem 6.3. �



30 KATHARINA HÜBNER AND ALEXANDER SCHMIDT

Corollary 11.7. Let (A,A+) be a Huber pair and let (B1, B
+
1 ), . . . , (Bn, B

+
n ) be

ind-étale quasi-acyclic (A,A+)-algebras. Then the tensor product

(B,B+) = (B1, B
+
1 )⊗(A,A+) . . .⊗(A,A+) (Bn, B

+
n )

is quasi-acyclic.

(i) If all Spa(Bi, B
+
i ) are étale acyclic, then also Spa(B,B+) is étale acyclic.

(ii) If all Spa(Bi, B
+
i ) are strongly étale acyclic and all morphisms Spa(Bi, B

+
i )→

(A,A+) map closed points to Riemann-Zariski points, then (B,B+) is strongly
étale acyclic.

(iii) If A is an Fp-algebra for some prime number p, all (Bi, B
+
i ) are tamely acyclic

and all morphisms Spa(Bi, B
+
i ) → (A,A+) map closed points to Riemann-

Zariski points, then (B,B+) is tamely acyclic.

Proof. The �rst assertion follows immediately from Theorem 11.6. Assertion (i)
follows from Theorem 6.4 and (ii) follows again from Theorem 11.6. It remains to
show (iii). Assume that A is an Fp-algebra and let (D,D+) be a component of
(B,B+). Since we already know that (D,D+) is strongly henselian, it su�ces to
show that the absolute Galois group Gk of k = D/mD is a pro-p-group. Note that
D is a component of B. Hence, by Theorem 6.4, either k is separably closed (in
which case we are done) or there is a component Di of Bi for some i such that
Di → D is local and k is an algebraic extension of the residue �eld Di/mDi

. The
absolute Galois group of Di/mDi

is a pro-p-group by assumption. Therefore its
subgroup Gk is also a pro-p-group. �

12. Riemann-Zariski morphisms

The main technical problem in proving a comparison theorem between the sheaf
cohomology and �ech cohomology of discretely ringed adic spaces along the lines
of the proof for schemes as given in Section 7 is the assumption on Riemann-Zariski
points in Theorem 11.6 and Corollary 11.7. Therefore we have to carry out a more
thorough analysis of Riemann-Zariski points �rst.

Let X be a discretely ringed adic space. We say that P ∈ X specializes to
Q ∈ X (notation: P  Q) if Q ∈ {P}. Let XP be the local adic space of X in
P , i.e., XP = Spa(A,A+)P for an open a�noid neighbourhood Spa(A,A+) of P in
X . Then P  Q if and only if the morphism XP →X factors through XQ →X .

De�nition 12.1. Let P  Q. We say Q is a vertical resp. horizontal specialization
of P if this is the case in one/every a�noid open of X containing P and Q. A
point x ∈ X is called a Riemann-Zariski point if it has no nontrivial horizontal
specializations.

We call a morphism f : X ′ →X Riemann-Zariski if for every Riemann-Zariski
point x′ ∈X ′, f(x′) is a Riemann-Zariski point in X .

In Section 4 we recalled Temkin's construction of the discretely ringed adic space
Spa(X,S) associated to a scheme morphism X → S. Points of Spa(X,S) are triples
(x, v, ε), where x is a point of X, v is a valuation of k(x) and ε : SpecOv → S is a
morphism compatible with Spec k(x)→ S.

Lemma 12.2. Let p : X → S be a scheme morphism, X = Spa(X,S) and
(x, v, ε), (y, w, µ) ∈X .
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(i) (y, w, µ) is a vertical specialization of (x, v, ε) if and only if x = y, Ow ⊂
Ov (⊂ k(x)), and the diagram

SpecOv

SpecOw S

ε

µ

commutes (automatic if S is separated).
(ii) (y, w, µ) is a horizontal specialization of (x, v, ε) if and only if there exists a

point P ∈ SpecOv and an x-morphism f : (SpecOv)P → X such that
(a) f(P ) = y.
(b) The valuation w is the restriction to k(y) of the valuation on k(P ) given

by the valuation ring Ov/P .
(c) The diagram (which exists by (b) since Ov/P is the ring of global sections

of the a�ne scheme {P}.)

{P} SpecOw

SpecOv S

µ

ε

commutes. (Note that (c) is automatic if S is separated.)
Here is a diagram elaborating the conditions:

SpecOv {P}

(SpecOv)P P SpecOw

x X y

S

ε

f

µ

p

Proof. (i) is obvious.
(ii) If (y, w, µ) is a horizontal specialization of (x, v, ε), then both points lie in a
common open a�noid and the conditions hold by Lemma 10.3. The same argument
shows that the given conditions imply that (y, w, µ) is a horizontal specialization of
(x, v, ε) if we �nd a common open a�noid neighborhood of the two points. Since
f(P ) = y by (a), we have x  y in X and p(x)  p(y) in S. Denoting the closed
point of SpecOw by cw, we moreover have p(y) µ(cw). Let S′ be an open a�ne
neighborhood of µ(cw) in S and X ′ an open a�ne neighborhood of y in p−1(S′).
Then Spa(X ′, S′) is an open a�noid neighborhood of (y, w, µ) in Spa(X,S). We
are done if we can show that (x, v, ε) lies in Spa(X ′, S′). First, x  y implies
x ∈ X ′. Hence it su�ces to show that ε : SpecOv → S factors through S′. For
this it su�ces to show ε(cv) ∈ S′, where cv is the closed point of SpecOv. This
follows since the closed point of {P} maps to cv and cw respectively and condition
(c) implies ε(cv) = µ(cw). �
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Corollary 12.3. If X and S are separated, then the set of horizontal specializa-
tions of a point in Spa(X,S) is totally ordered.

Proof. Let (x, v, ε) (y, w, µ) be a horizontal specialization in Spa(X,S). We show
that, with the notation of part (ii) of Lemma 12.2, the triple (y, w, µ) is uniquely
given by P ∈ SpecOv.

First of all, since X is separated, the morphism f : (SpecOv)P → X, and hence
y = f(P ) is unique. Further, Ow = (Ov/P ) ∩ k(y) (intersection in k(P )), hence
w is given by P . Finally, since S is separated, µ : SpecOw → S is uniquely given
by y, hence by P . The result follows since the set of prime ideals in a valuation
ring is totally ordered. �

Corollary 12.4. A point (x, v, ε) in Spa(X,S) is Riemann-Zariski if and only if x
is a closed point in X ×S SpecOv.

Proof. Assume that x is not closed in X×S SpecOv. Then there exists a nontrivial
specialization ỹ of x in X×S SpecOv. Hence we can �nd a valuation ring O ( k(x)
such that x → X ×S SpecOv factors as x → SpecO → X ×S SpecOv and ỹ is the
image of the closed point in SpecO. Projecting to the second factor shows Ov ⊂ O,
hence O = (Ov)P for a point P ∈ SpecOv. Projecting to the �rst factor, we �nd an
x-morphism f : SpecO → X and hence by Lemma 12.2 a horizontal specialization
of (x, v, ε). Since O ( k(x), the image of the closed point of SpecO in X is not
x, hence the horizontal specialization of (x, v, ε) is nontrivial. We conclude that
(x, v, ε) is not a Riemann-Zariski point.

If (x, v, ε) is not a Riemann-Zariski point, it has a nontrivial horizontal specializa-
tion. Then the x-morphism f : (SpecOv)P → X of Lemma 12.2 and the canonical
morphism (SpecOv)P → SpecOv give a morphism (SpecOv)P → X ×S SpecOv. It
maps P to a proper specialization of x. �

Lemma 12.5. If X is quasi-compact, then every point in Spa(X,S) has a hori-
zontal specialization which is a Riemann-Zariski point. Moreover, if X and S are
separated, this Riemann-Zariski point is unique.

Proof. Let (x, v, φ) be a point in Spa(X,S). The set of horizontal specializations
is partially ordered. As X is quasi-compact, it is covered by �nitely many a�noids
Spa(Ai, A

+
i ) and thus any chain of horizontal specializations of (x, v, φ) is contained

entirely in one of the Spa(Ai, A
+
i ). We can then view v as a valuation of Ai and

all specializations of the chain specialize to v|cΓv. Hence, by Zorn's lemma, there
is a maximal horizontal specialization (y, w, ψ) of (x, v, φ). In particular, (y, w, ψ)
is a Riemann-Zariski point. If X and S are separated, (y, w, ψ) is unique as the
horizontal specializations are totally ordered by Corollary 12.3. �

De�nition 12.6. A commutative square of morphisms of schemes

X ′ X

S′ S

is said to have universally closed diagonal if the induced morphism X ′ → X ×S S′
is universally closed.

Lemma 12.7. Let
X ′ X

S′ S
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be a square with universally closed diagonal. Then the induced morphism

Spa(X ′, S′)→ Spa(X,S)

is Riemann-Zariski. The converse holds if X ′ is quasi-compact and all residue �eld
extensions of X ′ → X are algebraic (e.g., if X ′ → X is étale).

Proof. Suppose the square has universally closed diagonal. Let (x′, v′, π′) be a
Riemann-Zariski point of Spa(X ′, S′) and assume that its image (x, v, φ) in Spa(X,S)
is not a Riemann-Zariski point. This means there exists a localization O ( k(x) of
the valuation ring Ov such that the dotted arrow exists in the following diagram:

Spec k(x) X

SpecO SpecOv S.
φ

There is a localization O′ ⊂ k(x′) of Ov′ with O′∩k(x) = O. This yields a diagram

SpecO′

X ×S S′ X

S′ S.

φ′

The valuative criterion for universal closedness for the morphism X ′ → X ×S S′
provides a lift:

SpecO′

X ′ X

S′ S.

φ′

But this means that (x′, v′, φ′) is not a Riemann-Zariski point, a contradiction.
Assume now that X ′ is quasi-compact and all residue �eld extensions of X ′ → X

are algebraic, and that Spa(X ′, S′) → Spa(X,S) maps Riemann-Zariski points to
Riemann-Zariski points. We have to show that for any diagram

Spec k X ′

SpecO X ×S S′,

where O is a valuation ring of the �eld k, the dotted arrow exists.
Without loss of generality we may assume that k equals the residue �eld of the im-

age of Spec k → X ′. The solid diagram then de�nes a point (x′, v′, φ′) in Spa(X ′, S′)
whose image (x, v, φ) in Spa(X,S) has center in X. Applying Lemma 12.5 we ob-
tain a horizontal specialization (y′, w′, ψ′) of (x′, v′, φ′) which is a Riemann-Zariski
point.

By assumption it maps to a Riemann-Zariski point (y, w, ψ) in Spa(X,S). We
know that (y, w, ψ) is a horizontal specialization of (x, v, φ) and that (x, v, φ) has
center in X. Therefore, also (y, w, ψ) has center in X. Being a Riemann-Zariski
point with center in X, (y, w, ψ) has to correspond to a trivial valuation. By our
hypothesis on residue �eld extensions this implies that (y′, w′, ψ′) corresponds to
a trivial valuation, as well. In particular, (x′, v′, φ′) has center in X ′ which is
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moreover compatible with the given center of (x, v, φ) in X. In other words, the
dotted arrow exists. �

Lemma 12.8. (i) (Composition) If the squares

X ′′ X ′ X ′ X

S′′ S′ S′ S

have universally closed diagonal, then the same is true for the square

X ′′ X

S′′ S.

(ii) (Base change) Consider two squares

Y X X X ′

T S S S′

and assume that the right hand one has universally closed diagonal. Then the
same is true for the square

Y Y ′ = Y ×X X ′

T T ′ = T ×S S′

(iii) (Limits) Let X → S be a scheme morphism and let (Xi → Si)i∈I be a family
of morphisms over X → S such that all Xi are quasi-compact and all squares

Xi X

Si S

have universally closed diagonal. Then the square

limXi X

limSi S

has universally closed diagonal.

Proof. We leave the standard veri�cations of (i) and (ii) to the reader. For (iii)
note that by the valuative criterion for universal closedness [SP, TAG 01KF], it
su�ces to show that in every solid diagram

SpecK limi∈I Xi

SpecO X ×S limi∈I Si,

(∗)
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where O is a valuation ring with quotient �eld K, the dotted arrow exists. For
every i ∈ I denote by Mi the set of all possible dotted arrows in

SpecK Xi

SpecO X ×S Si.

By assumptionMi is non-empty. Since Xi is quasi-compact, it is furthermore �nite.
The reason is that given a �nite a�ne cover Xi =

⋃
k Uk every dotted arrow factors

through some a�ne open Uk and for every Uk there is at most one dotted arrow.
TheMi thus form an inverse system of �nite sets. Hence, their limitM = limiMi is
non-empty and every element ofM provides a dotted arrow for the diagram (∗). �

Lemma 12.9. Let S be quasi-compact and quasi-separated and X → S a sep-
arated morphism of �nite type. Then there is an open covering of Spa(X,S) by
�nitely many a�noids Spa(Ai, A

+
i ) coming from squares

SpecAi X

SpecA+
i S

with universally closed diagonal such that SpecAi → X is a quasi-compact open im-
mersion and SpecA+

i → S is of �nite type. In particular, Spa(Ai, A
+
i )→ Spa(X,S)

is a quasi-compact open immersion which is a Riemann-Zariski morphism.

Proof. By Deligne's generalization of Nagata's compacti�cation theorem [Con07,
Theorem 4.1], we can �nd a compacti�cation X̄ of X over S. Blowing up the
complement of X in X̄ if necessary, we may assume that X̄ rX is the support of
a Cartier divisor. Hence, we can �nd a covering of X̄ by �nitely many a�ne open
subschemes Ūi such that Ui = Ūi∩X is a�ne as well. Then the a�noids Spa(Ui, Ūi)
form an open covering of Spa(X,S). Moreover, since X̄ → S is separated, X ↪→
X̄×SX is a closed immersion and applying Ūi×X̄−, we see that also Ui → Ūi×SX
is a closed immersion for all i. Hence the squares

Ui X

Ūi S

have a universally closed diagonal. �

Lemma 12.10. Let f : Spa(X ′, S′)→ Spa(X,S) come from a square

X ′ X

S′ S

of separated, �nite type morphisms of quasi-compact and quasi-separated schemes.
Assume that f is étale and surjective. Then there exists a �nite set of morphisms
of �nite type Ti → S′ such that the induced morphism∐

i

Spa(X ′, Ti) −→ Spa(X,S)

is a surjective (étale) Riemann-Zariski morphism.
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Proof. Let X̄ be a compacti�cation ofX over S (see [Con07], Theorem 4.1). Then f
coincides with the induced morphism

Spa(X ′, X̄ ×X S′)→ Spa(X, X̄).

We may thus assume that X → S is an open immersion. By the same arguments
we reduce to the case where also X ′ → S′ is an open immersion. We thus have a
diagram

X ′

X ×S S′ X

S′ S.

The map X ′ → X ×S S′ is thus an open immersion as well. We denote by Z ⊂
X ×S S′ the complement of X ′ (with reduced scheme structure). Let I be a set
indexing the isomorphism classes of X×S S′-modi�cations of S′, i.e., for each i ∈ I
we have a diagram

X ×S S′ Si

S′.

proper, birational

Denote by Zi the closure of Z in Si and set Ti = Si r Zi. We obtain a diagram

X ′

X ×S Ti X ×S Si X

Ti Si S.

In fact we have

X ×S Ti = Ti ∩ (X ×S Si) = (X ×S S′) r Z = X ′,

where we have used that X×SSi = X×SS′. Hence, by Lemma 12.7, Spa(X ′, Ti)→
Spa(X,S) is Riemann-Zariski. Furthermore, it dominates Spa(X ′, S′)→ Spa(X,S).

What is left to show is that the family (Spa(X ′, Ti) → Spa(X,S))i∈I is sur-
jective. Then we know by the quasi-compactness of Spa(X,S) that �nitely many
Spa(X ′, Ti) cover Spa(X,S) and we can take their disjoint union. In order to show
this surjectivity it su�ces to prove that every closed point of Spa(X,S) is contained
in the image of one of the Spa(X ′, Ti). Let (x, v, φ) be a closed point of Spa(X,S)
and pick a closed point (x′, v′, φ′) in its preimage in Spa(X ′, S′).

We can view (x′, v′, φ′) as a point of Spa(X×SS′, S′) and as such it is a Riemann-
Zariski point for the following reason. By Corollary 12.4 we have to show that x′

is a closed point in

SpecOv′ ×S′ (X ×S S′) = SpecOv′ ×S X.

But this is equivalent to saying that

Spec k(x′) X

SpecOv′ S
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has universally closed diagonal, which in turn is equivalent by Lemma 12.7 to

Spa(k(x′),Ov′)→ Spa(X,S)

being Riemann-Zariski. This is true as the image (x, v, φ) of (x′, v′, φ′) in Spa(X,S)
is a closed point.

For any i ∈ I we have Spa(X×S S′, S′) ∼= Spa(X×S S′, Si). The point (x′, v′, φ′)
in Spa(X ×S S′, S′) identi�es with the point (x′, v′, φi), where φi : SpecOv′ → Si
is the unique lift of the morphism φ′ : SpecOv′ → S′ coming from the valuative
criterion of properness. Denote by ci the center of (x′, v′, φi) in Si, i.e., the image
of the closed point of SpecOv′ under φi. Now [TT18], Lemma 5.1.3 gives us i ∈ I
such that ci is not contained in Zi. In other words, (x′, v′, φi) ∈ Spa(X ′, Ti) �

13. �ech cohomology of discretely ringed adic spaces

In this section we transfer the results of Section 7 to the realm of adic spaces.
Let τ denote one of the topologies `et' (étale), `set' (strongly étale) or `t' (tame).
We make the general assumption that all schemes and scheme morphisms are quasi-
compact and quasi-separated.

Proposition 13.1. For every a�noid adic space Spa(A,A+) there is a surjective
Riemann-Zariski pro-τ morphism

Spa(Ã, Ã+)→ Spa(A,A+)

with (Ã, Ã+) τ -acyclic.

Proof. As in the proof of Proposition 7.12, we follow the method of Bhatt-Scholze,
[BS15, Proof of Lemma 2.2.7]. Let I be the set of isomorphism classes of surjective
Riemann-Zariski τ -morphisms Spa(A′, A′+) → Spa(A,A+). For every i ∈ I pick a
representative Spa(Bi, B

+
i )→ Spa(A,A+) and set

(A1, A
+
1 ) := colim

J⊂I �nite

⊗
j∈J

(Bj , B
+
j ),

where the tensor product is taken over (A,A+) and the (�ltered) colimit is indexed
by the poset of �nite subsets of I. There is an obvious ind-τ map (A,A+) →
(A1, A

+
1 ) which induces a surjective Riemann-Zariski morphism on adic spectra.

Moreover, by Lemma 12.10, any surjective τ - morphism Spa(B,B+)→ Spa(A,A+)
is dominated by a Riemann-Zariski surjective τ -morphism Spa(X,S)→ Spa(A,A+).
By Lemma 12.9 we may assume that Spa(X,S) is a�noid, i.e., Spa(X,S) ∼=
Spa(Ai, A

+
i ) for some i ∈ I. We therefore obtain an (A,A+)-homomorphism

(B,B+)→ (A1, A
+
1 ). This implies that (A,A+)→ (B,B+) splits after base change

to (A1, A
+
1 ). Iterating the construction with (A1, A

+
1 ) replacing (A,A+) and pro-

ceeding inductively de�nes a tower

(A,A+)→ (A1, A
+
1 )→ (A2, A

+
2 )→ · · ·

of faithfully �at Riemann-Zariski (A,A+)-algebras with ind-τ transition maps. Set
(Ã, Ã+) = colim(An, A

+
n ). As étale homomorphisms are �nitely presented, one

checks that any faithfully �at τ -(Ã, Ã+)-algebra has a section, so (Ã, Ã+) is τ -
acyclic.

Being a �ltered colimit of faithfully �at Riemann-Zariski τ -(A,A+)-algebras,
(A,A+)→ (Ã, Ã+) is ind-τ and Riemann-Zariski. Moreover, since the inverse limit
of �nite non-empty sets is non-empty, every point of Spa(A,A+) has a preimage in
Spa(Ã, Ã+). �
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Theorem 13.2. Let X be a discretely ringed adic space with the property that
any �nite subset of X is contained in an a�noid open. Let τ ∈ {et, set, t}. If τ = t
assume that X is of pure characteristic p ≥ 0. Suppose we are given for i = 1, . . . , n
pro-τ Riemann-Zariski morphisms Ui = Spa(Ai, A

+
i )→X with (Ai, A

+
i ) τ -acyclic.

Then the �ber product

U := Spa(A1, A
+
1 )×X Spa(A2, A

+
2 )×X . . .×X Spa(An, A

+
n )

is a�noid and τ -acyclic.

Proof. If f : Y → X is a Riemann-Zariski morphism which factors through an
open subspace Z ⊂ X , then Y → Z is also Riemann-Zariski. Indeed, if x ∈ Z
is Riemann-Zariski in X , it is Riemann-Zariski in Z .

Moreover, a Riemann-Zariski morphism sends closed points to Riemann-Zariski
points. Hence, if there is an a�noid open subspace V ⊂ X such that all Ui map
to V , the result follows from Corollary 11.7.

In the general case, let pi ∈ Ui, i = 1, . . . , n, be closed points. By assumption,
there is an a�noid open V = Spa(B,B+) ⊂X containing the images of p1, . . . , pn.
Since Ui is quasi-acyclic, every component of Ui has a unique closed point and
it maps to V if and only if its closed point maps to V . By Proposition 7.13,
ϕi : U c

i → π0(Ui) is a homeomorphism of pro�nite spaces. Therefore, we �nd a
closed and open subset Wi ⊂ U c

i which contains pi and maps to V . Then also the
preimage Vi ⊂ Ui of ϕi(Wi) ⊂ π0(Ui) under Ui → π0(Ui) maps to V . Hence Vi
is a closed and open subset of Ui containing pi and mapping to V . Being closed
and open in Ui, Vi is the adic spectrum of an ind-étale, τ -acyclic (B,B+)-algebra.
Moreover Vi → V is a Riemann-Zariski morphism for the following reason. The
composition Vi → Ui →X is Riemann-Zariski because the �rst morphism is closed
and the second is Riemann-Zariski by assumption. Hence Vi → V is Riemann-
Zariski by the remark at the beginning of the proof.

By the �rst part of the proof, V (p1, . . . , pn) := V1 ×X · · · ×X Vn is a closed
and open subspace of U , hence a�noid ind-étale and τ -acyclic. Any nonempty
closed subset in a spectral space contains a closed point. Hence, varying the points
p1, . . . , pn, the V (p1, . . . , pn) cover U . Since U is quasi-compact, we �nd a �nite
subcovering. Replacing the V (p1, . . . , pn) by closed and open subspaces, which are
ind-étale and τ -acyclic, we may assume that the �nite union is disjoint. Hence U
is a�noid and τ -acyclic. �

Using Proposition 13.1 and Theorem 13.2 instead of Proposition 7.12 and The-
orem 7.10, the proof of Theorem 13.3 below is word-by-word the same as the proof
of Theorem 7.16.

Theorem 13.3 (Comparison with �ech cohomology). Let X be a quasi-compact
discretely ringed adic space with the property that any �nite subset of X is con-
tained in an a�noid open. Let τ ∈ {et, set, t}. If τ = t assume that X is of pure
characteristic p ≥ 0.

Then, for every presheaf P of abelian groups on Xτ with shea��cation P#τ , the
natural maps

Ȟn
τ (X , P )→ Hn

τ (X , P#τ )

are isomorphisms for all n ≥ 0.

14. Comparison between algebraic and adic tame cohomology

For X/S we consider the tame site (X/S)t and the adic tame site Spa(X,S)t and
want to compare their cohomology. Since there is no obvious site morphism between
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the two, we consider an additional site Spa(X,S)t,Nis which admits morphisms

Spa(X,S)t Spa(X,S)t,Nis (X/S)t
φψ

and we will prove that there are isomorphisms for all q ≥ 0:

Hq
t (X/S, F ) ∼= Hq

t,Nis(Spa(X,S), φ∗F ), F ∈ Sht(X/S)

Hq
t (Spa(X,S), ψ∗G) ∼= Hq

t,Nis(Spa(X,S), G), G ∈ Sht,Nis(Spa(X,S)).

De�nition 14.1. Let X be a discretely ringed adic space. The Nisnevich-tame

site XNis,t is de�ned by the following data:

The category Cat(XNis,t) is the category of étale morphisms of adic spaces U →
X .

A family (pi : Ui → U ) of morphisms in Cat(XNis,t) is a covering if for every
point u ∈ U there exists an index i and a point ui ∈ Ui mapping to u such that pi
is tame at ui.

The category Cat(Xt) is a full subcategory of Cat(XNis,t) and obviously every
covering in Xt is also a covering in XNis,t. This explains the existence of the
morphism ψ : XNis,t → Xt (in particular for X = Spa(X,S)). The morphism
φ is de�ned by mapping an étale X-scheme U to Spa(U, S), which lies étale over
Spa(X,S).

The comparison result for ψ will follow from the openness of the tame locus
(Proposition 4.4).

Lemma 14.2. Let X be a discretely ringed adic space and U an object in Xt.
The coverings of U in Xt are co�nal among the coverings in Xt,Nis.

Proof. Consider a covering (Ui → U ) in Xt,Nis. For every i we denote by Vi ⊆ Ui

the subset of points where Ui → U is tame. This is an open subset by [Hüb18,
Corollary 4.4]. Moreover, (Vi → U ) is a surjective family by the de�nition of
coverings in Xt,Nis. Hence, (Vi → U ) is a covering dominating (Ui → U ). �

Lemma 14.3. The morphism of sites

ψ : Xt,Nis →Xt

induces isomorphisms
Hq
t (X , ψ∗G) ∼= Hq

t,Nis(X , G)

for all q ≥ 0 and for every G ∈ Sht,Nis(X ).

Proof. We have to show that the higher direct images Rqψ∗G vanish for q > 0.
Unravelling the de�nitions this comes down to showing that every covering (Vj →
U ) in Xt,Nis of an object U in Xt is dominated by a covering in Xt. This is the
assertion of Lemma 14.2. �

Lemma 14.4. Let X be a discretely ringed adic space and F a presheaf on Xt,Nis.
Then for any U in Xt the natural homomorphism

Ȟq
t (U , ψ∗F )→ Ȟq

t,Nis(U , F )

is an isomorphism for all q ≥ 0.

Proof. This is a direct consequence of Lemma 14.2. �

Proposition 14.5. Let X be a quasi-compact discretely ringed adic space with
the property that any �nite subset of X is contained in an a�noid open. Moreover
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assume that X is of pure characteristic p ≥ 0. Let F be a presheaf on Xt,Nis with
shea��cation F# Then there are natural isomorphisms

Ȟq
t,Nis(X , F ) ∼= Hq

t,Nis(X , F#)

for all q ≥ 0.

Proof. Consider the commutative diagram

Ȟq
t (X , ψ∗F ) Hq

t (X , (ψ∗F )#)

Hq
t (X , ψ∗(F

#))

Ȟq
t,Nis(X , F ) Hq

t,Nis(X , F#).

The upper horizontal map is an isomorphism by Theorem 13.3, the left vertical
map by Lemma 14.4, and the lower right vertical map by Lemma 14.3. In order to
see that the upper right vertical map is an isomorphism we note that shea��cation
is given by applying Ȟ0 twice. Hence, (ψ∗F )# → ψ∗(F

#) is an isomorphism by
Lemma 14.4 for q = 0. �

Lemma 14.6. Let X → S be a morphism of schemes and F ∈ PrSht(X/S) a
presheaf. We consider the morphism of sites

φ : Spa(X,S)t,Nis → (X/S)t

and let G = φ∗pre(F ) ∈ PrSht,Nis(Spa(X,S)) be the presheaf pull-back of F . Then
the natural homomorphism on �ech cohomology

Ȟn
t (X/S, F ) −→ Ȟn

t,Nis(Spa(X,S), G)

is an isomorphism for all n ≥ 0.

Proof. We consider all diagrams

U X

T S,

with U → X étale and T → S of �nite type, i.e., Spa(U, T ) ∈ Spa(X,S)t,Nis. By
de�nition of φ∗pre , we have G(Spa(U, T )) = colimV F (V ), where the colimit is taken
over all diagrams

U V X

T S S

with V → X étale. Since U is a �nal object, we obtain G(Spa(U, T )) = F (U).
For a tame covering U = (Uα → X) in (X/S)t we consider the pull-back

covering φ∗U = (Spa(Uα, S) → Spa(X,S)) in Spa(X,S)t,Nis. We have a natu-
ral isomorphism of �ech complexes Č•(U , F ) ∼= Č•(φ∗U , G). It therefore suf-
�ces to show that the colimit of the �ech cohomology groups of G with respect
to all pull-back coverings coincides with the colimit with respect to all cover-
ings of Spa(X,S) in the (t,Nis)-topology. Among these, coverings of the form
V = (Spa(Uα, Tα) → Spa(X,S)) with all Uα → X étale and all Tα → S of �nite
type are co�nal, so we can restrict to coverings of this type. The observation at the
beginning of this proof shows that the �ech cohomology of G for V coincides with
the �ech cohomology of F for the covering (Uα → X) and hence with the �ech
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cohomology of G for the pull-back covering r(V ) := (Spa(Uα, S)→ Spa(X,S)), of
which V is a re�nement. Hence our result follows from Lemma 14.7 below with J
the subset of pull-back coverings and H the �ech cohomology for G. �

Lemma 14.7. Let I be a partially ordered directed set and J ⊂ I a directed
subset. Let (Hi)i∈I be a system of abelian groups indexed by I. Assume there is
an order preserving retraction r to the inclusion J ⊂ I such that r(i) ≤ i for all
i ∈ I and the natural map Hr(i) → Hi is an isomorphism for all i ∈ I. Then the
natural map

colim
J

Hj → colim
I

Hi

is a isomorphism.

Proof. Surjectivity follows from the surjectivity of Hr(i) → Hi for all i ∈ I. Let
j ∈ J and a ∈ Hj with trivial image in Hi for some i ∈ I, i ≥ j. We have to �nd a
j′ ∈ J , j′ ≥ j, such that a has trivial image in Hj′ . By our assumptions, we have
j = r(j) ≤ r(i) ≤ i and Hr(i) → Hi is injective. Hence j′ = r(i) has the required
property. �

Now we are ready to prove our comparison theorem.

Theorem 14.8. Let S be an a�ne Fp-scheme for some prime number p and let
X be an S-scheme. Then for any sheaf F ∈ Sht(X/S) the homomorphism

Hn
t (X/S, F ) −→ Hn

t,Nis(Spa(X,S), φ∗F )

is an isomorphism for all n ≥ 0.

Proof. Let X =
⋃
Ui be an a�ne open covering. Then Spa(X,S) =

⋃
Spa(Ui, S)

is also an open covering. By the �ech-to-derived spectral sequences on both sides,
we may therefore assume that X itself is a�ne. Let G = φ∗preF , i.e., φ

∗F = G#.
Then the statement follows from the commutative diagram

Ȟn
t (X/S, F ) Ȟn

t,Nis(Spa(X,S), G)

Hn
t (X/S, F ) Hn

t,Nis(Spa(X,S), φ∗F ),

a

b c

in which a, b and c are isomorphisms by Lemma 14.6, Theorem 7.16 and Theo-
rem 13.3, respectively. �

15. Purity and homotopy invariance

With the help of our comparison results between algebraic and adic tame coho-
mology, we can now exploit the results of [Hüb18].

The version of resolution of singularities used in this paper is the following.

De�nition 15.1. Let S be a noetherian scheme. We say that resolution of sin-

gularities holds over S if for any reduced scheme X of �nite type over S there
is a locally projective birational morphism X ′ → X such that X ′ is regular and
X ′ → X is an isomorphism over the regular locus of X. (By [EGA4.2, IV, 7.9.5],
this particularly implies that S is quasi-excellent.)

A sheaf F ∈ Sht(X/S) is locally constant if there is a tame covering (Ui → X)i
such that the restriction F |Ui

is isomorphic to a constant sheaf Ai on Ui for all i.

Theorem 15.2 (Purity). Let S be an a�ne noetherian scheme of characteristic
p > 0 and X a regular scheme which is separated and essentially of �nite type
over S. Assume that resolution of singularities holds over S. Then for any open
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dense subscheme U ⊂ X and every locally constant p-torsion sheaf F ∈ Sht(X/S)
the natural map

Hq
t (X/S, F ) −→ Hq

t (U/S, F |U )

is an isomorphism for all q ≥ 0.

Proof. Let (Ui → X)i be a trivializing tame covering for F . Then we have com-
patible �ech-to-derived spectral sequences

Ers2 = Ȟr((Ui → X)i,H
s
t (−/S, F ))⇒ Hr+s

t (X/S, F ), and

Ers2 = Ȟr((Ui ×X U → U)i,H
s
t (−/S, F |U ))⇒ Hr+s

t (U/S, F |U ).

We therefore may assume that F is constant. By Theorem 4.5, we may assume
that F = A for a �nite abelian group A. For this it su�ces to consider the cyclic
case A = Z/pnZ and by dévissage , we may assume n = 1. Then the statement
follows from its adic version [Hüb18, Corollary 14.5], and the comparison results
Theorem 14.8 and Lemma 14.3. �

Remarks 15.3. 1. Let us say a few words about why Theorem 15.2 is a purity
statement. Let νn(r) be the logarithmic deRhamWitt sheaves as de�ned in [Mil86].
For a regular closed immersion Z → X of codimension c, we expect to hold the
purity statement

Hq
t,Z(X/S, νn(r)) ∼= Hq−c

t (Z/S, νn(r − c)).

Since νn(0) ∼= Z/pnZ and νn(r) = 0 for r < 0, this implies Hq
t,Z(X/S,Z/pnZ) = 0

for all q, which is essentially equivalent to Theorem 15.2 for constant coe�cients.
2. Being an étale sheaf over a tame covering, a locally constant tame sheaf is
already an étale sheaf. In view of the comparison result Proposition 8.1, purity for
the tame cohomology of locally constant prime-to-p torsion sheaves is identical to
purity for étale cohomology, see [Fuj02].

Theorem 15.4 (Homotopy invariance). Let S be an a�ne noetherian scheme of
characteristic p > 0 and X a regular scheme which is essentially of �nite type
over S. Assume that resolution of singularities holds over S. Then for every locally
constant torsion sheaf F ∈ Sht(X/S) the natural map

Hq
t (X/S, F ) −→ Hq

t (A1
X/S, pr

∗F ),

where pr : A1
X → X is the natural projection, is an isomorphism for all q ≥ 0.

Proof. As in the proof of 15.2, we may reduce to the case where F = Z/qZ for
a prime number q. If q 6= p, then the result follows from Proposition 8.1 and the
homotopy invariance of étale cohomology with invertible coe�cients [Mil80, VI,
Corollary 4.20]. For q = p the result follows from its adic version [Hüb18, Corollary
14.6], and the comparison results Theorem 14.8 and Lemma 14.3. �

16. Connection to Suslin homology

Let k be an algebraically closed �eld and assume that resolution of singularities
holds over k (see De�nition 15.1). Let X/k a connected scheme of �nite type and
m ≥ 1 an integer. In [SV96], A. Suslin and V. Voevodsky de�ned the Suslin (or
singular) homology groups HS

n (X,Z/mZ) and constructed for (m, char(k)) = 1 an
isomorphism between étale and Suslin cohomology

Hn
et(X,Z/mZ) ∼= Hn

S (X,Z/mZ) = Hom(HS
n (X,Z/mZ),Z/mZ).

Originally, [SV96] had to assume resolution of singularities but later this could be
avoided by using deJong's alterations.

In [GS16], T. Geisser and the second author extended this result in degree 1 to
general m not necessarily prime to char(k) by replacing the group H1

et(X,Z/mZ)



THE TAME SITE OF A SCHEME 43

by the tame cohomology group H1
t (X,Z/mZ), which was de�ned in an ad hoc

manner as the dual of the curve-tame fundamental group (cf. [KS10]), i.e.,

H1
t (X,Z/mZ) := Homcts(π

ct
1 (X),Z/mZ).

Here the assumption on resolution of singularities could not be avoided. A general-
ization of this result to higher degrees was not possible since a de�nition of (higher)
tame cohomology groups was missing.

Having tame cohomology at hand now, we construct for all n ≥ 0 a natural
pairing

HS
n (X,Z/mZ)×Hn

t (X/k,Z/mZ) −→ Z/mZ,

which de�nes maps

Hn
t (X/k,Z/mZ) −→ Hn

S (X,Z/mZ)

in all degrees n. The construction is the following.

Let Sch/k be the category of separated schemes of �nite type over k and Cor/k the
category with the same objects as Sch/k and �nite correspondences as morphisms.
Recall that the group Cork(X,Y ) of �nite correspondences fromX to Y is the group
of relative cycles in X ×k Y/X which are �nite, equidimensional and universally
integral, see [MVW06, A.1] or [CD19, �9]. The graph functor

Sch/k −→ Cor/k, f ∈ Mork(X,Y ) 7−→ Γf ∈ Cork(X,Y )

is a faithful embedding. A presheaf with transfers on Sch/k is a contravariant
additive functor F : Cor/k → Ab. The category of all presheaves with transfers
is denoted by PrSh(Cor/k). Composition with the graph functor yields a faithful
embedding

PrSh(Cor/k) −→ PrSh(Sch/k)

from the category of presheaves with transfers to the category of presheaves on
Sch/k. We will consider presheaves with transfers as presheaves with the additional
structure of transfer maps for �nite correspondences.

IfX/k is smooth and connected, then Cork(X,Y ) is the free abelian group generated
by integral subschemes of X×k Y whose projection to X is �nite and surjective, see
[SV00, Proposition 3.3.5]. For any Y ∈ Sch/k and any abelian group A the Suslin

homology HS
• (Y,A) of Y with values in A (de�ned in [SV96]) is the homotopy of

the simplicial abelian group

· · · Cork(∆2
k, Y )⊗A Cork(∆1

k, Y )⊗A Cork(∆0
k, Y )⊗A,

i.e., the homology of the complex

· · ·Cork(∆2
k, Y )⊗A→ Cork(∆1

k, Y )⊗A→ Cork(∆0
k, Y )⊗A→ 0,

where the di�erentials are induced by the alternating sums of the face maps. Like-
wise the Suslin cohomology H•S(Y,A) of Y with values in an abelian group A is the
cohomology of the complex

HomZ(Cork(∆•k, Y ), A).

We consider the big tame site (Sch/k)t which consists of the category Sch/k with
tame coverings. For X ∈ Sch/k and F ∈ Sht(Sch/k), the cohomology of X with
values in F coincides with the cohomology of the restriction of F to the (small)
tame site (X/k)t (cf. [Mil80, III, 3.1]). A tame sheaf with transfers is a presheaf
with transfers which is a tame sheaf on Sch/k when considered as a presheaf on
Sch/k via the graph functor. We denote the category of these by Sht(Cor/k). For
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an abelian group A, the constant Zariski-sheaf A on Sch/k is already an étale sheaf,
in particular a tame sheaf. For X ∈ Sch/k we have

A(X) = Cork(X,Spec k)⊗A,

in particular, A has transfers in a natural way. Similar arguments as for the Nis-
nevich and étale cohomology show the following

Lemma 16.1. The category Sht(Cor/k) has su�ciently many injectives. An in-
jective object I ∈ Sht(Cor/k) is �abby as a sheaf in Sht(Sch/k). In particular,
we can calculate the tame cohomology of a tame sheaf with transfers by using an
injective resolution in Sht(Cor/k). For any F ∈ Sht(Cor/k) the tame cohomology
presheaves

U 7−→ Hn
t (U,F )

are presheaves with transfers in a natural way.

Proof. As the tame site sits between the étale and the Nisnevich site, the arguments
of [Voe00, �3.1] (given there for sheaves with transfers on the category of smooth k-
schemes) apply without change. See [CD19, �10.3] for more details and a treatment
in the setting of Sch/k. �

We make the following general observation. Let (M••, d′, d′′) be a commutative (or
anti-commutative) double complex of abelian groups. For (i, j) ∈ Z×Z we put

Zij = ker(d′ : M ij →M i+1,j) ∩ ker(d′′ : M ij →M i,j+1)

Bij = im(d′ ◦ d′′ : M i−1,j−1 →M ij) and Hij = Zij/Bij .

If all lines (i.e., the single complexesM•k for all k) are exact, we obtain for all (i, j)
a natural homomorphism

hi,j : Hi,j −→ Hi−1,j+1

as follows: Let x ∈ Hi,j and let m ∈ Zi,j be a representing element. We choose
m′ ∈ M i−1,j with d′(m′) = m and then we de�ne hi,j(x) ∈ Hi−1,j+1 as the class
of d′′(m′). Our assumptions guarantee that hi,j is well-de�ned.

Fix an injective resolution Z/mZ→ I• in the category of tame sheaves of Z/mZ-
modules with transfers on Sch/k. The �nite correspondences

∂ =

n∑
i=0

(−1)i∂i : ∆n−1 → ∆n

induce maps ∂∗ : I•(∆n)→ I•(∆n−1). Consider the double complex given by

M ij =


Ii(∆−j), i ≥ 0, j ≤ 0

Z/mZ, i = −1, j ≤ 0

0, else
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with di�erentials as indicated below

Z/mZ I0(∆0) I1(∆0) I2(∆0)

Z/mZ I0(∆1) I1(∆1) I2(∆1)

Z/mZ I0(∆2) I1(∆2) I2(∆2)

Z/mZ I0(∆3) I1(∆3) I2(∆3).

d d

0 ∂∗

d

∂∗

d

∂∗

id ∂∗

d

∂∗

d

∂∗

0 ∂∗

d

∂∗

d

∂∗

(∗)

Since ∆n ∼= Ank and by homotopy invariance (Theorem 15.4), we have

Hi
t(∆

n,Z/mZ) ∼= Hi
t(Spec k,Z/mZ) =

 Z/mZ, i = 0

0, i ≥ 1.

Hence the lines of (∗) are exact and we obtain a map

hn : Hn,−n → Hn−1,−n+1 → . . .→ H0,0 = Z/mZ.

Returning to our original task, let α ∈ HS
n (X,Z/mZ) and β ∈ Hn

t (X,Z/mZ) be
given. Let a ∈ Cor(∆n, X) represent α and let b ∈ In(X) represent β. By de�nition
we have db = 0 and a ◦ ∂ = mχ for some χ ∈ Cor(∆n+1, X). We consider the pull
back

a∗(b) ∈ In(∆n) = Mn,−n.

We have
d(a∗(b)) = a∗(db) = a∗(0) = 0, and

∂∗(a∗(b)) = (a ◦ ∂)∗(b) = (mχ)∗(b) = χ∗(mb) = χ∗(0) = 0.

Hence a∗(b) ∈ Zn,−n, and we denote its class in Hn,−n by a∗(b)

De�nition 16.2. We de�ne

〈α, β〉 = hn(a∗(b)) ∈ Z/mZ.

Lemma 16.3. 〈α, β〉 is independent of the choices made, hence we obtain a bilinear
pairing

HS
n (X,Z/mZ)×Hn

t (X,Z/mZ) −→ Z/mZ.

Proof. Let b′ ∈ In(X) be another representative of β. If n = 0, then b = b′ and
there is nothing to prove. For n ≥ 1, b − b′ = dc, c ∈ In−1(X), and we have to
show that

hn(a∗(dc)) = 0 for any c ∈ In−1(X).

By de�nition of the map hn,−n : Hn,−n → Hn−1,−n+1 above, we have

hn,−n(a∗(dc)) = hn,−n(d(a∗(c))) = ∂∗(a∗(c)) = (a ◦ ∂)∗(c) =

(mχ)∗(c) = χ∗(mc) = χ∗(0) = 0.

Since hn factors through hn,−n, this shows the independence from the choice of b.

If a′ ∈ Cor(∆n, X) is another representative of α, then there exist x ∈ Cor(∆n+1, X)
and y ∈ Cor(∆n, X) with

a′ − a = x ◦ ∂ +my.

It therefore remains to show that, for any x ∈ Cor(∆n+1, X), the map (x ◦ ∂)∗ :
Hn
t (X,Z/mZ)→ Hn,−n is zero. We have

(x ◦ ∂)∗(b) = ∂∗(x∗(b)).
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For n = 0, x∗(b) lies in ker(I0(∆1)→ I1(∆1)) = H0
t (∆1,Z/mZ) = Z/mZ and

∂∗ : H0
t (∆1,Z/mZ) = Z/mZ −→ H0,0 = Z/mZ

is the zero map because ∂∗ = ∂∗0 − ∂∗1 = idZ/mZ − idZ/mZ = 0.
For n ≥ 1, we have Hn

t (∆n+1,Z/mZ) = 0, hence x∗(b) = dc for some c ∈
In−1(∆n+1) and we obtain

∂∗(x∗(b)) = ∂∗(dc) ∈ Bn,−n

showing the result. �

Using the pairing and noting that Z/mZ is an injective Z/mZ-module, we obtain
homomorphisms for all n ≥ 0:

βn : Hn
t (X,Z/mZ) −→ Hom(HS

n (X,Z/mZ),Z/mZ) = Hn
S (X,Z/mZ).

Conjecture 16.4. For any m ≥ 1, the homomorphism

βn : Hn
t (X,Z/mZ) −→ Hn

S (X,Z/mZ)

is an isomorphism of �nite abelian groups for all n ≥ 0.

Up to comparing the maps, Conjecture 16.4 is known if (m, p) = 1 and all n by
[SV96] and for general m and n = 1 by [GS16]. We will address Conjecture 16.4 in
a forthcoming paper.
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