Übungen zur Algebraischen Zahlentheorie I

Wintersemester 2010/11

Universität Heidelberg Mathematisches Institut Prof. A. Schmidt Dr. A. Holschbach

Blatt 12

Abgabetermin: Mittwoch, 26.01.2010, 16.15 Uhr

Aufgabe 1. Sei $K = \mathbb{Q}(\zeta_8)$ der achte Kreisteilungskörper. Zeigen Sie:

- (a) Es gilt $\operatorname{Gal}(K|\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, und K enthält $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt{2})$ und $\mathbb{Q}(\sqrt{-2})$ als quadratische Unterkörper.
- (b) Für eine ungerade Primzahl p ist die Zerlegungsgruppe Z_p zyklisch; ihr Erzeuger ist der von $\zeta_8 \mapsto \zeta_8^p$ induzierte Körperautomorphismus von K. Bestimmen Sie zu jedem solchen p den Zerfällungskörper K^{Z_p} (in Abhängigkeit von p mod 8).

Aufgabe 2. Beweisen Sie den zweiten Ergänzungssatz zum quadratischen Reziprozitätsgesetz auf <u>eine</u> der beiden folgenden Weisen:

- analog zum Beweis von Korollar 6.9 anhand des Zerlegungsverhaltens von 2 in $\mathbb{Q}(\zeta_p)$,
- oder mit Hilfe von Aufgabe 1 (b) über das Zerlegungsverhalten von p in $\mathbb{Q}(\zeta_8)$:

$$\left(\frac{2}{p}\right) = 1 \Leftrightarrow p \text{ zerf\"{a}llt in } \mathbb{Q}(\sqrt{2}) \Leftrightarrow p \equiv \pm 1 \mod 8.$$

Aufgabe 3. Sei n eine natürliche und D eine quadratfreie ganze Zahl. Zeigen Sie:

- (a) Für $D \equiv 1 \mod 4$ gilt $\mathbb{Q}(\sqrt{D}) \subset \mathbb{Q}(\zeta_n)$ genau dann, wenn $D \mid n$.

 Hinweis: Für die eine Richtung kann man über Verzweigung argumentieren. Für die andere Richtung zeige man, dass $D = \prod_{p \mid D} p^*$, und verwende $\mathbb{Q}(\sqrt{p^*}) \subset \mathbb{Q}(\zeta_p)$.
- (b) Für allgemeines (quadratfreies) D gilt $\mathbb{Q}(\sqrt{D}) \subset \mathbb{Q}(\zeta_n)$ genau dann, wenn $d_{\mathbb{Q}(\sqrt{D})} \mid n$. Hinweis: Zeigen Sie zunächst, dass jedes solche D sich eindeutig schreiben lässt als D = aD' mit $a \in \{\pm 1, \pm 2\}$, $D' \equiv 1 \mod 4$. Folgern Sie dann mit (a), dass \sqrt{D} genau dann in $\mathbb{Q}(\zeta_n)$ liegt, wenn \sqrt{a} und $\sqrt{D'}$ beide in $\mathbb{Q}(\zeta_n)$ liegen. Nun gilt für $a \in \{-1, 2, -2\}$, dass $\sqrt{a} \in Q(\zeta_n) \Leftrightarrow 4a \mid n$, wie sich mit Hilfe von Aufgabe 1 (a) leicht nachprüfen lässt. Zusammengenommen ergibt sich die Behauptung.

Aufgabe 4. Es sei $K = \mathbb{Q}(\zeta_n)$ der n-te Kreisteilungskörper $(n \geq 3, n \not\equiv 2 \mod 4)$, und sei $K^+ = \mathbb{Q}(\zeta_n)^+ = \mathbb{Q}(\eta_n)$ mit $\eta_n = \zeta_n + \zeta_n^{-1}$. Zeigen Sie: $\mathcal{O}_{K^+} = \mathbb{Z}[\eta_n]$.

Hinweis: Sei $\alpha = a_0 + a_1 \eta_n + \ldots + a_r \eta_n^r \in \mathcal{O}_{K^+}$ mit $a_i \in \mathbb{Q}$ für alle $i, a_r \neq 0, r < \varphi(n)/2$. Man zeige $\zeta_n^r \alpha = a_r + b_1 \zeta_n + \ldots + b_{2r-1} \zeta_n^{2r-1} + a_r \zeta_n^{2r} \in \mathcal{O}_K$ mit gewissen $b_1, \ldots, b_{2r-1} \in \mathbb{Q}$. Man folgere $a_r \in \mathbb{Z}$ und wiederhole das Prozedere mit $\alpha - a_r \eta_n^r \in \mathcal{O}_{K^+}$.

Zusatzaufgabe: Seien K und K^+ wie in der Aufgabe 4. Wir wollen zeigen, dass die von der Körpereinbettung $K^+ \subset K$ induzierte Abbildung $i: Cl(K^+) \to Cl(K)$ injektiv ist. Sei dazu $\mathfrak{a} \subset \mathcal{O}_{K^+}$ ein Ideal mit $\mathfrak{a}\mathcal{O}_K = (\alpha)$ für ein $\alpha \in \mathcal{O}_K$. Es ist zu zeigen, dass \mathfrak{a} bereits ein Hauptideal ist. Zeigen Sie dazu folgendes:

- (a) Neben α ist auch $F\alpha$ ein Erzeuger des Hauptideals $\mathfrak{a}\mathcal{O}_K$. Folgern Sie analog zum ersten Teil des Beweises von Satz 9.12, dass $\frac{F\alpha}{\alpha}$ in der Gruppe $W = \mu_K$ der Einheitswurzeln in K liegt. Angenommen, es gibt eine Einheit $\varepsilon \in E_K$ mit $\frac{\varepsilon}{F\varepsilon} = \frac{F\alpha}{\alpha}$. Dann liegt $\alpha' := \alpha\varepsilon$ in \mathcal{O}_{K^+} , und es gilt $\mathfrak{a} = (\alpha')$.
- (b) Wir müssen also nur noch zeigen, dass $\frac{F\alpha}{\alpha}$ im Bild des im Beweis von Satz 9.12 verwendeten Homomorphismus $\phi: E_K \to W, \varepsilon \mapsto \frac{\varepsilon}{F\varepsilon}$, liegt. Angenommen, $\frac{F\alpha}{\alpha} \notin \operatorname{im} \phi$. Nach loc. cit. ist dann insbesondere $n=p^r$ eine Primpotenz, und nach Ersetzen von α durch $\zeta_n^s \alpha$ für geeignetes s können wir oBdA davon ausgehen, dass $\frac{F\alpha}{\alpha} = -\zeta_n$ (warum?). Für $\beta = (1-\zeta_n)\alpha$ gilt dann $\beta \in \mathcal{O}_{K^+} \cap \mathfrak{a}\mathcal{O}_K = \mathfrak{a}$. Setzt man $\mathfrak{c} = \beta\mathfrak{a}^{-1}$, so gilt $\mathfrak{c}\mathcal{O}_K = (1-\zeta_n)$. Per Normbetrachtung leite man daraus einen Widerspruch her.

¹In Korollar 5.31 wurde bereits gezeigt, dass der Kern von i in $Cl(K^+)(2)$ enthalten sein muss; wir verwenden dieses Ergebnis im Folgenden aber nicht.