Übungen zur Algebra II

Sommersemester 2019

Universität Heidelberg Mathematisches Institut Prof. Dr. A. Schmidt Dr. P. Sechin

Blatt 13 Lösungshinweise

Aufgabe 1. Es sei A ein Hauptidealring und $\mathfrak{a} \subset A$, $\mathfrak{a} \neq 0$, ein Ideal. Zeigen Sie, dass der Faktorring A/\mathfrak{a} artinsch ist.

Hinweis: A ist noethersch und jedes Primideal $\neq 0$ ist maximal. Daher ist A/\mathfrak{a} noethersch und jedes Primideal ist maximal.

Aufgabe 2. Es sei $n \in \mathbb{N}$ und A eine abelsche Gruppe. Zeigen Sie:

$$\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, A) \cong {}_{n}A \stackrel{df}{=} \{a \in A \mid na = 0\} \subset A.$$

Hinweis: Man betrachte die lange exakte Tor-Folge zu $0 \to \mathbb{Z} \stackrel{\cdot n}{\to} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0.$

Aufgabe 3. Es seien $p, q \in \mathbb{Z}$ Primzahlen. Zeigen Sie:

- (a) Gilt $p \neq q$, so ist $\mathbb{Z}/p\mathbb{Z}$ ein projektiver $\mathbb{Z}/pq\mathbb{Z}$ -Modul.
- (b) Gilt p = q, so ist $\mathbb{Z}/p\mathbb{Z}$ kein projektiver $\mathbb{Z}/pq\mathbb{Z}$ -Modul.

Hinweis: Gilt $p \neq q$ so besagt der Chinesische Restklassensatz, dass $\mathbb{Z}/pq\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/q\mathbb{Z}$. Daher ist $\mathbb{Z}/p\mathbb{Z}$ direkter Summand in einem freien Modul. Falls p = q, so ist $\mathbb{Z}/p^2\mathbb{Z}$ lokal und $\mathbb{Z}/p\mathbb{Z}$ endlich erzeugter, nicht freier Modul. Daher kann $\mathbb{Z}/p\mathbb{Z}$ auch nicht projektiv sein.

Aufgabe 4. Man zeige: Ist A ein kommutativer, noetherscher Ring und sind M und N endlich erzeugte A-Moduln, so ist $\text{Hom}_A(M,N)$ ein endlich erzeugter A-Modul.

Hinweis: Wähle eine Surjektion $\varepsilon: F \to M$ mit $F \cong A^n$ frei von endlichem Rang. Dann ist $\varepsilon^*: \operatorname{Hom}_A(M,N) \to \operatorname{Hom}_A(F,N)$ injektiv und $\operatorname{Hom}_A(F,N) \cong N^m$ ist endlich erzeugter A-Modul.

Aufgabe 5. Es sei A ein Hauptidealring und M_1, M_2, N endlich erzeugte A-Moduln. Man zeige:

$$M_1 \oplus N \cong M_2 \oplus N \Rightarrow M_1 \cong M_2$$
.

Man gebe ein Beispiel mit nicht endlich erzeugten Moduln an, in dem die obige Aussage falsch wird!

Hinweis: Man benutze den Hauptsatz für endlich erzeugte Moduln über einem Hauptidealring. Im nicht endlich erzeugten Fall gibt es schon für A = K Körper Gegenbeispiele. Setze z.B. $M_1 = 0$ und M_2 , N K-Vektorräume von abzählbarer Dimension.

Aufgabe 6. Sei A ein Ring und Σ die Menge der Ideale in A, die nur aus Nullteilern bestehen. Zeigen Sie, dass Σ maximale Elemente bezüglich der Inklusion besitzt und, dass jedes maximale Element von Σ ein Primideal ist. Insbesondere kann die Menge der Nullteiler als Vereinigung von Primidealen dargestellt werden.

Hinweis: Wegen $(0) \in \Sigma$ ist Σ nichtleer. Das Zornsche Lemma liefert maximale Elemente. Sei $\mathfrak{p} \in \Sigma$ maximal. Zu zeigen: $xy \in \mathfrak{p} \Rightarrow (x \in \mathfrak{p}) \lor (y \in \mathfrak{p})$. Angenommen $x, y \notin \mathfrak{p}$. Nach Voraussetzung gibt es einen Nichtnullteiler $a \in (x) + \mathfrak{p}$ und einen Nichtnullteiler $b \in (y) + \mathfrak{p}$. Dann ist ab ein Nichtnullteiler und liegt in $(xy) + \mathfrak{p} = \mathfrak{p}$. Widerspruch.

Aufgabe 7. Es sei K ein Körper, V ein endlichdimensionaler K-Vektorraum und $\phi: V \to V$ ein K-Vektorraumendomorphismus von V. Es sei $f \in K[X]$ das Minimalpolynom von ϕ . Dann wird V in kanonischer Weise ein Modul über dem Ring A = K[X]/(f), indem K wie vorgeben und X wie ϕ wirkt. Man zeige: Ist f irreduzibel, so ist V ein freier A-Modul. Gilt die Umkehrung dieser Aussage?

Hinweis: Ist f irreduzibel, so ist K[X]/f ein Körper und jeder Modul ist frei. Ist nun f ein normiertes, nicht irreduzibles Polynom, so betrachte man V = K[X]/f. Es ist V ein $(\deg f)$ -dimensionaler K-Vektoraum. Die X-Multiplikation definiert einen K-Endomorphismus mit Mininalpolynom f und V ist freier K[X]/f-Modul (vom Rang 1).

Aufgabe 8. Es sei p eine Primzahl. Wir betrachte die Inklusion von \mathbb{Z} -Moduln

$$M = \bigoplus_{n \in \mathbb{N}} \mathbb{Z}/p\mathbb{Z} \subset N = \bigoplus_{n \in \mathbb{N}} \mathbb{Z}/p^n\mathbb{Z},$$

die auf dem n-ten Summanden durch die Inklusion $\mathbb{Z}/p\mathbb{Z} \hookrightarrow \mathbb{Z}/p^n\mathbb{Z}$, $1 \mapsto p^{n-1}$, gegeben ist. Man zeige: Die Vervollständigung \widehat{M} von M bezüglich der

- (a) (p)-adischen Topologie auf M ist natürlich isomorph zu M.
- (b) Einschränkung der (p)-adischen Topologie von N auf M ist natürlich isomorph zum direkten Produkt $\prod_{n\in\mathbb{N}} \mathbb{Z}/p\mathbb{Z}$.

Hinweis: (a) Es gilt $p^m M = 0$, also $M \xrightarrow{\sim} M/p^m M$ für alle m und somit $\widehat{M} \cong \varprojlim_m M = M$. (b) Es gilt für $m \in \mathbb{N}$:

$$M \cap p^m N = \bigoplus_{n=1}^m 0 \oplus \bigoplus_{n=m+1}^\infty \mathbb{Z}/p\mathbb{Z},$$

also

$$M/(M \cap p^m N) = \bigoplus_{n=1}^m \mathbb{Z}/p\mathbb{Z} \oplus \bigoplus_{n=m+1}^\infty 0 = \prod_{n=1}^m \mathbb{Z}/p\mathbb{Z}.$$

Die natürliche Abbildung $M/(M\cap p^{m+1}N)\to M/(M\cap p^mN)$ ist bezüglich dieser Isomorphismen gerade die Projektion auf die ersten m-Faktoren. Es folgt $\widehat{M}=\varprojlim_m\prod_{n=1}^m\mathbb{Z}/p\mathbb{Z}=\prod_{m\in\mathbb{N}}\mathbb{Z}/p\mathbb{Z}.$