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1 Introduction

Mathematics is, on the one hand, a cumulative science. Once a mathema-
tical theorem has been proved to be true then it remains true forever; it is added
to the stock of mathematical discoveries which has piled up through the centu-
ries and it can be used to proceed still further in our pursuit of knowledge.

On the other hand, the mere proof of validity of a theorem is in general
not satisfactory to mathematicians. We also want to know “why” the theorem is
true, we strive to gain a better understanding of the situation than was possible
for previous generations. Consequently, although a mathematical theorem ne-
ver changes its content, we can observe a continuous change of the form of
presentation, in the course of history of our science. Sometimes a result seems to
be better understood if it is generalized, or if it is looked at from a different point
of view, or if it is embedded into a general theory which opens analogies to other
fields of mathematics. Also, in order to make further progress possible it is often
convenient and sometimes necessary to develop a framework, conceptual and
notational, in which the known results become trivial and almost self-evident at
least from a formalistic point of view. So when we look at the history of
mathematics we indeed observe a change, not in the nature of mathematical
truth but in the attitude of mathematicians towards it. It may well be that
sometimes a new theory is but the response to a current fashion, and sometimes
it may be mere fun to derive a theorem by unconventional means. But mostly the
changes in attitude reflect a serious effort towards a better understanding of the
mathematical universe.

It is fascinating to observe such trends in the past and see how they have
led to the picture of today’s mathematics. But likewise it is not without interest to
search for trends in contemporary mathematics since they will shape the future of

our science. ' ‘
In this article we shall restrict our discussion to algebra. But even in
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algebra the reader cannot expect a full account of all the many recognizable
threads of development. Some of these are quite obvious to the attentive obser-
ver: for instance the tendency towards geometrization of algebra, which means
adopting the language of geometry and its way of arguing. This has had striking
successes, the most recent one being the proof of Mordell’s conjecture by
Faltings, and it has found its due recognition by the contemporary mathematical
public. Another obvious trend in present-day algebra is its algorithmization, i.e.
the desire to supplement every existence proof and actually all arguments, by an
effective algorithm if this is possible at all. Again, this is not exactly new and
algorithms have been pursued throughout the history of algebra. But during this
century it often seemed, or it was at least proclaimed that the structural viewpoint
is to be dominating, and that in this framework computational or algorithmical
considerations are at most of secondary interest. Today, since the structural
viewpoint has become firmly inserted in contemporary mathematical thinking it
is realized again that algorithms are essential, not only for computers but also
theoretically, as part of our understanding of mathematics.

In this article we propose to discuss some other tendency of contempo-
rary algebra, not yet quite as auspicious as the ones mentioned above and not
even known to many, but nevertheless somewhat remarkable. This is the infru-
sion of model theoretic notions and arguments into algebra. Here, “model theory™
is used in the sense of mathematical logic. The field of mathematical logic was
formerly regarded as pertaining mainly to the foundations of mathematics only,
giving the mathematician a (hopefully) solid base for his work but otherwise not
influencing actual mathematical research activity. Some mathematicians had
even voiced their opinion that mathematical logic does not properly belong to
mathematics but should be considered as part of philosophy. This has comple-
tely changed, in the meantime. Model theoretic notions and results have intruded
heavily into mathematics and in particular into algebra. Model theory provides
the algebraist with a new way of reasoning which was not available before. This
is possible if he (the algebraist) remains conscious of ke formal language with
which algebraic structures are described. Perhaps a good illustration will be the
discussion of the model theoretic notion of elementary equivalence which is
much more adapted to the investigation of algebraic structures than the notion
of isomorphism, contrary to what is claimed in many textbooks of algebra. The
notion of isomorphism is of set-theoretical nature and introduces set-theoretical
difficulties into algebra which are not inherent in the algebraic problem itself.
Whereas the notion of elementary equivalence permits to deduce the same
consequences as from isomorphism, but it also allows to change sets without
disturbing algebraic properties.

The idea to make use of model theory in this way is originally due t0
Abraham Robinson.

When I first planned to write this article I meant to give a review about all
applications of model theory in algebra, or at least about the most important
ones. But soon it turned out that this task would have required more space than
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available here, and more time for preparation. Also, in view of the large amount
of literature is has become doubtful whether a comprehensive report about
model theory in algebra would be of much value today. As said above, model
theory provides us with a new method, a new way of mathematical reasoning. In
order to explain this method it is perhaps sufficient to discuss particular exam-
ples where it has been applied.

Accordingly this article will be restricted to certain parts of algebra. The
examples selected for our discussion come from field theory; they are all connec-
ted with the work of the algebra group in Heidelberg.*) Although we realize that
this selection is somewhat arbitrary we hope that it will be sufficient for our
purpose: to acquaint the reader with some of the basic principles of model
theoretic methods in algebra.

2 Elementary Equivalence

Let us discuss the model theoretic notion of elementary equiralence in
relation to the classical algebraic notion of isomorphism. Modern algebra deals
with algebraic structures as its basic objects. Examples of algebraic structures are
groups, rings, fields, ordered fields etc. Along with the notion of structure there
comes the notion of isomorphism between structures of the same kind: group
isomorphism, ring isomorphism etc. If we have established that two algebraic
structures K and L, say fields, are isomorphic then we know that every algebraic
property of K is shared by L, and vice versa. This is precisely the reason why
isomorphism theorems are of fundamental importance in algebra.

But is isomorphism between K and L really necessary to draw the above
conclusion? Are there non-isomorphic algebraic structures which do have the same
algebraic properties?

In order to discuss this question it is necessary to specify what is meant by
“algebraic property” of a given algebraic structure. As a rule, an algebraist does
not bother to make this precise because in concrete situations it ‘alwz‘iys seems to
be evident which properties are admissible as “algebraic propert.les" inthe abqve
sense. For instance, if we consider rings then the property of bemg commutative
is certainly admissible: if a ring K is commutative then every 1somqrphxc copy of
K is commutative too. What is the general description of “algebraic properties
which are admissible in this context?

We consider algebraic structures of a given type. say fields or groups.
These structures are defined by axioms. The axioms contain references to certain
functions and relations which are defined on structures qf the type gonsxdered.
For instance, the group axioms refer to a 2-variable fi unction X - ¥ thch denotes
the group operation. The field axioms refer to two 2-variable functions x + y and

*) We have excluded the work with nonstandard methods in algebra and number theory. For
this we refer to our report [Rq3].
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x -y, denoting addition and multiplication in the field, etc. Now an “algebraic
statement” with respect to the given type of structure must be expressible solely
in terms of these functions and relations which appear in the axioms.

We envisage the axioms written in a formal language ¥ whose vocab-
ulary is adapted to the structure type considered ; thus the vocabulary contains
the appropriate function symbols and relation symbols (including constant
symbols). It is always understood that % is an elementary (or first order)
language. This means that the variables in .% denote individuals only; there are
no set variables or function variables. Accordingly, quantification (V or 3) is
permitted with respect to individuals only. Historical experience shows that for
most of the relevant algebraic structures, the axioms can indeed be stated in an
elementary language. (This has led some authors to define algebraic structures as
being those whose axioms can be stated in an elementary language.)

We now can give the definition of an admissible “algebraic property” ofa
structure: such property should be expressible by a sentence @ in the language £ .
In other words: a structure K has this property if and only if ¢ holds in K. For
instance in ring theory, the property of a ring K to be commutative means that
the following sentence holds in K:

(Vx) (Vy) (xy =yx).

The precise definition of the notion of sentence in a formal language & can be
found in any introductory treatise on mathematical logic [Po], [Bar], [CK].

Now let us review the situation: We have a formal (elementary) language
<, with a vocabulary consisting of certain function symbols and/or relation
symbols (including perhaps some constant symbols, e. g. 0 and 1 in case of field
theory). We consider structures of type &, which means that the function
symbols and relation symbols in % should have an interpretation by means of
functions resp. relations in the structure. Any set of sentences of & defines a
theory; the defining sentences are called axioms of that theory. An .#-structure K
is called a model of the theory if all the axioms hold in K. If @ is any sentence in
#, and if ¢ holds in all models then @ is said to be a theorem of the theory. In
general, if ¢ is an arbitrary sentence then ¢ may hold in some models but perhaps
not in all models of the theory. If ¢ holds in K then it is customary to write Ki= ¢.
We then say that ¢ defines an “algebraic property” of K or that K has the
property .

Definition: Two models K and L are said to be elementary equivalent if
every algebraic property of K is shared by L, and vice versa. In other words:
K= ¢ iff Li= . If this is so then we write K= L.

If K and L are isomorphic then we write K~ L. Clearly, isomorphic
models are elementary equivalent. Now our above question can be formulated,
more precisely, as follows:

Do there exist non-isomorphic models which are elementary equivalent?

Model theory provides the answer to this question: Yes, o0 every infinite
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model K there exists a non-isomorphic, elementary equivalent model L. Indeed, for
every sufficiently large cardinal number o there exists a model L = K such that
|L| = a. “Sufficiently large” means that o should be infinite and greater or equal
to the cardinality of the vocabulary of the language .#. This is the theorem of
Lowenheim-Skolem-Tarski. If we are dealing with group theory, or ring theory,
or field theory etc. then there are only finitely many function symbols and
relation symbols in the vocabulary and hence we can find a model L = K in every
infinite cardinality «; in particular L can be countable.

In case of a finite model K it is easily seen that every elementary equiva-
lent model L =K is isomorphic: L~ K.

We conclude that, for the investigation of properties of algebraic struc-
tures, the notion of isomorphism is adequate in the case of finite structures, but it
is inadequate for infinite structures. The adequate notion is that of elementary
equivalence. If we want to know whether an algebraic structure K has a certain
property ¢ then it suffices to find a structure L = K for which the validity of ¢ can
be checked; L need not be isomorphic to K.

Hence a new way of mathematical reasoning is introduced into classical
algebra, with the notion of isomorphism being replaced by elementary equivalence.
The success of this new method depends on how one is able to handle, algebrai-
cally, the notion of elementary equivalence. Let us look at some examples,
classical ones and some that are more recent.

3 Algebraically Closed Fields

We refer to the celebrated paper of E. Steinitz [St] which appeared in
volume 137 of Crelle’s Journal (1910). This paper contains the first systematic
study of fields from the “algebraic” point of view, i.e. solely as models of the field
axioms. Today we are so used to this kind of viewpoint that we can hardly
imagine the impact and the source of inspiration which Steinitz’ paper generat;d
for the mathematicians of his time. It became a “classic” and, because of its
fundamental importance it was reprinted in book form some twenty yeafs’after
its first appearance (and later again in one of the post-war Chelsea editions).
Steinitz’ program was to give a constructive description of all fields, up to
isomorphisms. For our purpose his results on algebraically closed fields are
relevant. Steinitz showed that an algebraically closed field K is completely
determined, up to isomorphisms, by two invariants: its characteristic p
= char(K) which is either 0 or a prime number, and its traf{scen_dence degree t
=tr(K) which is a cardinal number. Both p and r can be arbltraflly prescnbed:
there exists an algebraically closed field with given characteristic and given
transcendence degree. .

If tr(K) is finite then the algebraically closed field is denumf:rable,
|K|=¥,. If tr(K) is infinite then |K|=tr(K). Consequently, if |K|> N, then
|K|=tr(K); in this case Steinitz’ theorem says that for fixed characteristic
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p20, K is uniquely determined (up to isomorphisms) by its cardinality.
This fact is expressed by saying that the theory of algebraically closed fields of
characteristic p is categorical in every uncountable cardinality.

Now there is a general theorem of model theory, called £os-Vaught test,
to the following effect: For any theory 7, if T is categorical in but one infinite
cardinality greater or equal to the cardinality of the vocabulary of the language,
then all infinite models of T are elementary equivalent [Bar]. We conclude that
all algebraically closed fields of characteristic p are elementary equivalent. Thus if
we want to know whether an algebraically closed field K has a certain algebraic
property ¢ then the transcendence degree tr (K) is of no importance; if ¢ holds in
any other algebraically closed field of the same characteristic then ¢ also holds in
K. In characteristic zero this fact is commonly known as the Lefschetz principle.
Historically, this name is not exactly correct since Lefschetz in his book on
Algebraic Geometry [Le] stated a somewhat different principle, related but not
quite identical to the above. To explain this we need the notion of elementary
extension.

Quite generally let Tbe an arbitrary theory, formulated in an elementary
language %, and let K, L be models of 7. We suppose that K < L, which means
that L should be an extension of K. The notion of elementary equivalence K= L
has been defined above already: every sentence ¢ of & which holds in K, should
also hold in L. Now let us consider formulas ¢ (xq,...,x,) depending on free
parameters xy,. .., x,. Letcy,...,c,e K. Then ¢ (¢q,. . .,c,) repesents a property
of K in whose formulation the elements - - -, C, € Kare involved, besides of the
other constants, functions and relations which are defined in K as an -
structure. More precisely, ¢ (c,,. . .,¢,) is a sentence in the extended language
£y whose vocabulary contains constants to denote the individual elements
c € K, besides of the constant symbols, function symbols and relation symbols in
the vocabulary of . Now if every sentence @(cy,. .., c,)€ L which holdsin K
does also hold in L (and vice versa), then L is said fo be an elementar 'y extension of
K. Notation: K<L. Clearly, K<L implies K= L. (But not conversely.)

In the theory of algebraically closed fields, it is immediate from Steinitz’
work (this time applying the Fos-Vaught test to Z):

Every extension of algebraically closed fields is an elementary extension.

This is the “Lefschetz principle” as stated by Lefschetz in his book.
Indeed, he considers an algebraically closed field X of characteristic zero. Let ¥/
denote an irreducible variety, defined in n-dimensional affine space by a system
of polynomial equations

(E) Jixso o x)=0,..., fi(xy,..., x,)=0.
Let &'be an algebraically closed subfield of K, containing all the finitely many
coefficients ¢y,...,c, of f;,...,f,, and such that K, is of finite transcendence

degree. Then K, may be isomorphically embedded into the complex number
field; let us identify K, with its isomorphic image: K, = €. Then the equations
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(E) define also a complex variety ¥'* in n-dimensional affine space over €. Now
the important fact, Lefschetz continues, is that in the passage from V to V* all the
strictly algebraic properties of V are preserved. Lefschetz does not explain what is
meant by “strictly algebraic properties of V. If we interpret this as those
properties which can be expressed by sentences of the form ¢(c,,.. ., ¢,) in the
elementary language %, then indeed, they are preserved because K, < K and
K,<C. (It is conceivable, though, that the Lefschetz principle applies also to
other “strictly algebraic properties” which can be expressed in a higher order
language only. See [Ek] and the literature cited there.)

In model theory the following terminology is used: A theory T is called
complete if all models of T are elementary equivalent. T'is called model-complete
if every extension of models of T is an elementary extension. Thus the result of
our above discussion can be briefly stated as follows:

The theory of algebraically closed fields of fixed characteristic p 20 is
complete, and it is also model-complete.

Before proceeding to the next example, let us briefly indicate how this
fact may be used as a tool in various arguments of geometric nature.

Consider a system of polynomial equations of the form (E) where the
fis- -, fo are polynomials over an algebraically closed field K. The Hilbert
Nullstellensatz gives a necessary and sufficient condition for the existence of a
solution x,,...,x,€K of the equation (E). Namely, the ideal generated by
Jise [y in the polynomial ring K[ X,. . ., X1 should not be trivial; it shqqld bp
a proper ideal. Clearly, this condition is necessary. Conversely, if the condition is
satisfied let P be a maximal ideal of K[X;,. .., X,] containing f;,. . ../, and
consider the residue class ring K[X;,. . ., X,1/P = R. This is an integral domain
containing K, and the residue classes x; = X; mod P satisfy (E). Now R'can be
embedded into its field of quotients which in turn can be embedded into an
algebraically closed field L, by the work of Steinitz. By construction, the
statement

(Ax) 3x,). .. Gx) (i (xgs. - X)) =0A . Afo(Xyse e onXy)=0)

holds in L. Note that this statement is expressible by a sentence in . the
constant parameters being the coefficients c¢y,.. .,c,eK of the pol_ynomlals
fisre oo fo Since K<L we conclude that the above statement holds in K too,
which is to say that there exist X;,...,%, €K satisfying (E). o

Thus we see that the Hilbert Nullstellensatz is almost trivial in view of the
model-completeness of the theory of algebraically closed fields.

A less direct example of an application of model-completeness for alge-
braically closed fields is the following. Let K be an algebraically closed field of

characteristic 0 and K () the rational function field of one variable over K.

Given any finite subset S © KU { x }, consider the maximal algebraic field exten-
sion F, of K (1) which is unramified outside of S. Then F; is a Galois extension of

K (¢). What is the structure of its Galois group G,? The answer is that Gy is
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generated, as a profinite group, by s=|S| elements o, ,. . ., g, with the defining
relation || o,=1. Hence G is a free profinite group in s — 1 generators. In the
1<i<s

case K= Ca proof of this assertion is well known from the analytic theory of
holomorphic functions, using the Riemann existence theorem. By means of
model-completeness we would like to deduce that the above assertion holds for
an arbitrary algebraically closed field of characteristic 0. In trying to apply
model-completeness we try to express the above assertion by a sentence @ € L,
the language of fields extended by s constant symbols to denote the elements of
S. However, such sentence ¢ does not exist. But it is possible to find a sequence
@1, ;. - . of sentences in #; such that the above assertion is equivalent to that
allp, hold (n=1,2,3,...). Each ¢, describes the factor groups of G, of order n.
For details of the construction of ¢, we refer to the literature [ DrR2]. By model-
completeness we can now deduce that each ¢, holds in every algebraically closed
field X of characteristic 0 with a prescribed finite set S < KU { oo }. Hence indeed,
G, is free profinite on s—1 generators.

No algebraic proof, without the use of analysis and topology, has been
found for this structure theorem for Gg. However it follows from model theoretic
fundamentals that such an algebraic proof exists, i.e. each @, can be deduced
within &5 from the axioms of algebraically closed fields of characteristic 0.

If K is an algebraically closed field of characteristic p> 0 then the
structure of Gy as a profinite group is still unknown.

Let us close this section with the following remark. While talking about
the “theory of algebraically closed fields” we have envisaged that theory as given
by certain axioms. The reader should keep in mind, however, that these axioms
are not finite in number. Indeed, to the finitely many axioms of field theory there
is to be added foreachn=1,2, 3,. . . an axiom which says that every polynomial
of degree n has a root. It is not possible to find finitely many axioms in & for the
theory of algebraically closed fields.

Similarly, the axioms expressing the property of characteristic 0 are not
finite in number: for eachn=1,2,3,. .. one has the axiom that 1 added  times
to itself does not give 0. It is not possible to find finitely many axioms in % which
imply characteristic zero.

4 Real Closed Fields

The algebraic theory of real fields was originated by E. Artin and O.
Schreier [AS] with their three papers in volume 5 of the Hamburger Abhandlun-
gen (1926). It is noteworthy that Artin and Schreier start by mentioning the
paper of Steinitz. They point out its importance for the development of “ab-
stract™ algebra and then they put forward a program how to include real algebra
into the abstract framework of Steinitz. A closer look at the Artin-Schreier
program reveals that one problem is left out and not mentioned at all, namely the
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classification problem for real closed fields, up to isomorphisms. This would be
the analog of Steinitz’ classification for algebraically closed fields as discussed
above. Later authors have tried to fill this gap and to arrive at a classification for
real closed fields; partial results were obtained [EGH] but no general satisfac-
tory solution of the problem is known today. The transcendence degree (resp.
cardinality) of the real closed field is ror sufficient for classification up to
isomorphism; one has to add more subtle invariants, as e. g. the order type of the
field with respect to its (unique) ordering. But the order type is not sufficient
either [Ro3]. The problem seems to be difficult.

In any case, if the classification problem were important then it should
have been at least mentioned in the general program of Artin-Schreier, even
though the solution could not be given. Why are Artin and Schreier silent on this
problem? The answer is easily perceived: because the classification up to iso-
morphism is nor important; it is of little significance with respect to algebraic
problems. Instead, the classification up to elemeniary equiralence is the proper
problem to be considered.

This broader classification problem is indeed mentioned, and also solved,
in the Artin-Schreier papers. It follows from their work that all real closed fields
are elementary equivalent. In other words: The theory of real closed fields is
complete.

To be sure, the completeness theorem is not formally considered in the
Artin-Schreier papers; this was done later by Tarski [TM]. But all the essential
ingredients of the completeness proof can be found in the Artin-Schreier papers.
The authors recognized quite clearly the significance of their work for the
elementary-equivalence classification problem. This can be inferred from the
statement, to be found in their paper, that “the theorems of real algebra hgld in
any real closed field” . Properly interpreted, this means for every sentence ¢ in the
language & of fields, if ¢ holds in the ordinary real number field R then ¢ holds
in every real closed field. Indeed: this means completeness.

In addition to completeness, Artin-Schreier also tacitly proved model-
completeness for the theory of real closed fields: again this was.lat.er formally
verified by Tarski [TM]. Today this is known as the Tarski principle for real
closed fields, and it is the real analog to the Lefschetz principle for algebraically
closed fields.

The main motivation for the introduction and study of real closed ficlds
was Artin’s solution of the 17th Hilbert problem. Artin’s theorem says that
every positive definite rational function f(X;..... X,) € R(X;.....X,} is a sum
of squares of rational functions.*) In other words: if f is not a sum of squares in
R(X,,...,X,) then fis not positive definite, i.e. there exist a,.....d,€ R such

*) Strictly speaking, Hilbert formul'ated t.his problem over..d) instead of R. But todz}y i; hasl
become customary to speak of Hilbert's 17th problem with reference to R (or to any rea
closed base field). From this the corresponding problem for @ can be deduced by simple

density arguments.
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that f(ay,...,a,) is defined and f(a,,...,a,)<0. As A. Robinson [Ro2] has
observed, this theorem is an almost trivial consequence of model-completeness
for real closed fields. The argument is as follows.

Since fis not a sum of squares in R(X,,. .., X,) it follows from Artin’s
theory [AS] that there exists an ordering of the field R(X1,. .., X,) such that f
< 0. Let L denote the real closure of R (X|,. . ., X,) with respect to this ordering.
Then R < L and hence, by model-completeness, L is an elementary extension of
R. Consequently, if the sentence

Ax)). . @x)  fCxg, e x)<0 (S)

holds in L then it also holds in R. But in L this sentence holds by construction;
one may take x; = X;(1 £ i < n). Thus the above sentence holds in R which means
that there exist ¢,,...,a,€ R such that f(a;,...,2,)<0. Q.E.D.

The beauty and simplicity of this (A.Robinson’s) proof for Artin’s
theorem is apparent.

Note that in the sentence (S) above, an inequality sign is used which a
priori does not belong to the vocabulary of the language of fields. The use of this
inequality sign can be avoided since the ordering relation in a real closed field is
uniquely determined: the positive elements are precisely the non-zero squares.
Consequently, the above sentence (S) can be replaced by the following sentence
in the language of fields:

(32) (Axy)...0x,) (20 AL (xy,. .., x)= —22). (8)

However, for the validity of A. Robinson’s argument it does not matter whether
we use (S) or (S). For the model-completeness theorem or real closed fields holds
in either case: with respect to the language of fields, and with respect to the
language of ordered fields.

As to the proof of model-completeness, we have said above already that
all its essential ingredients are to be found in the Artin-Schreier papers.
However, by using basic fundamentals of model theory the proof can be consider-
ably simplified, and in particular Artin’s specialization arguments can be
avoided, i.e. replaced by embedding arguments. Since this is perhaps not yet
widely known among algebraists, let us briefly sketch this proof: )

Let K < L be an extension of real closed fields. We have to show that L 18
an elementary extension of K. By general model theoretic principles it suffices t0
show that L can be K-isomorphically embedded into a sufficiently saturated
non-standard model (or ultrapower) K* of K. More precisely, K* should be a-
saturated for some cardinal number «> |L|. By general induction (Zorn’s
lemma) the problem is reduced to the case where L|K is of transcendence
degree 1. Let x € L be transcendental over K: then L is the real closure of the
ordered field K (x). By the functorial property of the real closure, every Ord_er'
preserving K-embedding K(x) & K* extends (uniquely) to an embedding
L o K* (note that K* is real closed too). Hence it suffices to construct an order-
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preserving K-embedding K(x) & K*. Now the ordering of K(x) is uniquely
determined by the Dedekind cut which x determines in K. The cut consists of the
two disjoint sets C,, D, = K:

C.={ceK:c<x}
D .={deK:d> x}.

The saturation property of K* guarantees the existence of ¢ € K* which deter-
mines the same cut:

Céz Cx’ D':ZDX.

Then the substitution x — ¢ yields the required order-preserving K-embedding
Kx)=K(¢)<K*.

We have given this proof because the same typical pattern of argument
applies also to other situations, yielding model-completeness results for other
classes of fields. See below for various classes of valued fields. In all those cases
the problem is reduced to an embedding problem for a purely transcendental
extension K(x) into a saturated model K* of K, the embedding preserving
certain additional structure which is connected with the class of fields conside-
red. By the way, in the case of algebraically closed fields as discussed in section 3,
the proof of model completeness can also be made to follow the same pattern. In
this case there is no additional structure given, and thus we are faced with the K-
embedding of K (x), where K is algebraically closed, into a saturatedvultrapc_)wer
K*. But this is trivially achieved by the substitution x > ¢ where € K* is an
arbitrary transcendental over K. o

Hilbert’s 17th problem yields but one example for the application of the
model-completeness theorem for real clpsed fields. There are many other exam-
ples: for instance, the real Nullstellensatz [Kri], [Du], giving conditions fqr a
variety to have real points. It is also possible to generalize the Krull-Neukirch
theorem [KrN7 about the structure of the absolute Ga101s‘group of lR(t)‘, to
arbitrary real closed base fields K instead of R [DrR1]. Various other apphcz}—
tions have been given: ¢. g. to real algebraic function theory or to real algebraic
geometry [DK]. A very interesting development concerning sums of 2n-th
powers (instead of sums of squares as in Hilbert's 17th problem) has recently
been started by E. Becker; see [BeJ], [Pr]. . ‘

Perhaps it is not superfluous to state explicitly the axioms Jor real closed

fields :

(1) the field axioms;

(2)  every sum of two squares is a square;

(3)  ifais not a square then —a is a square;

(4),  every polynomial of odd degree 2n+ 1 has a root.
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Note that (4), is an infinite set of axioms, one axiom each for
n=1,2,3,... It is not possible to find finitely many axioms for the theory of
real closed fields.

The completeness result of Tarski says that these axioms describe the
algebraic theory of IR. In other words: If ¢ is a sentence in the language of fields
then ¢ holds in R if and only if ¢ can be derived from the above axioms.

5 p-adically Closed Fields

In the foregoing section we have discussed the algebraic theory of R. It
seems natural to ask, analogously, for the algebraic theory of the Hensel field
Q,. Here and in the following, p denotes a prime number and @, is the
completion of the rational number field @ with respect to the p-adic valuation.

Hensel’s book [He] containing his discovery of the fields @, had ap-
peared in 1908, two years before the Steinitz’ paper. Steinitz informs us that it
was mainly Hensel’s discovery which induced him to write his article. It seems
that in those times, the Hensel fields were somehow regarded to be strangers in
the mathematical world; they had never been encountered before, at least not
explicitly. Hence there was a desire for a general, axiomatic, abstract field theory
into which the p-adic fields would fit naturally. According to Steinitz, his article
was to be regarded as a first step in this direction containing the foundations only
of a general field theory. He announced further investigations including, he sai(_l,
applications to geometry, number theory and analytic theory of functions. It 1s
not quite clear what he had in mind because none of those announced applica-
tions were ever published. His reference to geometry might perhaps indicate that
he had envisaged an abstract theory of real fields, of the kind which Artin and
Schreier presented 16 years later. When he mentions number theory then we may
assume that he included an abstract theory of p-adic fields; this seems quite
probable since he knew about Hensel’s discovery and explicitly mentions it as a
source of inspiration for his work.

In any case, Steinitz did never return to his announced applications, and
his work was continued by Artin-Schreier [AS] in the case of real fields. It is
natural to expect that soon after the appearance of the Artin-Schreier papers, the
analogous theory for the p-adic fields would have been developed. Strangely
enough, this was not the case. The algebraic theory of p-adic fields was given
only recently by Kochen [Ko1,2]. This delay is surprising because during Fhe
twenties and thirties, the use of p-adic fields in number theory had led to striking
results: for quadratic forms, for simple algebras, in class field theory etc. These
successes created an atmosphere quite favorable for the so-called p-adic
methods; the Hensel fields @, were now accepted, not only by the specialists,
as belonging to the fundamentally important mathematical structures, similar
in importance to the field IR. What, then, were the historical reasons that
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Artin-Schreier’s real algebra was not immediately matched by an analogous
p-adic algebra?

Perhaps one of the reasons may be seen in the fact that the notion of
elementary equivalence had not yet been recognized in its fundamental impor-
tance for algebra and number theory. If it would have been, then the search for
the fields elementary equivalent to @, would probably have started, or at least
have been mentioned as being desirable. But this was not the case and it seems
that the Artin-Schreier theory was considered to be of singular nature, not being
transferable to the p-adics.

In some cases, though, elementary equivalence for Q, was tacitly men-
tioned and used. For instance, it was observed that the field @}, of algebraic
numbers within @, has for all practical purposes the same algebraic properties
as Q, itself. For instance, the absolute Galois group over Qﬁ,o’ is the same as the
Galois group over Q,,, and local class field theory also holds over (9, etc. Later,
it was observed that every subfield K < @, which is algebraically closed within
Q,. can be used equally well as a base field for p-adic algebraic geometry [La2].
These arguments were in fact of the nature of elementary equivalence argu-
ments, without however being explicitly stated that way.

A second reason for the delay in the systematic development of p-adic
algebra was perhaps the lack of suitable prominent problems. We remember that
one of the driving forces for the Artin-Schreier theory was the solution of
Hilbert’s 17th problem. This was concerned with positive definite functions. The
notion of positive definite function involves the ordering relation < and hence
belongs to real algebra. But Hilbert did not state a corresponding problem
belonging to p-adic algebra.

What, then, would be the p-adic analog to Hilbert’s 17th problem?

Instead of positive definite functions it seems natural to conside_r, inthe p-
adic case, the p-integral definite functions. Let Z, denote the ring qf p-integers in
@,; it can also be described as the p-adic completion of Z. A rational function

S Xps o, X)) eQ(Xy,.. ., X))
is called p-integral definite if

flag,...,a)eZ,

for all a,,...,a,eQ,, provided f(a;,...,a,) 18 defined which means that
a,,...,a,is not a zero of the denominator of f. (By continuity, it suffices that
flay,...,a,)eZ, on some Zariski-open subset of Q;.). _ '

Problem: To describe all p-integral definite ratlona{ Sfunctions
feQ,(X,,...,X,). Let us call this the Problem (17),—it is the p-adic analog to
Hilberr’s 17th problem. ‘

In the real case, positive definite functions are sums of squares. In the p-
adic case, the square operator x2 has to be replaced by some other operator 7,(x)
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which is adapted to p-adic theory. Kochen [Ko1] has found such an operator,
which in p-adic algebra plays a similar role as does the square operator in real
algebra:

_1 _
/p(x) _p <<@ (x) p(x)>

with @ (x) = x¥ — x the Artin-Schreier operator. This operator looks somewhat
complicated; no wonder that the development of p-adic algebra was delayed.
Merckel in his thesis [Me] gave a detailed study of those rational functions
n(x) € Q,(x) which may serve, in p-adic algebra, in the same way as does y, (x). It
is clear that 7 (x) cannot be a polynomial because polynomials have a p-adic pole
(at infinity) and hence cannot be p-integral definite. Merckel has found certain
admissible functions 5 (x) of smaller denominator degree than 7,(X), but it seems
that y,(x) is the most “natural” operator. In the following we write y(x) instead
of y,(x), since p remains fixed in the discussion. y(x) is called the p-adic Kochen
operator.

It is easily verified that y(x) is p-integral definite, i.e. y(a) € Z, for every
a€ Q,. Consequently, for arbitrary
g=g(Xy,..., X)eQ,(X,,..., X,)
the function
7@ €Q,(Xy,..., X))
is p-integral definite too. Hence so is every expression of the form
P(7(g)s- - > 7(g))
where @(Y,,...,Y,) isa polynomial over Z and
8- & €W, (X,..., X).
Note that
T+p-2(y(g)- .-, 7(g)

assumes values in 1 +p Z,; these values are units in Z,. 1t follows that every
rational function of the form

— 'P(?(gl)a"'ﬁy(gr)) (F)
L+p®(7(g)).. .-, 7(g)
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is p-integral definite, ¢ and ¥ being arbitrary polynomials in ZiY,,..., Y]
(for some re N) and g,,...,2,€Q,(X;,..., X,).

As said above, y is the p-adic analog of the square operator. The expres-
sions of the form (F) are the p-adic analogs of the “sum of squares” in the real
theory.

Now Kochen [Ko1] and the author [Rq1] have proved that every p-
integral definite rational function can be put into the form (F). This result can be
viewed as the p-adic analog of Artin’s theorem in the real case.

Its proofis a mere copy of A. Robinson’s proof as given in the preceding
section, once the proper notions and facts of p-adic algebra are established.
These are as follows (for the proofs we refer e.g. to [PRq]).

Let K be a field. K is called p-adic if ; cannot be written in the form (F)

with g,,...,g,€ K. (This is the analog of the definition of real field: there, —1
cannot be written as a sum of squares). Every p-adic field K admits a maximal
algebraic p-adic extension field L; the latter is called a p-adic closure of K. If K
= L then K is called p-adically closed. In a p-adically closed field K the elements
of the form y(g) with g € K form a ring ¢, which is in fact a valuation ring of the
field K. The maximal ideal of ¢; is generated by p, and the residue class field ¢ ,/p
is of order p. In general, for arbitrary field K, valuation rings with these two
properties are called p-valuation rings. K admits a p-valuation ring if and only if
K is a p-adic field. (Thus in p-adic theory, the p-valuations are the analogs of the
ordering relations in the real theory.) Given any p-valuation ring ¢ of K there
exists a p-adic closure L of K whose canonical p-valuation ring ¢, =“,(L).1ies
above ¢, i.e. O, » K=0. If an element f € K is contained in all p-valuation rings
of K then fis called fotally p-integral. This is the case if and only if fis of the form
(F) as explained above. (The last statement is not quite straightforward to prove.
It is easy to see that every totally p-integral /'€ K is a root of a monic polynomial
whose coefficients are of the form (F). In order to show that f'itself is actually of
the form (F), one has to rely more heavily on commutative alget?ra; see [Rqt].)

All the above mentioned facts from p-adic algebra are quite analogous to
the corresponding facts in real algebra. So is the following

Model Completeness Theorem: Every extension K c‘L of p-adicall) ¥ c'lase_d
Jields is an elementary extension, i.e. the theory of p-adically closed fields is
model-complete. )

This is the Lefschetz-Tarski principle for p-adically §losed fields. Based
on this principle, the solution of “Hilbert’s problem (17),” (i.¢. the proof of the
above mentioned Kochen-Roquette theorem) can .be given straightforward,
copying A. Robinson’s proof of Artin’s theorem. This will be left to the reader.

As to the proof of the p-adic model-completeness theorem, it is obtained
by a similar pattern as described above in the real case. Firstly, general model
theoretic considerations permit the reduction to the following embedding
problem: Let K(x) be a rational function field over a p-a@ncall{y closed field
K, and suppose that K (x) is equipped with a p-valuation ring ¢,ie K(x)is
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p-valued. Then K(x) admits a K-isomorphic, valuation-preserving embedding
into every sufficiently saturated non-standard model K* of K.

Secondly, in order to solve this embedding problem one has to give a
description of the possible p-valuations of K (x). It turns out that only two cases
are possible:

(1) Either K (x) is ramified over K, i. . the value group of K (x) is a proper
extension of the value group of K. In this case, after suitable change of the
generator x, the value group v (K(x)) is generated by v(x) over v(K). (We use v to
denote the p-valuation of K (x).) v(x) is of infinite order modulo v(K) and the
given p-valuation of K (x) is uniquely determined by the cut which v(x) determines
in the (1otally ordered) value group v(K). Using saturation property, we find
¢ € K* such that v(£) determines the same cut in v(K); hence the substitution
x> ¢ yields the desired embedding K (x) = K (¢) = K*.

(2) Or K (x)is an immediate extension of K, i.e. K (x) and K have the same
value groups and the same residue fields. In this case we consider the neighbor-
hood filter which x determines on K, as follows. For each ¢ e K consider the
distance v(x — ¢) from ¢ to x; let U. denote the set of those a € K which lie in the
disc around x with radius (x — ¢). These sets U. then form the neighborhood
filter of x on K. It turns out that the p-valuation of K (x) is uniquely determined by
this neighborhood filter. Using saturation property we can find ¢ € K* which
determines the same neighborhood filter on K hence the substitution x — ¢
yields the desired embedding K (x) ~ K (¢) = K*.

Let us add some more words about the problem (17),,. Its solution, as
stated above, says that every p-integral definite function is representable in the
form (F). A glance at (F) will convince the reader that this kind of representation
looks much more involved than the corresponding “sum of squares’-
representation in the real case. Hence one would like to have more information
about (F). There is an effective bound for the number r of gis and for the degrees
of their numerators and denominators, the bound depending on the degrees of
numerator and denominator of f (and of course on the number # of variables).
The existence of such effective bound follows from general principles of model
theory. No explicit form for this bound has yet been obtained; probably it would
be of no great value for use in computations. In the real case Pfister [Pf] has
shown that for n variables, any sum of squares is already the sum of 2" squares. I
there a corresponding result for the p-adics, giving a bound for r in terms of the
number of variables only? This is not known. While in the real case the theory f_)f
quadratic forms is available for the study of “sums of squares”, no equivalent in
the p-adics is known to investigate the structure of the Kochen operator. The
only structure theorem known in this direction is the principal ideal theorem
[Rq2] which says that the ring of elements of the form (F)isin facta Bezout ring-
every finitely generated ideal is principal. We have already mentioned Merckel’s
thesis [ Me] searching for simpler operators 7 (x) which can replace y (x). Perhaps
this search should be extended to operators n(x,,. . ., x,) of several variables,
and also to finite or infinite systems#,,¥,,. .. which simultaneously can replace
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7{(x). We also mention the thesis by J. Unruh [Un] who investigated systemati-
cally whether the g; in (F) can be restricted to a proper subset
EcQ,(X,,...,X,),such that the validity of the main theorem is preserved. Such
a set £ must necessarily be infinite. More precisely, there must be infinitely many
irreducible polynomials appearing in the numerator of elements of E, or likewise
in the denominators of elements in E (if » = 2). Many similar results in [Un]
show that such admissible F is fairly big; nevertheless it is possible to construct
admissible E which are considerably smaller than the whole K (Xj,. . ., X,). Here
again, the situation is not yet fully clear.

Perhaps it is more suitable to investigate the problem from the multiplica-
tive point of view ; this would amount to the study of the unit group of the Kochen
ring. (For quadratic forms, the multiplicative theory had led to Pfister’s result
mentioned above.) The above remarks have been inserted to point out that the p-
adic Kochen operator is not yet fully understood and that more research in this
direction would be desirable.

We have arranged the above discussion of p-adic algebra such as to match
the foregoing discussion of real algebra. In particular, our discussion was
focused around the proof of “Hilbert’s problem (17),”, the p-adic analog of the
Hilbert problem 17 in the proper sense. We should mention, however, that
historically the “problem (17),” did not play any role in the development of »-
adic algebra. This problem (17), was stated by Kochen [Ko1] only after p-adic
algebra had been properly formulated. Independent of special problems to be
solved, the formulation of p-adic algebra was given in full recognition of the fact
that real algebra should have a counterpart in the p-adics. This recognition came
about as a fall out from the work of Ax-Kochen on another prominent prpblem,
namely Artin’s conjecture about the C,-property of Q,. (See .also section 7.)'

The model completeness theorem has been used for various other appli-
cations. For instance: the p-adic Nullstellensatz, the question about p-adic
rational points in algebraic geometry, p-adic places and holomorphy rings in p-
adic function fields etc. For details we refer e.g. to [PRq]. _

Let us explicitly state the axioms for p-adically closed fields:

(1)  the field axioms;
(2)  the elements of the form 7,(a) form a p-valuation ring ¢ of the field;

(3), Hensel’s lemma with respect to ¢, for polynomials of degree .

Note that (3), are infinitely many axioms; one for each n = 1,2, 3,... Axioms
(3), express the fact that a p-adically closed field K'is Henselian with respect to its
canonical valuation. But the Henselian property does ot yet suffice to character-
ize p-adically closed fields. There is another set of axioms which express the fgct
that the value group v(K) is a Z-group. Recall that a totally o'rdered abelian
group I' is called a Z-group if it is elementary equivalent to Z. This means that I’
contains a smallest positive element ¢ and for each n, the factor group I'/n has
exactly n cosets, represented by 0, &, 2¢,. . -, (n— 1)e. In the case of a p-valued
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field K with valuation ring O, the value group is isomorphic to the multiplicative
group K™ modulo the units ¢*. Its smallest positive element is the value of p.
This gives rise to the following set of axioms:

(4), Every field element a can be written in the form
a=p'b"u

for some i=0,1,..., n—1, where b is a field element and u is a unit in the
valuation ring 0.

A field is p-adically closed if and only if it satisfies the above axioms. The
theory of p-adically closed fields is complete [PRq], and hence the above axioms
describe the algebraic theory of the Hensel field Q,.

So again the situation is quite analogous to the situation in case of real
algebra.

In number theory, not only the fields @, are of interest but also their finite
extensions. These can be dealt with in the same way ; the results are quite similar,
the differences to the case of Q, are of technical nature only. See [PRq].

6 Elimination of Quantifiers

Let T'be a theory and ¢ (x,,. . ., x,) a formula in the language of T, where
Xi,-..,X,are free parameters in .%. Given a model K of T and a,...,a,€ Kwe
want to know whether ¢ (a,,. . .,a,) holds in K. Usually a mathematician will
ask for a necessary and sufficient criterion Y(xi,...,x,),1.e.0(a,,-..,a,) holds
inKifand onlyify (a,,. . .,a,) does. ¥(x,,...,x,) should also be a formulain ¢
and it should be independent of X, i.e. the criterion should hold in every model
of T. If the criterion is to be of interest then Y(x,...,x,) should be somehow
“simpler” than ¢(x,,...,x,). If possible then W(xy,...,x,) should be free
of quantifiers, so that Y (a,,...,a,) can be checked directly by looking at
ay,...,a, and the algebraic relations between them, without referring to the
whole structure K.

The classical example of such problem is elimination theory in the theory
of algebraically closed fields, formulated within the language of fields. In its
simplest case, we are given two homogeneous forms fX,Y), g(X,Y) in two
variables. The resultant R(f, g) is a certain polynomial in the coefficients of fand
g- The vanishing of the resultant: R( /,8) =0, is a quantifier-free criterion for the
existence of a non-trivial common zero in an algebraically closed field. The
parameters of the general set-up are here the coefficients of f(X,Y)and g(X, Y).

An arbitrary theory 7T is said to admit quantifier elimination in the
langugge 2, if every formula ¢(xy,...,x,) in & is T-equivalent, in the sense as
explained above, to a quantifier-free formula Yixy,...,x,) in Z.

General model theory provides us with a very useful condition for the
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existence of quantifier elimination. Namely, a theory T admits elimination of
quantifiers in the language % if and only if every two models L,,L, of T are
substructure equivalent in the following sense: If K is a common substructure,
KcLjand K= L,, then L; and L, should be elementary equivalent over K. This
means that L, and L, satisfy the same sentences in .%,, the language ¥ augment-
ed by constants to denote the elements of K. Note that in this condition, K need
not be a model of T; the axioms of T need not be satisfied in K. The only
requirement is that K is a substructure of L, and of L, with respect to all the
relations and functions belonging to the vocabulary of the language £.

For instance, consider the theory of algebraically closed fields within the
language of fields. To check the above condition, consider two algebraically
closed fields L, and L, which contain a common subfield*) X, not necessarily
algebraically closed. But then L;, L, each contain an algebraic closure K, resp.
K, of K. By Steinitz’ theory it follows that any two algebraic closures of K are K-
isomorphic: K, ¥ K,. After identifying K, = ]gz =K, both L, and L, now appear
as extensions of the algebraically closed field K. By model completeness: K<L,
K<L,, hence L, and L, are elementary equivalent over K and a fortiori over K.
We conclude that the theory of algebraically closed fields admits elimination of
quantifiers.

This has been first proved by Tarski [TM], and today it constitutes one of
the prominent class-room examples for quantifier elimination. It explains why
one has to expect a condition of the type of the resultant: R(f,g)=0, for the
existence of common non-trivial zeros of fand g. But of course the explicit form
of the resultant as given in algebra textbooks will not come out of such general
considerations. In each special case, the explicit form of the quantifier-free
equivalent to ¢ is to be the object of detailed investigation. o

The theory of real closed fields admits elimination of quantifiers in the
language of ordered fields. The ordinary language of fields does not suffice in this
case. This is clearly seen by testing the above criterion of substructure equiva-
lence: L, and L, are now real closed fields, containing the subfield K. Hence they
contain real closures K, K, respectively, of K. Now if we wqu in the language of
ordered fields then K is an ordered subfield of L, and L, ; this means that L, apd
L, induce the same ordering in K. It follows that K, and K, are real closures with
respect to the same ordering of K. Hence by Artin-Schreier [AS;I they are K-
isomorphic. The rest of proof can proceed in the same way as in the case ol:
algebraically closed fields, this time using model-completeness for the theory of
real closed fields. On the other hand, if we work in the'language of fields then K is
just a subfield of L, and of L,. The orderings of K induced by L,. L, may be

isani ai i abulary of field theory is

*) A substructure of a field is an integral domain (provided the vocabulary of A
) taken to be the same as for ring theory, with no spjcmﬁc symboi for division). Now if'a
field L contains an integral domain D then L contains. canonically. the quotient field K

of D.

Kopie von subito e.V., geliefert fir Roquette (HSL9900092)



412 Roquette

distinct and, in that case, K; and K, are not K-isomorphic. The proof breaks
down and, in fact, we have counterexamples showing that there are models of the
theory which are not substructure-equivalent.

The most prominent example for elimination of quantifiers in real al-
gebra is given by Sturm’s theorem. For given n, consider monic polynomials
S(X) of degree n. Sturm’s theorem gives a quantifier free criterion for f(X) to
admit a root J in a given interval a < 9 < b. (The parameters in this problem are
the coefficients of f and the end points of the interval.) The Sturm criterion is
formulated in the language of ordered fields; it is not possible to formulate it
without quantifiers in the theory of fields only, in the absence of the relation
symbol <. (Of course, every inequality x <y may be replaced in real closed
fields by (3z) (y — x = z?). But the latter formula contains an existential quanti-
fier.)

According to Tarski, the elimination of quantifiers for the algebraic
theory of R implies elimination of quantifiers for Euclidean geometry. Was this
what Steinitz had in mind when he announced applications of his algebra to
geometry? Most probably we shall never know.

Now let us discuss elimination of quantifiers in p-adic algebra. Due to our
experience in real algebra, we work p-adically in the language of valued fields, not
just in the language of fields. But even in the language of valued fields, elimina-
tion of quantifiers does not hold for the theory of p-adically closed fields. For if
we try to verify the condition of substructure equivalence in the same manner as
in the above two cases, then we arrive at the following problem: Let K be a p-
valued field and consider the p-adic closures K whose canonical p-valuation
induces the given valuation in K. Are all such p-adic closures K-isomorphic? (As
it is the case in the corresponding problem for real closures.) The answer is: No,
there are counterexamples. This implies that quantifier elimination fails.

In view of this situation there arises the problem of classification of the
various p-adic closures K of a p-valued field K. It is no restriction to assume K to
be Henselian, for in any case, the Henselization K" of K is contained in K. Now
the classification problem for K leads to certain invariants of cohomological
nature 'which, as it turns out, can be explicitly identified. There are infinitely
many, in fact uncountably many non-isomorphic p-adic closures K of K (except
in the trivial case when K itself is already p-adically closed). In any case, it can be
proved that every p-adic closure K can be obtained from K by the adjunction of

radicals [RRq]. (An n-th radical 8 over X is the form 9 = ']'/Z with a € K; in other
words, 3 is the root of the binomial X" —a.) As a consequence, it can be

shown [PRq] that two p-adic closures K, K, of a p-valued field K are iso-
morphic if and only if

KinK=KInK

Joreachn=1,2,. .. Here, K? denotes the set of n-th powers of elements in K;

Kopie von subito e.V., geliefert fir Roquette (HSL9900092)



Some Tendencies in Contemporary Algebra 413

hence K"K is the set of those elements a € K which admit n-th radicals '[I/E in
K. (Similarly for K5nK.)

The above results imply that elimination of quantifiers can be achieved,
also in the p-adic case, in a certain extended language. Let us extend the language
of valued fields by adjoining predicate symbols P;,P,,Ps,... In p-adically
closed fields P, (x) it to be interpreted as x being an n-th power. Now if L is p-
adically closed and K is a substructure of L with respect to this extended language,
then:

)] K is a subfield of L,

2 K carries a valuation ring ¢ which is induced by the canonical valuation
ring 0, i.e. O=Kn0,.

3) For each n, K carries a certain distinguished subset P,(K) which is
induced by the set of n-th powers of L, i.e. P(K)=K n L"

Consequently, if K is a substructure (in the extended sense) of two p-adically
closed fields L, and L, then KnL{=KnL5. If L, =K, and L, = K, are p-adic
closures of K we conclude from the above theorem that K; and K, are isomor-
phic. Consequently, if we work in the extended language then we can argue in the
same way as in the real closed case or in the algebraically closed case. Hence, any
two p-adically closed fields are substructure equivalent with respect to the
extended language. Hence, the theory of p-adically closed fields admits quantifier
elimination in the extended language. . _

According to our above definition, the “extended languagc?” is obtained
from the language of valued fields by adjunction of the new predicate symbols
P,, P,,... It can be shown that the above result remains valid if we start from the
language of fields, not valued fields.

It would be interesting to know explicitly the p-adic analog of Sturm’s
theorem, giving a criterion for a monic polynomials f(X) to have a p-integral
root. This criterion should be quantifier-free in the extended language. In other
words: the criterion should be expressible in the language £ of fields, with
quantifiers permitted in the form (3y)(x=)") only,. wherc? xisaterm. No
such p-adic analog of Sturm’s theorem is known, except in special cases when the
polynomial satisfies in addition the conditions of Hensel's lemma (or of related
lemmas). ]

Elimination of quantifiers in the extended language ha_s bee:n discovered
by Macintyre [Ma]. As a consequence he proved that every infinite, dgﬁnqble
subset of @} (the n-dimensional vector space over Qp) hasa non-empty interior.
For real closed fields, this was known before, in view of Tarski’s elimination of
quantifier theorem. o ) .

Another interesting application of elimination of quantifiers in the alge-
braic theory of @, has recently been given by J. anef [Den]. The prob}em was
to prove the rationality of the Poincaré series associated to the p-adic points ofa
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variety, and of related series. In the course of proof a certain integral has to be
evaluated over a certain subset D of Z3; this subset is definable and can be shown
(by quantifier elimination) to be a Boolean combination of rather simple sets, for
which the corresponding integral can indeed be evaluated, giving the desired
information.

Quantifier elimination in the extended language can be carried over
mutatis mutandis to finite extensions of @Q,. See [PRq].

7 Diophantine Problems and Valued Fields

We have seen above that the theory of p-adically closed fields is complete,
and that it admits a recursive set of axioms. Consequently, it follows that the
theory is decidable. That is, there exists an effective procedure to determine for
each sentence ¢ in the language of valued fields, whether ¢ does or does not
hold in all p-adically closed fields. By completeness, this is equivalent to saying
that ¢ holds (resp. does not hold) in Q,.

Now let V" be an affine variety in n-space, given by polynomial equations
of the form

filxg, x)=0,..., f(x),...,x)=0. (D)

We assume that the coefficients of these polynomials are integers in Z. The
Diophantine problem in Z asks whether (D) has a solution in integers
Xi5.- ., X, € Z,1.e. whether V as a Z-rational point. The corresponding problem
forx,,...,x,eZ,isdecidable, by what we have said above. It has been shown by
Weispfenning [We1] that the decision procedure can be made to be uniform inp,
in a certain sense. This implies that it is decidable whether the Diophantitze
problem (D) has a solution everywhere locally or, in other words, whether there 1s

a solution x,,...,x, whose coordinates are contained in the adele ring 4(Z)
=[1Z, (direct product).
p

Now if we knew that the variety V satisfies Hasse’s local-global principle
(for integer points) then we could conclude that the original Diophangme
problem (D) over Z is decidable. However, varieties with local-global principle
are very rare. It has been shown by Julia Robinson and Matijasevic [DMR] that
the general Diophantine problem (D) over Z is in fact not decidable. There does
not exist an effective algorithm which permits for every system of equations of
the form (D), to decide whether there is a solution XiserosXg€ZL.

The situation does not improve if we replace @ by an algebraic number
field K of finite degree and, accordingly, Z by the ring of algebraic integers of K.
But we may go to the limit, arriving at the algebraic closure Q¢ of @, the field of
all algebraic numbers, and correspondingly at the integral closure Z° of Z, the
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ring of all algebraic integers. Does there exist a decision procedure for solutions
of (D) with x,,...,x,€Z*? In other words: can Hilbert’s 10th problem be
positively solved for Z* instead of Z?

The conjecture that this may perhaps be the case had been voiced by
Skolem [Sk]. He said that by general mathematical experience, many algebraic
problems become decidable if one considers structures satisfying closure proper-
ties which are connected with the particular problem. This rather vague heuristic
principle can be made precise, as we have seen, with respect to algebraic closure,
real closure, p-adic closure. These closure properties render the respective theo-
ries decidable. Skolem’s question is whether the algebraic theory of ®°, with
distinguished subring Z°, is decidable? The proper language for this theory
would be the theory of fields augmented by one predicate symbol to identify the
clements in Z°.

The answer to the above general Skolem question is not yet known.
However one may restrict this question and ask for the decidability at least of the
Diophantine problems of the form (D), with solutions x,. .., x, € Z°.

This restricted question has recently been answered affirmatively by Ru-
mely in a yet unpublished paper [Ru], based on former work by D. Cantor and
the author [CRq]. The main point is the local-global principle for Diophantine
problems of the form (D). This means the following: let @ denote the algebraic
closure of @, and Z& the integral closure of Z, in Q;. Then Z7 is called the ring of
algebraic p-adic integers. Now the local-global principle can be stated as fol-
lows: If for each p, the Diophantine problem (D) admits a solution in Zj then (D)
admits solution x,,. . .,x, € Z°. o

In [CRq] this has been proved in the case when the variety V'is uniratio-
nal, i.e. parametrizable via rational functions. (More precisely, [CRg] covers
the problem for simple points on unirational varieties.) The generalization to
arbitrary varieties has been announced by Rumely, based on a detailed study of
local heights on algebraic curves of higher genus. )

In the course of proof of this local-global principle it turns out that for
given V, only finitely many prime numbers are critical, in the sense that for the
other primes the existence of a local solution in Zj can easily be ascertained by
general theorems. Consequently, the decision problem for glqba] §olutlons is
reduced to the local decision problem for a finite set of primes given in advance:
by induction this is reduced to one single prime. . '

Now we recall that Q¢ is an algebraically closed ﬁgld, and Z;, is a valuation
ring of Q4. We see that in the local case, we are studying algebrau'all}: closed
valued fields. In this situation there is an old theorem of A. Robinson, saying that
the theory of algebraically closed valued fields is model-complete, with respect to
the language of valued fields. (It is understood that the valuation is non-trivial.)
This, together with the fact that the axioms of algebraxcz}lly closed fleldsaarfe
recursively enumerable, shows that the algebraic theory of Qs . valued by Zp, is
decidable. In this respect we have for @j, Zj the same situation as described

above for Q,, Z,.
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In particular we see that, indeed, Diophantine problems (D) over Z° arc
decidable.

Besides of its application to Diophantine problems over Z°, the theorem
of A. Robinson is of importance also on its own. It admits a classification of
algebraically closed valued fields, up to elementary equivalence, by two inva-
riants: the characteristic p; of the field and the characteristic p, of the residue
field.

For given invariants p,, p, there exists a prime model, i. €. an algebraically
closed valued field with invariants p,, p, which is isomorphically contained in
every algebraically closed valued field with the same invariants. If p1=0,p,=p
> 0 then the prime model is @, the field of algebraic numbers, equipped with a
valuation extending the p-adic valuation of @. (It does not matter which exten-
sion 1s chosen because all such extensions are conjugate over Q.) If p, =p, =0
then the prime model is Q (x)%, the field of algebraic functions, equipped with
any valuation over Q (it does not matter which). Similarly, if p, = p, = p> O then
the prime model is IF,(x)* with any valuation (IF, denoting the field with p
elements). By general model theory, the existence of prime models together with
model-completeness implies completeness. Hence the theory of algebraically
closed valued fields with given invariants ( P1.D,) is complete.

By the way, the theory of algebraically closed valued fields admits
elimination of quantifiers, because any two models are substructure-equivalent.
Indeed, if K'is a valued field contained in two algebraically closed valued fields
L, and L, then the algebraic closure K?, as a field, is isomorphically contained in
both L; and L,. The valuations of K* induced by L, and by L, are both
extensions of the given valuation of K. Hence they are conjugate over K. Hence
gfter applying a suitable X-isomorphism we may assume that both L, and L,
induce in K* the same valuation. By model-completeness, L, and L, are now
elementary equivalent over K° hence a priori over K. So the argument is
completely analogous to the corresponding argument in the case of p-adically
closed fields, or real closed fields, or algebraically closed fields. Model theory
provides the proper framework for questions of this kind.

A. Robinson published his theorem about algebraically closed valued
fields already in the year 1956 [Ro 1]. But it seems that it did not become widely
known among algebraists, at least not as much as it would deserve in view of its
importance. This is somewhat curious because algebraic geometry over valued
fields has been quite well recognized as an important object of study, via
Hensel’s p-adic theory.

There have been several generalizations of Robinson’s above theorem,
concerning valued fields which are not algebraically closed. The first motivation
came from the work of Ersov [Er1], Ax and Kochen [AK] about Artinfs
conjecture on the C,-property of Q,. Let us briefly discuss the model theoretic
framework of the problem, without going into the detail about the content of the
C,-property.

Let ¢ be a sentence in the language of valued fields, and suppose we want

Kopie von subito e.V., geliefert fir Roquette (HSL9900092)



Some Tendencies in Contemporary Algebra 417

to know whether ¢ holds in the fields @Q,,. If the problem is difficult then we may
first try the power series fields IF,((x)) in one variable x over the finite field IF,
with p elements. IF, ((x)) is a complete valued field with the same residue field as
@, (viz. TF,) and the same value group (viz. Z). Mathematical experience shows
that often (though not always) the field IF, ((x)) is easier to investigate than Q,.
Suppose then that we have found that ¢ holds in IF, ((x)), for all prime numbers p.
Can we infer from this that ¢ holds in every Q,?

Consider the ultraproduct K=[]IF,((x))/Z of the fields FF,{(x))

p
modulo a non-principal ultrafilter 2 on the set of all prime numbers p. This
ultraproduct is a valued field, and the algebraic properties of K are precisely those
which hold in Z-almost all factors IF, ((x)). (That is, there should exist a set D of
the ultrafilter such that the property holds in IF, ((x)) for all p € D.) In particular,
¢ holds in K. We now compare K with the corresponding ultraproduct of p-adic
fields: K'=[]@,/2. We note that K, K’ both have the same residue field,

p
namely n IF,/<2, which is of characteristic zero. Also, they have the same value
group, ngmely H Z/9; this is an ultrapower of Z and hence elementary equiva-

lent to Z. Both ;( and K’ are Henselian. This is because the Henselian property
can be described by (infinitely many) sentences in the language of valued fields;
since each factor IF,((x)) resp. @, is Henselian it follows that K and K’ are
indeed Henselian. From the above it follows that K, K’ are elementary equiva-
lent via the following

Theorem of Ersov [Er1]. Consider two Henselian valued fields K,K' whose
residue fields are of characteristic 0. If the residue fields of K and K' are
elementary equivalent in the language of ordered groups, then K and K' are
elementary equivalent in the language of valued fields.

It follows that ¢ holds in K’, hence ¢ holds for @, if p belongs to a certain
set D of the ultrafilter 2. Since & is an arbitrary non-principal ultrafilter
on the set of primes we conclude: ¢ holds in almost all@,, (i. €. all but for a finite
number of primes p). Consequently, by means of Ersov’s theorem we have
obtained the following important transfer principle : If ¢ hqlds in almost all power
series fields IF, ((x)) then ¢ holds in almost all Q°, am? rice versa.

This transfer principle applies to all sentences ¢ in the language of valued
fields, not just to those sentences which make up the C,-property. .

Note that Ersov’s theorem contains Robinson’s completeness theorem in
case of residue characteristic 0. For if K, K’ are algebraically closed valued fields
then their residue field K, K’ are algebraically closed too: by the Lefschetz

principle it follows that K, K’ are elementary equivalem: M_oreover. their value
groups v(K) and v(K’) are divisible. It is known that all dxv;sxbl:s. totally ordered
abelian groups are elementary equivalent. Thus indeed, Ersov’s theorem shows
that K, K’ are elementary equivalent. Hence Robinson’s completeness thc_eorem.

There arises the question whether Ersov’s theorem can be generalized to
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the case of residue characteristic p> 0. This is true if the following additional
condition is satisfied: K is of characteristic 0 and is absolutely unramified, i.e.
the value v(p) is the smallest positive element in the value group. In addition, the
residue field is to be perfect. It is clear that this result includes e. g. the complete-
ness theorem for p-adically closed fields.

If K too is of characteristic p > 0 then the Henselian property of K is not
sufficient in this context. Itn seems natural to replace it by the property of K to be
immediately closed This means that K (as a valued field) should not admit any
proper algebraic immediate extension. Every immediately closed field is Hense-
lian, but not conversely.

Ersov’s theorem now holds for char(K) = p> 0, if K is immediately closed
and, moreover, K satisfies the so-called Kaplansky hypothesis (A). This means,
firstly, that the residue field K does not admit any algebraic extension of finite
degree divisible by p; equivalently, every additive polynomial with coefficients
in K'should have a root in K. Secondly, the value group v(K) should not admit, in
its divisible hull, any extension of finite degree divisible by p; equivalently, every
equation p& =« with « € v(K) should have a solution & € v(K). See [Ka], [Wh].

The above generalizations of what we called Ersov’s theorem have also
been proved by Ersov himself [Er1], and independently by Ax-Kochen [AK].

Kaplansky’s hypothesis (A) does not seem unnatural in this context, but
many fields appearing in mathematical nature do not satisfy it. Some effort has
been spent to investigate other cases where hypothesis (A) does not apply. See
e.g. Delon [Del]. Pank [Pa] has studied the Galois theoretic interpretation of
hypothesis (A). Kuhlmann [Ku] has studied Hensel fields where hypothesis (A)
1s not satisfied. But the results obtained so far are not yet conclusive.

There have been generalizations of the theorems of Ersov and Ax-
Kochen. An extensive literature is centered around it. A thorough and quite
general study has been made by Basarab [Bas]. See also Transier [Tr].

8 Concluding Remarks

As pointed out already, our report is not meant to be comprehensive.
There are many more instances where the intrusion of model theoretic concepts
and methods into algebra could have been demonstrated. The reader may
consult the papers of our list of references, or the literature cited in those papers-
Here it was our purpose to get the reader interested in this new kind of algebraic
reasoning. But perhaps we should avoid the word “new” in this context because
as we have seen the roots of model theory can be traced right back to the
beginning of “Modern Algebra” (in the sense of van der Waerden’s book
[vdW]). In fact, model theory is naturally and inherently an offspring of the
axiomatic viewpoint of contemporary mathematics. So when today we observe
model theory playing an important role in algebra, then this is not surprising and
not exactly new. But now mathematicians are becoming more and more cons-
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cious about the close connection between mathematical structures and the formal
language £ which is used to describe those structures.

Of course there is no inherent reason why to restrict the language to be
elementary (or first order), as we did in this article. For even when the axioms
can be stated in an elementary language (as is the case for most algebraic
theories) then one may be interested in properties which are of higher order. For
instance in ring theory, the property of a ring to be Noetherian cannot be
expressed in the elementary language of ring theory. In the theory of valued
fields, topological properties are in general not of elementary nature. Hence if
one wants to include such properties into the investigation then one has to work
with higher order languages, adapted to the specific purpose.

A beautiful example in this direction is the work of Prestel and Ziegler
[PrZ] about the so-called local theory of topological fields. In this theory, the
language . contains (besides of the ordinary vocabulary of field theory) a set of
additional variables U to denote neighborhoods of 0. Accordingly, the language
contains a relation symbol 7 € U to denote that 7 belongs to U; here t may be any
term in the language of fields. A sentence ¢ in this language is called local if, for
every topological field K in which ¢ holds, ¢ remains true if the range of the set
variables is restricted to a basis of neighborhoods around 0. Similarly if ¢ does
not hold in KX then it is required that ¢ remains false if the range of the set
variables is restricted to a basis around 0. For instance the Hausdorff axiom is
local in this sense: it requires that for a = b there exist neighborhoods U, ¥ such
that (@ + U) n (b + V)= 0; clearly this can be expressed in the above language &
and, if it holds in K then it also holds if U, V are restricted to a basis, and
conversely. By inspection one verifies that all the axioms of topological fields, if
stated in terms of neighborhoods around 0, are local.

The above definition of local sentences is semantic; they can also be
defined syntactically: see [PrZ].

Two topological fields are called locally equivalent if they satisfy the same
local sentences.

Now it is shown in [PrZ] that the complex number field C is locally
equivalent to each Q%, the algebraic closure of the p-adic Hensel field @,,. In fz_lct:
all algebraically closed topological fields of characteristic 0 are locally equiva-
lent, provided the topology is Hausdorff and non-discrete. This is a “Lefschetz
principle” for topological algebraically closed fields. It seems remarkable that the
field € with the ordinary archimedean absolute value, and the fields Q5 with
their non-archimedean valuations referring to different primes p, are all equiva-
lent with respect to their local topological propertiqs. In a way this corresponds
to the experience gained in developing p-adic analysis. Although the fields € and
Q¢ are essentially different as valued fields, experience has shown that they show
a similar behavior with respect to local algebro-topological properties. Perhaps it
will be possible to extend the Prestel-Ziegler result also to local analytic proper-

ties, if the Q¢ are replaced by their completions. .
As to the fields R and Q,,, they are not locally equivalent because they are
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not even elementary equivalent in the language of fields. On the other hand,
these fields do share certain local properties, for instance the following: For
every n, the monic polynomials in K[ X] of degree n which have a simple zero in
K form an open set, in the space of all monic polynomials of degree n. It is shown
[PrZ] that this is equivalent to the validity of the Implicit Function Theorem (for
polynomials) to hold in the field. Every such field is locally equivalent to a
topological field L which admits a basis of neighborhoods around 0 consisting of
Henselian valuation ideals (i.e. maximal ideals of Henselian valuation rings of
L). The nice thing about this is, that e. g. the Implicit Function Theorem for R
(resp. for @) can be reduced to the ordinary Hensel’s Lemma in such field L.
Since the original work by Hensel [He], Rychlik [Ry] and Ostrowski [Os] it has
become common knowledge that there is a great similarity between Hensel’s
lemma and the classical analytic theorem for implicit functions (or continuity of
roots etc.). Here too, model theory provides the proper framework to give this
experience a precise meaning and, moreover, model theory gives us new ways of
mathematical reasoning: e.g. to deduce analytic theorems for R or € from
properties of non-archimedean valued fields.

It is to be hoped that further investigations can provide us with even more
detailed information about the similarities in local analytic behavior of the fields
R and Q,.
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