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Abstract

We report on the work of Davenport and Hasse on zeta functions
of the so-called Davenport-Hasse function fields. Their zeros can be
obtained by means of Gaussian sums. Thus the Riemann hypothesis
was proved for a wide class of function fields of higher genus in the
year 1934 already. We include a discussion of several other papers
in the 1930s which came up in the context of this work. Besides
Davenport and Hasse we will meet the names of Stickelberger, Artin,
Witt, H. L. Schmid, Teichmüller, A. Weil, Chevalley and others.
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1 Introduction

This is the fourth part of a larger work on the history of the Riemann hy-
pothesis1 for function fields. Parts 1, 2 and 3 have appeared earlier in these
Mitteilungen.2 This Part 4 is again written in such a way that it can be read
independently from the other parts. As a result the reader might find some
repetition of what I have already said in earlier parts; I am asking for your
understanding.

In Part 3 we had reported on Hasse’s work 1933-36 on the Riemann hy-
pothesis in the case of elliptic function fields, including Deuring’s subsequent
work about their endomorphism rings. But parallel to the elliptic case there
was much activity also for function fields of higher genus g > 1, with the aim
of proving the Riemann hypothesis in general.

In this Part 4 we discuss the first step in this development, namely the
work of Davenport and Hasse on certain special function fields of higher
genus, which today are called the “Davenport-Hasse fields”. These are func-
tion fields

F = K(x, y)

which are given by a defining equation of the form

xm + yn = 1 or yp − y = xm

where m,n are not divisible by the characteristic p. After suitable extension
of the base field K it can be assumed that K contains the m-th and the n-th
roots of unity.

The aim of Davenport and Hasse was not only to prove the Riemann
hypothesis for these fields, but at the same time to give an arithmetic char-
acterization of the roots of the corresponding zeta functions. This required
a thorough investigation of the class field structure of the fields in question
and their L-functions, as well as an arithmetic study of the Jacobi sums and
Gaussian sums which appear in the process. All this is essentially contained
in two papers, one by Hasse [Has34b] and the other jointly by Davenport
and Hasse [DH34]. Both papers appeared 1934. We shall also discuss later
work in the 1930s connected with these problems.

1Here and in the following, whenever we talk about the “Riemann hypothesis” we
always mean the “analogue of the Riemann hypothesis for the zeta function of a function
field F over a finite field of constants”. This hypothesis proclaims that the zeros of the
zeta function ζF (s) all have real part 1

2 .
2See [Roq02b, Roq04, Roq06].
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It seems not without interest that precisely these detailed results about
the arithmetic properties of the zeros turned out, in later years, to be the
key to the arithmetic investigation of the so-called Hasse-Weil zeta functions
over number fields. Thanks to the results of Davenport and Hasse those zeros
could be identified as Hecke’s Größencharacters. That happened in 1952.

* * * * *

Again we shall use not only published material but various personal doc-
uments like letters, manuscripts and other papers of the protagonists. In
this way we are able to get a closer look at the emergence of ideas in status
nascendi and their subsequent development following the flow of information,
until they were ready for publication. In short: we can observe the making
of mathematics at first hand. We hope to be able to communicate to the
reader our fascination of the story of one of the most seminal developments
in the 20th century.

At the end of each section the reader will find a Summary. It may be
profitable to first have a look at those summaries, in order to obtain an
overview before going into the details.

* * * * *

As we have pointed out in Part 3, in the theory of algebraic function fields
there are three analogies prevalent:

1. to algebraic number theory,

2. to the analytic theory of Riemann surfaces,

3. to the algebraic geometry of curves.

Artin’s thesis in 1921, where he formulated the Riemann hypothesis for hy-
perelliptic curves, was inspired by the analogy to number theory. This domi-
nated also the later development when the algebraic theory of function fields
was developed by Hasse, F. K. Schmidt and others; but in a number of cases
the analogy to the theory of Riemann surfaces came into the viewpoint, e.g.,
when proving the Riemann-Roch theorem or the theorem of the residues.

In our time the language of algebraic geometry is prevalent. We say “lan-
guage” because the “objects” of such investigation are mostly structures of
commutative algebra. The geometric language appeals to the analogy to ge-
ometry, and it appears to be more flexible to deal with various phenomena in
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mathematics. In this framework a function field F |K is considered to belong
to a curve Γ as its field of algebraic functions. If the base field K is perfect
then Γ can be assumed to be smooth and then it is uniquely determined (up
to biregular correspondence). The prime divisors P of the function field are
the closed points of the curve Γ; a finite field extension E|F of function fields
represents a covering ∆ → Γ of algebraic curves, etc.

Here, in this report, we will mostly use the language of function fields
which Hasse and his collaborators used in their time. This appeals to the
analogy to number theory and sometimes to complex analysis. Nowadays
there is no problem to translate the language of function fields into the lan-
guage of algebraic curves and back – although in the 1930s this was not yet
standard.

* * * * *

Remark: All unpublished documents which are cited can be found in
the Handschriftenabteilung of Göttingen University Library, except when we
explicitly mention another source. As a general rule, letters which were ad-
dressed to Hasse can be found in Göttingen, whereas letters which Hasse
wrote to other people are preserved at other places (if preserved at all). Let-
ters from Hasse to Mordell we have found in the archives of King’s College,
and those from Hasse to Davenport at Trinity College, both in Cambridge,
England. Although quite a number of letters from the Hasse correspondence
is preserved, the reader should be aware that, on the other hand, quite an-
other number of letters seems to be lost. What we have found does not
constitute a complete set of the Hasse correspondence.

.

2 Prelude: Davenport’s estimates

In Part 2, Section 3 we have reported in detail how Hasse became inter-
ested in the proof of the Riemann hypothesis; this happened through Harold
Davenport. Let us briefly recall:

The young Davenport (23 years old) stayed in the summer semester 1931
with the Hasses in Marburg, and there developed a close friendship. To be
sure, Davenport was not primarily interested in the Riemann hypothesis. In
fact, when he arrived at Marburg he did not yet know much about Artin’s
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thesis and the Riemann hypothesis, or about the algebraic theory of func-
tion fields. Originally Davenport was interested in estimating the number of
solutions of congruences of the form

f(x, y) ≡ 0 mod p

where f(x, y) is an absolutely irreducible polynomial with integer coefficients
and p a prime number. If N denotes the number of solutions then it was
conjectured that

|N − p | ≤ C · √p for p →∞ (1)

where C is a constant depending on the coefficients of f but not depending
on p . In particular it would follow that N > 0 if p is sufficiently large. But
the latter conclusion would be valid also if one just knew that |N−p| ≤ C ·pγ

with some γ < 1.

Davenport, and also his academic teacher Mordell, proved a number of
results in this direction for various polynomials f(x, y) and various γ < 1 .
Those results were considered as temporary in view of the full conjecture (1).
Hasse became interested in this kind of problem but he was not impressed by
the unsystematic methods which were applied, based on subtle computational
finesse. He expressed his opinion that the use of abstract algebra and the
structural approach would help to provide a better foundation to attack those
problems, heading right away for the best estimate with γ = 1

2
. Davenport

was not convinced and he challenged Hasse to do so.

In the fall of 1932, after the Zürich meeting of the International Mathe-
matical Union (IMU) 3, Hasse took up Davenport’s challenge. As a start he
transformed the problem into the following setting.

Instead of working with congruences modulo p , i.e., with equations in Fp ,
he worked over an arbitrary finite field

K = Fq

where q is a power of p. Thus, given an absolutely irreducible polynomial
f(x, y) with coefficients in K, the problem now demands to give an estimate
for the number N = NK of zeros of f(x, y) in K.

In November 1932 Hasse visited Artin in Hamburg and gave a talk in the
seminar, treating the Mordell-Davenport problem in this extended setting.
In his discussion with Artin the latter mentioned the following observation
which at that time was probably new to Hasse.

3There Hasse talked about his recent work on the arithmetic of simple algebras over
number fields.
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Consider the algebraic function field F = K(x, y) defined by the abso-
lutely irreducible equation f(x, y) = 0 over K. For each r > 0 let Kr = Fqr

denote the extension of K of degree r and Fr = Kr(x, y) the correspond-
ing constant field extension of F . Let Nr denote the number of Kr-rational
solutions of f(x, y) = 0. Now:

Artin’s observation. In the situation explained above suppose that

|Nr − qr| ≤ C · √qr for r →∞ (2)

with a constant C > 0 independent of r. Then the Riemann hypothesis holds
for the zeta-function of F |K.

In Part 1, section 1 we have reported that we have found this statement in
a letter of Artin of the year 1921, addressed to his academic teacher Herglotz.
But Artin had never published this and hence we suppose that Hasse did not
know it before Artin told him in November 1932.

After this discussion with Artin, Hasse knew that he had found what
he was looking for, namely an arithmetic structure which stands behind the
estimates of Davenport and Mordell and which can lead the way to significant
results. That structure was the algebraic function field (of one variable) over
a finite field of constants. Or in today’s terminology: the global field of prime
characteristic.

Immediately Hasse started to follow this lead, at first for the simplest
nontrivial kind of function fields, those of genus 1 which are also called “el-
liptic” fields. Already in February 1933, two months after his visit with Artin
in Hamburg, he succeeded to prove the Riemann hypothesis in the elliptic
case. In Part 2 we have discussed the first version of Hasse’s proof, and in
Part 3 his final version. The latter was published in 1936 eventually.

But parallel to those investigations Hasse considered also the case of
higher genus g > 1 . As a starter he worked jointly with Davenport on
those function fields which today are called “Davenport-Hasse fields”.

3 The Davenport-Hasse fields

3.1 Davenport’s letter January 1932

As said above, Davenport had stayed with the Hasses in Marburg in the
summer semester of 1931. Already in January 1932 Davenport again visited
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Hasse.4 On that occasion he apparently had informed Hasse about his latest
estimate concerning the number of solutions of congruences of the form

axm + byn + c ≡ 0 mod p . (3)

Hasse seems to have asked him for details, for as soon as Davenport was
back in England he sent Hasse the full proof. The letter is not dated but
Hasse wrote “January 1932” on the margin. It turned out that for this kind
of congruence Davenport had alrady obtained the estimate (1), i.e., the best
possible exponent γ = 1

2
.

Davenport’s proof seems to have caught Hasse’s interest, for right away
he copied it into his mathematical diary. There is an entry in Hasse’s diary
of January 1932 with the title:

Davenport’s Beweis der Lösbarkeit von axm + byn + c ≡ 0 mod p und
Bestimmung der Anzahl der Lösungen.

Davenport’s proof of the solvability of axm + byn + c ≡ 0 mod p and
determination of the number of solutions.

We shall see that Davenport’s letter contains the nucleus of the joint work of
Davenport and Hasse [DH34]. Therefore, as the proof is short and beautiful
let us read Davenport’s letter:

My dear Helmut,

I promised to send you my treatment of the congruence

axm + byn + c ≡ 0 (mod p) . (4)

Let χ1, . . . , χm−1 be the non–principal characters for which χm = 1, the
principal character.5 It is easily seen that

1 + χ1(t) + · · ·+ χm−1(t)

is precisely the number of solutions of xm ≡ t . Hence the number of
solutions of (4) is

4As Hasse wrote to Mordell: “We have invited Davenport for the second half of his
Christmas vacation — or rather he has invited himself with our readily given consent . . . ”

5Davenport has in mind the characters of the multiplicative group of Fp. He did not
explicitly mention that n and m are supposed to divide p − 1, which is natural in this
situation. (For otherwise, m,n could be replaced by their greatest common divisor with
p− 1 without changing the number N of solutions.) If t ≡ 0 mod p he puts χr(t) = 0 and
similarly ψs(t) = 0. Moreover, a, b, c are supposed to be 6≡ 0 mod p .

9



N =
∑

t

{
1+χ1(t)+· · ·+χm−1(t)

}{
1+ψ1

(
−at + c

b

)
+· · ·+ψn−1

(
−at + c

b

)}

where ψ1, . . . , ψn−1 are the non-principal characters for which ψn = 1 .
Hence

N = p +
m−1∑
r=1

n−1∑
s=1

∑
t

χr(t)ψs(−at + c

b
) .

The sums in t can be easily expressed in terms of generalized Gaussian
sums

τ(χ) =
∑

ν

χ(ν)e(ν) , e(x) = e
2πix

p .

These have the property χ(u) τ(χ) =
∑

ν χ(ν)e(uν). Hence

∑
t

χ(t)ψ(at + c) =
1

τ(ψ)

∑
t, ν

χ(t)e((at + c)ν)ψ(ν) (5)

=
τ(χ)

τ(ψ)

∑
ν

χ(aν) ψ(ν) e(cν)

=
τ(χ) τ(χ ψ)

τ(ψ)
χ(a) χψ(c) .

Therefore

N = p +
m−1∑
r=1

n−1∑
s=1

τ(χr)τ(χrψs)

τ(ψs)
χr

( c

a

)
ψs

(
−c

b

)

= p + ϑ
√

p (m− 1)(n− 1) since |τ | = √
p , |ϑ| ≤ 1

> 0 if p > (m− 1)2(n− 1)2 .

Quite trivial ! . . . . . .

Davenport continues with a discussion of certain Kloosterman sums which
we will discuss later. (See section 6.1).

Davenport’s computation yields

|N − p | ≤ C · √p with C = (m− 1)(n− 1) . (6)

We do not know why Hasse had considered this proof of such importance
that he immediately took these lines down into his mathematical diary. Per-
haps he did so because Gaussian sums are appearing. Hasse had always
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shown great interest in the arithmetic properties of Gaussian sums in various
situations and he has a number of publications dealing with them.

The estimate (6) is also contained in a paper by Mordell, but with another
constant C and not using Gaussian sums [Mor33]. Mordell had visited Hasse
in January 1932 and on that occasion given him a copy of his manuscript.6

Hence Hasse knew about it. But Hasse did not copy Mordell’s proof into his
diary. He just referred to it at the end of the entry containing Davenport’s
proof, as follows:

Bemerkung. Siehe auch den Mordellschen Beweis, der zwar ein nicht ganz
so scharfes Resultat liefert, aber dafür frei von Gaussschen Summen, somit
völlig elementar ist.

Remark. See also Mordell’s proof which works without Gaussian sums,
hence is completely elementary, although not quite providing such a
sharp result.

We see that Hasse in his diary did not prefer Mordell’s elementary proof
but favored Davenport’s proof using Gaussian sums. Hasse knew (or felt)
that this approach may lead to generalization.

As said in the foregoing section, in the last months of 1932 Hasse suc-
ceeded to generalize most of Davenport’s and Mordell’s estimates to the case
of arbitrary finite fields instead of just the prime fields Fp . We do not know
whether the estimate (6) was already among those but it seems very likely.

For, Davenport’s computation works in the same way over any finite
field K = Fq , provided n,m divide q − 1. In this case χ, ψ range over the
characters of the multiplicative group F×q and the exponential e(x) appearing
in Davenport’s definition of the Gaussian sum has to be defined as

e(x) = e
2πiS(x)

p (7)

where x ∈ Fq and S : Fq → Fp denotes the trace function (“Spur” in Ger-
man). Thus we have the following statement:

Let K be any finite field and q the number of its elements. Assume m
and n divide q − 1. Then the number N of solutions in K of the equation

axm + byn + c = 0 with a, b, c ∈ K× (8)

6We have mentioned this already in Part 2, section 3.3. There the reader will find
more information about the mathematical activities of Davenport and Mordell concerning
diophantine congruences.
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satisfies the estimate (6) with p replaced by q.

But then the same holds also over every finite extension Kr = Fqr and so
we have (6) also for qr. It follows from Artin’s observation (page 8) that the
Riemann hypothesis holds for any function field F = K(x, y) over K which
is defined by an equation of the form (8).

As said in the foregoing section, Hasse had learned about Artin’s obser-
vation when he visited Artin in November 1932.

We see that already in 1932 Hasse had proved the Riemann hypothesis for
a large class of function fields of genus g > 1. He used Davenport’s method
of estimating by Gaussian sums and then applied Artin’s observation.

Remark: In his computations Davenport had assumed χ and ψ to be
different from the principal character. Nevertheless χψ may be principal. In
this case τ(χ ψ) = 0 according to his definition. Consequently, Davenport
could have omitted in his computations the pairs r, s with χrψs = 1. There
are d − 1 such pairs where d = gcd(m,n). This would have given him an
estimate with the better constant C = (m−1)(n−1)− (d−1) instead of (6).
But it is known that this number C is twice the genus g of the function field
F = K(x, y) given by the equation (8). Thus Davenport’s computation could
be refined to yield

|N − q| ≤ 2g · q1/2

which is precisely what is expected from the discussion of the zeta function.

3.2 The Davenport-Hasse fields.

But Hasse wished to get more. The Riemann hypothesis refers only to the
real part of the zeros of the zeta-function ζF (s) of F |K. But what about the
zeros themselves? Already on March 17, 1932 Davenport asked Hasse:

What do you think the form of the ordinates of the zeros of Artin’s ζ-
function will be?

It is convenient to consider ζF as a function of t = q−s. 7 Then the Rie-
mann hypothesis says that its roots have absolute value q−

1
2 . Accordingly

7We use the notation ζ(s) or ζ(t) according to whether we regard ζ as a function of
s or of t. We know that this kind of notation (which in former times was not unusual)
is today regarded not to be admissible. But we believe that in our situation this cannot
lead to misunderstanding and so we ask the reader to tolerate this notation for the sake
of simplicity.
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Davenport’s question is to be interpreted as to the angles of these complex
numbers. It turned out that these roots can be expressed by Gaussian sums,
and so they are algebraic numbers. Davenport’s question can therefore be
extended to ask for the prime decomposition of these numbers, i.e., for their
arthmetic characterization. From the correspondence of Hasse with Daven-
port about this question there arose their joint paper [DH34].

For simplicity they assumed that a = b = −c = 1 in formula (8). (Other-
wise the formulas would become unnecessarily burdened by the parameters
a, b, c. It is an easy exercise to amend the following formulas by inserting these
parameters in suitable places. In [DH34] it is said that (8) is “insignificantly
generalized” against (9).) So we have now the situation

F = K(x, y) with xm + yn = 1. (9)

Moreover, parallel to (9) the paper [DH34] deals also with another type of
function fields, namely

F = K(x, y) with yp − y = xm (10)

where, again, m | q − 1 and p is the characteristic.8 We put

z = xm =

{
1− yn in case (9)

yp − y in case (10)
(11)

and see that F is composed of two linearly disjoint cyclic extensions of the
rational field K(z), of degree m and n (resp. p).

F = K(x, y)

K(x)

~~~~~~~~~~~~~~~~

xm=z

@@
@@

@@
@@

@@
@@

@@
@@

K(y)

@@@@@@@@@@@@@@@@

yn=1−z

(or yp−y=z)
~~

~~
~~

~~
~~

~~
~~

~~

K(z)

(12)

8This had been done in order to deal not only with Gaussian sums but also with the
so-called Kloosterman sums. We shall discuss these later.
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As already said in the introduction, today any such field F is called a
“Davenport-Hasse field”. If the geometric language is used then the ter-
minology is “Davenport-Hasse curve”.

In the Davenport-Hasse paper [DH34] F is considered as class field over
K(z). In the years 1933-34, when that paper was composed, class field theory
for function fields was not yet completely developed. Therefore Hasse wrote
a separate paper on the arithmetic of function fields which included class
field theory [Has34b]. That paper was meant to contain the prerequisites for
determining the zeros of the zeta-function of the field F above.

Accordingly let us first have a brief look at this preparatory paper by
Hasse, before discussing the Hasse-Davenport paper.

3.3 Cyclic extension of function fields

Hasse wrote his paper [Has34b] “within a few days”, as we learn from a letter
to Davenport dated May 15, 1934. He tried to write it in such a way that
it could also serve as a basis for other work, beyond its application to the
Davenport-Hasse fields.

In the first part of his paper he considered function fields over an arbitrary
perfect field of constants K, not necessarily finite.

Hasse studied cyclic extensions F |F0 of such function fields, and in par-
ticular two types: On the one hand he assumed that the degree n = [F : F0]
is not divisible by the characteristic p and that the n-th roots of unity are
contained in the base field. In today’s terminology: F |F0 is a cyclic Kummer
extension. On the other hand Hasse considered the case n = p when F |F0 is
an Artin-Schreier extension.

Actually, he also wished to cover the case when n = p r is an arbitrary
power of the characteristic but then, he said, one should first generalize
the Artin-Schreier theory to these fields. Today we know that the proper
generalization uses Witt vectors. But that was discovered later only and was
not yet available in the year 1934 [Wit36].9

9In a footnote Hasse mentions a recent paper by Albert [Alb34] which contained the
description of cyclic extensions of p-power degree by iterating the Artin-Schreier construc-
tion. Artin and Schreier had already done the first iteration, obtaining cyclic extensions
of degree p2, and Albert continued this process by induction. But Hasse points out that
Albert’s stepwise approach is not suitable for his purpose. What was needed, instead,
were explicit formulas for the ray class characters of the whole extension. Such formulas
were obtained later only, in the year 1941 by H. L. Schmid [Sch41a].
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For those two types of cyclic extensions of function fields Hasse discussed
the arithmetic structure, including ramification and splitting of prime divi-
sors, conductor, different and discriminant and the behavior of differentials,
including the genus change.

If n 6≡ 0 mod p then this was more or less the transition of the situation
for number fields to function fields. But in the case n = p Hasse entered
completely new ground. It was known since the paper of Artin-Schreier
[AS27] that such cyclic extensions F |F0 are generated by an equation of the
form

F = F0(y) with yp − y ∈ F0 .

But until Hasse’s paper nothing was known about the arithmetic of those
fields. We can observe that and when Hasse established the relevant results.
On July 23, 1933 he wrote to Davenport:

I suppose that yp − y = f3(x) has genus (p− 1) . . .

Here, f3(x) denotes a polynomial of degree 3 with distinct roots; if p = 2
then this implies that the corresponding function field is elliptic. One day
later Hasse wrote:

For yp − y = f3(x) the genus is really p − 1 . Further I can explicitly
give the characters for any yp − y = f(x) (polynomial). . .

Here, the “characters” are the ray class characters of the cyclic extension
F |K(x) when considered as class field (if K is finite). Still another day later
we read:

I have got much more general results on

yp − y = f(x)

than I first thought. As a matter of fact, I have determined the genus,
and with it the number of zeros of the corresponding L-function for every
f(x) (integral or fractional). . .

Here, f(x) denotes a rational function in K(x). Hasse had discovered the
genus formula

2g = (p− 1)(m + r − 2) (m = m1 + · · ·+ mr) , (13)
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where r is the number of poles Pi of f(x) and mi the order of the pole Pi

(provided this order is not divisible by p which can be achieved by a suitable
transformation).

Today this and other facts on the arithmetics of Artin-Schreier extensions
are well known and can be found in textbooks.10 We see here how and when
they were discovered.

But the main highlight of Hasse’s preparatory paper [Has34b] is its second
part where he developed class field theory when the field of constants K is
finite; this included Artin’s reciprocity law. It is true that class field theory
for functions fields had been partly covered by F. K. Schmidt already (see
[Sch31b]). But that paper covered only the case when the field degree is
not divisible by p , and it did not contain Artin’s reciprocity law.11 Hasse
presented here a remarkable proof in the general case, using the Local-Global
Principle for central simple algebras.

Two years ago, in his paper dedicated to Emmy Noether in 1932, Hasse
had presented a proof of Artin’s reciprocity law in the case of number fields
using the Local-Global Principle for algebras [Has33]. One of the main facts
which he had to use there was that every central simple algebra over a num-
ber field is split by some cyclotomic extension. Now here, in the function field
case, this is also true but it is much more elementary since cyclotomic exten-
sions are given by extensions of the field of constants. Therefore Hasse could
use Tsen’s theorem which says that a function field over an algebraically
closed field of constants has a trivial Brauer group.12 Although Hasse con-
sidered only cyclic extensions of special type (as explained above), he pointed
out that it is straightforward to extend the arguments to arbitrary abelian
extensions of function fields (over finite fields of constants), in order to obtain
Artin’s reciprocity law in full generality.13

10See, e.g., Stichtenoth’s book [Sti09].
11F. K. Schmidt’s paper was published in a relatively unknown journal. We get the

impression that he considered this as kind of pre-publication, to be completed later. If so,
then the intended later publication never appeared.

12Tsen’s theorem had just been published [Tse33]. More about Tsen and his theorem
can be found in [Lor99].

13We note in passing that the Local-Global Principle for function fields was also estab-
lished in Witt’s thesis [Wit34], published in the same yer 1934. Witt used the analytic
theory of algebras which he had established in the function field case. – But there remained
the solution of two important problems without which class field theory could not be con-
sidered complete, namely the Existence Theorem (which guarantees the existence of class
fields with prescribed finite ray class group) and the Functional Equation for L-functions
with ray class character. Both problems were solved in the next years by Ernst Witt. For
the Existence Theorem see [Wit35]. For the functional equation see section 5.4.
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Of particular importance for the application to the Riemann hypothesis
is the explicit description of the L-series L(χ, s) for the ray class characters
χ 6= 1 of cyclic extensions F |F0. Hasse does it for arbitrary F0 (the field of
constants K being finite), but in the case of a rational field F0 = K(z) he
adds an elementary presentation. If the field degree is relatively prime to p
then again, this is a straightforward transfer of the corresponding situation
in number fields but if the degree is p , i.e., in the case of an Artin-Schreier
extension, this was completely new. In the next section we shall exhibit those
computations in the case of the fields in the diagram (12). This may give the
reader an idea of the general formulas in Hasse’s paper [Has34b].

3.4 The zeros and Gaussian sums

3.4.1 L-functions and the Riemann hypothesis

Here we shall give an account of how the authors proceed in [Dav33] to
compute the zeros of the zeta functions of Davenport-Hasse function fields.

Consider the situation of the field diagram (12) above.

According to class field theory, the Galois group of the abelian extension
F |K(z) is isomorphic to a certain ray class group in K(z). The isomorphism
between those groups is obtained by Artin’s reciprocity law. It is more conve-
nient to consider the duals of those groups, i.e., their character groups. The
ray class character group belonging to the extension F is defined modulo the
conductor fF . This is a divisor of K(z) composed of those prime divisors
which are ramified in F .

Two cases have to be distinguished: the cases (9) and (10). In case (9)
we have [F : K(z)] = mn 6≡ 0 mod p. Therefore the ramification of F |K(z)
is tame. There are precisely three primes of K(z) which are ramified in F ,
namely the primes P0, P1, P∞ which belong to the specializations z 7→ 0, 1,∞
respectively. P0, P∞ are ramified in K(x), and P1, P∞ are ramified in K(y).
Because of tame ramification, each of these primes occurs in the conductor
with multiplicity 1. Hence the conductor fF = P0P1P∞ in this case.

In case (10) we have still m 6≡ 0 mod p but n = p. There are only
two primes which are ramified in F , namely P0 and P∞. Both are tamely
ramified in K(x), whereas in K(y) only the prime P∞ ramifies. This is
wild ramification, and the conductor fK(y) = P 2

∞. The conductor of F is
fF = P0P

2
∞ .

Thus in both cases the conductor of F is of degree 3.
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The L-function for any ray class character ϕ belonging to F |K(z) is
defined (in the variable t = q−s) as follows:

L(ϕ, t) =
∑

A

ϕ(A)tdeg A =
∑

0≤ν<∞

( ∑

deg A=ν

ϕ(A)

)
tν (14)

where A ranges over all integral divisors of K(z). Here, ϕ is considered as
a “proper” (eigentlich) character, which means that ϕ is defined modulo its
own conductor fϕ (which is a divisor of fF ), and ϕ takes the value 0 for divisors
A which are not relatively prime to fϕ. If ϕ = 1 (the trivial character) then

L(1, t) = ζK(z)(t) =
1

(1− t)(1− qt)

is the zeta-function of the rational function field. Otherwise L(ϕ, t) is a
polynomial, in consequence of the Riemann-Roch theorem. The degree of
this polynomial is

deg L(ϕ, t) = −2 + deg fϕ . 14 (15)

As a consequence of the product decomposition of the zeta- and L-functions
we have

ζF (t) = ζK(z)(t) ·
∏

ϕ6=1

L(ϕ, t) . (16)

The problem to determine the zeros of ζF (t) is equivalent to finding the zeros
of the L-series L(ϕ, t) for the ray class characters ϕ 6= 1 of F |K(z).

We have deg fϕ ≥ 2. If deg fϕ = 2 then from (15) we see that the poly-
nomial L(ϕ, t) is constant: L(ϕ, t) = 1. Thus on the right hand side of (16)
there appear properly only those characters ϕ 6= 1 whose conductor is of
degree > 2, hence fϕ = fF is of degree 3. Then L(ϕ, t) is a polynomial of
degree 1 :

L(ϕ, t) = 1 + cϕ t with cϕ =
∑

deg P=1

ϕ(P ) (17)

where P ranges over all prime divisors of K(z) of degree 1. There is only one
zero of L(ϕ, t), given by t 7→ −c−1

ϕ .

Hence there arises the problem to describe those ray class characters ϕ
whose conductor fϕ is of degree 3, and then to evaluate the sum cϕ in (17).

14The term −2 appears since the ground field K(z) is rational in our situation, hence
its genus g0 = 0. For an arbitrary function field F0 as ground field, there would appear
the term 2g0 − 2 when g0 is the genus of F0.
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This is the starting point of the Davenport-Hasse paper [DH34].

Remember the diagram (12). The extension F |K(z) is composed of the
linearly disjoint fields K(x) and K(y). Hence every ray class character ϕ
belonging to F is uniquely a product ϕ = χψ of a ray class character χ be-
longing to K(x) and a ray class character ψ belonging to K(y). If deg fϕ = 3
then necessarily χ 6= 1 (otherwise ϕ = ψ would belong to K(y) and its
conductor would be of degree 2). Similarly ψ 6= 1.

Every prime P of K(z) of degree 1 is represented by a polynomial z − a
with a ∈ K or by 1

z
; let us write Pa or P∞ respectively. Then (17) can be

written as
cχψ =

∑
a∈K∪∞

χ(Pa)ψ(Pa) . (18)

On the right hand side the terms belonging to the primes of the conductor
can be omitted.

Let us first describe the characters χ belonging to K(x)|K(z). Remember
the defining relation xm = z. This leads to the m-th power residue symbol{

z
A

}
m

which is defined for primes P 6= P0, P∞ by

{ z

P

}
m
≡ z

|P |−1
m mod P . (19)

where |P | denotes the number of elements in the residue field of P . Explicitly,

if |P | = qf then z
|P |−1

m = z(1+q+···+qf−1) q−1
m ≡ NP (z)

q−1
m mod P where NP

denotes the norm from the residue field of P to the base field K. Hence
{ z

P

}
m
≡ NP (z)

q−1
m mod P . (20)

More precisely,
{

z
P

}
m

is the unique element in K× which satisfies this con-
gruence. In particular, if A = Pa is a prime divisor of degree 1 we have

{
z

Pa

}

m

= a
q−1
m . (21)

The extended power residue symbol
{

z
A

}
m

for divisors A relatively prime
to P0 and P∞ is defined by linearity from (20). Artin’s reciprocity law implies
that the map A 7→ {

z
A

}
m

is a homomorphism and defines an isomorphism
of the ray class group belonging to K(x)|K(z) onto the cyclic subgroup of
order m of K×. In other words: This is a ray class character of order m,
with values in K×.

But the characters in the sense of L-series are supposed to have complex
roots of unity as their values. Hence we choose an isomorphism between K×
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and the group Uq−1 of complex (q−1)-th roots of unity and transfer the power
residue symbol

{
z
A

}
m

to a symbol with values in Uq−1. It is convenient to

choose a prime divisor p ofQ( q−1
√

1) dividing p and then take the isomorphism
Uq−1 → K× given by the residue map modulo p. Hasse denotes the resulting
map by

(
z
A

)
m

. It is defined by

( z

A

)
m
≡

{ z

A

}
m

mod p . (22)

More precisely:
(

z
A

)
m

is the unique complex m-th root of unity whose residue

class mod p is
{

z
A

}
m

, the latter symbol being defined by the Artin reciprocity
map of the cyclic extension K(x)|K(z).15

If A = Pa is a prime divisor of degree 1 we have from (21):

(
z

Pa

)

m

≡ a
q−1
m mod p . (23)

From this we conclude that the ray class character A 7→ (
z
A

)
m

is of order m .

The group of all ray class characters for K(x)|K(z) is cyclic of order m,
hence every other ray class character is a power of the above and we have

(
z

Pa

)µ

m

≡ a
q−1
m

µ mod p (a ∈ K×)

for some µ, unique modulo m.

We conclude:

Every ray class character χ of K(x)|K(z) determines a character of the
multiplicative group K× of the same order as χ. For simplicity let us
denote that character of K× again with χ; then we have

χ(Pa) = χ(a) ≡ a
q−1
m

µ mod p (for a ∈ K×) (24)

for some unique µ with 0 ≤ µ < m .

We similarly deal with the ray class characters ψ belonging to K(y)|K(z).
But here we have to distinguish between the two cases (9) and (10). Let us
first discuss the case (9).

15This is the notation used by Hasse in [DH34].
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3.4.2 The case n 6≡ 0 mod p

In that case the defining relation of K(y)|K(z) is yn = 1 − z . Accordingly
we now consider the n-th power residue symbol

{
1−z
A

}
n

defined for prime
divisors P 6= P1, P∞ of K(x) by

{
1− z

P

}

n

≡ NP (1− z)
q−1

n mod P

and then extended linearly in the denominator. Again Artin’s reciprocity
law implies that the map A 7→ (

1−z
A

)
n

yields an isomorphism of the ray class
group of K(y) with the subgroup of order n of K×. Again, this symbol is
lifted along the prime p of Q( q−1

√
1), resulting to the symbol

(
1−z
A

)
n
.

In this way every ray class character ψ of K(y)|K(x) determines a char-
acter of K× of the same order, again denoted by ψ, and we now have
similarly as in (24)

ψ(Pa) = ψ(1− a) ≡ (1− a)
q−1

n
ν mod p (1− a ∈ K×) (25)

for some unique ν with 0 ≤ ν < n .

We may now write (18) in the form

cχψ =
∑
a∈K

χ(a)ψ(1− a) (26)

where now χ, ψ are characters of K× of orders dividing m,n respectively,
with values in the group of complex roots of unity. (We have to interpret
χ(0) = ψ(0) = 0.)

Recall that the conductor fϕ of the ray class character ϕ = χψ is supposed
to be of degree 3, and that this requires the conditions χ 6= 1 and ψ 6= 1. But
these conditions are in general not sufficient to guarantee that deg fϕ = 3.
One has also to observe another condition, namely χψ 6= 1 as characters
of K×. For, if ψ = χ−1 then (26) yields cχψ =

∑
a χ( a

1−a
) = 0.16 In this case

the ray class character χψ has order dividing d = gcd(m,n) and belongs to
the extension

K(u) ⊂ F with u =
xm/d

yn/d
hence ud =

z

1− z
.

16Note that the map a 7→ a
1−a is a bijection of K ∪∞ to itself.
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There are only two primes of K(z) which ramify in K(u), namely P0 and
P1 . The prime P∞ is unramified in K(u). Hence the ray class characters
belonging to K(u) have trivial L-series.

There are (m − 1)(n − 1) − (d − 1) pairs of characters χ, ψ of K× of
order dividing m,n respectively, satisfyingthe conditions χ, ψ, χψ 6= 1. On
the other hand the genus g of the field F is given by

2g = (m− 1)(n− 1)− (d− 1) . (27)

But 2g is also the number of zeros of the zeta-function of F . We conclude
that the 2g expressions

− π(χ, ψ) :=
∑
a∈K

χ(a)ψ(1− a) with χ, ψ, χψ 6= 1 (28)

coincide with the numbers cϕ appearing in (18).17 Hence the zeros of ζ(t)
are given by t−1 7→ π(χ, ψ). The sums (28) are called Jacobian sums.

Next we observe that the π(χ, ψ) are the same as the expressions which
appear on the left hand side of (5) in Davenport’s letter which we have cited
in section 3.1 , except that the computation is now done in K = Fq instead
of Fp . Following Davenport’s computation we obtain a representation of the
π(χ, ψ) by means of Gaussian sums. In their paper [DH34] Davenport and
Hasse streamlined this computation and obtained:

Theorem in case n 6≡ 0 mod p . Let K = Fq be the finite field with
q elements and F = K(x, y) the function field with the defining relation
xm + yn = 1. It is assumed that m and n divide q − 1. Then the
zeros of the zeta function ζF (in the variable t = q−s) are in one-to-
one correspondence with the pairs (χ, ψ) of characters of K× of order
dividing m resp. n, with the specification that χ, ψ, χψ 6= 1 . For any
such pair the corresponding zero is given by assigning t−1 to the algebraic
integer

π(χ, ψ) =
τ(χ)τ(ψ)

τ(χψ)
(29)

with the following definition of (generalized) Gaussian sums:

τ(χ) = −
∑

a∈K×
χ(a)e(a) with e(a) = e

2πiS(a)

p (30)

where S : K → Fp denotes the trace function.

17The minus sign in (28) has been inserted by Hasse for normalization purposes. Same
for the minus sign in formula (30) below.
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Indeed, this is a remarkable result. It shows that the factor systems of
Gaussian sums, which appeared in Davenport’s letter during his calculation
for his estimate (see page 10) are in fact identical with the zeros of the
zeta-function. The Riemann hypothesis is an immediate consequence of the
theorem since it is easily verified that |τ(χ)| 2 = q, i.e., |τ(χ)| =

√
q. This

yields a direct proof of the Riemann hypothesis with the help of class field
theory, without recourse to Artin’s observation (page 8).

3.4.3 The case n = p

The case n = p is of different kind. Here, Davenport and Hasse entered
completely new ground. Whereas the case n 6≡ 0 mod p could be handled
analogously to the similar situation in number fields, in case n = p the
Artin-Schreier extension K(y)|K(z) has no counter part with number fields.
Hasse had to define an additive analogue to the power residue symbol. For
arbitrary Artin-Schreier extensions of function fields he had done this in his
preliminary paper [Has34b]. In the present situation where the ground field
K(z) is rational, this looks as follows.

The generating equation for K(y)|K(z) is yp − y = z. This time the cor-
responding residue symbol, which we call “℘-residue symbol”, is of additive
kind.18 If P 6= P∞ is a prime divisor of K(z) then the (additive) ℘-residue
symbol is defined by { z

P

}
℘
≡ SP (z) mod P .

where SP denotes the trace (Spur) of the residue field modulo P to the
prime field Fp . More precisely,

{
z
P

}
℘

is the unique element in Fp which

satisfies the congruence relation. For any divisor A relatively prime to P∞
the extended symbol

{
z
A

}
℘

is defined by linearity in the denominator. Artin’s

reciprocity law implies that the map A 7→ {
z
A

}
℘

is a homomorphism and

defines an isomorphism of the ray class group belonging to K(y)|K(z) onto
the additive group F+

p , which is cyclic of order p. In other words: This is a
ray class character of order p, with values in F+

p .

But again, the characters in the sense of L-series are supposed to have
complex roots of unity as their values. Hence we have to choose an iso-
morphism between F+

p and the group Up of complex p-th roots of unity and

transfer the power residue symbol
{

z
A

}
p

to a symbol with values in Up. For

this purpose Hasse chooses the operator exp(X) = e
2πi
p

X . In this way he

18In this connection the symbol ℘ is used to denote the additive operator ℘(X) = Xp−X.
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defines the symbol: ( z

A

)
℘

= exp
{ z

A

}
℘

If A = Pa is a prime of degree 1 then we obtain

(
z

Pa

)

℘

= e(a)

where we use the notation e(a) as on page 22 in the definition of the Gaussian
sums. This shows in particular that the ray class character A 7→ (

z
A

)
℘

is of

order p.

The group of ray class characters of K(y)|K(z) is cyclic of order p, hence

every other ray class character is a power
(

z
Pa

)κ

℘
of the above, and we have

(
z

Pa

)κ

℘

= eκ(a)

for some κ. We conclude:

Theorem in case n = p . Let K = Fq be the finite field of characteris-
tic p with q elements and F = K(x, y) the function field with the defining
relation yp−y = xm. It is assumed that m divides q−1. Then the zeros
of the zeta-function ζF (in the variable t = q−s) are in one-to-one cor-
respondence with the pairs (χ, ψ) where χ 6= 1 is a character of K× of
order dividing m and ψ 6= 1 is a character of K+ of order p.19 We may
write ψ = eκ for some κ = 1, 2, . . . , p − 1. For any such pair the cor-
responding zero is given by assigning t−1 to the (generalized) Gaussian
sum

τκ(χ) = −
∑
a∈K

χ(a)eκ(a) . (31)

Again, the Riemann hypothesis in case n = p is an immediate consequence
of the theorem since |τκ(χ)| = |τ(χ)| = √

q.

It seems remarkable that in case n = p the Gaussian sums themselves
appear as the roots of the zeta-function, whereas in case n 6≡ 0 mod p we
had seen that their factor systems turn out to be the roots. In this respect
the result in case n = p looks simpler than if n 6≡ 0 mod p. Accordingly
in the Davenport-Hasse paper the case n = p is discussed first, and only

19Observe that the condition χψ 6= 1 is not necessary here since the order of χ divides m
and hence is relatively prime to the order p of ψ.
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thereafter the case n 6≡ 0 mod p is treated. We have changed the order of
discussion since this reflects the historic line. After all, this work started with
Davenport’s letter (see section 3.1), and that belongs to the case n 6≡ 0 mod p.

3.5 Summary

In early January 1932 Davenport wrote a letter to Hasse containing an es-
timate for the number of solutions of the generalized Fermat congruence
axm+byn ≡ c mod p where p is a prime number. It turned out that this num-
ber is approximately p with an error term of order of magnitude

√
p . This

constituted the best possible result which was to be expected. Later Hasse ob-
served that the result can be generalized over an arbitrary finite field Fq with
the error term estimated by

√
q. After a visit to Artin in Hamburg in Novem-

ber 1932 Hasse learned that this observation yields a proof of the Riemann
hypothesis for the corresponding function field in characteristic p.

Moreover, the zeros of the corresponding zeta function (if considered as
function of the variable t = q−s) can be described as factor systems of Gaus-
sian sums. This led to a joint paper of Davenport and Hasse which appeared
1934. In the same paper the authors dealt with function fields defined by
an Artin-Schreier equation of the form yp − y = xm. The zeros of the zeta
function of such a field are Gaussian sums. Today those fields are called
Davenport-Hasse fields.

In their proofs the authors used class field theory for global fields of char-
acteristi p, including L-functions for the corresponding ray class characters.
At that time this theory had not yet been fully developed in the literature,
hence Hasse published another paper containing full proofs of the relevant
class field theory, including Artin’s reciprocity law.

4 Gaussian sums

4.1 Arithmetic description

We have said above that Davenport and Hasse wanted not only to prove the
Riemann hypothesis for their function fields, but they also wished to deter-
mine explicitly the zeros of the zeta functions. On first sight the two theorems
above appear to answer this question (see pages 22 and 24). However this is
not the end of the story. In the second part of their joint paper [DH34] the
authors endeavor to give an “arithmetic characterization” of these zeros.
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This started already in February 1932 when Davenport asked Hasse (in
a letter dated on the 25th):

Now what I should like to know is whether these τ ’s are known in terms
of, say, the decomposition of p in the fields of the m’th and n’th roots
of unity – or should it be the decomposition of p in the fields of

√
m or√

n ? I am very ignorant of all this; can you help me at all, or give me
some references ?

When Davenport speaks of “ these τ ’s ” then he has in mind the Gaussian
sums τ(χ) as above.

We do not know Hasse’s direct reply to this. Originally Davenport had
in mind the number of solutions of the congruence axm + bym ≡ c mod p
which he tried to express in terms of the τ ’s. But in the course of their
further work, when it became clear that even the roots of the zeta function
themselves can be expressed in terms of the Gaussian sums, then the problem
of their arithmetic characterization became more important. To be sure, this
problem does not really belong to the theory of function fields; it belongs to
classical algebraic number theory.

At first Hasse and Davenport planned to write a separate paper about
this. That paper, which they called their “snappy” paper, seems to have been
essentially completed in early 1934. Among the Hasse papers in Göttingen we
have found a manuscript written by Davenport on Gaussian sums. Although
this is undated we have reason to assume that it was written for the paper
in question. In any case Hasse wrote to Davenport on February 12, 1934:

I received your manuscript on Gaussian sums. . . . I have not been able
to give it more than a very superficial glance. It seems perfectly alright,
though. I will look at it more carefully to-morrow.

But from the same date there is a letter of Davenport to Hasse; both letters
seem to have crossed paths. There we read:

I regret to say that the second part of our paper (prime ideal decom-
position of the gen[eralized ] Gaussian sums) was done 39 years ago
by Stickelberger. . .Mordell reminded me of this paper, which is cited in
Hilbert.. . . Sorry to be a bearer of this ill news.

Here, Davenport referred to Stickelberger’s paper [Sti90] of 1890.20 Hasse

20Thus Stickelberger’s results had appeared 44 years before Davenport’s letter, and not
39 years as he wrote.
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replied on February 17, 1934:

My dear Harold, it is rather a pity that Stickelberger already proved what
took us so many hours. But it is better this has turned up now than later.

In the same letter Hasse wrote:

What I propose is to abandon the original plan of a “snappy” paper on
Gaussian sums, but to give our new and simpler proof of Stickelberger’s
result in our planned paper on yn = 1 − xm and yp − y = xm as an
appendix.

We do not know Davenport’s reply but we know Hasse’s next letter of Febru-
ary 22, 1934 where he wrote:

You are quite right with your criticism of our proof in favour of the
old. But on the other hand ours is more concise. Moreover the old
proof and the whole matter seems to have slipped from the minds of our
generation, presumably owing to Hilbert’s inconceivable not giving it in
his Zahlbericht.

The last sentence puts into evidence the role which Hilbert’s Zahlbericht of
1897 had played for the next generations of mathematicians. That Zahlbericht
had become the main source for studying algebraic number theory and it was
“inconceivable” that Hilbert would not have included every relevant result
from the past. Well, Hilbert did mention Stickelberger’s paper in his list of
references, but he did not mention it in the text. Hilbert presented Stickel-
berger’s result in the case when q = p is a prime only (in § 112), not saying
that the result generalizes to higher powers q = pk. But just this case was
now in the focus of interest of Davenport and Hasse.

Finally, after an extended discussion between the two authors it was de-
cided that a presentation of Stickelberger’s old proof was to be included as
an appendix in their paper [DH34], but in the main body the new proof of
the authors was given.

But what is the content of Stickelberger’s theorem?

4.2 Stickelberger

By its very definition, τ(χ) is an algebraic integer in the cyclotomic field
Q( q−1

√
1 , p
√

1); see (30). The problem is to determine the prime decomposition
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of τ(χ). In view of the relation

τ(χ)τ(χ) = χ(−1)q (32)

(where χ is the complex conjugate of χ) we see that only those prime divisors
of Q( q−1

√
1 , p
√

1) appear in τ(χ) which are divisors of q, hence of p.

The following diagram shows the structure of the field.

Q( q−1
√

1 , p
√

1) , P

Q( q−1
√

1) , p

wwwwwwwwwwwwwwwwwww

HHHHHHHHHHHHHHHHHHH
Q( p
√

1) , Π

GGGGGGGGGGGGGGGGGG

p−1

wwwwwwwwwwwwwwwwwww

Q , p

(33)

Here, P denotes a prime divisor of Q( q−1
√

1 , p
√

1) dividing p. Observe that p
is totally ramified in Q( p

√
1). A prime element of its extension is

Π = e
2πi
p − 1 .

On the other side, p is unramified in Q( q−1
√

1), and therefore Π is unramified
in Q( q−1

√
1 , p
√

1) . Hence Π is a prime element also for P. If s denotes the
multiplicity of P in τ(χ) then we have

τ(χ) ≡ c · Πs mod Ps+1

where c 6≡ 0 mod P is uniquely determined modulo P. Using Hasse’s nota-
tion of multiplicative congruence this can be written as

τ(χ) ≡ c · Πs mod× P .

which means that the quotient of the two sides is ≡ 1 mod P . Stickelberger
had determined the exponent s and the coefficient c in terms of χ and P , as
follows.

In our situation χ is a nontrivial character of F×q of order dividing m,
hence it is of the form

χ(a) ≡ a
q−1
m

µ mod p (for a ∈ K×) (34)
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for some unique µ with 0 < µ < m. (Compare with (24).) We write q = pf

and consider the p-adic expansion of µ:

µ = c0 + c1p + · · · cf−1p
f−1

where 0 ≤ ci ≤ p− 1 and not all ci = p− 1. Let

s(µ) = c0 + c1 + · · ·+ cp−1

be the p-adic digit sum of µ, and

γ(µ) = c0! · · · cf−1!

With this notation one can formulate the theorem for whose proof Davenport
and Hasse had spent so much time but then found out that it had been proved
in 1890 already:

Stickelberger’s theorem:21

τ(χ) ≡ Πs(µ)

γ(µ)
mod× P . (35)

It turns out that the algebraic number τ(χ) is uniquely determined by the
relations (35) and (32), except if p = 2 when it is unique up to a minus sign
only.

As said above already, this result about the arithmetic characterization of
Gaussian sums does not properly belong to the theory of function fields but
to algebraic number theory. The question arises why Davenport and Hasse
had included this into their paper [DH34] whose main purpose was, after all,
to prove the Riemann hypothesis for the function fields in question, i.e., for
the Davenport-Hasse fields. The authors do not explain their motivation.
They only say:

Es ist zu erwarten, dass auch im Falle eines beliebigen algebraischen Funktio-
nenkörpers mit endlichem Konstantenkörper die Nullstellen der zugehörigen
Kongruenzzetafunktion sich arithmetisch charakterisieren lassen, und zwar
im Zusammenhang mit der Klassenkörpertheorie durch Teilwerte Abelscher
Funktionen.

It is to be expected that also in the case of an arbitrary algebraic function
field with finite field of constants, the zeros of the corresponding zeta
function can be arithmetically characterized, namely in connection with
class field theory by division values of abelian functions.

21[Sti90], page 354.
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Certainly this text had been inserted by Hasse. He refers to his expe-
rience with the Riemann hypothesis for elliptic function fields. There the
“class field theory by division values of abelian functions” is known under
the name of “complex multiplication”. Hasse’s work on the Riemann hy-
pothesis in the elliptic case had shown a close connection with the theory of
complex multiplication. In the elliptic case the two roots of the zeta function
are contained in the endomorphism ring and can be arithmetically identified
as quadratic numbers.22 It appears that Hasse had envisaged quite generally
a generalization of complex multiplication and the role of the Riemann hy-
pothesis there, in the direction of what later became known under the name
of CM-fields. But his remarks here (and elsewhere) are quite vague and do
not give any indication that he had already definite ideas how to approach
this problem.23

There are two cases where the Davenport-Hasse fields are elliptic, namely
the fields generated by the equations

y2 = 1− x3 (q ≡ 1 mod 6) and y2 = 1− x4 (q ≡ 1 mod 4) .

In these cases the Davenport-Hasse paper gives an explicit expression for the
two zeros of the respective zeta function.

4.3 Relations

The Davenport-Hasse paper [DH34] contains a section with two important
relations between Gaussian sums.

Consider the following situation:

K a finite field,

χ a nontrivial character of K×,

τ(χ) the corresponding Gaussian sum,

Kr the extension of K of degree r,

Nr the norm function Kr → K,

χr the character of K×
r induced by χ, i.e., χr = χ ◦Nr,

τ(χr) the corresponding Gaussian sum over Kr.

22See Part 3, [Roq06].
23Many years later Yamada has taken up this idea and determined to some extent

the arithmetic structure of the endomorphism algebra of the Jacobian of the Davenport-
Hasse curves. See [Yam68]. An essential ingredient of Yamada’s work is the arithmetic
characterization of the roots of the zeta function by Stickelberger’s theorem.
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The first of the two relations reads:

τ(χr) = τ(χ)r . (36)

For the second relation consider:

m an integer dividing the order of K×,

χ ranges over the nontrivial characters of K× with χm = 1,

ψ another character of K×, so that ψm 6= 1,

π (χ, ψ) the corresponding Jacobian sum as defined in (28).

Then: ∏
χm=1
χ6=1

π(χ, ψ) = ψm(m) · τ(ψ)m

τ(ψm)
. (37)

These two relations (36), (37) refer to Gaussian and Jacobian sums over
finite fields, and prima facie they have nothing to do with function fields.
However, the two theorems above in section 3.4.2 and 3.4.3 show that, indeed,
these are statements about the zeros of zeta functions of Davenport-Hasse
fields. And it was in this connection that Davenport and Hasse discovered
these relations.

The first relation (36) connects to the case n = p of the Davenport-Hasse
fields (see page 24). In this case the Gaussian sums τ(χ) represent zeros of
the zeta function of ζF for the function field F = K(x, y) with yp − y = xm

where m is the order of χ. The relation describes the behavior of the zeros of
ζF when F is replaced by the constant extension Fr = FKr . Quite generally,
it was known that the zeros of ζFr (as a function of t′ = q−rs) are the r-th
powers of the zeros of ζF (as a function of t = q−s). This general fact, valid
for arbitrary function fields over finite fields of constants, had been included
by Hasse in his survey on zeta functions (thereby citing Artin) [Has34c]. In
the case of Davenport-Hasse fields for n = p , the relation (36) describes,
more precisely, which zero of ζFr is obtained when a given τ(χ) of ζF is
raised to its r-th power. Its proof in the Davenport-Hasse paper rests on the
same fact as the proof of the general statement in Hasse’s survey, namely the
decomposition law of prime divisors in a constant extension – except that
now, in order to obtain (36), this has to be applied to each individual L-series
instead of the whole zeta function.24

24Note that the complete set of zeros in the case n = p consists of the τκ(χ) for κ =
1, 2, . . . p− 1. But since τκ(χ) = χ(κ)−1τ(χ) it suffices to consider the τ(χ).

31



The second relation (37) refers to the case n 6≡ 0 mod p of the Davenport-
Hasse fields (see page 22). In this case the Jacobian sums π(χ, ψ) represent
the zeros of the zeta function ζF ; to this end F had been regarded as a class
field over K(z) and the products ϕ = χψ were considered as the correspond-
ing ray class characters. But F can also be regarded as class field over K(x),
cyclic of degree m. According to class field theory, its ray class characters
are obtained from the ray class characters ψ of K(y)|K(x) by means of the
norm function, i.e. these are the functions ψ∗(A) = ψ(NK(x)|K(z)A) where
NK(x)|K(z) is the norm function and A ranges over the divisors of K(x) rel-
atively prime to the conductor. This has consequences for the L-function:
The L-function L(ψ∗, t) for F |K(x) appears as the product

L(ψ∗, t) =
∏

χ 6=1

L(χψ, t)

where on the right hand side the L-functions are meant for F |K(z). The
discussion of this formula leads to the relation (37).

In the Davenport-Hasse paper we read:

Wir kamen auf den einfachsten Fall dieser Relationen, nämlich den Fall m =
2, durch Rechnungen im Zusammenhang mit Theorem 5 in H . Davenport
[Dav33].

We discovered the most simple case of these relations 25, namely the case
n = 2, while doing some computations in connection with Theorem 5 in
the paper of H.Davenport [Dav33].

We have checked the paper [Dav33] which investigated the so-called Klos-
terman sums and strives to obtain estimates for their order of magnitude.
But we did not find the relation (37) (in case n = 2) explicitly written
down. It appears that the relation (37) was discovered after Davenport had
completed his paper. In fact, that paper was “received by the editors” on
July 15, 1932 already. Note that the editor of Crelle’s Journal was Hasse,
and that Hasse usually scrutinized every paper which he received. Thus we
may reconstruct the situation as follows:

In the second half of 1932 Hasse checked Davenport’s paper, in particular
the computations therein. Thereafter he communicated with Davenport and
on this occasion the relation (37) was found. This seems to have happened
during the summer semester 1933 when Davenport, who had obtained a

25This refers to the relations (37).
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stipend, studied in Göttingen.26 During the weekends and holidays he used
to stay with the Hasses in nearby Marburg. This was the time when the
Davenport-Hasse paper originated. Most of the discussions about the paper
took part in Marburg but there are also a few letters between Göttingen and
Marburg by which we can follow the gradual discovery of the relation (37).

On Wednesday June 21, 1933 Davenport wrote from Göttingen:

My dear Helmut, The relation we spent so much time looking for is
incredibly simple:

τ(ψ)τ(χψ)τ(χ2ψ) . . . τ(χm−1ψ)

τ(ψm)
= ε · pm−1

2 . (38)

Here χ, ψ are characters of order m,n resp., where (m,n) = 1, and ε is
an mn-th root of unity depending on ψ and m; ε = εm(ψ).

Davenport continued the letter by giving a proof of this relation. At the end
he wrote:

P.S. I wonder if I shall receive a letter from you in the morning with
roughly the same contents!

In fact, on the same date Hasse had sent a letter from Marburg:

My dear Harold, your relation is alright. It generalises at once to

τ(ψ) τ(χψ) · · · τ(χm−1ψ)

τ(ψm) τ(χ) · · · τ(χm−1)
∼ 1 , (39)

where m, n are any numbers prime to each other.

Again two days later Hasse sent another letter with, he said, a much simpler
proof which is valid for arbitrary m,n dividing p− 1, whereas in their earlier
proofs they had to assume that m, n are relatively prime. But so far these
computations were done for q = p only, i.e., for Gaussian sums in the prime
field Fp. In the last mentioned letter Hasse expressed his wish to deal with
the case of arbitrary prime power q = pν . Apparently this took some time,
for on October 28, 1933 Hasse wrote to Davenport:

26In this way Davenport witnessed personally the liquidation of Göttingen as a mathe-
matical center as a consequence of the antisemitic policy of the Nazi government. During
this semester in Göttingen began the friendship between Davenport and Heilbronn which
later continued in England when Heilbronn had to emigrate.
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. . . I am hard at work. Progress comes very slowly indeed. Next week
term will prevent me from taking further steps in this matter. I am
afraid the thing will not be finished until then.

And some days later on November 5:

Although I should most heartily welcome the publication of a joined paper
from both of us after so long a time of our acquaintanceship, I will not
press you in the least to finishing the thing now. I can also understand
that pursuing new questions is often far more alluring than polishing off
old matter.

So it took another half a year until Davenport sent Hasse his manuscript
on Gaussian sums which, however, had to be rewritten since the old paper
of Stickelberger had been discovered; we have reported this in the foregoing
section.

As to the relations (36) and (37), there were two different proofs given in
the Davenport-Hasse paper: one as reported above, using class field theory
of the respective function fields, and a second one based on Stickelberger’s
theorem (see page 29). Since the paper contains two different proofs of
Stickelberger’s theorem (one new proof by Davenport and Hasse, and also
the old proof by Stickelberger) we see that altogether the paper contains
three proofs of the relations for Gaussian sums.

But the authors seemed not yet to be entirely satified. In a letter of
July 7, 1935 Hasse reports to Davenport about formula (36):

My Seminar on Gaussian sums has had one outcome at least: a research
student of mine, H. L. Schmid, has found an elementary proof for the
relation τ(χr) = τ(χ)r .

Here, “elementary” means that it does not refer to the theory of function
fields and proceeds by algebraic manipulation within finite fields. Schmid’s
paper appeared 1936 in Crelle’s Journal [Sch36a]. Schmid tried also to give
an elementary proof of (37) but there was some obstacle which he could
not remove, so his proof of (37) was presented conditionally, with a certain
formula left open.

Another elementary proof of (36) was given by Davenport in [Dav39]; see
page 43.
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4.4 Summary

After the zeros of the zeta functions of the Davenport-Hasse fields had been
represented by Gaussian sums, Davenport and Hasse wished to describe these
roots by arithmetic properties within the relevant cyclotomic field. Their
motivation was to identify the roots within the anticipated algebra of endo-
morphisms of the Jacobian, whose algebraic theory was, however, not yet
developed. The arithmetic characterization of Gaussian sums required the
description of their prime decomposition, together with certain congruences.
After the authors had completed their proof it turned out that the result had
already been published in the year 1890 by Ludwig Stickelberger. So in their
joint paper they included two proofs, their new proof and the old one by
Stickelberger. As a byproduct of their computations two important relations
between Gaussian sums were obtained. In the later development elementary
proofs of these relations were given, one by Hasse’s student H. L. Schmid and
the other one by Davenport.

5 Functional equation for L-functions

5.1 Weil’s question

We have seen that the relevant L-functions for the Davenport-Hasse fields are
polynomials of degree 1. This fact was essential for the proof by Davenport-
Hasse about the realization of the zeros by Gaussian sums. Are there other
function fields where this happens? In the Davenport-Hasse paper this ques-
tion is not discussed. Years later, in 1939, the question turned up in the
correspondence of Hasse with André Weil. In a letter of February 9, 1939
Weil wrote:27

. . . Eine Bemerkung noch, die Ihnen wahrscheinlich schon bekannt ist: aus
der Funktionalgleichung ergibt sich die Riemannsche Vermutung für sämtliche
L-Reihen, die vom 1.ten Grade sind, also auch schon für diejenigen Zeta-
funktionen in Funktionenkörpern, die in (abelsche) L–Reihen 1.ten Grades
zerfallen; wenn ich mich nicht irre, sind das genau diejenigen Zetafunktio-
nen, für welche Sie in Ihrer mit Davenport gemeinsam geschriebenen Arbeit
die Riemannsche Vermutung bewiesen haben, und das ist wohl der eigent-
liche Grund dafür, dass der Beweis gelingt.

27André Weil used German language in his letters to Hasse.
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. . . Still another remark which may probably be known to you already:
the functional equation implies the Riemann hypothesis for all those L-
series which are of degree 1, and hence also for those zeta-functions
of function fields which split into (abelian) L-series of 1st degree. If I
am not mistaken these are precisely those zeta-functions for which you
have proved the Riemann hypothesis in your joint paper with Davenport.
Apparently this is the true reason for the success of your proof.

Hasse confirmed this in his reply of March 7 1939:

Sie haben recht: Die Zetafunktionen, die in L–Reihen ersten Grades zer-
fallen, sind wesentlich dieselben, die ich in meiner Arbeit mit Davenport
behandelt habe . . .

You are right: The zeta-functions which split into L-series of first degree
are essentially those which I have treated in my paper with Davenport
. . .

When Hasse says “essentially” then he means that the primes P0, P1, P∞
of K(z) could be replaced by any other three primes of degree 1. But this
amounts to an automorphism of K(z), which then can be extended to an
isomorphism of the field F . The only property of F essential in this context
is that the characters of the extension F |K(z) have conductor of degre ≤ 3.

We shall see below that and how the Riemann hypothesis for the Davenport-
Hasse fields may be deduced from the functional equation for the L-functions.

But Weil’s comment was not only directed to simplifying the proof of
the Riemann hypothesis for Davenport-Hasse fields. He tried to use Hasse’s
method in a more general setting which would then lead to a proof of the
Riemann hypothesis for arbitrary function fields. To this end he tried to inter-
pret the linear factors of the polynomials L(χ, t) as kind of mock L-functions
satisfying a functional equation. He explained this in his above mentioned
letter as follows:

Ich vermute aber, dass sämtliche Linearfaktoren der Zetafunktionen in Funk-
tionenkörpern als nicht–abelsche L–Reihen im Artinschen Sinne betrachtet
werden können; daraus würde sich der allgemeine Beweis der Riemannschen
Vermutung in Funktionenkörpern ergeben. Allerdings bin ich noch nicht so
weit, dass ich die nicht-abelschen L-Reihen im Grundkörper darstellen kann;
es hängt alles von der Weiterführung meiner Liouvilleschen Arbeit ab. Wenn
es mir gelingt, die in Angriff genommene Frage zu lösen, werde ich Ihnen
gewiss davon schreiben.
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But I suspect that all linear factors of the zeta functions in function
fields can be regarded as L-series in the sense of Artin; this would imply
the general proof of the Riemann hypothesis in function fields. However
I am not yet able to represent the non-abelian L-series in the base field;
all this depends on the continuation of my Liouville paper. If I will be
able to solve this pending question then I will certainly write to you.

When Weil mentions “non-abelien L-series” he refers to Artin’s L-series
for Galois extensions of number fields [Art23, Art30]. However Artin had
given his theory of Galois L-series for number fields only; in order to use it
in the present situation it would have to be transferred to function fields. At
the time of Weil’s letter this had not yet been done explicitly in the literature
but Weil seems to take this for granted. This was admissible since the main
prerequisite for Artin’s theory was the validity of Artin’s reciprocity law, and
that had been proved in the function field case by Hasse in [Has34a].

Weil’s “Liouville paper” is the one which had appeared in the “Journal
de Liouville” [Wei38a]. There he generalizes the Riemann-Roch theorem to
matrices over function fields. Although in this paper Weil discusses complex
functions where the field of constants is C, he had been able in the meantime
to transfer his theory to function fields over arbitrary fields of constants,
in particular over finite fields. He had informed Hasse about this in earlier
letters so that he could assume that Hasse was familiar with it. In mod-
ern language one could describe Weil’s results as belonging to the theory of
sheaves over a smooth algebraic curve.28

We do not know whether this idea of Weil for the proof of the Riemann hy-
pothesis has been followed in the literature.29 The final proof of the Riemann
hypothesis works along different lines. Nevertheless the functional equation
for L-series has played an important part in the development of the theory
of algebraic function fields in the 1930s, in connection with the quest for the
Riemann hypothesis. Therefore it seems appropriate to report here on it.

5.2 The functional equation

But what does the functional equation look like?

Let F |K be an algebraic function field whose field of constants K is finite

28Already Witt in his thesis [Wit34] had obtained some results in this direction, and
Weil had duly mentioned this in his letters to Hasse.

29But note that Weil in [Wei48b] has developed the theory of Artin’s L-functions in char-
acteristic p, and in particular proved that they are polynomials (in the variable t = q−s).
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with q elements. Let χ be a ray class character of F with conductor fχ. We
have already given the definition of its L-series (in the variable t = q−s) as

L(χ, t) =
∑

A

χ(A)tdeg A

=
∑

0≤ν<∞
cν(χ)tν

with cν(χ) =
∑

deg A=ν

χ(A) .

where A ranges over the integral divisors of F . If A is not relatively prime
to the conductor fχ then χ(A) = 0. If χ 6= 1 then L(χ, t) is a polynomial in
t of degree

d = 2g − 2 + fχ (40)

where g denotes the genus of F and fχ = deg fχ the degree of the conductor.

The functional equation governs the behavior of L(χ, t) under the sub-
stitution t 7→ q−1t−1 (which coresponds to the substitution s 7→ 1 − s).
Performing this substitution and multiplying the result with qttd we obtain
again a polynomial of degree d :

qdtdL(χ, q−1t−1) =
∑

0≤ν≤d

cd−ν(χ) qν tν

Functional equation for L-functions:

qdtdL(χ, q−1t−1) = ε(χ) · qd/2 · L(χ, t) (41)

where χ = χ−1 is the complex conjugate character of χ and |ε(χ)| = 1.
Comparing coefficients we can write this as:

cν(χ)qd−ν = ε · qd/2 · cd−ν(χ) (0 ≤ ν ≤ d)

If d = 1 then we obtain:
c1(χ) = ε · q1/2 (42)

and hence |c1(χ)| = q1/2 which is the Riemann hypothesis for L(χ, t).

However, this kind of argument does not lead to a proper simplification
of the Davenport-Hasse proof which we have reported in section 3.4.1. For,
the mere proof of the Riemann hypothesis for the Davenport-Hasse fields
had already been achieved in the wake of Davenport’s letter 1932 which we
have shown in section 3.1. In their joint paper [DH34] the authors went for
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more, namely to obtain an explicit description of the zeros of the L-series,
not only of their absolute value. This would also have been possible by ex-
plicitly determining ε in (42) but then one would have to do exactly the same
computations which Davenport and Hasse did and which we have reported
above.

André Weil was not the first who was interested in the functional equation
of L-series in connection with the Riemann hypothesis. Already in Hasse’s
1934 paper [Has34b] we find the formula (41) for the functional equation
stated with the comment:

Von besonderem Interesse wäre es . . . nachzuweisen, dass die L(s, χ) der
Funktionalgleichung genügen. Doch ist mir das bisher noch nicht gelungen.

It would be of particular interest . . . to verify that the L(s, χ) satisfy the
functional equation. But so far I did not succeed.

Although Hasse and Davenport in their paper were finally able to do with-
out the functional equation, nevertheless they continued to be interested in it,
and other people did so too. There was a general feeling that the functional
equation for the L(χ, s) was closely connected to the Riemann hypothesis.
In fact, it had been remarked by Witt that the functional equation for the
L-functions is an easy consequence of the Riemann hypothesis for the zeta
function. (We read this in a letter from Hasse to Davenport dated May 27,
1934, and also in Hasse’s paper [Has34a].)

5.3 Davenport 1934

In the 1930s several proofs of the functional equation were obtained. The
first who was actively working on it seems to have been Hasse’s correspon-
dence partner Davenport. In the Davenport-Hasse correspondence we find
numerous letters where the functional equation of L-series is discussed. This
discussion started in May 1934. At that time the Hasse-Davenport paper
[DH34] as well as Hasse’s preparatory paper [Has34a] had just been com-
pleted and sent to publication. It seems that the proof of the functional
equation was considered as an unfinished leftover from the work on those
papers, and now the authors were trying to fill this gap. From the corre-
spondence it appears that this time Davenport was the active part.

The following excerpts from the Hasse-Davenport letters should give the
reader an idea about the intensity of their search for a proof of the functional
equation.
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01 May 1934 D→H : I have not got my proof of the functional equation into suitable
form for writing up yet. It is simply elementary algebra, and that is something I
never was good at.

02 May 1934 H→D : I am looking forward to your proof of the functional equation of
the L–functions arising from character sums. I hope you will succeed in mastering
the exponential sums, too. I wonder, whether the method can be carried through for
cyclic equations over arbitrary algebraic function fields, or is by its nature restricted
to the rational function field.

23 May 1934 D→H : I have got the proof of the functional equation for yn = f(x) into
a simple form – direct calculation with polynomials. You may not like the look
of it, but it could easily be translated into more elegant languages, I should think.
I have been intending to write it up + send it you, but there have been so many
distractions.

27 May 1934 H→D : Witt has remarked that the functional equation of the congruence
L-functions is quite generally a simple consequence from the Riemann Hypothesis.
I should very much like to know your proof without R.H.

22 Oct 1934 H→D : Witt has made headway towards the functional equation.
24 Oct 1934 D→H : I have now got out the proof of the functional eqn. for congruence

L-functions, + will send it you soon.
26 Oct 1934 D→H : Here is a rough MS on the functional eqn. It is all really very

simple, though concealed by a mass of suffixes. The replacement of Fp by a general
Fpf is naturally entirely trivial. The other restriction made about the h’s cannot be
important. Yours in haste . . .

27 Oct 1934 D→H : I hope to send you an M.S. on the functional eqn. for the L-func-
tions arising from exponential sums in a day or two. Have you noticed the following
amusing consequence of the functional equation: Any L-function of degree 3 has at
least one zero on σ = 1

2 .
27 Oct 1934 H→D : I am looking forward to your proof of the functional equation for

the congruence L–series.
30 Oct 1934 H→D : I got your proof of the L–functional equation immediately after

posting my last communication. I devoured it greedily. My heartiest congratulations
on this extremely fine achievement. I find your proof absolutely oke, and more than
this: a precious gem. (I hear your reply to this: don’t overdo it; but I cannot help,
its very simplicity and naturalness fascinated me.) I think I can do the general case
(base–field Fq(x, y) algebraic instead the rational field Eq(x) , order of χ arbitrary
instead of prime to p ) after the same lines. I put Witt before the question whether
I should tell him your proof or not. He decided on not being told. Would you mind
my trying to do the generalization indicated ?

05 Nov 1934 D→H : I am glad you approve of the M.S. Of course it will require con-
siderable revision before it is fit for publication. I have not got the case χ of order
p out satisfactorily yet: I can do it (in the case of a polynomial) by the obvious
slogging-out method which I thought of over a year ago. But I hope to get this
out, and to write a paper on the subject of “The functional eqns of the congruence
L-functions” – but in some English Journal,

27 Nov 1934 H→D : I could not give another thought to the problem of generalising
your functional equation for the polynomial L–series. Although I spent considerable
energy on finding the algebraic principle lying behind your curious functional equa-
tion connected with a cubic–polynomial, I have not found anything that elucidates
this rum thing.

40



16 Apr 35 D→H : Could you let me have back sometime the letter I wrote you (I suppose
last autumn) containing a proof of the functional eqns of the exponential-sum L-
functions.

Whit Monday 1935 D→H : 30 Don’t forget to let me have my letter on the functional
eqn. back sometime.

27 March 1936 D→H : I will make an effort with the functional equation paper. ϑ-
series are a sound idea, of course, though I do not regard the ϑ-series proof for the
ordinary ζ-fn. as being the “natural” proof.

30 March 1936 H→D : The ϑ-functions in Witt’s proof of the functional equation are
only formally analogous to the analytic ϑ-functions. They are finite series involv-
ing a character. Witt’s proof, apart from this formal apparatus, may be described
as generalizing the proof for Riemann-Roch’s theorem to Strahlklassen instead of
ordinary Divisorenklassen.

30 Apr 1936 H→D : Witt’s proof for the L-functional equation. Manuscript. (No ad-
dress.)

08 May 1936 D→H : Very many thanks for your letter, and account of Witt’s method.
I have not read this yet, as I prefer to write my MS first. Nothing prevents me from
doing this except infinite laziness and total lack of interest for this kind of ‘formal’
mathematics, where one knows there can be nothing more amusing behind things
than trivial identities.

From this we learn the following: Already in May 1934 Davenport claimed
to have a proof of the functional equation. But from Hasse’s reply one
day later we see that this was the functional equation for “character sums”
only. This means that the coefficients of the corresponding L-function can be
written as sums of products of characters of the finite base field31; this occurs
for a ray class character whose order is not divisible by the characteristic p
and, therefore, its ramification is tame. Thus in his first attempt Davenport
did not deal with the most general case but was content with what he could
do with “simple elementary algebra”, as he wrote.

Hasse expressed his hope that Davenport could also deal with “expo-
nential sums”; in these sums the terms contain characters combined with
exponential functions32, and they appear when Artin-Schreier extensions are
considered. Moreover, Hasse wondered whether the same method can be
used also in the more general case where the ground field is not necessarily
a rational function field. But Davenport did not answer for a while

30In the year 1935 Whit Monday was June 10.
31Of similar kind as we have seen in the case of the Davenport-Hasse fields on the right

hand side of formula (28). – The terminology “character sums” reflects the fact that
Davenport was not a friend of abstract notions like function field and ray class character.
His “characters” are characters of finite fields.

32Of similar kind as, in the case of Davenport-Hasse fields, on the right hand side of
formula (31).
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However, when Hasse wrote on Oct 22, 1934 that Witt had “made head-
way” towards the functional equation, then Davenport reacted immediately
and sent Hasse at least a rough manuscript. And briefly thereafter, on Oct 30,
Hasse could acknowledge the receipt of Davenport’s full proof. Hasse found
this to be an “extremely fine achievement”. But still, this proof dealt with
character sums only. On Nov 5 Davenport wrote that he could do also with
characters of order p but this seemed not yet to be in a satisfactory shape.

Davenport hoped to be able to publish a paper on the functional equa-
tion “in an English journal” as he wrote on Nov 5, 1934. Finally his paper
appeared not in an English journal but in the Acta Mathematica [Dav39].
And this was 5 years later only, in 1939. What was the cause of this long
delay?

We know that Hasse had visited Davenport in England between Febru-
ary 25 and March 25, 1936. It appears that on this occasion Hasse had tried
to push Davenport to publish his results on the functional equation. This
would explain Davenport’s announcement immediately after Hasse’s visit, in
a letter of March 27, that he “will make an effort with the functional equation
paper”. In the same letter Davenport mentions ϑ-functions. This indicates
that Davenport knew at least some ideas of Witt’s proof since in that proof
certain polynomials occur which Witt had named ϑ-functions. Davenport
may have asked Hasse to send him the full proof of Witt, for Hasse did that
on April 30, 1936. (But Davenport did not read it immediately, as he wrote
on May 8.) This fact, namely that Davenport had been informed about
Witt’s general proof, may have contributed to his “total lack of interest”
which he admitted to Hasse on May 8, 1936. When combined with Daven-
port’s what he called “infinite laziness”, this seems to have been the cause of
the long delay of the publication of his paper [Dav39]. The paper still deals
with character sums only, no attempt to generalize his method is mentioned.

Today Davenport’s paper [Dav39] seems to have been forgotten.

Let us briefly describe how L-functions look like in Davenport’s setup
[Dav39]. Consider the following situation:

K = Fq is a finite field with q = pk elements,

f finitely many different normalized irreducible polynomials f1, . . . , fr

over K ,

χ finitely many non-principal characters χ1, . . . , χr of K× with the con-
vention χi(0) = 0 ,

(fi, g) ∈ K the resultant of fi and another normalized polynomial g over K .
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cν =
∑

deg g=ν

χ1

(
(f, g)

) · · ·χr

(
(f, g)

)
, the sum being extended over all nor-

malized polynomials g over K of degree ν .

Now Davenport defines the corresponding L-function as

Lf (χ, t) =
∑
ν≥0

cνt
ν .

We see that Davenport’s definition does not mention function fields at
all, nor does he talk about ray class characters. He only mentions in passing
that this is the L-function in K(x) for the cyclic extension K(x, y) with
yn = f(x), where here f(x) is interpreted as the product of the fi (and
n 6≡ 0 mod p). In fact, the fi are seen to be the ramified primes (and they
are tamely ramified); in addition the infinite prime P∞ of K(x) is ramified33

The degree of the conductor is d = 1 + deg f . The functional equation stated
by Davenport blends with the form (41) given by Hasse.34 Davenport’s proof
in [Dav39] works by manipulating the terms appearing in the coefficients cν .
Looking at the details of his arguments it turns out that the main idea is to
use the reciprocity

(f, g) = (−1)deg f deg g(g, f)

for the resultant.35 Indeed this is beautiful, and we can understand Hasse’s
exclamation in his letter of October 30, 1934 that this is an “extremely fine
achievement”.

However, this argument cannot be straightforwardly generalized to cover
the case of wild ramification.

By the way, Davenport’s paper [Dav39] contains also a proof of the re-
lation (36) between Gaussian sums; see section 4.3. Moreover, although he
cannot prove the Riemann hypothesis, Davenport shows that the roots of
the L-functions can be sufficiently estimated such that the result of Bilharz
[Bil37] becomes true. Bilharz, a Ph.D. student of Hasse, had discussed the
analogue of Artin’s conjecture for primitive roots in the case of function fields
over a finite constant field. He could prove the expected densities under the
assumption of the Riemann hypothesis for function fields. Although this was

33Except if n divides deg f . For reasons of simplicity we shall exempt this case in our
discussion; it occurs if

∏
i χi = 1).

34Davenport attributes the conjecture of the functional equation (41) to Hasse [Has34a].
35We observe that this reciprocity had been the basis for the reciprocity law for power

residues in the rational function field K(x), according to F. K. Schmidt [Sch28]. See also
Part 1, section 4.4.2.
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not yet proved at the time of Davenport’s paper, he had observed that some
suitable estimates of the roots of the zeta functions would suffice for Bilharz’
arguments in [Bil37]. Davenport was able to establish these estimates with
his method.

5.4 Witt 1936

On October 30, 1934 Hasse wrote to Davenport that Witt preferred not to
be told the details of Davenport’s proof of the functional equation. This
indicates that indeed Witt had made “headway” with his proof (as Hasse
had written on Oct 22) and was convinced that he could do it on his own.
Finally in March 1936 Witt had completed his proof.

But Witt did not publish it. The reason was that he did not wish to
endanger the thesis of a young Ph.D. student of Artin in Hamburg who also
was working at the same time (1936) on a proof of the functional equation.36

The name of the student was Weissinger. The topic of Weissinger’s thesis had
been suggested by Artin who apparently had also supplied the main ideas.
Witt had been asked by Artin to abstain from publication for the time being.

What are the main ideas of Witt’s proof? We have mentioned already that
on April 30, 1936 Hasse had sent Davenport an outline of Witt’s proof. The
following text is copied from Hasse’s letter. Hasse tries to explain everything
to Davenport and therefore it may be suitable for us to read at least part of
the letter verbatim:

. . . Let F be an algebraic function field with a finite field K of q elements
as constant field.

Let χ be any character of the group of the divisors of F , which is a
congruence character, i. e. ,

χ(A) = 1 for A ∼ 1 mod. f

with a suitable f , and let f be the exact Führer, i. e. , the least divisor
with this property, also f 6= 1 (the case f = 1 is trivial ).

(A ∼ 1 mod. f means, that A is a principal divisor, i. e. , corresponding
to an element α of F , and that

α ≡ c mod. f with a constant c 6= 0 . )

36Witt mentioned this in [Wit83].
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Now let C be any divisor class (in the ordinary sense) of F , and

ϑ(χ, C) =
∑

A in C
A ganz

χ(A) (43)

the sum extended over all integral divisors A in the class C .37 Let deg C
be the degree of all divisors of C, f the degree of f and g the genus of
K , hence 2g − 2 the degree of the differential class W . Then, putting
d = 2g − 2 + f ,

qd−deg Cϑ(χ, C) = ϑ(χ, W f) · ϑ
(

χ,
W f

C

)
, (44)

where W f denotes the class generated by multiplying the differential di-
visors with f. This . . . gives the functional equation for L(s, χ) by the
usual argument.

Hasse in his letter does not explain the “usual argument”; perhaps he had
shown it to Davenport during his visit in March, and so he could assume
that this was known to him. The argument is as follows:

Recall the definition (14) of the L-function L(χ, t) for a ray class character
χ of an arbitrary function field F (with finite field of constants), not neces-
sarily a rational field. For any divisor class C (in the ordinary sense) consider
the partial sum belonging to those divisors A which are in the class C. This
partial sum is ϑ(χ,C)tdeg C in the notation of Hasse’s letter, and so we can
write

L(χ, t) =
∑

C

ϑ(χ, C)tdeg C .

We obtain using (44):

qdtdL(χ, q−1t−1) =
∑

C

ϑ(χ,C)(qt)d−deg C

= ϑ(χ, W f) ·
∑

C

ϑ

(
χ,

W f

C

)
td−deg C

= ϑ(χ, W f) · L(χ, t) .

We have used that C 7→ W f/C is a permutation of the divisor classes of F ,
and that d − deg C = deg W f/C. For C = 1 we infer from (44) that
|ϑ(χ,W f)|2 = qd ; this gives the functional equation (41).

37If A is not relatively prime to the conductor f then χ(A) = 0.
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We see that the main step in the proof is indeed formula (44). Witt had
chosen the notation ϑ on purpose, in order to emphasize the analogy to the
theta functions which appear in the number field case in the proof of the
functional equation. In fact, nowadays it is possible to give a unified proof
for global fields, i.e., for number fields and function fields with finite field of
constants.38

The cited text above is only part of Hasse’s letter to Davenport. In the
other part he sketches the way how Witt is going about to obtain the equa-
tion (44). Witt uses an arbitrary separating element x ∈ F and constructs a
so-called “normal basis” of F |K(x) which is adapted to the situation at hand.
We do not wish to go into the details here. Let us only mention that such
construction had also been used by F. K. Schmidt [Sch31a] in order to prove
the Riemann-Roch theorem for function fields – from which he then deduced
the functional equation of the zeta function. Now Witt had formulated this
construction in an abstract form in such a way that it applies as well in both
situations, F. K. Schmidt’s and Witt’s. This abstract form had been named
by Hasse as “Witt’s Lemma” in his book “Zahlentheorie” [Has02]. There,
Hasse used Witt’s Lemma for the proof of the Riemann-Roch theorem.39

However the use of Witt’s Lemma in this sitution is not quite satisfactory
for the simple reason that it is not birationally invariant The choice of an
arbitrary separating transcendental element x seems to be artificial. The
later proof by H. L. Schmid and Teichmüller [ST43] works without referring
to an artificial separating element. Therefore we will not explain here Witt’s
procedure in detail; instead we refer to section 5.6.

Remark 1: It seems curious that Hasse when preparing his book “Zahlen-
theorie” (in the year 1938) still used Witt’s Lemma in the proof of the
Riemann-Roch theorem. We remember his writing to Davenport that he
much prefers “birationally invariant formulas and notions”. Certainly he
would also prefer birationally invariant methods in the proofs. At the time
when he completed his book such methods were available, mainly through
the work of Chevalley (with his notion of “ideles” [Che36]) and of André Weil
(with his new interpretation of differentials [Wei38b]). Hasse knew both of
these papers and was very enthusiastic about this new local-global viewpoint.
We have no explanation why he did not use it in his book. One possible rea-
son may have been that he had to write the book under pressure of time (as it
is evident from various letters of Hasse). The publisher (Springer) demanded

38See, e.g., Weil’s book “Basic number theory” [Wei67].
39It has been pointed out by W.-D. Geyer [Gey81] that “Witt’s Lemma” had already

been used 1882 in Dedekind-Weber [DW82] and in various other situations in Mathematics.
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harshly to get the manuscript since the delivering date which was agreed to
in the original publication contract had passed long ago.

Remark 2: In the year 1983, when Witt was 72 years, he reported to
the Göttingen Academy:

Tief beeindruckt haben mich 1932 die berühmten 3 Vorträge von Artin über
Klassenkörpertheorie. Die anschließenden Ferien verbrachte ich in Hamburg,
um dort die Klassenkörpertheorie für Zahlkörper intensiv zu studieren. In
den folgenden Jahren war es mein Ziel, diese Klassenkörpertheorie auf Funk-
tionenkörper zu übertragen.

I was deeply impressed by the 3 famous lectures of Artin in the year 1932.
In the subsequent vacations I worked intensively in Hamburg in order to
learn more about class field theory of number fields. In the following
years I aimed at tranferring class field theory to function fields.

The three lectures of Artin were given in Göttingen between February 29
and March 2, 1932. Artin, who resided in Hamburg, had been invited by
Emmy Noether to talk about the new developments of class field theory.
Witt was 21 years at that time. After these lectures, as he reported, he
went to Artin in Hamburg to learn class field theory. Almost surely the also
met Hecke there. His record during the following years is impressive. In his
seminal paper [Wit34] (his Ph. D. thesis, suggested by Emmy Noether) he
transferred the work of Käte Hey and Max Zorn to function fields, thereby
proving the Local-Global Principle for algebras over function fields. This
paper was submitted in 1933 already. One year later (when he was assistant
to Hasse in Göttingen) he submitted his proof of the Existence Theorem of
class field theory for function fields [Wit35], thereby introducing what today
is called the theory of Kummer fields for abelian extensions, not necessarily
cyclic. In the next year he settled the functional equation for L-series of
function fields which we are discussing here. And after still another year
he discovered the calculus of Witt vectors which are used to describe the
arithmetic of cyclic extensions of p-power degree of function fields in char-
acteristic p [Wit36]. This sequence of papers indeed was essential for the
tranfer of class field theory to the function field case. And in each of these
papers Witt developed new and striking ideas.

We see that Witt had been highly successful in carrying out his plan
for class field theory of function fields. We also note again the influence of
Artin’s personality encouraging young mathematicians to produce high level
results. Witt is not the only example for this.
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5.5 Weissinger 1937

We have said above already that Witt did not publish his proof of the func-
tional equation for L-series, since he did not wish to endanger the Ph.D.
thesis of Weissinger in Hamburg. Thus while Weissinger worked on his thesis
about the functional equation, there were already two unpublished proofs,
namely Davenport’s proof in the case of tame ramification and Witt’s general
proof. Weissinger’s thesis appeared 1937 in the “Hamburger Abhandlungen”
[Wei37]. This was short before Artin, his Ph.D. advisor, left Hamburg.40 It
seems that Weissinger did not know Davenport’s or Witt’s results since he
did not cite them.

In principle Weissinger’s proof runs on the same lines as Witt’s, but with
an additional feature: He formulates and proves a certain duality theorem for
divisor congruences in a function field, valid for an arbitrary field of constants.
This plays a similar role for L-functions as does the Riemann-Roch theorem
for the functional equation of the zeta function.

Weissinger’s was the first pubslished paper which contained a proof of
the functional equation for L-series in the function field case. Nevertheless
the paper did not get much attention. The reason may have been that soon
after, other proofs were published.

5.6 H. L. Schmid and Teichmüller 1941

Witt had presented his proof in the Göttingen seminar.41 Consequently the
details of Witt’s proof became known among the specialists. There had been
two young people42 in the seminar who later published a joint paper with an-
other proof of the functional equation, namely H. L. Schmid and Teichmüller.
The paper appeared 1943 but was completed in 1941 already [ST43]. At that
time the two authors lived in Berlin, H. L. Schmid as a staff member of the
Zentralblatt and Teichmüller at Berlin University43. In their paper they cited

40In 1937 Artin had been ousted from Hamburg University because his wife Natasha
was of Jewish descent. See [Wuß08]. As a consequence Artin emigrated to the USA. He
returned to Hamburg in 1956.

41More precisely, this was the legendary Arbeitsgemeinschaft (workschop) organized by
Witt. Hasse regularly attended the workshop and proposed the topics to be discussed.
As mentioned in [SS92]: “The workshop had developed quickly into a top-class research
seminar”.

42H. L. Schmid was 28, Teichmüller 23, Witt 25 years of age.
43More precisely: Teichmüller was Dozent at Berlin University but was “on leave” since

drafted to the army. In 1941 he worked on decoding problems, at a military unit which
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Witt and also Weissinger.

Their proof starts more or less like Witt’s proof but then Witt’s Lemma is
not used; instead it proceeds in birationally invariant manner, not depending
on an auxiliary transcendental element. The authors use duality induced by
the residues of differentials of the function field.

This idea resembles Weil’s new concept of differential [Wei38b] in as much
as they use differentials as linear mappings given by their residues. But they
do not cite Weil’s paper. Perhaps they had not realized Weil’s new idea since
this had been explained only in the last section of [Wei38b], as kind of side
remark. In fact, Weil in his comments [Wei79] says about his paper:

Du reste, ce travail finit par où il aurait dû commencer . . .

By the way, that paper ends with what it should have started . . .

In any case, the idea of the authors, if not entirely, new, is remarkable since
the duality was explicitly stated and used. Let us briefly report how they
proceeded to obtain Witt’s formula (44).

First some notations: In (44) we have denoted the given divisor class
by C (following Hasse). Now let us change our notation and let C stand
for a given divisor, representing his class, chosen to be relatively prime to
the conductor f.44 Then every integral divisor A of this class is of the form
A = C · (x) where (x) is a principal divisor. We have

(x) =
A

C

and see that x is contained in the module L(C) of multiples of 1
C

. Let us
define χ(x) := χ

(
(x)

)
, which means that χ is now a function on elements,

not only on principal divisors. We put χ(0) = 0. Then

ϑ(χ,C) =
χ(C)

q − 1

∑

x∈L(C)

χ(x). (45)

The denominator q−1 appears since every principal divisor (x) is now counted
q − 1 times, namely as cx for each c ∈ K×.

By construction, every x ∈ L(C) is f-integral, i.e., P -integral für each
prime divisor P |f. Let Of denote the ring of f-integers and put45

R = Of/ f , (46)

was based at Berlin. For more on Teichmüller see [SS92].
44If there is no such divisor in the class, the relation (44) is trivial.
45See the remark on page 54.
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the factor ring modulo f. Now, by definition of conductor the value χ(x)
depends only on the residue class of x modulo f. Hence we project L(C)
modulo f into R, obtaining a K-module M = M(χ,C) ⊂ R and see that

ϑ(χ,C) =
χ(C)

q − 1

∑
x∈M

χ(x) = :
χ(C)

q − 1
θ(χ,M). (47)

where we have written θ(χ,M) for the character sum along M . We see that
this procedure has transported the problem into R and its submodules M .

So much the authors follow more or less Witt’s idea. But now they
describe and use the structure of R . By definition R is a finite commutative
K-algebra, and χ is now a character of the multiplicative group R× of its
units, such that χ(c) = 1 for c ∈ K×. Every non-unit x ∈ R is a zero-divisor
and we have put χ(x) = 0 for such x.

But there is more to say. By definition f is the precise conductor of χ.
This means χ cannot be defined modulo any proper divisor f0 of f, i.e., there
exists an element x ≡ 1 mod f0 such that χ(x) 6= 1. This property translates
within R as follows:

For any nonzero ideal I $ R there exists z ∈ I such that χ(1 + z) 6= 0, 1.

We shall call such character χ a “proper” character of R. This corresponds to
the classic terminology which says that the ray class character χ is a “proper”
(eigentlich) character modulo its own conductor f.

But R carries more structure, namely a non-degenerate bilinear form
defined by differentials of F , as follows:

If ω 6= 0 is a differential and P a prime divisor of F let resP (ω) denote
its residuum at P . This is defined by first expanding ω into a power series
with respect to a uniformizing variable uP , then taking the coefficient of u−1

P

in this expansion (this yields an element of the P -adic residue field KP ) and
finally taking the trace of that coefficient, with respect to the trace function
SP : KP → K. Hence resP (ω) ∈ K. We put

res f(ω) =
∑

P |f
resP (ω), (48)

the sum over all prime divisors P occurring in the conductor f.

Now we fix a differential ω which at each place P | f has a pole, of the same
order as the multiplicity of P in f. If x ≡ 0 mod f then the differential xω
has no pole at any prime P | f and hence res f(xω) = 0. Therefore, res f(xω)
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depends only on the class of x modulo f, which is to say that res f induces
in R a K-linear function

%(x) := res f(xω)

with values in K. Since the pole order of ω at each P | f coincides with the
multiplicity of P in f, it is seen that the bilinear form (x, y) 7→ %(xy) on R is
non-degenerate.

Let M⊥ be the orthogonal space to M , consisting of those y ∈ R for
which %(xy) = 0 for all x ∈ M . Because of non-degeneracy we have

dim M + dim M⊥ = dim R = f (49)

and (M⊥)⊥ = M . Recall that M = M(χ,C) has been defined as the projec-
tion of L(C) to R. It turns out that M⊥ is the projection of L(W f

C
) where W

denotes the divisor of the differential ω. Indeed, if x ∈ L(C) and y ∈ L(W f
C

)
we have

(x) =
A

C
, (y) =

B C

W f
hence (xyω) =

AB

f
,

where A,B are integral divisors. This means that all poles of the differen-
tial xyω are occuring in f. It follows

%(xy) = resf(xyω) = 0

since the sum of all residues of a differential in F vanishes. This shows
that the projection of L(W f

C
) is contained in M⊥. To verify that it actually

coincides with M⊥ one has to compute its dimension according to (49). Since
M is the projection of L(C) modulo f we have

dim M = dim C − dim
C

f
.

Similarly, if for the moment we denote the projection of L(W f
C

) with M ′ we
have

dim M ′ = dim
W f

C
− dim

W

C
.

The relation

dim M + dim M ′ = dim C − dim
W

C
+ dim

W f

C
− dim

C

f
= deg f = f

is now verified in view of the Riemann-Roch theorem.

So we have the following situation: R is a finite commutative K-algebra
of dimension f with two additional structures:
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1. A proper character χ of R× such that χ(c) = 1 for c ∈ K× (and χ is
extended as a function on R by putting χ(x) = 0 if x is a non-unit).

2. A K-linear map % : R → K such that the bilinear form %(xy) is non-
degenerate.

We are interested in a K-module M ⊂ R and its orthogonal M⊥, and we
wish to compare the character sums along M and its dual M⊥ :

θ(χ,M) =
∑
x∈M

χ(x), θ(χ,M⊥) =
∑

y∈M⊥

χ(y) .

In this situation H. L. Schmid and Teichmüller have formulated their

Main Lemma:

qdim Mθ(χ,M⊥) = τ(χ) θ(χ,M). (50)

where τ(χ) is defined as the generalized Gaussian sum:

τ(χ) =
∑
x∈R

χ(x)e(x) with e(x) = e
2πi
p

S%(x) . (51)

Here, S : K → Fp is the trace to the prime field. Moreover we have

|τ(χ)| = qf/2 . (52)

In the proof of the Main Lemma the following property of τ(χ) is needed:

χ(x)τ(χ) =
∑
y∈R

χ(y)e(xy) . (53)

In the classical case this relation is well known; compare with Davenport’s
letter in section 3.1 (page 10). In our situation the proof is precisely the
same provided x ∈ R×. For, in this case one can introduce y′ = xy as a new
variable for the summation, then xy ranges over R if y ranges over R. But
if x 6= 0 is a non-unit in R then this argument does not work. At this point
one has to use that χ is a proper character: Since x is a zero divisor in R
there esists 0 6= u ∈ R such that xu = 0. The nonzero ideal Ru contains
an element z = au such that χ(1 + z) 6= 0, 1. We have x(1 + z) = x and
therefore

χ(1 + z)
∑
y∈R

χ(y)e(xy) =
∑
y∈R

χ((1 + z)−1y)e(xy)

=
∑
y∈R

χ(y)e(x(1 + z)y) =
∑
y∈R

χ(y)e(xy) .
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Since χ(1 + z) 6= 0 it follows that the right hand side in (53) vanishes. So
does the left hand side since x is a zero divisor.

Proof of the Main Lemma: In view of (53) we have:
∑
x∈M

∑
y∈R

χ(y)e(xy) = τ(χ)
∑
x∈M

χ(x) = τ(χ) θ(χ,M) . (54)

On the other hand:

∑
y∈R

χ(y)
∑
x∈M

e(xy) = qdim M
∑

y∈M⊥

χ(y) = qdim Mθ(χ,M⊥) , (55)

since
∑

x∈M e(xy) = 0 if y /∈ M⊥ and = qdim M otherwise. (The map x 7→
e(xy) is a character of the additive group of M , and it is nontrivial or trivial
according to y /∈ M⊥ or y ∈ M⊥.)

Multiplying (50) with τ(χ) and applying the relation twice we obtain

τ(χ)τ(χ) θ(χ,M) = qf θ(χ,M)

which gives |τ(χ)|2 = qf – provided θ(χ,M) 6= 0. This can be achieved by
taking, e.g., M = K since θ(χ, K) = q − 1.

2.

Applying the Main Lemma to M = M(χ,C) and M⊥ = M(χ, W f
C

) ,
and remembering (47) we obtain Witt’s formula (44), hence the functional
equation.

Looking at formulas (54), (55) we are reminded of the calculations which
Davenport sent to Hasse in his letter of January 1932 (see page 10). There,
Davenport finished with the comment: “Quite trivial ! ” Here we are tempted
to give the same comment. Indeed, those two lines (54), (55) make up the es-
sential part of this proof of the functional equation; on the preceding pages we
had just given a description of the situation. Perhaps Davenport’s first proof
of the functional equation in October 1934 had run along similar lines when
Hasse praised it as a “precious gem” (see section 5.3). But in the published
version [Dav39] the computations are quite involved and not really lucid. It
may be that in October 1934 Davenport had sent Hasse a preliminary ver-
sion for a special case only, perhaps for the case of the Davenport-Hasse fields
where f = deg f = 3 and the character χ is of order 6≡ 0 mod p. In that case
the algebra R reduces to a direct sum of three fields isomorphic to K and
Davenport’s calculations could have been simplified so that they look similar
to (54), (55). But Davenport’s proof from that time is not preserved, and so
we can only speculate.
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We have no record about Hasse’s reaction to the proof of H. L. Schmid and
Teichmüller. We do not know whether he even had realized the paper [ST43].
We note that the paper appeared not in Crelle’s Journal of which Hasse was
the managing editor, but in the Hamburger Abhandlungen which were edited
by the Mathematics professors in Hamburg, and Witt was one of them at that
time. So we may assume that Witt was informed about the paper but again,
we have no record about his reaction to it. It is true that H. L. Schmid and
Teichmüller followed Witt’s Ansatz to some degree, and even the calculations
(54), (55) appear in some form in Witt’s proof.46 But the main idea of the
two authors was to put into evidence that the functional equation was closely
connected with duality, given by differentials, of the conductor algebra R.
This was not evident in Witt’s proof.

Remark: The reader will have observed that the above proof breaks
down when the conductor f = 1, i.e., when the cyclic extension to which
the character belongs, is unramified. For, in this case the definition of R
as given in (46) (page 49) would give R = 0 which does not make sense
in this situation. H. L. Schmid and Teichmüller were well aware of this fact
and provided another proof for the case f = 1 which is short and nice (and
follows Witt’s elegant proof in [Wit34] of the Riemann-Roch theorem). But
this does not quite fit into their scheme. In this sense the main purpose of
their paper was not completely accomplished.

Searching for the cause of this failure we note that the authors were
bound to use duality in finite dimensional vector spaces, according to the
state of knowledge at the time. If they would have at their disposal also the
generalization of this to compact and even locally compact spaces, they could
have argued in the ring of valuation vectors R and its group of units J , called
ideles. The valuation vectors are the “adeles”. 47

In the meantime it is common knowledge that instead of ray class charac-
ters one should use continuous characters of the idele group which are trivial
on the principal ideles. And differentials should be looked at as continuous

46Except that Witt did not take for e(x) the exponential but defined a somewhat arti-
ficial looking function for this purpose, guided by the analogy to the classical situation in
number fields.

47Chevalley had introduced the notion of “idele” in [Che36], and had called it in French
“élement idéal”. Hasse in his review of Chevalley’s paper had proposed the name “Idel”
which he had created from the German “Ideal” by deleting the letter “a”. This became
translated into French as “idèle” with an accent, and then was translated into English as
“idele”. The notion of “valuation vector” is found in Artin’s Lecture Notes [Art51], but
seems to have been introduced earlier by Chevalley in his book [Che51] under the name
“repartition”. We do not know who had coined the word “adele” suggesting “additive
idele”. Perhaps it was A. Weil.
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homomorphisms of the additive group of adeles which vanish on the principal
adeles. In this setup instead of finite sums there appear integrals, and duality
is given by Fourier transforms, as well as the so-called Poisson summation
formula. It seems to me of interest that the nucleus of this development is
contained in the papers of Witt, H. L. Schmid and Teichmüller in the 1930s
and 1940s.

By the way, in the introduction of [Sch41b] it is said that:

1941 brachte der zweitgenannte Verfasser den Wittschen Beweisansatz mit
dem Begriff der dualen Moduln in Verbindung und führte dadurch die Funk-
tionalgleichung auf eine rein algebraisch formulierbare Identität über Charak-
tere zurück. Für diese Identität (Haupthilfssatz) gab der erstgenannte Ver-
fasser einen einfachen Beweis.

In the year 1941 the second author [Teichmüller] construed a connection
between Witt’s Ansatz and the notion of dual module, and with this he
reduced the functional equation to an identity between characters which
can be formulated by purely algebraic means. For this identity (Main
Lemma) the first author [H. L. Schmid] provided a simple proof .

Thus it was Teichmüller who had the essential idea to use duality. Teich-
müller died 1943 as a soldier in the war.

To be sure, the definition of the notions of “idele” and “adele” had
been already defined (although under different names) when Teichmüller
and H. L. Schmid wrote their paper; see footnote 47. But it appears that
the importance of these notions had not yet been appreciated in full by the
mathematical community. Weil in his paper [Wei38b] discussed adeles in
the last section only, somewhat as a side remark. But later he said in his
comments in [Wei79] about this paper:

. . . ce travail finit par où il aurait dû commencer . . .

. . . that paper terminates where it should start . . .

Thus in retrospective the author sees the main merit of his paper in the last
section which opens new aspects of the theory but realizes that in those times
this had not yet be seen.48

48We use this occasion to point out that Weil’s paper [Wei38b] is written in German
language and appeared in Crelle’s Journal. The paper is the result of a correspondence
between Weil and Hasse in 1937. In seems worthwhile to note that in 1938, five years after
the Nazis had come to power in Germany, Hasse accepted a paper whose author was of
Jewish descent.
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5.7 Weil 1939

In 1939 Weil announced to Hasse that he had obtained a proof of the func-
tional equation for L-series. In a letter of January 20, 1939 he writes:

Ich habe seit kurzer Zeit meine Untersuchungen über p-Gruppen unter-
brochen, um früher gefasste Gedanken über die Analogie zwischen Zahlen-
und Funktionenkörpern fortzusetzen. Ein erster Erfolg war, dass ich die
Funktionalgleichung für die mit beliebigen Charakteren gebildeten Zetafunk-
tionen in Funktionenkörpern mit endlichem Konstantenkörper bewies . . .

Recently I have disrupted my investigations on p-groups in order to give
more thoughts to the analogy between number fields and function fields.
A first success was that I proved the functional equation for zeta func-
tions belonging to an arbitrary character, in function fields with finite
field of constants.49

It appears that Weil was not aware of the two preceding proofs by Witt and
by Weissinger. (The proof by Davenport had not yet appeared, and the proof
by H. L. Schmid-Teichmüller had not yet been written.)

Hasse replied on February 4 as follows:

Der Beweis der Funktionalgleichung für beliebige Charaktere ist allerdings
schon bekannt, wenn auch nicht veröffentlicht. Witt hat ihn durch eine sehr
elegante und formale Analogisierung der Thetafunktionen geführt . . . Die
Verallgemeinerung des Riemann-Rochschen Satzes auf Strahlklassen hat
auch in etwas anderer Weise ein Schüler von Artin gegeben in einem der
letzten Bände der Hamburger Nachrichten. Ich glaube der Name dieses
Schülers ist Weiss. Schliesslich hat auch Davenport auf mehr rechnerische
Art das Bestehen der Funktionalgleichung bewiesen. Leider ist auch diese
Rechnung nicht veröffentlicht . . .

But the proof of the functional equation for arbitrary characters is al-
ready known, if not published. Witt had done this by a very elegant and
formal method in analogy to to the theta functions . . .The generaliza-
tion of the Riemann-Roch theorem for ray classes has also been given,
in a somewhat different form, by a student of Artin in one of the recent
volumes of the Hamburger Abhandlungen.50 I believe the name of that

49When Weil writes “zeta functions belonging to an arbitrary character” he means
L-functions in our terminology as defined above.

50Hasse writes “Hamburger Nachrichten” but he means the journal “Hamburger Ab-
handlungen”.
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student is Weiss.51 Finally Davenport has verified the functional equa-
tion by more computational means. Unfortunately these computations
are also not published . . .

Upon this Weil thanked for the information and replied, that after checking
Weissinger’s paper he had found that his own procedure coincides exactly
with Weissinger’s. Moreover he asked Hasse to inform him about Witt’s
proof. It seems that he had forgotten that in 1936 Hasse had already sent
him an outline of Witt’s proof, for on February 24, 1939 he wrote again:

Mit grosser Beschämung habe ich gefunden, dass Sie mir schon in einem
Brief vom 12. VI. 1936 die wesentlichen Züge des Wittschen Beweises für die
Funktionalgleichung der L–Reihen in Funktionenkörpern mitgeteilt hatten.
Sie sollen sich also bitte nicht die Mühe geben, mir darüber wiederum zu
schreiben, obwohl ich Sie in meinem vorigen Brief überflüssigerweise damit
belästigen wollte.

With great embarrassment I have found out that you have already in-
formed me, in a letter of June 12, 1936, about the essential features of
Witt’s proof of the functional equation of the L-series in function fields.
So please do not take the trouble to write again about it, although I had
asked you for it in my last letter quite unneccesarily.

In fact, Hasse had already written to him three years ago, in a letter dated
July 12, 1936 :

Ihrer Bitte, Ihnen von zahlentheoretischen Neuigkeiten zu berichten, entspreche
ich sehr gerne. Zunächst wird es Sie sicher interessieren, zu erfahren, dass
Herr Witt die Funktionalgleichung der L–Funktionen in Kongruenzfunk-
tionenkörpern nunmehr bewiesen hat, und zwar durch eine sehr hübsche
Analogisierung des klassischen Beweises mit den Thetafunktionen. Ich lege
Ihnen eine kurze Skizze seines Beweises bei. Die Einzelheiten habe ich nicht
aufgeschrieben, weil sie sich für jeden Kenner des klassischen Beweises und
der Methodik der arithmetischen Theorie der algebraischen Funktionen wohl
von selbst ergeben . . .

It is my pleasure to respond to your request for information about number
theoretical news. First, it will surely be of interest to you that Mr.Witt
has succeeded to prove the functional equation of the L-functions in con-
gruence function fields.52 He used a very nice idea of creating an ana-

51The correct name was Weissinger.
52In the terminology of the time, a congruence function field is a function field (of one

variable) over a finite field of constants.
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logue to the classiccal proof with theta functions. I enclose a short sketch
of his proof. I did not mention the details since they will be evident to
any one who is familiar with the classical proof and the methods used in
the arithmetic theory of algebraic functions . . . 53

We have not found the “short sketch” which Hasse had provided for Weil in
1936. But now in 1939, Hasse sent Weil an extended exposition of Witt’s
proof. Although Weil had written that this would not be necessary any more,
nevertheless Hasse did send it. He wrote on March 7, 1939:

Als Ihr Brief vom 24. 2. eintraf, hatte ich bereits angefangen, eine Ausar-
beitung des Wittschen Beweises der Funktionalgleichung zu machen. Ich
möchte Ihnen nun doch die jetzt fertig gewordene Ausarbeitung vorlegen,
allerdings mit der Bitte um demnächstige Rücksendung. Es war mir sehr
erwünscht, dass Ihre Anfrage endlich einen Anlass gab, meine damaligen
sehr kursorischen Aufzeichnungen in geschlossener Form auszuarbeiten.

When your letter of February 24 arrived I had already started to prepare
an exposition of Witt’s proof of the functional equation. Still I would
like to put this exposition, which is now completed, into your hands,
but asking for return sometime soon. Having been motivated by your
request, I took the opportunity to prepare this detailed exposition whereas
my former notes were quite sketchy only.

This detailed exposition of Witt’s proof which Hasse had sent to Weil
is preserved since the exposition had indeed been returned as requested.
(Remember that in those times there was no Xerox and no photo copy, and
mathematical expositions used to be written by hand. It was not unusual
that the adressee was asked to return a handwritten manuscript which he had
received, since it was assumed that he would have taken notes if he wanted
to.)

53In 1936 there were a number of letters exchanged between Weil and Hasse. This
started with the work of Elisabeth Lutz, a student of Weil, on elliptic curves over p-adic
fields. Hasse was quite interested in this result and offered publication in Crelle’s Journal.
Weil considered this as a “sign of continued cooperation” and Lutz’ paper appeared in
1936 [Lut36]. In a letter of July 8, 1936 Weil asked Hasse to inform him about news from
number theory. And Hasse did so in the above cited letter of July 12. That letter was
quite long with more than 8 pages. Hasse reported not only about Witt’s proof of the
functional equation, but also about his own proof of the characterization of the pn-primary
elements in p-adic fields. However the main part of Hasse’s letter was devoted to the work
of Deuring who had just started to develop an algebraic theory of correspondences. That
part of Hasse’s letter will be discussed in detail in Part 5.
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Thus although Witt had never published his proof, there are two expo-
sitions of the proof preserved, both by Hasse. One in Davenport’s Nachlass
at Trinity College in Cambridge, England, and the other in Hasse’s Nach-
lass in Göttingen. Finally, even Witt’s original manuscript was found in the
Nachlass of Witt himself. It is included by Ina Kersten in Witt’s “Collected
Papers”[Wit98], with comments by R. Schulze-Pillot.

5.8 Summary

The relevant L-functions for the Davenport-Hasse function fields are of de-
gree 1. This implies that the Riemann hypothesis is an imediate consequence
of the functional equation of these L-functions. But in 1934, at the time of
publication of the Davenport-Hasse paper, a proof of the functional equation
was not yet known. Although the Riemann hypothesis for the Davenport-
Hasse fields had finally been established without the functional equation, there
was a general feeling that there exists a close connection between the Riemann
hypothesis and the functional equation. The letters which were exchanged be-
tween Hasse and Davenport in the years 1934-36 show much activity towards
finding a general proof of the functional equation, not only for the Davenport-
Hasse fields. At the end of 1934 Davenport appears to have succeeded, at least
for tame characters.

However Davenport did not immediately publish his proof; the paper ap-
peared in 1939 only. The reason for this delay may have been that Witt
had given a general proof, not restricted to tame characters. This was in
March 1936; at that time Witt was assistant in Göttingen with Hasse. The
idea of Witt’s proof was to exploit the analogy between function fields and
number fields. But Witt’s proof was not published either. Witt had abstained
from publication in order not to hamper the Ph.D. thesis of Weissinger (a
student of Artin in Hamburg). Weissinger’s paper appeared 1937. In the
year 1941 still another proof was found by H. L. Schmid and Teichmüller,
both former students with Hasse in Göttingen. That proof exploited the du-
ality in the function field given by the residues of differentials. Moreover, in
the year 1939 A.Weil had informed Hasse that he had found a proof, but it
turned out that this was the same as Weissinger’s.

Although Witt’s proof was never published, there are two expositions of
his proof preserved, both by Hasse. One of these had been sent to Davenport
in 1936, and it is contained in the Nachlass of Davenport at Trinity College
in Cambridge. The other one Hasse had sent to Weil in 1939 with the re-
quest for returning the manuscript; it is now contained in Hasse’s Nachlass
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in Göttingen. Witt’s original handwritten notes have been found in Witt’s
Nachlass and they were included in the Collected Papers of Witt.

6 More comments

6.1 Exponential sums

In section 3.1 we have cited a passage in a letter of Davenport to Hasse in
January 1932. In another passage of the same letter we read:

I have extended the p2/3 for Kloosterman sums to
∑

x

χ(x) e(ax + b/x)

for any χ , hence to
∑

x

e(axn + bx−n).

Let us explain:

A Kloosterman sum is of the form
∑

x mod p
x6≡0

e(ax + bx−1) where e(x) = e
2πix

p .

The problem was to estimate it in its order of magnitude for p → ∞. At
the time of Davenport’s letter he was preparing a paper where, among other
results, he proved that such a Kloosterman sum is O(p2/3), in generalization
of former results which yield only larger exponents (the best exponent to be
expected was 1/2). And similarly for the sum

∑
x mod p

x6≡0

e(axn + bx−n)

as he announced in his letter. Later in the year Hasse accepted Davenport’s
paper for Crelle’s Journal where it appeared in 1933 [Dav33].

Quite generally, Mordell and also Davenport had studied so-called expo-
nential sums. They are of the form

σ(f) =
∑

x mod p

e
(
f(x)

)

where f(x) is a rational function modulo p. (The sum ranges over those x
modulo p which are not poles of f(x).) In various cases they were able to
give estimates of the form σ(f) = O(pγ) with some γ < 1.
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Here again Hasse, in his discussion with his friend Davenport, criticized
the unsystematic, purely computational methods and looked for a more struc-
tural approach. This he found while investigating Artin-Schreier extensions
of function fields. We have already mentioned in section 3.3 (on page 15) that
Hasse has studied function fields with the defining equation yp − y = f(x)
and had obtained new results, in particular he computed the genus of such
function field. In this connection he also mentioned L-functions, and he said:

In particular the Kloosterman sums belong to L-series with 2 zeros.

This shows that Hasse had found the Kloosterman sums in connection
with L-functions. The same was the case for arbitrary exponential sums. Let
us cite his paper [Has34a]:

. . . Hieraus geht hervor, dass das Problem der Abschätzung der Summen
σ(f) endgültig gelöst ist, wenn die Riemannsche Vermutung für die Zeta-
funktion bewiesen ist. Dieser Zusammenhang war bisher . . . für die Expo-
nentialsummen nicht bekannt, zu denen z.Bsp. auch die Kloostermanschen
Summen gehören.

. . .We see from this that the problem of estimating the sums σ(f) will
be definitely solved, if the Riemann hypothesis for the zeta function is
proved. Until now this connection has not been known for the exponential
sums, including the Kloosterman sums.

From this we can deduce that Hasse had realized for arbitrary exponential
sums54 the Riemann hypothesis as the source of the estimate σ(f) = O(

√
p)

which Davenport and Mordell were looking for – although at that time the
Riemann hypothesis was not yet generally proved.

Many years later, in 1948, André Weil published a paper entitled “On
some exponential sums” [Wei48c]. The paper starts as follows:

It seems to have been known for some time that there is a connection
between various types of exponential sums, occurring in number theory,
and the so-called Riemann hypothesis in function fields. However, as
I was unable to find in the literature a precise statement for this rela-
tionship, I shall indicate it here,and derive from it precise estimates for
such sums, including the Kloosterman sums.

54Well, for those exponential sums for which the estimate is to be expected: f(x) should
not be of the form c + g(x)p − g(x) with c ∈ K and g(x) ∈ K(x). This means that the
field extension of K(x) generated by yp − y = f(x) should be of genus g > 0. See, e.g.,
[Roq98].
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The author cites several papers were the said relationship is indicated,
e.g., Rademacher’s report [Rad42] and Davenport’s Crelle paper [Dav33].
But he does not cite Hasse’s [Has34a] where, as we have seen, Hasse had
already mentioned exactly that relationship.

6.2 Cyclic extensions of p-power degree

In section 5.1 we have reported on Weil’s question and have cited Hasse’s
answer, namely that the Davenport-Hasse fields are those for which all the
relevant L-functions are of degree 1. (See page 36). But Hasse had added
the following remark which we did not yet mention:

Zu diesen [Funktionenkörpern] kommen noch solche hinzu, wo der Grad
eine höhere Potenz der Charakteristik ist. Ihre Theorie ergibt sich aus den
Ergebnissen von Witt über zyklische Körper dieser Art.

There have to be added those [function fields] where the degree is a higher
power of p. Their theory is a consequence of the results of Witt about
cyclic fields of this kind.

This sounds as if Hasse would claim that the same or a similar proof works
also in a situation more general than in the diagram (12) on page 13. Namely,
the field extension K(y)|K(z) of degree p may be replaced by a cyclic ex-
tension of arbitrary p-power degree where only one prime P∞ is ramified. In
particular this would imply that the conductor of any non-trivial ray char-
acter of that extension would be of degree ≤ 3.

But this is not the case. There is a paper by H. L. Schmid of 1936 where
he develops the arithmetic theory of cyclic p-extensions, using Witt vectors
[Sch36b]. Among other results, Schmid had computed the conductor de-
gree for any nontrivial subfield. It turned out that the conductor degree
is > p if the subfield is of degree > p – at least if the ground field is the
rational function field K(z), hence admits no unramified extension. Accord-
ingly the proof in the Davenport-Hasse paper, where these conductors are of
degree ≤ 3, does not work in the same way for p-power degree > p, regardless
which cyclic extension K(y)|K(z) in the diagram (12) is chosen.

In the year 1936 Schmid had been an assistant to Hasse at Göttingen and
his above mentioned paper had been written on the suggestion of Hasse.55

55Later in 1941, when Schmid was already in Berlin, he published a second paper with
more detailed computations [Sch41a]. But he indicated that these compuations were of
interest only as long as the Riemann hypothesis was not yet proved for these fields.
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Hence Hasse knew Schmid’s results. Therefore Hasse’s above mentioned re-
mark in the letter to A.Weil of 1939 has to be interpreted differently.

Perhaps Hasse wanted to say the following: If in the diagram (12) the
extension K(y)|K(z) is replaced by a suitable cyclic extension of degree pν ,
then he (Hasse) is still able to give an explicit description of the corresponding
ray class characters and the coefficients of their L-functions. And this in such
a way that a suitable estimate of those coefficients would imply the Riemann
hypothesis.

In fact, we have found a manuscript by Hasse where he expounds just
this idea. We found it among the Davenport papers in Trinity College. The
title of this manuscript is

“L-Reihen zyklischer p-Körper.”

“L-series of cyclic p-fields.”

Hasse seems to have written this manuscript for Davenport. For, although
the language is German Hasse did not use in his handwriting the German
script which he commonly did when writing German, but here he used Latin
script so that Davenport would be able to read it. The manuscript is not
dated but we believe it is written shortly after the Witt vectors had been
discovered, i.e. around 1937. For, Hasse starts with an explanation about the
construction of cyclic p-extensions by Witt vectors, from which we conclude
that he did not assume Davenport to know the details already.

Hasse’s interest in these questions is also documented by an unpublished
manuscript which we have found in his Nachlass in Göttingen [Has52]. This
manuscript is dated many years later, namely December, 1952. Here we see
Hasse’s renewed interest in this problem. The title is:

Verallg. von Davenport-Hasse:
Gaußsche Summen in algebraischen Funktionenkörpern.
(Zu den Arbeiten von H. L. Schmid, Berl. Akad. Abh. 1941

und H. L. Schmid-Teichmüller, Hamb. Abh. 15 (1943).)

Generalization of Davenport-Hasse:
Gaussian sums in algebraic function fields.
(Comments to the papers of H. L. Schmid [Sch41a]

and H. L. Schmid-Teichmüller [ST43].)

The main result in this manuscript is an explicit description of the characters
of the extension F |K(z) in the following diagram:
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F = K(x, y)

K(x)

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

xm=z

@@
@@

@@
@@

@@
@@

@@
@@

K(y)

????????????????

yp−y=z

~~
~~

~~
~~

~~
~~

~~
~~

K(z)

(56)

This is similar to the diagram (12) on page 13 but now y = (y0, y1, . . . , yν−1)
denotes a Witt vector of length ν and z = (z, 0, . . . , 0). Thus K(y) is cyclic
over K(z) of degree pν with P∞ as the only ramified prime.

In this manuscript Hasse gives an explicit formula for the L-functions of
the extension F |K(z) . Specifically, the Gaussian sums which appear in the
functional equation of the L-functions are computed.

But in this way Hasse could not prove the Riemann hypothesis for these
fields. After all, if we realize that this manuscript is dated 1952 we remember
that a full proof of the Riemann hypothesis had already been published by
A.Weil [Wei48a]. So why did Hasse care to compute in such detail these
Gaussian sums with Witt vectors?

We do not know. Perhaps Hasse wished to have explicit formulas at hand
for his investigation of the so-called Hasse-Weil zeta function for the function
fields of Fermat type over number fields?

We observe that just in the year 1952 Weil’s paper “On Jacobi sums
as Grössencharacters” had appeared, where Weil investigated the function
fields F of Fermat type over a number field K and their zeta functions [Wei52].
This can be regarded as a 2-dimensional problem, in as much as two kinds
of arithmetics come into play: first the arithmetic of the number field K and
secondly the arithmetic of the function field F|K.

From the correspondence Hasse-Weil it is apparent that Hasse in the late
1930s had already taken into account the question whether there exist zeta
functions of algebraic function fields over algebraic number fields. The idea
was to define the zeta function of such a function field F|K as the product
of the zeta functions of the reduced function fields modulo the primes p of
the base field K. (Excepting perhaps those finitely many p at which F has
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no good reduction.)

Hasse had already proposed to two of his students to follow up this idea.56

But nothing had come of it, not the least due to the political happenings in
the subsequent years. Now in 1952 Weil had taken up this question. It is
apparent that Hasse was highly interested in Weil’s work. Weil had studied
the function fields F|K of Fermat type, and these are precisely those which
after reduction modulo p yield Davenport-Hasse fields, however without being
restricted to the case [K(y) : K(z)] = p as in diagram (12). Therefore
it becomes necessary to consider also the case of the digram (56) where
K(y)|K(z) is cyclic with degree an arbitrary p-power.

Thus perhaps we may interpret the above-mentioned unpublished Hasse
manuscript [Has52] as a preparatory work for his study of the Größenchar-
acter in question [Has55].

6.3 Summary

The so-called Kloosterman sums and, more generally, the exponential sums
had appeared in various number theoretical investigations, and it was conjec-
tured that they are of order of magnitude O(

√
p) for p →∞. Hasse was well

aware of the fact that the Riemann hypothesis for the Davenport-Hasse fields
implies this estimate. This is apparent from the correspondence between Dav-
enport and Hasse. Moreover, Hasse had mentioned this in his 1934 paper on
cyclic extensions of function fields. But this seems not to have become com-
mon knowledge among number theorists. Later in 1948, after having proved
the Riemann hypothesis, André Weil published an account of these matters. –

In order to extend his results on the Davenport-Hasse fields, Hasse in-
vestigated cyclic extensions of arbitrary p-power degree, of their ray class
characters and L-functions. He did this in the framework of Witt vectors.
He sent his manuscript to Davenport, but it was never published. Later in
1952 he wrote another manuscript where Gaussian sums for Witt vectors
were computed, in connection with the functional equation for L-functions.
We suspect that Hasse intended to use it for the computation of the con-
ductor of the Hecke “Größencharacter” appearing in the zeta function of the
function fields of Fermat type over algebraic number fields.

56These were Hanna von Caemmerer (later Hanna Neumann) and Pierre Humbert.
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[Sti90] L. Stickelberger. Über eine Verallgemeinerung der Kreistheilung.
Math. Annalen., 37:321–367, 1890. 26, 29

[Sti09] H. Stichtenoth. Algebraic Function Fields and Codes. Springer,
Berlin etc., 2 edition, 2009. XII+355 pp. 16

[Tse33] C. Tsen. Divisionsalgebren über Funktionenkörpern. Nachr. Ges.
Wiss. Göttingen, Math.–Phys. Kl. I, 1933(44):335–339, 1933. 16

[Wei37] J. Weissinger. Theorie der Divisorenkongruenzen. Abh. math. Sem.
Univ. Hamburg, 12:115–126, 1937. 48

[Wei38a] A. Weil. Généralisation des fonctions abéliennes. J. Math. Pures
Appl., (9) 17:47–87, 1938. 37

[Wei38b] A. Weil. Zur algebraischen Theorie der algebraischen Funktionen.
J. Reine Angew. Math., 179:129–133, 1938. 46, 49, 55

[Wei48a] A. Weil. Sur les courbes algébriques et les variétés qui s’en de-
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