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Abstract

We report on the gradual evolvement and the structure of Hasse’s
second proof of the Riemann hypothesis for elliptic curves over finite fields.
The main feature of this proof is the rebuilding of the theory of complex
multiplication by purely algebraic means, thereby making it available for
curves over fields of arbitrary characteristic p ≥ 0. We also report on
Deuring’s subsequent work on the structure of endomorphism rings of
elliptic curves in characteristic p , including the supersingular case. Our
sources are not only the published papers but also other documents like
letters, manuscripts and lecture notes which we have found in several
archives. The article is written such that it can be read independently of
Parts 1 and 2 of the same series.
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1 Introduction

This is the third part of a larger work on the history of the Riemann hypothesis
for function fields, the fourth and fifth part will follow later. Parts 1 and 2 have
appeared in [Roq02] and [Roq04].

In Part 2 we had reported on how Hasse had been motivated by Davenport
and Mordell to work on the problem of counting the number of polynomial con-
gruences. When Hasse visited Hamburg in November 1932 he had a conversation
with Artin who pointed out to him that this problem is closely connected, and
in some sense equivalent, to the Riemann hypothesis for function fields. Four
months later, in March 1933, Hasse succeeded with a proof of the Riemann
hypothesis1 in the elliptic case. As described in Part 2, his first proof used a
lifting procedure, lifting an elliptic curve over a finite base field to an elliptic
curve in characteristic 0 with complex multiplication, and then applying class
field theory. That proof, however, was never fully published since, in the process
of writing down the proof, it became clear to Hasse that one could work directly
in characteristic p, without using the detour via characteristic 0.

In this Part 3 we shall report on Hasse’s new proof, its structure and its grad-
ual evolvement. Our report covers approximately the years 1933-1943, and it
includes the subsequent work of other mathematicians during that time period,
notably that of Deuring.

Because of lack of sufficient time we have decided to restrict this report to
the elliptic case, leaving the discussion of the Riemann hypothesis for function
fields of higher genus to the next parts.

As with Parts 1 and 2, we have written this Part 3 in such a way that it can
be read independently.

Remark: In the preparation of this paper we have used not only published
material but also the information contained in personal documents like letters,
manuscripts etc. All those documents which we cite are contained in the Hand-
schriftenabteilung of Göttingen University Library, except when we explicitly
mention another source. As a general rule, letters which were addressed to
Hasse can be found in Göttingen, whereas letters which Hasse wrote to other
people are preserved at other places (if preserved at all). Letters from Hasse to
Mordell we have found in the archives of King’s College, and those from Hasse
to Davenport at Trinity College, both in Cambridge, England.

Although quite a number of letters from the Hasse correspondence is pre-
served, the reader should be aware that, on the other hand, quite another num-
ber of letters seems to be lost. What we have found does not constitute a
complete set of the Hasse correspondence.

Acknowledgements: We are grateful to Günther Frei for a number of
valuable discussions and comments. Patrick Morton has carefully and critically
read the manuscript and been of help to streamline our English.

1Here and in the following, when we talk about the “Riemann hypothesis”, we always mean
the Riemann hypothesis for function fields over a finite base field.
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1.1 The Hamburg Lectures

In January 1934 Artin had heard about Hasse’s new proof of the Riemann
hypothesis for elliptic function fields, and he invited Hasse for a series of talks
in Hamburg, in order for Hasse to explain his new ideas. Let us cite from Artin’s
letter, dated January 17, 1934:2

Lieber Herr Hasse! Hätten Sie Lust in diesem Semester zu uns zu
Gastvorträgen zu kommen? Sie könnten sprechen worüber Sie Lust
haben. Vielleicht die schönen Ergebnisse über die Riemannsche Ver-
mutung? Sie sind doch das schönste, was seit Jahrzehnten gemacht
worden ist. Meine Hörer würde das sehr interessieren . . . Es wäre nett
wenn Sie sich auf eine Woche frei machen könnten aber zur Not sind
wir mit weniger auch zufrieden. In Erwartung Ihrer Zustimmung mit
vielen herzlichen Grüssen von Haus zu Haus: Ihr Artin.

Dear Mr. Hasse! Would you like to visit us in this semester for
colloquium talks? You may talk about what you like. Perhaps the
beautiful results on the Riemann hypothesis? These are the most
beautiful things which have been done during the past decades. My
audience would be very much interested . . . It would be nice if you
could come for a whole week but if necessary we would settle with
less. Looking forward to your positive reply I am with many kind
regards: your Artin.

This letter puts into evidence that Artin continued to be quite interested in the
problem of the Riemann hypothesis for function fields, which he had started in
his 1921 thesis but had never touched in his later publications.

Hasse accepted the invitation, and in February 1934 he delivered four 2-hour
lectures in Hamburg.

The “audience” which Artin had in mind were probably the members of his
seminar. But the lectures were announced as public, and certainly there were
other people too attending Hasse’s lectures. Very likely the following persons
were present:

• Max Zorn. He had obtained his Ph.D. in 1930 with Artin who considered
him as one of his most brilliant students. Thereafter he got a position at
the University of Halle as an assistant to H. Brandt, the successor of Hasse
there. In 1932 he had quit his position and moved to Hamburg again. 1933
there appeared his paper in the Hamburger Abhandlungen showing that
the thesis [Hey29] of Käte Hey (the first Ph.D. student of Artin) could be
interpreted so as to yield a proof of the Local-Global-Principle for algebras;
this paper [Zor33] had received great interest among the people working
in class field theory, including Emmy Noether and Hasse. In 1934 Zorn
emigrated to the USA. (Today his name is known through Zorn’s Lemma).

2Artin used to have an intense exchange of letters with Hasse. The edition of the full Artin-
Hasse correspondence 1923-1934 with commentaries is in preparation and will (hopefully) soon
be published, jointly with Günther Frei.
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Hamburgische Universität

Allgemeines Vorlesungswesen

Auf Einladung der Mathematisch-Naturwissenschaftlichen Fakultät hält Herr

Professor Dr. Hasse
aus Marburg

am 5., 6., 8. und 9. Februar 1934, von 17-19 Uhr

im Hörsaal des Mathematischen Seminars, Rothenbaumchaussee 21-23

Vorträge über

”
Abstrakte Begründung der komplexen Multiplikation und

Riemannsche Vermutung in Funktionenkörpern“.

Der Eintritt ist frei.

Figure 1: Announcement of Hasse’s Hamburg Lectures

• Wei-Liang Chow who had studied in Göttingen with Emmy Noether but
now planned to change to Leipzig in order to work with van der Waerden.
He resided mainly in Hamburg (where he had found his later wife Margot)
and, as reported by Chern [Cea96], kept close contact to Artin.3

• Hans Petersson. He had been a Ph.D. student of Hecke. Now he held a
position as “Privatdozent” at Hamburg University. He had lectured on
class field theory a year ago. He was a referee for the Chevalley-Weil
paper [CW34] which also appeared in the Hamburger Abhandlungen of
the current year 1934. That paper gives an important contribution to the
algebraic theory of function fields; it is evident that this topic is closely
connected to the program of Hasse which he presented in his Hamburg
lectures.

• Harald Nehrkorn, a Ph.D. student of Artin of 1933 who in his thesis
[Neh33] provided algebraic proofs of Artin’s class number relations. In
the 1935 volume of the Hamburger Abhandlungen he published a paper
jointly with Chevalley on class field theory [CN35], going a big step to-
wards a purely algebraic foundation of Artin’s reciprocity law.

• Heinz Söhngen, another Ph.D. student of Artin, of 1934. His thesis
[Söh35] is about complex multiplication, expanding a former paper of
Hasse. (Later he went to applied mathematics.)

• Walter Landherr, also a Ph.D. student of Artin of 1934. His thesis [Lan35]
dealt with simple Lie rings over p-adic fields.

3Chern himself was probably not present at Hasse’s lectures; according to his own testimony
he came to Hamburg in October 1934.
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• Hans Zassenhaus, still another Ph.D. student of Artin of 1934, working in
group theory. Even before he received his Ph.D. degree, his name became
known through his explicit proof [Zas34] of the Jordan-Hölder-Schreier
theorem in group theory (the butterfly-lemma). From the beginning of his
mathematical career he was very active in group theory; from the years
1934 to 1938 we have counted 7 published important papers, including
his text book [Zas37] which for a long time was considered “the” classical
introduction to group theory.

• Erich Kähler, a former Ph.D. of Blaschke, who had done his Habilitation
in 1929, the same year as Hans Petersson. His interest was mainly with
differential geometry.

• Erich Hecke and Wilhelm Blaschke, Artin’s colleagues in Hamburg.4

This list of names, certainly not complete, shows that Hasse met a highly com-
petent and interested audience in Hamburg.5

The notes of Hasse’s 1934 Hamburg lectures were published in the same year
in the Hamburger Abhandlungen [Has34a]. In these notes he expounds the main
ideas of his theory of “meromorphisms” of elliptic function fields, i.e., rational
mappings of the corresponding elliptic curve. And he shows that and how this
leads to a proof of the Riemann hypothesis in the elliptic case.

In the introduction to his notes Hasse strongly expresses his belief that the
Riemann hypothesis holds not only for elliptic fields but quite generally for
arbitrary function fields over finite base fields. He says:

Ich führe im folgenden die Theorie für den einfachsten nichttrivialen
Spezialfall, nämlich den Fall der elliptischen Funktionenkörper, in großen
Zügen durch, etwa ebenso, wie vor 36 Jahren Hilbert zuerst die Theo-
rie der quadratischen Relativkörper als einfachsten Fall seiner später
skizzierten allgemeinen Theorie der abelschen Relativkörper entwick-
elte, immer schon die Verallgemeinerung im Auge habend.

I am going to sketch the theory for the simplest non-trivial spe-
cial case, i.e., the case of elliptic function fields – similarly to the
way that Hilbert, 36 years ago, first developed the theory of relative
quadratic fields as the simplest case of his general theory of relative
abelian fields, which he outlined later, his view always being directed
towards the generalization.6

As reported in Part 2, one year earlier Hasse had already given a talk in Ham-
burg, in November 1932 , about problems on diophantine congruences which are

4In a letter of February 26, 1934 from Blaschke to Hasse he mentions a portrait photo of
Hasse which had recently been obtained and which he had sent him. This may have been the
same photo which appeared in volume 10 of the Hamburger Abhandlungen.

5In Part 1 we had stated that Shokichi Iyanaga was present at these Hamburg lectures of
Hasse in 1934. That statement was based on an oral communication by Prof. Iyanaga. In the
meantime, however, after some exchange of letters it has turned out that Iyanaga had been
present at Hasse’s colloquium talk in Hamburg in December 1932 but not in January 1934,
when he was staying in Paris together with Claude Chevalley. I have corrected my former
statement in Part 2 (page 33) already.

6Hasse refers to Hilbert’s papers [Hil99] and [Hil02]. See also Hasse’s comments to Hilbert’s
papers on algebraic number theory [Has32].
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closely connected to the Riemann hypothesis. At that time he did not yet fully
believe in the general validity of the Riemann hypothesis for arbitrary function
fields. It is quite remarkable that now, one year later, he is entirely convinced.7

Hasse explains that his proof is based on the algebraic theory of function fields
as developed by F. K. Schmidt [Sch31] which in turn, as Hasse points out, was
modeled after the ideas of Hensel-Landsberg [HL02]. He says about this method:

. . . Methode, an deren Verallgemeinerungsfähigkeit der Kenner der alge-
braischen Funktionentheorie und insbesondere des algebraischen Gerüsts
der Theorie der Abelschen Funktionen nicht zweifeln wird.

. . . method, whose capability for generalization will not be doubted by
anyone who is familiar with the algebraic theory of functions and
in particular with the algebraic framework of the theory of abelian
functions.

Hasse’s belief into the general validity of the Riemann hypothesis was strength-
ened in his discussions with Artin. We conclude this from a letter of Hasse to his
friend Davenport dated February 12, 1934, shortly after his return from Ham-
burg. In this letter Hasse reports about his visit to Hamburg and his further
plans. We read:

Hamburg was a complete success from every point of view . . . From
what Artin and I found when considering the possibilities of gener-
alisation to higher genus, it becomes only a matter of patience to
do this. The general line is fully obvious now. The addition theo-
rem is generalisable in a purely algebraic form . . . I am going to carry
through all the details without bothering about any more special cases
now.

As it turned out, it required more than patience before the Riemann hypothesis
could be proved for function fields of higher genus. But we see here Hasse’s
optimism, and at the same time his aim: Namely to develop the theory of
the Jacobian in a purely algebraic manner, i.e., without lift to characteristic 0
and referring to the analytic theory there, as he had done in his first proof
for the elliptic case. When he says that he will not bother any more about
special cases, then he refers to his joint paper with Davenport [DH34] where
they treated the special case of what today are called the “Davenport-Hasse”
fields, which are generated by the generalized Fermat equation axm + byn = c
(or similar equations) over a finite field.8

Hasse’s lecture series in February 1934 was perhaps one of the last major
events in the great history of the Mathematics Seminar of Hamburg, the last
before the Seminar too was finally hit by the disastrous policy of the Nazi
government in Germany. From its foundation in 1920 it had been possible to
attract mathematicians of high standing to Hamburg University. In those years
the Mathematical Seminar in Hamburg had gained recognition world wide. And
when in 1933 the Göttingen mathematical scene was destroyed due to political

7He was already convinced on April 28, 1933 when he submitted his preliminary announce-
ment to the Göttinger Nachrichten [Has33a]. See Part 2, section 5.4.

8We shall discuss that paper in Part 4.
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events, then it seemed for a short while that Hamburg could take over the
former role of Göttingen in the mathematical world. In this sense, Chern says
in [Cea96]:

The decline of Göttingen had the effect of elevating Hamburg to a
leading mathematical center in Germany. . . The leading attraction
was Emil Artin, the young professor who gave excellent lectures and
whose interest extended over all areas of mathematics.

But it is well known that Hamburg too was soon affected by the Nazi politics,
although perhaps not as severe as it had hurt Göttingen. And Artin emigrated
to the USA in 1937.9 (Chern had left for Paris in 1936.)

Let us close this section with a citation from a letter, dated December 1,
1934, which Hermann Weyl wrote to Hasse. Weyl had moved from Göttingen
to Princeton10 in 1933 and Hasse had become his successor (not without encour-
agement by Weyl himself). From the correspondence Hasse – Weyl we conclude
that Weyl remained interested in the development of the mathematical scene
in Göttingen, and he appreciated that Hasse reported to him about it. In one
of those reports, it seems, Hasse had sent him a reprint of his Hamburg lecture
notes [Has34a], and he commented this as follows:

Ihre Hamburger Vorträge über komplexe Multiplikation habe ich noch
nicht ganz verstanden, aber doch genug, um fühlen zu können, wie
wichtig es ist, dass Sie in dieser fruchtbaren Richtung weiterarbeiten.

I have not yet fully understood your Hamburg lectures on complex
multiplication, but sufficiently well in order to feel how important it
is that you continue to work in this seminal direction . . .

1.2 Our sources

Hasse’s Hamburg lecture notes contain only a sketch of his new proof of the
Riemann hypothesis in the elliptic case. He admits that he had not yet been
able to fill in all details. In the following years he simplified and streamlined
his ideas. He published an updated announcement in November 1935 in the
Göttinger Nachrichten and in the same month he submitted his final proof with
all details to Crelle’s Journal where it appeared 1936 in volume 175, divided
into three parts I, II, III.

Although Hasse’s orginal motivation was the proof of the Riemann hypoth-
esis, in the course of his work there emerged a broader project: He wished to
establish a solid basis for the theory of elliptic function fields, in particular those
with finite base fields. The endomorphism ring of those function fields should
be fully understood, in particular the arithmetic properties of the Frobenius
endomorphism. And all this with an eye on possible generalization to higher
genus.

9Wußing has described the circumstances of Artin’s leaving Hamburg. See his forthcoming
article in the Festschrift in honour of M. Folkerts which is scheduled to appear in spring 2007.

10On Weyl’s departure from Göttingen see, e.g., [FS92].
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The foundation which Hasse could build upon was quite narrow. As we have
reported in Part 1, the general arithmetic theory of function fields had been
developed in the 1920s mainly by Artin, Emmy Noether and F. K. Schmidt,
the latter adding the Riemann-Roch theorem as well as the analytic theory of
the zeta functions. However, large parts of the theory were still lacking, parts
we are familiar with today. For instance, the theory of differentials and the
residue theorem had to be established also for characteristic p. Same for the
ramification theory of cyclic extensions, in particular those of degree p or p-
power, using the Artin-Schreier theory. And class field theory, and more. Thus
when we observe the activities of Hasse and his collaborators after 1934, they
were busy investigating the theory of function fields of characteristic p at large,
not narrowly confined to the Riemann hypothesis.

This implies that we have to report also on those papers which are not
exclusively aimed at the proof of the Riemann hypothesis. We shall see that
many of the facts which we know and use today, regarding them as more or
less evident or at least “well known”, that these facts had been discovered in
those years between 1933 and 1943 as part of Hasse’s project. But as said
above already, here we shall be content to report on those results only which
have some bearing, direct or indirect, on elliptic fields. The project for fields of
higher genus will be covered in Part 4 and beyond.

A decisive turn in the development was given in 1936 by Deuring who in
a letter to Hasse started his algebraic theory of correspondences modeled after
the classical paper of Hurwitz of 1886 [Hur86]. Deuring’s aim was to develop
methods suitable to approach the Riemann hypothesis for function fields of ar-
bitrary genus, beyond the elliptic case. Hasse immediately realized the potential
of Deuring’s approach; he reported briefly on it at the IMU conference in Oslo
1936 and helped Deuring to prepare a publication in Crelle’s Journal which ap-
peared in two parts 1937 and 1940. It was clear from the start that Deuring’s
methods and results would be of considerable importance – although in the end
it turned out that A. Weil, who had been informed by Hasse about Deuring’s
ideas, was the first to be able to establish the necessary details and thus arrive
at the proof of the Riemann hypothesis for curves of higher genus. These papers
by Deuring will be discussed in detail in later parts.

It seems not so well known that Deuring’s work contained new and important
results also for the elliptic case. His ideas led to substantial simplifications and
improvements of Hasse’s treatment. Moreover, he started his investigations
at the point where Hasse had stopped; he was able to continue Hasse’s work
on elliptic function fields and arrive at precise and complete results on their
endomorphism rings. This was done in several papers between 1940 and 1947.
When we have said above that Hasse wished to “fully understand the structure
of the endomorphism rings” then we can report that Deuring, following the road
opened by Hasse, succeeded in doing this.

The following overview of our sources may be useful to the reader:

1934 Hamburg lecture notes: Published in the Hamburger Abhandlungen
[Has34a]. They contain only a sketch of Hasse’s new ideas, which in several
respects were still incomplete.

1934 Cyclic fields: Theory of cyclic extensions of algebraic function fields, in
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particular with finite base fields. Including Artin-Schreier extensions and
class field theory. [Has34d]

1934 Differentials: Exposition of the formal theory of differentials of an al-
gebraic function field, including the theorem of the residues. [Has34c]

1934 Unramified cyclic extensions: The paper [Has34b] appeared in the
same volume of Crelle’s Journal as the two above mentioned papers. The
existence of unramified cyclic extensions of degree p of a function field
of characteristic p has important consequences for the structure of the
p-torsion of its divisor class group and, as a consequence, for its endomor-
phism ring. This paper contains the definition of what today is called the
“Hasse-invariant” A of an elliptic function field. Later in 1936 this was
generalized (jointly with Witt) to function fields of arbitrary genus; this
leads to the “Hasse-Witt matrix” [HW36].

1935 Göttingen report: In the Göttinger Nachrichten [Has35] Hasse announ-
ced his full proof (second version) of the Riemann hypothesis in the elliptic
case.

1935 Behrbohm: A note by H. Behrbohm, a student in Hasse’s seminar, sys-
tematizing Hasse’s arguments in paper (III) below, about the structure of
the endomorphism ring [Beh35].

1936 Davenport: This paper [Dav36] contains a partial result towards Hasse’s
“norm-addition formula” as formulated and proved in paper (III) below.
In fact, Hasse had been inspired to look for his norm-addition formula by
this result of Davenport.

1936 Higher differentials: In his paper (I) below, Hasse had to use certain
determinants of higher derivatives and differentials, and therefore he had
to develop this theory to be applicable in arbitrary characteristic. The
paper was published in Crelle’s Journal in the same volume as (I) but
preceding it. The theory was streamlined and extended in two subsequent
papers by Teichmüller and F. K. Schmidt respectively, so that there are
three papers in short succession on this topic:

(a) Hasse’s original paper [Has36a].
(b) The exposition by Teichmüller [Tei36] appearing 1936 in the same

volume 175 of Crelle’s Journal as (a).
(c) A systematic generalization by F. K. Schmidt and Hasse one year later

[Has37a].

It does not seem to be generally known that this universal theory of higher
derivatives and differentials had been originally created for use in the proof
of the Riemann hypothesis.

1936 Crelle papers: A sequence of three papers by Hasse in volume 175 of
Crelle’s Journal, submitted already in 1935, with full proofs for the elliptic
case. The titles are:

(I) The structure of the torsion group. [Has36b]
(II) Meromorphisms and endomorphisms. [Has36c]

(III) Structure of endomorphism ring and Riemann hypothesis. [Has36d]

1936 Oslo lecture: Hasse’s text of an invited lecture at the International
Congress of Mathematicians in Oslo [Has37b] .
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1937/40 Deuring’s Theory of Correspondences: This brought about a de-
cisive turn in the direction of research towards the Riemann hypothesis for
function fields of arbitrary genus. [Deu37], [Deu40]. Here we shall discuss
those results only which are relevant for the elliptic case.

1941 Endomorphism rings: Deuring had determined all possible domains
which can appear as endomorphism rings of elliptic function fields, in
particular the non-commutative ones [Deu41a]. This important paper
appeared in the Hamburger Abhandlungen. In connection with this paper
Deuring published three other papers:

1941 Normal forms: Deuring discussed normal forms and absolute invariants
of elliptic fields, for all characteristics including p = 2 and p = 3 [Deu41b].
He needed this in his 1941 paper on endomorphism rings.

1942 Good reduction: On several occasions in the work of Hasse and Deur-
ing, there appeared a situation which today we would call “good reduc-
tion” of algebraic function fields or curves. In his paper [Deu42] Deuring
developed a coherent general theory of good reduction which covered all
special cases which were encountered so far. Although this paper appeared
one year later than the 1941 paper on endomorphism rings, it was com-
pleted earlier, and Deuring used it in an essential way in his study on
endomorphism rings.

1943 Miscellaneous: Deuring’s paper [Deu47] collects some facts on elliptic
function fields which he had observed in the preparation of his 1941 paper
on endomorphism rings.11

Occasionally we shall cite those papers with their names shown above in bold-
face, instead of their bibliographical code [. . . ].

In addition to the above we shall use several other documents: manuscripts,
papers and also letters, in particular the letters from the correspondence of
Hasse with his friend Davenport. Also from the correspondence of Hasse with
Deuring, F. K. Schmidt, A. Weil, Lefschetz. These documents, which will be
cited in due course, allow us to have a glimpse on the gradual rise of ideas and
visions before they were condensed into a publication – an invaluable asset for
those who are interested in the history aspect of mathematics.

Remark: All the cited letters are contained in the Handschriftenabteilung
of the Göttingen University (Cod. Ms. H. Hasse), except if explicitly stated
otherwise. The letters from Hasse to Davenport are contained in the archives
of Trinity College, Cambridge.

1.3 The task

For Hasse, a “ function field” F |K was a finitely generated field extension of
transcendence degree 1, such that K is algebraically closed in F . He assumed
that the base field K is perfect but in fact all his arguments work under the

11This paper is often cited as having appeared in 1947. But in fact it had appeared in 1943
already. However, due to difficulties in war time and the years afterwards, the full volume
of Hamburger Abhandlungen, consisting of several fascicles, could be completed in 1947 only
and this is the reason for the late official date for [Deu47].
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weaker assumption that F |K is conservative which means that the genus of
F |K is preserved under extension of the base field K.12 The genus g of F |K is
defined algebraically, according to the well known paper by F. K. Schmidt 1931.
(See [Sch31]. We have discussed this paper in section 5 of Part 1.)

Hasse defines F |K to be elliptic if g = 1, with the additional condition that
there exists a prime divisor P of degree 1. This additional condition is trivially
satisfied if K is algebraically closed. Hasse knew that it is also satisfied if the
base field K is finite, due to “F. K. Schmidt’s theorem”.13

The Riemann hypothesis is concerned with function fields F |K over a finite
base field K. The zeta function of F |K is defined due to F. K. Schmidt [Sch31]
as follows:

ζ(s) =
∏
P

1
1− 1

|P |s
=
∑
A

1
|A|s

where P ranges over the prime divisors of F |K and |P | is the order of the residue
field modulo P , and where A ranges over the integral divisors with |A| being
defined by linearity. s denotes a complex variable. Introducing the new variable
t = q−s (where q = |K| is the order of the base field) it turns out that ζ(s) is a
rational function of t of the form

ζ(s) =
L(t)

(1− t)(1− qt)
(t = q−s)

where L(t) is a polynomial of degree 2g, of the form

L(t) = 1− (q + 1−N)t+ · · ·+ qgt2g .

Here and in the following, N denotes the number of prime divisors of degree 1
of the function field F |K. It is convenient to consider the reciprocal polynomial

L?(t) = t2g − (q + 1−N)t2g−1 + · · ·+ qg

The Riemann hypothesis asserts that all zeros of ζ(s) are situated on the line
Re(s) = 1

2 in the complex plane. This is equivalent to saying that all zeros of
L?(t) are situated on the circle |t| = √q.

In the eliptic case the polynomial L?(t) is quadratic:

L?(t) = t2 − (q + 1−N)t+ q = (t− π)(t− π) (1)

and the Riemann hypothesis asserts that the roots π, π have the same absolute
value: |π| = |π| . It was already well established that it would suffice to show:14

|N − q − 1| ≤ 2
√
q (2)

12The terminology “conservative” seems to have been coined by Artin in his Princeton
lectures of 1947/48.

13See Part 1, section 5.2.2. Hasse knew that for K = Q, there are function fields of genus 1
with no prime divisor of degree 1. But for some time it remained an open question whether
the smallest prime divisor degree in an elliptic function field is bounded (as it is in the case of
function fields of genus g > 1). This was settled in 1957 by Shafarevich [Sha57] who showed
that such a bound does not exist for g = 1.

14See Part 1, section 6.3.
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not only for the given base field with q elements but also for any base field
extension.

In order to do this Hasse was going to identify the roots π, π of L?(t) with
elements in a certain ring M which he called the ring of multipliers; today
it is called the endomorphism ring. Hasse obtained it by a purely algebraic
construction from the data of the given elliptic function field F |K. From the
structure of this ring M he was able to deduce the validity of (2).

The guiding principle for the construction of M was the analogy to the clas-
sical, analytically based theory of complex multiplication. In fact, in his first
proof (which we have reported on in Part 2) Hasse directly used the classical
theory, after lifting the given function field to a suitable function field in charac-
teristic zero which admits complex multiplication. But now he had discovered
that the somewhat cumbersome lifting process15 can be avoided, and that the
ring M can be constructed directly also in characteristic p , in complete analogy
to the classical case. On November 11, 1933 he wrote to Davenport:

. . . I really think I ought to publish this new proof and not my old
analytical one, particularly with regard to the fact that the new proof
is nothing else than a translation of every step (really every!) of my
old proof into algebraic language.

We see that Hasse set out to transfer the analytically based theory of complex
multiplication into his algebraic framework.

One of the driving forces in the development of Mathematics16 is the use of
analogies. If a problem refers to a situation which is seen to be quite analoguous
to another situation which has been studied already, then it makes sense to try to
use the concepts and methods which had been developed in that other situation
– possibly with some changes adapting to the new situation. For Hasse and his
contemporaries (including Artin in his thesis [Art24a], [Art24b]) the analogue
to the notion of “function field” was “number field”. Accordingly, the theory of
function fields was modeled quite in analogy to the theory of number fields, with
the notions of prime divisor, divisor class, class number etc. being prominent.
Today this analogy has been formalized through the notion of “global field”
defined by the Artin-Whaples axioms [AW45]; this notion comprises both types
of fields, number fields as well as function fields over finite base fields.

On the other hand, the people working on function fields at that time were
quite aware of the fact that there was another analogy which could profitably
be used in the theory of function fields, namely the analogy to the theory of
complex valued meromorphic functions on compact Riemann surfaces. This was
first put into evidence in the classical paper by Dedekind and Weber [DW82],

15The lifting process was regarded as “cumbersome” from the level of knowledge in the
1930s. Later, after Deuring had developed the systematic theory of “good reduction”, the
lifting process became quite straightforward and natural. Perhaps Hasse would not have
started to establish complex multiplication in characteristic p if he would have had Deuring’s
theory already available. On the other hand, Deuring had developed his theory of good
reduction in order to simplify Hasse’s lifting method, which then served him to algebraize the
classical theory of complex multiplication in characteristic 0, including the relevant theorems
of class field theory.

16And not only of Mathematics.
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and further exploited heavily in F. K. Schmidt’s paper [Sch31]. Much of the work
of Hasse on elliptic function fields (and on function fields of higher genus too)
is motivated by the attempt to exploit this second analogy, in order to arrive at
a theory of “complex multiplication” which, on the one hand, is modeled after
the analogy with the complex analytic case, but on the other hand fits into the
framework of abstract algebra and hence is suitable for the investigation of the
Riemann hypothesis in characteristic p.

There is a third analogy, namely the geometric viewpoint. In fact, the
geometric language has now penetrated large areas of algebra and arithmetic;
the reason for this can perhaps be seen in its great flexibility and adaptability
to various situations. In this setup a “function field” F |K is considered as the
field of rational functions on an algebraic curve Γ defined over K. Notation:
F = K(Γ). Instead of prime divisors P which belong to the valuations of the
function field, it is common to talk about points of the respective curve Γ. In
this connection the curve Γ is assumed to be smooth, so that indeed the local
rings of its points are valuation rings.

In today’s abstract algebraic geometry two biregularly equivalent algebraic
curves are usually considered to be isomorphic, and accordingly they are identi-
fied if feasible. In this sense the conservative function fields F |K are in bijective
correspondence to the complete smooth irreducible curves Γ defined overK, such
that F = K(Γ). Thus from today’s viewpoint there is no essential difference
between the arithmetic-analytic analogies in Hasse’s time, and the geometric
analogy in our time.

For Hasse and his contemporaries, however, the situation was different. At
that time the modern “geometric” viewpoint was not yet sufficiently established.
For instance, the curves defined by the equations y2 = x3 − 1 and y2 = x4 − x
were considered as two different elliptic curves which can be transformed into
each other by birational transformations – whereas today, within the algebraic
framework we would regard these equations as two possibilities to explicitly
generate the same abstract curve. It is true that Hasse in his proofs had oc-
casionally to use a suitable generation of the function field in question, i.e., he
had to work with curves given explicitly by equations, and to manipulate with
the coordinates of the points of these curves. But in every such case he did not
hesitate to express his dislike of such procedure on the ground that it would be
desirable to find another proof which works with abstract notions. He used the
terminology “invariant” notions by which he meant birationally invariant. Such
proof would be, in his view, more adequate and lucid.17

As we can see from the Hasse-Noether correspondence [LR06], it was largely
the contact with Emmy Noether which had induced Hasse to accept and prefer
the abstract algebraic view point.

It is well known that in Hasse’s time there were already strong attempts, by
Emmy Noether, van der Waerden and others, to put Algebraic Geometry on a
strictly algebraic footing in the sense of “Modern Algebra” as understood at the

17To avoid misunderstandings we would like to point out that, of course, the connection
between algebraic geometry and the theory of function fields had been observed much earlier
already. (Compare, e.g., [Fre06] where Gauss’ work in this direction is discussed.) What Hasse
wished to establish, and is generally accepted today, is an invariant framework of geometric
notions.
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time. But these attempts were not yet pushed far enough to be of conceptual
help in the proof of the Riemann hypothesis, mainly because the latter required
base fields of characteristic p > 0 which were outside the realm of classical
algebraic geometry. In fact, Hasse’s work on the algebraic theory of function
fields contributed essentially to the development of the abstract foundation of
algebraic geometry.

At the time of his Hamburg lecture, i.e., in 1934, Hasse probably did not yet
know about the relevant developments of the Italian school of algebraic geom-
etry, which could have led him to exploit the analogies to algebraic geometry
for his project. Instead he relied on the analogies to number fields on the one
hand, and to the analytic theory of complex multiplication on the other hand.
It was only gradually that Hasse became aware of the fact that the results of
the Italian school could be of use if suitably algebraized. As far as we can de-
duce this from the Hasse correspondence, this began through letters from Emmy
Noether, O. F. G. Schilling, A. Weil and S. Lefschetz in the years 1934-36. Later,
Hasse was actively seeking contact to Italian geometers in order to get more
information. But this was part of Hasse’s attempts to approach the Riemann
hypothesis for higher genus; we shall report on this in more detail in Part 5.

Nevertheless, in the following discussion we shall freely use today’s geometri-
cal terminology whenever we believe that, up to the notations and terminology,
this reflects faithfully Hasse’s ideas – their origin and their gradual development.

1.4 Summary

In January 1934 Artin invited Hasse for a series of lectures in Hamburg, for
he had heard that Hasse had a new proof of the Riemann hypothesis for elliptic
curves over finite fields. Hasse accepted and his lecture notes were published
the same year in the “Hamburger Abhandlungen”. Hasse’s first proof (which
we have described in Part 2) had run a detour from characteristic p to charac-
teristic 0 where he could use the analytically based classical theory of complex
multiplication and its class field theory. In contrast the new second proof pro-
ceeded entirely in characteristic p and did not use complex analysis. Given an
elliptic curve over a finite field, the problem was to find the solutions of the
corresponding L-polynomial, which is a quadratic polynomial with integer coef-
ficients. Hasse did not use the geometric language to which we are accustomed
today; instead he used the language of function fields in analogy to number fields.

2 Algebraic uniformization

2.1 The addition of points

Hasse’s abstract theory of complex multiplication refers to an elliptic function
field F |K whose base field K is supposed to be algebraically closed but otherwise
arbitrary, in particular it could be of characteristic p > 0. It is in the very last
part only that K is assumed to be the algebraic closure of a finite field Fq of
order q, and F |K to be a base field extension of an elliptic function field Fq|Fq.
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In that situation the Frobenius operator π and its conjugate π are introduced
and studied.18

We may write F = K(Γ) where Γ is an elliptic curve (always assumed to
be smooth and complete). By “point” of F we mean a K-rational point of Γ
except if explicitly said otherwise. (Let us repeat once again that Hasse did
not use the geometric analogy. Although he sometimes used the terminology
“point” he understood that, by definition, this was a prime divisor belonging to
a valuation of F |K.)

Besides points we also consider divisors A of F which are defined as formal
products of prime divisors, i.e., points. Divisor operation is written as multi-
plication. Divisor equivalence is understood modulo principal divisors and is
denoted by ∼ .

After fixing a point of reference P0, the assignment P → P
P0

yields a bijection
between the set of all points and the divisor classes of degree 0 of F ; this is a
consequence of the Riemann-Roch theorem for genus g = 1.19

Since the divisor classes of degree 0 form a group, this bijection defines a
group operation for the points of F . Explicitly: The new operation for prime
divisors, which is written as addition, is defined by the formula:

P +Q

P0
∼ P

P0
· Q
P0

. (3)

The zero element of this group is P0.

In geometric language, the relation (3) establishes an isomorphism of the
curve Γ with its Jacobian, after fixing a point of reference P0. But note (again)
that Hasse did not have this vocabulary at his disposal; he did not talk about
the “Jacobian” of Γ but, instead, referred to the “group of divisor classes of
degree 0”.

There are well known explicit formulas describing the addition of points.
Suppose, for instance, that the characteristic is p > 3, then Γ can be given by
an equation in Weierstrass form:

Γ : y2 = 4x3 − g2x− g3 with ∆ = g3
2 − 27g2

3 6= 0 . (4)

As point of reference we take the point at infinity. The other points are then
given by their coordinates (x, y). Now, the group operation (3) is explicitly
given by the so-called addition formula

x3 = −x1 − x2 +
1
4

(
y2 − y1

x2 − x1

)2

(5)

y3 = − y2 − y1

x2 − x1
(x3 − x1)− y1 (6)

if P3 = P1 +P2. (In case when one of the P1, P2, P3 equals the point of reference,
this formula has to be modified suitably.)

18For this see section 2.5.
19Instead of P

P0
one could also write PP−1

0 . But Hasse preferred the writing P
P0

which we

wish to follow here.
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Hasse’s formula (3) reflects these classical addition formulas but, and this
is his main point, it is formulated in an algebraically invariant fashion, without
recourse to an explicit representation by coordinates. In his Crelle paper (I) we
find the following statement:

Mit Hinblick auf die Aufgabe der Verallgemeinerung der ganzen Theo-
rie auf beliebiges Geschlecht g vermeide ich es absichtlich, soweit nur
irgend möglich, spezielle explizite Formeln oder Kenntnisse für ellipti-
sche Körper auzunutzen . . . Der ganze Aufbau der Theorie hat jetzt rein
strukturellen Charakter.

In view of the problem to generalize the whole theory to arbitrary
genus g I purposely avoid, as far as possible, using explicit formulae
or presupposing any knowledge about elliptic fields. . . The layout of
the whole theory is now of purely structural character.

Hasse admits that in this way his proofs may look somewhat abstract for those
who are interested in the elliptic case only. But he adds that the abstract
formulation makes it possible to deal quite naturally with every characteristic p ,
including p = 2 and p = 3. In his first proof (which we had discussed in Part 2)
Hasse had worked with the explicit addition formula (5) for the coordinates;
accordingly he had to assume p > 3. This explains why now he expressly states
that the characteristics 2 and 3 are included. Well, in his Hamburg notes he still
had to assume p > 2 but in his 1935 Göttingen report [Has35] he was already
able to include p = 2 too.

For us, such a statement as cited above seems quite obvious. But we are used
today to an abstract foundation of algebraic geometry, based on commutative
algebra without explicit recourse to coordinates and polynomial equations. As
said above already, at Hasse’s time this was not so, and Hasse had somehow to
justify his “abstract” notions and proofs. We have the impression that Hasse
included this “justification” as a result of his discussions with his friend Harold
Davenport, for the latter was by no means convinced yet of the power and
lucidity of the abstract method.

The construction of Γ as an 1-dimensional abelian variety, as given in (3),
is regarded by Hasse as the abstract substitute of the classical method of uni-
formization in the case K = C. More precisely, the abelian variety Γ is the
abstract equivalent to the universal covering space C modulo the lattice of pe-
riods. It is true that by definition the isomorphism (3) depends on the choice
of the base point P0. But it turns out that different choices of the base point
lead to essentially the same result – as it does in the classical case, where P0

corresponds to the origin of the universal covering space.

Accordingly one of the main tasks was to clarify the group structure of Γ,
or at least of the torsion part of Γ.

We can fairly well observe the process in which Hasse gradually obtained
his abstract algebraic viewpoint for his new proof. In those years Hasse had
an extensive correspondence with his friend Davenport, and Hasse informed
him frequently about the progress of his work. In a letter to Davenport of
October 6, 1933 Hasse writes, referring to an elliptic function field F |K where
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K is the algebraic closure of a finite field of characteristic p :20

I have proved that the automorphism group given by the addition
theorem is of “dimension 2” . For the “infinite finite field” (compos-
ite of all finite fields to p) it is isomorphic to the additive group of
all pairs (r1, r2) of rational numbers, with denominator prime to p ,
considered mod. 1 . This is entirely in accordance with what I proved
analytically . . . and I hope the proofs will also allow a purely algebraic
treatment. I am not far enough to tell you more at present. I have,
however, got the knack of it now, in particular of where complex
multiplication and imaginary quadratic fields come in.

Davenport replied a week later:

It will be splendid if you obtain a purely algebraic treatment of the
elliptic case. What is the starting-point for your proof . . . ?

The “automorphism group given by the addition theorem” which Hasse men-
tioned is the group of translation automorphisms. Today it seems trivial that for
any abelian variety, the translations are given by automorphisms of the function
field. But let us repeat: At that time there was no algebraic theory of abelian
or elliptic function fields of characteristic p . Earlier that year, Davenport in a
letter of February 21, 1933 had asked Hasse:

Are you going to get new automorphisms or birational transforma-
tions from your method, or what ?

We see that Hasse had to discover those automorphisms; he could not wave his
hands and refer to general principles of abstract algebraic geometry. But how
did he discover the translation automorphisms?

Let P be any point of F |K. The translation automorphism τP for P (or,
in Hasse’s words, the “automorphism given by the addition theorem”) is defined
by the property that τP X = X +P for all points X. In the classicial situation,
when K = C is the complex number field, these automorphisms are obtained
from uniformization, i.e., generating F |K by the doubly periodic Weierstrass
function ℘(u) and its derivative ℘′(u), and then aplying a variable substitution
u 7→ u+t. In the algebraic setting, without the analytically based uniformization
available, Hasse constructs the translation as follows:

Consider the divisor P0 ·P , the product of the point P0 of reference with the
given point P . Since g = 1, there exists a non-constant element z ∈ F which
admits P0 · P as its pole divisor. The rational function field K(z) depends on
P but not on the choice of the element z according to the specification above.
We have [F : K(z)] = 2. The non-trivial automorphism σP of F |K(z) has the
property that σPX = −X + P for all X. Taking P0 for P we obtain another
involution σP0 with the property: σP0X = −X. Hence the translation τP can
be constructed as τP = σP · σP0 , a product of two involutions.

We see that this construction does not refer to explicit formulas like (5), (6).
20Hasse’s letters to Davenport were usually written in English; no translation is necessary.
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The map P 7→ τP gives an isomorphism of the additive group Γ to the
group of all translation automorphisms of F |K. Hasse’s statement, in his letter
above, about the structure of the group of translation automorphisms is in fact a
statement about the structure of the group Γ, (or of the group of divisor classes
of degree 0 of F which is isomorphic to Γ). In Hasse’s case (in his letter to
Davenport) when K is the algebraic closure of a finite field, every divisor class
is of finite order. In the general case, when K is arbitrary algebraically closed
(as Hasse assumes in his publications), Hasse’s description holds for the torsion
subgroup of Γ.

Actually, Hasse’s result as stated in his above mentioned letter to Davenport,
is not complete because the p-power torsion group of Γ is not covered. Hasse
sent the correct statement (including proofs) one month later to Davenport, in
a letter dated November 11, 1933. This correct statement is also found in the
Hamburg 1934 notes. The p-power torsion group is, in Hasse’s terminology,
“one-dimensional” in as much as it is isomorphic to the rational numbers mod-
ulo 1 whose denominators are p-powers (not to pairs of such numbers) – except
in some cases in which the p-power torsion group vanishes. Hasse was able to de-
scribe those exceptional cases explicitly by the vanishing of what today is called
the “Hasse invariant” A of an elliptic curve, defined as a certain coefficient in
the power series expansion of the holomorphic differential. We shall describe
this result later, as well as its role in connection with the Riemann hypothesis.
See section 4.

2.2 Meromorphisms and endomorphisms

As above, F denotes an elliptic function field with algebraically closed base
field K. Hasse defines a “meromorphism” as a K-isomorphism µ of F into
itself. Hasse writes the application of µ as a right operator; thus Fµ denotes
the image of F . We have Fµ ⊂ F . Such an isomorphism defines naturally
a rational map µ : Γ → Γ. Hasse’s terminology of “meromorphism” has not
survived; today one would just talk about “a rational map of Γ into itself”,
more precisely: “a rational map of finite degree”.

The map µ : Γ → Γ is in some sense dual to µ : F → F and hence it is
written as left operator; thus µP denotes the image of P . In his Göttingen
report Hasse says that this notation had been suggested to him by Ernst Witt
(who at that time was one of his assistants in Göttingen). If the point P of Γ
is regarded as a prime divisor of F and its residue map is denoted by z 7→ zP
then Witt’s notation implies

z · µP = zµ · P for z ∈ F . (7)

Indeed, this notation looks rather elegant, in Witt’s style which we know from
his other papers.

The meromorphism µ : F → F is uniquely determined by the rational map
µ : Γ→ Γ. More generally: If µP = νP for infinitely many points P then µ = ν
as meromorphisms of F .

Using the definition (3) we obtain

µ(P +Q) + µP0 = µP + µQ . (8)
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µ is called “normalized” if µP0 = P0 and thus

µ(P +Q) = µP + µQ . (9)

Every meromorphism of F can be normalized by multiplication with a trans-
lation automorphism. The normalized meromorphisms yield homomorphisms
of the group Γ into itself. Hasse introduced the name “multiplier”. Today’s
terminology is “endomorphism” instead of “multiplier”. This makes sense as
long as it is understood that the discussion is done in the category of algebraic
geometry in which only those group endomorphisms are considered which are
maps within this category. Hasse had chosen the name “multiplier”, following
the established terminology in the classical case, but this terminology has not
survived.

Here we mostly prefer to use today’s terminology; the reader who looks
through Hasse’s papers will have no difficulty to understand that a “multiplier”
in his sense is what today is called “endomorphism” of an abelian variety. How-
ever, we will denote the ring of all endomorphisms of Γ by M, as Hasse does
(and not by E as the name “endomorphism” would suggest).

Meromorphisms can be multiplied. The product µν : F → Fµν means first
applying µ and then ν as right operators on F . If µ and ν are normalized then
so is µν. From (7) we see that the corresponding endomorphism µν : Γ → Γ
means first applying ν and then µ as left operators on Γ. Thus the order of
application is changed, as it should by general functional principles.

Hasse defines the “norm” of a meromorphism (or endomorphism) µ as the
field degree

N (µ) = [F : Fµ] . (10)
Today this is called the “degree” of the meromorphism, i.e., of the corresponding
rational map of Γ to itself. It will turn out that N is the norm function on M in
an imaginary quadratic field. Thus let us keep Hasse’s terminology and continue
to say “norm”. The reader will have no difficulty to recall that this norm is the
degree in the sense of algebraic geometry.

We have the product formula for the norm:

N (µν) = N (µ)N (ν) . (11)

If F |Fµ is separable then, since both fields are of genus 1, it is unramified.
It is an abelian extension, the Galois group being the group of translation au-
tomorphisms τQ belonging to those Q ∈ Γ for which µQ = 0, i.e., Q is in the
kernel Γµ of the endomorphism µ. Thus N (µ) equals the order of this kernel.
For brevity, µ is said to be separable if the field extension F |Fµ is.

If µ is not separable then the order of Γµ equals the separable part Ns(µ) =
[F : Fµ]s of the norm. The product formula (11) holds also for the separable
part Ns of the norm, and also for its inseparable part Ni.

2.3 The addition of meromorphisms

As operators on the additive group Γ, endomorphisms can also be added. How-
ever, it is not clear a priori that the sum µ1 + µ2 of two such endomorphisms
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come again from some meromorphism, i.e., from an isomorphism of F into itself.
Hasse showed that this is indeed the case. Today we would wave this problem
with the comment that by definition, the meromorphisms are algebraic maps of
an algebraic group in the sense of algebraic geometry. But at the time of Hasse
such an argument could not be used because the abstract algebraic geometry
was not yet developed. Instead, he had to verify the above fact in the framework
of the theory of function fields he was working in.

Before proceeding let us insert a remark which perhaps we should have given
earlier, namely: It is convenient to consider every place P : F → K as some
kind of “improper” meromorphism of F . The corresponding operator on Γ is
the constant map Γ → P . If P = P0 is the place of reference then we obtain
the zero map of the group Γ. (Recall that P0 is by definition the zero element
of Γ.) The inclusion of the zero map among the endomorphisms of Γ is necessary
in order to consider them as a ring. In the following discussion this improper
meromorphism and its corresponding zero endomorphism is included although
we do not always stop to insert extra considerations even when they would be
necessary formally. In every such case those extra considerations are classical,
straightforward and left to the reader.

In his Hamburg 1934 notes Hasse did not give a detailed proof of the fact
that meromorphisms can be added; he referred vaguely to the explicit addition
formulas (5), (6). However, he said, one should look for a more elegant solution
which is susceptible to generalization. He sketches such a method but adds:

“Ich habe diesen Gedankengang aber noch nicht im einzelnen durchgeführt.”

“But I have not yet followed this thread in detail.”

In the Göttingen 1935 report Hasse gives a more detailed description of this,
and full details follow in his Crelle paper (II). Let us explain the main idea:

Write F = K(X) where X is a generic point of Γ over K. In addition to X,
consider all F -rational points M of Γ, with the specification that M should not
be K-rational, hence generic over K. Then K(M) ⊂ F and the specialization
X →M defines an isomorphism

F = K(X)→ Fµ = K(M) ⊂ F

i.e., a meromorphism µ. In this way the meromorphisms µ 6= 0 of F are in
bijective correspondence with the F -rational points M of Γ which are not K-
rational. (The improper endomorphism µ = 0 will correspond to the point P0

which, however, is K-rational.)

If P is any K-rational point of Γ then the image µP can be described in
terms of M as follows: Consider P as a prime divisor of F with residue map
z → zP from F to K. The curve Γ, originally defined over K, is also defined over
F and, as such, admits good reduction modulo P . Accordingly, every F -rational
point M of Γ is reduced modulo P to a K-rational point M · P of Γ. We have

M · P = µP

by comparing the definitions of both sides. Moreover, any F -rational divisor A
of Γ admits a reduction A · P ; under this reduction map the degree of divisors
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is preserved and also divisor equivalence. Points which are K-rational are fixed
under the reduction. Therefore, in view of (3), any relation of the form

M1 +M2 = M3

yields after reduction modulo P the relation

M1 · P +M2 · P = M3 · P

which gives

µ1P + µ2P = µ3P .

This is the essence of Hasse’s proof 21 of the

Addition theorem: If µ1, µ2 are endomorphisms of the elliptic
function field F then their sum µ1 + µ2 is also an endomorphism.

To be sure, Hasse did not talk of “good reduction”, and he did not talk about
an elliptic curve and generic points etc. Instead of considering F -rational points
M of the given curve Γ, Hasse considered the independent field compositum FF ′

of F with an K-isomorphic copy F ′. Regarding FF ′ as an elliptic function field
over F he considered prime divisors M of FF ′|F of degree 1. Our presentation is
nothing but a “translation” of Hasse’s arguments into the language of algebraic
geometry.

We have to keep in mind that a theory of “good reduction” of curves was not
yet in existence at that time. A systematic theory was developed by Deuring
and published in 1942 only; see [Deu42]. In 1935, Hasse had to develop the
necessary facts directly, in the special case under consideration.22

2.3.1 Abel’s theorem

In a function field F |K of genus g the holomorphic differentials form a K-vector
space Ω of dimension g. Here, “holomorphic” means “without poles”. If F |K is
elliptic then g = 1 and so Ω is of dimension 1. The meromorphisms µ of F act
naturally on Ω as follows: Let ω ∈ Ω and write ω = ydx where x, y ∈ F and x is
a separating variable. Then xµ, yµ ∈ Fµ ⊂ F and accordingly ωµ = yµd(xµ)
is regarded as a differential in F . It is verified that ωµ is well defined in this
way, and it is holomorphic. Hence ωµ = cµω with cµ ∈ K.

It is easy to verify that cµν = cµcν . It is not so easy to show that23

cµ+ν = cµ + cν (12)

21If µ1 = 0 or µ2 = 0 or µ1 + µ2 = 0 then the corresponding Mi has to be replaced by the
point P0 of reference.

22Note that in the first version of his proof which we had discussed in Part 2, Hasse had
already to deal with a situation of good reduction, even in the more subtle case where the
characteristic of the base field differs from the residue characteristic. Compare [Roq04], p.68.

23For the improper endomorphism one has to put formally co = 0.
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which can be regarded as the algebraic analogue of Abel’s theorem in the elliptic
case. Hasse’s proof in his Crelle paper (II) runs similarly as the proof of the
addition theorem for meromorphisms discussed in section 2.3.

Thus µ 7→ cµ yields a representation of the endomorphism ring M in the base
field K. By definition, cµ = 0 if and only if µ is inseparable (or µ = 0). Since
K is of characteristic p it follows cp = 0. Here, p stands for the endomorphism
p ·1, which means “multiplication with p” (in accordance with the identification
Z ⊂ M.) From this one deduces that p as a meromorphism of F is inseparable –
a fact which becomes important later when it comes to determine the p-torsion
of Γ. (See section 3.4.3.)

2.4 First structure theorems

Since endomorphisms µ can be multiplied and added, they form a ring M. Hasse
proceeds to investigate the structure of M. In the Hamburg 1934 notes we find
the following first structure theorems.

(i) M has no zero divisors.
Follows from the product formula for the norms (11).

(ii) M admits an identity 1.
It belongs to the identity meromorphism.

(iii) M contains only finitely many units.
For, there are only finitely many automorphisms of F leaving P0 fixed.

(iv) M has characteristic 0.

Theorems (i)–(iii) are immediate consequences of the definitions24 whereas
in Hasse’s setup, Theorem (iv) is lying deeper. In the Hamburg notes he stated
the stronger assertion about the norm

(v) N (n · 1) = n2 6= 0 for n ∈ N,

and he indicated a somewhat complicated induction procedure for this purpose.
Earlier, in a letter to Davenport of November 11, 1933 he had said that this
procedure was “following approximately Weber, Algebra III, §58”. Checking this
citation [Web08] we found that Weber in §58 discussed recursive formulas for
the multiplication of the Weierstrass ℘-function, i.e., for computing ℘(nu) as
rational functions of ℘(u) and ℘′(u). The formulas which Hasse developed in
characteristic p were somewhat more delicate since in the induction process he
had to jump over the numbers n which are divisible by p. Later he was able
to avoid this whole induction procedure. In his 1936 Crelle paper (I) Hasse
presented another, simplified proof, and Deuring in his 1940 correspondences
paper contributed further simplifications. Nevertheless we have mentioned here
Hasse’s first approach of November 1933 because on this occasion we have his
explicit statement that for inspiration he heavily drew on H. Weber’s book on
elliptic functions – and we know this not only for this particular problem but

24For (iii) at least in characteristic p > 3 where the classical Weierstrass normal form could
be used. In characteristics p ≤ 3 and in particular if p = 2 Hasse had to prove a new theorem
which had no analogy in the characteristic 0 case. He did so in his Crelle paper (II), §1.
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quite generally, in the process of building the theory of elliptic function fields
for arbitrary characteristic p.

But it turns out that it is not really necessary at this point to know the
precise value of the norm N (n ·1). As Deuring [Deu40] observed: To prove (iv)
it suffices to show that for a given n ∈ N the kernel Γn of the multiplication
n : Γ → Γ is finite. According to (3) this means that there are only finitely

many P for which
Pn

Pn0
is a principal divisor. In his 1935 Göttingen report Hasse

announces that he will prove this

. . . mit Schlüssen, die aus der Theorie der Weierstraßpunkte geläufig
sind, nämlich durch Betrachtung von Differentialdeterminanten . . .

. . . using methods which are well known from the theory of Weier-
strass points, namely by considering differential determinants . . .

And in the 1936 Crelle paper (I) Hasse presented the details. He used the theory
of higher derivatives in characteristic p which he had developed for this purpose
in an earlier paper in the same volume of Crelle’s Journal [Has36a]. Since this
is of general interest, apart from its application to the Riemann hypothesis, let
us briefly report on it.

2.4.1 Higher derivatives and differential determinants

In this section we present the theory of higher derivatives in the systematic and
generalized form as it had been developed by Hasse and F. K. Schmidt in their
later 1937 paper [Has37a]. See also Teichmüller [Tei36].

Given a field extension F |K of arbitrary characteristic, a “higher derivation”
of F |K is defined to be a sequence of K-linear functions y 7→ D(ν)(y) (ν =
0, 1, 2, . . .) such that D(0)(y) = y and the following rules are satisfied:

D(ν)(yz) =
∑
i+j=ν

D(i)(y)D(j)(z) (product formula)

D(µ)D(ν)(y) =
(
µ+ ν

µ

)
D(µ+ν)(y) (iteration formula)

Here, y, z range over the elements of the given field F , and the values D(ν)(y),
D(ν)(z) should be contained in F .

In the iteration formula the binomial coefficient
(
µ+ν
µ

)
occurs whereas in

the classical case of characteristic 0 the D(ν) are defined by recurrence and
there is no extra coefficient (and then binomial coefficients occur in the product
formula). This seemingly minor point makes all the difference and admits the
application also in characteristic p.

If F |K is an algebraic function field and x ∈ F a separating element then
there is one and only one higher derivation D

(ν)
x of F |K such that D(1)

x (x) = 1
and D

(ν)
x (x) = 0 for ν > 1. This is called the derivation “with respect to x”.
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If L ⊂ F is any finite K-module and y0, y1, . . . yn−1 a basis of L then the
determinant

Dx(L) = detD(ν)
x (yi) (i, ν = 0, 1 . . . , n− 1) ,

if non-zero, does not depend on the choice of the basis (up to a constant factor).
If (dx) denotes the divisor of the differential dx then the divisor

d(L) = Dx(L)(dx)1+2+···+n−1 (13)

is independent also of the choice of the separating element x. This divisor is
contained in the (1 + 2 + · · ·+n−1)-th power of the differential class of F |K. If
F |K is elliptic then the differential class coincides with the principal class, hence
d(L) is a principal divisor, i.e., a non-zero element in F , uniquely determined
by L up to a constant factor.

These d(L) are the differential determinants which Hasse had mentioned in
his letter to Davenport.

Now, assume F |K to be elliptic and P0 its point of reference. Let n ∈ N.
Consider the K-module Ln = L(Pn0 ) of those z ∈ F which have P0 as its only
pole, and of order ≤ n. It is of dimension n (since the genus g = 1). In formula
(13) take L = Ln. In his first 1936 Crelle paper (I) Hasse shows that Dx(Ln) 6= 0
and

d(Ln) =
An

Pn
2

0

(14)

where An is an integral divisor whose prime components P are precisely those

for which
Pn

Pn0
∼ 1, i.e., nP = 0.

This then proves that the kernel Γn of n : Γ→ Γ is finite, hence theorem (iv)
above. In order to prove theorem (v), Hasse discusses carefully the numerator
An of d(Ln) and finds that every prime P dividing An has multiplicity Ni(n),
which is the inseparable factor of the norm N (n). But, as said above already,
this was later superseded by Deuring’s observation.

The verification of (14) is done, as Hasse had announced, with methods which
are used in the theory of Weierstrass points. Of course, there are no Weierstrass
points in the elliptic function field F |K. Hasse meant that the methods used in
the theory of Weierstrass points are the same, or similar, to what he used here.

Hasse was familiar not only with Weber’s book [Web08] but also with the
book by Hensel-Landsberg on the theory of algebraic functions [HL02] where the
classical theory of Weierstrass points is presented. There, on page 454 we indeed
find the differential determinants which appear in Hasse’s setup – but with the
difference that now he had to modify the notion of higher derivatives in the way
explained above, so that it can be applied also in characteristic p. Although
the final outcome looks rather natural and straightforward, Hasse had to work
quite a lot to put these things into shape. We can follow this development in
his frequent letters to his friend Davenport where Hasse reports on his progress.
On October 16, 1935 Hasse writes after explaining to Davenport his modified
notion of higher derivatives:
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Do not think all this is trivial and contained in elementary books.
For it is not. Let alone that I could not find a book that contained
the explicit formulae . . . Even if such a book existed, it would have
been of no use whatsoever. For it surely will be using the recurrent
definitions [of the higher derivatives] which are senseless for fields
of prime characteristic p .

By the way, the proper theory of Weierstrass points in characteristic p was
developed some years later by F. K. Schmidt in [Sch39]. It seems evident that
he was inspired by Hasse’s modified theory of differential determinants, which
F. K. Schmidt calls “Wronskian determinants”.

As to formula (14) see also our comments to H. L. Schmid’s paper [Sch41] at
the end of section 3.2.

2.5 The Frobenius operator and the R.H.

Due to the theorem (iv) above, it is possible to identify Z with a subring of the
endomorphism ring M. Hence for every µ ∈ M the ring Z[µ] ⊂ M is an integral
domain.

In his Hamburg lectures, Hasse did not yet know whether every µ ∈ M is
algebraic; he settled this question later only (in the affirmative sense). Also, the
question whether M is always commutative was not yet settled. (It turned out
that this is not always the case, but this can happen only when the so-called
Hasse invariant A = 0.)

But the above mentioned first structure properties (i)-(iv) are sufficient to
prove the Riemann hypothesis for F , provided some basic facts about the Frobe-
nius operator are granted. The discovery of the Frobenius operator and its role
in the arithmetic of function fields over finite base fields, is to be considered as
the essential point of Hasse’s second proof.

Suppose that the base field K is the algebraic closure of a finite field Fq with
q elements. Let Fq|Fq be an elliptic function field and consider F = FqK, the
base field extension of Fq|Fq. Geometrically speaking, F = K(Γ) should be the
function field of a smooth complete curve Γ which is defined over Fq already.

The exponentiation z 7→ zq in Fq leaves the elements of the base field Fq
fixed. It extends uniquely to an isomorphism π of F into itself leaving the
elements of K fixed. In this way π becomes a meromorphism of F |K. The
point of reference P0 is to be chosen rational over Fq ; then π is normalized and
hence defines an endomorphism of Γ. The Fq-rational points are precisely those
which are kept fixed by π. Today π is called the q-th Frobenius operator of F
with respect to q.

As to the terminology we note that, in the context of function fields, Hasse
does not use the name “Frobenius operator” – although the defining property,
namely “raising into the q-th power”, is the same as in the number field case
where Hasse had introduced the name “Frobenius symbol” (see [Has30]).25 Here

25Actually, the direct analogue of Hasse’s “Frobenius symbol” in function fields means
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Hasse just says “operation π”. We do not know who had introduced the name
“Frobenius operator” in the present context.

Since the image field is Fπ = (Fq)qK = F q we have N (π) = q . Since π is
purely inseparable by definition, it is verified that π − 1 is separable. Hence
N (π − 1) equals the number of points P for which (π − 1)P = 0, i.e., πP = P ,
i.e., P rational in Fq. As usual in this context, the number of these primes is
denoted by N . Thus we have:

N (π) = q and N (π − 1) = N . (15)

As said above, in the 1934 Hamburg notes Hasse does not yet know that
every endomorphism in M is algebraic. But for the Riemann hypothesis it is
necessary to know that π is algebraic. Hasse writes to Davenport on January 29,
1934:

I am very troubled at present because I found a gap in my proofs
about the elliptic case while drawing up my lectures for Hamburg.
The whole thing seems too sensible for being wrong. But it may be
that the proof of the actual result lies a bit deeper than my argument
went so far. The possibility I have to exclude is that the operation
π is transcendental. I can prove that if it is algebraical it must be
imaginary quadratic, because a unit operation cannot exist.

When Hasse writes that “a unit operation cannot exist” then he has in mind
theorem (iii) of section 2.4. Thus he means that there are only finitely many
units. This implies by the Dirichlet unit theorem that Z[π] is an order in an
imaginary quadratic number field (or π ∈ Z), and hence the only units in Z[π]
are ±1 except in the cases when Z[π] is the ring of 3-rd or of 4-th roots of unity
in which case there are 6 or 4 units respectively.

Fortunately Hasse had been able to straighten this up, for on February 12,
1934, after his visit to Hamburg, he reported to Davenport as follows:

“. . . I was able to fill up the gap in my proof shortly after I wrote you
how depressed I was. The new proof is, as Artin meant, even more
adequate than the old would have been, were it consistent . . . ”

And then he reports to Davenport about this proof, the same which we find
in the Hamburg notes. Since this is somewhat involved, and since it was later
superseded by Hasse’s more complete structure results for M, we will not go into
much detail here. Let us be content to say that Hasse defines the “conjugate”
π ∈ M and proves by comparing degrees that

ππ = N (π) = q , π + π = q + 1−N . (16)

This shows that π and π are the roots of the quadratic polynomial L?(t) of (1)
over Z. Thus π is algebraic indeed and, as said above already, Z[π] is an order

something different: given a Galois field extension E|F of function fields with finite base field

and an unramified prime P of F with extension Q to E, the “‘Frobenius symbol”
(

E|F
Q

)
denotes an automorphism of the Galois group of E|F , with the property that it induces in
the residue field the exponentiation with qf , the order of the residue field modulo P .
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in an imaginary quadratic field. Thus the discriminant of the polynomial L?(t)
is negative, i.e.,

|q + 1−N | ≤ √q.

This is the Riemann hypothesis for Fq|Fq. (The case π ∈ Z needs some extra
care. It can only happen when π = π and q is a square.)

We see here that for the Riemann hypothesis, it is not necessary to know
the precise structure of the whole endomorphism ring M. It suffices to know
the behavior of π and π − 1 only.26 But Hasse did not stop here. He wished
to go beyond and to clear up the precise structure of the whole endomorphism
ring, even if this would not be absolutely necessary for the Riemann hypothesis
itself.

In any case, it seems noteworthy that at this point already Hasse was able
to define the conjugate π, and even µ for an arbitrary endomorphism µ; this
was identical to the Rosati anti-automorphism which Deuring introduced later.
But Hasse seemed not to know yet that µ 7→ µ is an anti-automorphism. It is
almost trivial that µ · ν = ν ·µ but the additive property µ+ ν = µ+ ν is more
subtle. If Hasse had known this, the proof of algebraicity could have been much
shortened. (See section 3.3.)

2.6 Summary

The first task for Hasse was to find a substitute in characteristic p for the
analytically based uniformization of a given elliptic curve. Hasse found at least a
partial substitute by algebraically constructing the Jacobian and its isomorphism
to the given curve. Today’s construction, based on abstract algebraic geometry,
was not yet available at that time and so he worked in the framework of algebraic
function fields. The endomorphisms of the Jacobian (as an abelian variety) are
given, in Hasse’s setup, by what he called “meromorphisms”, which he defined
as isomorphisms of the function field into itself. The endomorphism ring of the
Jacobian turns out to be without zero divisors and of characteristic 0. At the
time of his Hamburg lecture Hasse did not know yet that every endomorphism is
algebraic. But if an endomorphism µ is known to be algebraic then Hasse showed
that the ring Z[µ] contains only finitely many units and so, by Dirichlet’s unit
theorem, it is an order in an imaginary quadratic field (or µ ∈ Z).

In case of a finite base field Hasse discovered what today is called the “Frobe-
nius endomorphism” π. He could show that π is algebraic, and that its quadratic
equation over Z coincides with the L-polynomial which governs the zeta function
of the curve. The fact that Z[π] is imaginary yields the validity of the Riemann
hypothesis.

26In fact, this idea was taken up by Manin again many years later [Man60]. Manin says
explicitly that his proof is based on Hasse’s ideas. But, he adds, his proof is completely
elementary. Since he worked with the Weierstrass normal form, he has to assume p > 3.
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3 More structure theorems

As said in the foregoing section, in Hamburg 1934 Hasse did not yet know
whether every endomorphism µ ∈ M is algebraic. But he knew that if some
µ ∈ M is algebraic then µ is an imaginary quadratic integer (or µ ∈ Z). As said
above, this follows from the Dirichlet unit theorem since Z[µ] ⊂ M contains only
finitely many units. Hence µ is the root of a quadratic polynomial

X2 − aX + b with a, b ∈ Z and |a| ≤ 2
√
b . (17)

It can be shown, and Hasse does it, that b = N (µ); this implies that a =
N (µ) + 1−N (µ− 1). This is a consequence of Hasse’s norm addition formula,
discussed below.

3.1 The norm addition formula

Hasse’s norm addition formula reads as follows::

N (µ+ ν) +N (µ− ν) = 2N (µ) + 2N (ν), (18)

valid for arbitrary endomorphisms µ, ν ∈ M. Given this formula together with
the statements:

(a) N (µ) ∈ Z
(b) µ 6= 0⇒ N (µ) > 0
(c) N (µν) = N (µ)N (ν)

it is easy to deduce that µ 7→ N (µ) defines a quadratic form on M and that
every µ ∈ M satisfies a quadratic equation

µ2 − aµ+ b = 0 (19)

with

a = N (µ) + 1−N (µ− 1) (20)
b = N (µ) . (21)

Since the quadratic form µ→ N (µ) is positive definite it follows

a2 − 4b ≤ 0 (22)

which means that µ ∈ M is imaginary quadratic (or µ ∈ Z). In case µ = π
(Frobenius operator) we have noted already in section 2.5 that this implies the
Riemann hypothesis. Hasse noted in particular that in this setup he did not
have to use Dirichlet’s unit theorem any more; recall that in his earlier proof
this had been necessary, as mentioned in Hasse’s letter to Davenport of January
29, 1934, cited in section 2.5.

Moreover, the above information implies the following

Theorem: The endomorphism ring M of an elliptic function field F |K is
of one of the following types:
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I. M = Z .
If for all µ ∈ M equality holds in (22).

II. M is an order in an imaginary quadratic number field.
If there exists µ ∈ M for which (22) is a strict inequality, and µ commutes
with all elements in M.

III. M is an order in a quaternion division algebra over Q.
Otherwise.27

Hasse had presented this structure theorem in his Göttingen seminar.28 Or
maybe it was in the workshop (Arbeitsgemeinschaft) which had been established
in Göttingen, organized by Ernst Witt.29 As a consequence, several members of
the seminar, or workshop, contributed to the attempt to simplify the derivation
of the theorem from the norm addition formula.

One of those members was Behrbohm whose name is mentioned in Hasse’s
1935 Göttingen report.30 Hasse had published Behrbohm’s simplified proof
[Beh35] in the Göttinger Nachrichten right after Hasse’s report. In the 1936
Crelle paper (III) Hasse mentioned that he followed Behrbohm’s exposition
together with certain further simplifications provided by Teichmüller, another
member of the workshop. Finally, Witt in his Zentralblatt review of Behrbohm’s
note [Wit36] presented a short proof using not more than half a page deriving
the theorem from the norm addition formula (18).

As to the norm addition formula itself, Hasse discovered it while trying to
adapt a result of Davenport. Several times already we have had occasion to cite
from the Hasse-Davenport letters; this reflects the fact that during those years
there was a lively exchange of letters between the two. Among other topics,
Hasse reported about the progress of his work and tried to interest Davenport
in his problems on elliptic curves and beyond. On October 9, 1935 Hasse wrote:

I am very glad you are spending some further energy on the subject of
our common interest. Your communication about the nature of the
meromorphisms in the elliptic case seems to me extremely important
and interesting. I should very much [like] to have a more detailed
account of your proofs.

27In this context the terminology “order” of a number field or a division algebra Σ over Q is
meant in the sense of classical number theory. It is defined as a finite Z-algebra M ⊂ Σ such
that QM = Σ.

28Note that in the summer of 1934 Hasse had moved from Marburg university to Göttingen.
29It is known that Hasse participated in the meetings of this workshop and, to a large

degree, determined the topics to be studied.
30Hermann Behrbohm is mentioned in the list of Hasse’s doctoral students, a list that was

written down by Hasse himself. But it seems that Behrbohm did his Ph.D. thesis not with
Hasse. Besides Behrbohm’s above mentioned publication in the Göttinger Nachrichten he
published only one paper which was on number theory, namely on the euclidean algorithm in
quadratic fields [BR36], jointly with the Hungarian mathematician L. Redei who in 1934/35
was visiting Hasse in Göttingen as a Humboldt fellow. After that Behrbohm published only
papers on applied mathematics; it seems that he had switched to aircraft industry. Behrbohm
is mentioned in the list of German Ph.D.’s taking their examination in 1944. (This list is
available in the internet on the homepage of the DMV (Deutsche Mathematiker Vereinigung)).
His dissertation on supersonic flows is available in the Göttingen university archive. There he
mentions Dozent Dr. Graeser and Prof. Kaluza as his referees.
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The “subject of our common interest” was, of course, the structure of the en-
domorphism ring M and its relevance for the Riemann hypothesis.

We do not know the precise content of Davenport’s communication. How-
ever we can guess from what he later published in the Cambridge Proceedings
[Dav36]. Namely, the main result of Davenport in that paper is the theorem that
every endomorphism in M is algebraic and, moreover, that M is commutative if
π /∈ Z 31 (note that π ∈ Z can only happen if q is a square). For this purpose
Davenport developed some kind of euclidean algorithm for endomorphisms. In
addition he had to use and to prove the following norm inequality

N (µ+ ν) ≤ 2N (µ) + 2N (ν), (23)

which is a weaker form of (18).

It was Davenport’s proof of this formula which Hasse was not satisfied with,
and which he therefore wished to adapt to fit in his own framework. For,
Davenport worked with Weierstrass normal form (4) (and hence he could deal
with the case p > 3 only), and then he used the explicit formulae for the addition
theorem (5), (6). For the proof of (23) it was necessary to estimate the degrees
of the rational functions appearing in those formulas.

But as we have pointed out above already, Hasse wished to avoid, if possible
at all, the use of normal forms in this context. On October 21, 1935 he told
Davenport that he had obtained another proof and added:

What I have achieved with it is the total elimination of any normal
form. This seems to me of high importance. For I have no hope of
mastering the case g > 1 by discussing the degrees in the rational
functions of the addition formulae.

And several weeks later, on November 21, 1935, Hasse reported:32

Zu meiner eigenen grössten Überraschung fand ich nämlich gestern den
in meinen Augen “wahren” Beweis für die fraglichen Sätze über Mero-
morphismen . . .

To my greatest surprise I found yesterday what in my eyes is the
“genuine” proof for the meromorphism theorems in question . . .

And he proceeds to explain his “genuine” proof of the norm addition formla (18)
in detail. Here, “genuine” in Hasse’s opinion implies that there is no reference to
normal forms and explicit addition formulas. Moreover, Hasse’s norm addition
formula (18) is a precise equality whereas Davenport’s (23) is just an estimate.

It seems that Davenport, after having seen Hasse’s norm addition formula
and its proof, was hesitating to submit his own manuscript for publication, since
it was to a large part superseded by Hasse’s. But Hasse disagreed resolutely.
On November 27, 1935 he wrote:

31This is not quite true; see our remark at the end of section 4.4.
32This letter was written in German; the translation is ours.
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My dear Harold! Thanks very much for your kind letter. Of course
you must publish your proof ! I have mentioned the fact, that you
first had the idea of considering N(µ) as a sort of absolute value and
proved the algebraicity and commutativity of normalized meromor-
phisms on this basis, in both my preliminary paper for the Göttinger
Nachrichten and my detailed account for Crelle’s Journal. . .

Upon this, Davenport published his version in the Cambridge Proceedings [Dav36].

3.2 Hasse’s proof

Perhaps it is not without interest to exhibit Hasse’s main idea although, as we
shall see, the Deuring shortcut 1940 in [Deu40] has rendered this proof obsolete.

We know that any normalized meromorphism µ : F → F leads to an en-
domorphism µ : Γ → Γ. This is obtained by assigining to every point (prime
divisor) P of F its induced point in the subfield Fµ, i.e., its norm, and then
mapping this back to F by the isomorphism µ−1 : Fµ → F . By linearity this
map extends to arbitrary divisors D of F . Thus we obtain an endomomorphism
µ of the divisor group of F , defined by the formula

µD = NormF |Fµ(D)µ−1.

This map preserves the degree of the divisor D.

By duality µ leads also to an endomorphism µ of the divisor group of F .
This is obtained in the following way: Any divisor D of F is transported to a
divisor Dµ of Fµ by the isomorphism F → Fµ, and in view of the inclusion
Fµ ⊂ F lifted to F by the conorm:

µD = ConormF |Fµ(Dµ) . (24)

Under this map the degree of D will be multiplied by the field degree [F : Fµ] =
N (µ). If D = P0 is taken as the prime of reference, of degree 1, then

degµP0 = N (µ) . (25)

Now Hasse does this for the 4 meromorphisms µ, ν, µ + ν, µ − ν. He obtains
4 divisors of F , of degrees N (µ), N (ν), N (µ + ν) and N (µ − ν) respectively.
Hasse in [Has36d] shows that the divisor

(µ+ ν)P0 · (µ− ν)P0

µP 2
0 · ν P 2

0

(26)

is a principal divisor of F , hence of degree 0. This gives (18). Well, this works
only under the assumption that neither of those 4 endomorphisms is zero; the
other cases require extra care which however one is used to in the theory of
complex multiplication and can deal with in the standard manner. Under the
said assumption Hasse could explicitly exhibit an element in F whose principal
divisor is given by (26): Take x ∈ F which has P 2

0 as its pole divisor; then we
have

(µ+ ν)P0 · (µ− ν)P0

µP 2
0 · ν P 2

0

∼= xµ− xν (27)
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where ∼= means equality of divisors. Thus the norm addition formula (18),
which is a relation between degrees, is interpreted as a relation between divisors
– which fits well into Hasse’s intentions.

Hasse explains in [Has37b] that he had found the above proof in analogy to
the classical case:

Die Normenadditionsformel erhält man, wenn man das aus der klas-
sischen komplexen Multiplikation geläufige Verfahren der Nullstellen-
und Polbestimmung der Funktion ℘(µu)−℘(νu) algebraisiert, d.h. die
Zähler- und Nennerprimdivisoren von xµ − xν bestimmt und ihre An-
zahlen gleichsetzt, wo x irgendein Element mit dem genauen Nenner
P 2

0 aus F ist.

The norm addition formula is obtained by algebraizing the famil-
iar procedure from the classical complex multiplication, to determine
the zeros and poles of the function ℘(µu) − ℘(νu); this means to
determine the prime divisors of the numerator and those of the de-
nominator of xµ−xν and to compare their numbers, where x is any
element in F with the exact denominator P 2

0 .

The “familiar procedure” which Hasse is referring to, is represented by the
formula

σ(u+ v)σ(u− v)
σ(u)2σ(v)2

= ℘(u)− ℘(v) (28)

known from the classical theory of elliptic functions. Here, ℘(u) and σ(u) de-
note the Weietrstrass ℘-function and σ-function. The formal coincidence of this
classical formula with (27) is apparent. It is a good example of the transla-
tion process from the analytic to the algebraic language. The role of analytic
functions is taken over, in the algebraic framework, by divisors.

In later years, H. L. Schmid (an assistent to Hasse in Göttingen until 1938)
took up the challenge, and he found algebraic equivalents for several other an-
lytically based formulas. In his 1941 paper [Sch41] he says:

Das Ziel der Arbeit ist zu zeigen, daß der gesamte Bestand der Formeln,
welche die (in ihrer transzendenten Uniformisierung durch ℘ und ℘′

ausdrückbaren) elliptischen Funktionen als Produkt von σ-Funktionen
darstellen, abstrakt darstellbar ist. . . Die Gleichheiten werden zu Divisor-
relationen, die das Wesentliche, nämlich Nullstellen und Pole, in Evidenz
setzen.

The aim of this paper is to show that the entire stock of formu-
las which represent elliptic functions (given in their transcendental
uniformisation by ℘ and ℘′) as products of σ-functions, are repre-
sentable in abtract form. . . Equalities become divisor relations which
make evident the essential features, namely zeros and poles.

H. L. Schmid’s paper discusses not only Hasse’s (27) but also quite a number
of other relations. Particularly noteworthy is the analytic origin of Hasse’s
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determinant formula (14) which H. L. Schmid identifies as:∣∣∣∣∣∣∣∣
℘′(u) ℘′′(u) . . . ℘(n−1)(u)
℘′′(u) ℘′′′(u) . . . ℘(n)(u)
. . . . . . . . . . . .

℘(n−1)(u) ℘(n)(u) · · · ℘(2n−3)(u)

∣∣∣∣∣∣∣∣ = ε
σ(nu)
σ(u)n2 (ε constant) (29)

If we consider that at Hasse’s time there was no algebraic theory of endo-
morphisms of abelian varieties, and that Hasse had set out not only to find the
facts but also to develop the proper framework to understand the facts, then
we appreciate his proof of (14) which consists of the algebraization of those an-
alytic formulas. But as said earlier already, that proof was soon superseded by
Deuring’s shortcut.

3.3 Deuring’s shortcut

In a letter of May 9, 1936 Deuring, who held a position as assistant to van
der Waerden in Leipzig at that time, sent a letter to Hasse announcing that he
had developed a concept which would probably allow one to generalize Hasse’s
results to function fields of higher genus. Deuring wrote:

In den letzten Wochen habe ich versucht, Ihre Ergebnisse für elliptische
Funktionenkörper auf Körper höheren Geschlechts zu verallgemeinern.
Das ist mir bis zur Aufstellung des Multiplikatorenringes und den Beweis
seiner Algebraizität gelungen. . . . ich schicke Ihnen die Einleitung einer
geplanten Arbeit. Die Beweise sind zwar vollständig durchgeführt, aber
noch in einem monströsen Zustand.

In recent weeks I have tried to generalize your results from elliptic
function fields to fields of higher genus. I have succeeded in setting up
the ring of multipliers33 and proved its algebraicity. . . I am sending
you the introduction of a paper in preparation. The proofs are already
complete but still in bad shape.

In fact, Deuring’s concept marked a decisive turn on the way towards the
proof of the Riemann hypothesis for higher genus. His results appeared finally
in two papers on correspondences: one in 1937 and the second in 1940: [Deu37],
[Deu40]. We shall discuss this in detail in Part 5. Here we only wish to remark
that even for genus g = 1, Deuring’s results led to substantial progress.

In his second paper he showed that (for arbitrary genus) the endomorphism
ring M admits an involutoric anti-automorphism µ 7→ µ which he called “Rosati
anti-automorphism”. It seems that a letter of Lefschetz to Hasse, dated July 20,
1936 caused Deuring to study Rosati’s work. This letter was written in Oslo
right after the conference of the International Mathematical Union. Hasse had
been invited to give an 1-hour talk at Oslo, and had reported about his work
on the Riemann hypothesis for elliptic function fields [Has37b]. In the last part
of his talk he reported briefly about Deuring’s new approach for higher genus

33To say it again, Deuring means the ring of “endomorphisms” in today’s terminology.
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– which in fact was quite new since he had received Deuring’s letter only a
couple of weeks earlier. It seems that after Hasse’s talk he had a discussion
with Lefschetz. In his letter Lefschetz referred to this discussion and mentioned
some literature regarding the work of Italian geometers, in particular that of
Rosati. Hasse had shown Lefschetz’ letter to Deuring.34

In the elliptic case Deuring proved the relation

µµ = N (µ) (30)

as an almost immediate consequence from his definition. Combined with the
fact that µ 7→ µ is an anti-automorphism, Hasse’s norm addition formula (18)
follows easily. However, in view of (30) it is not necessary any more to consider
the norm addition formula. For we compute

N (µ− 1) = (µ− 1)(µ− 1) = (µ− 1)(µ− 1) = N (µ)− (µ+ µ) + 1 (31)

and hence µ is the root of the quadratic polynomial

(X − µ)(X − µ) = X2 −
(
N (µ) + 1−N (µ− 1)

)
X +N (µ) (32)

= X2 − aX + b

whose coefficients a, b are integers in Z. (Compare with (20), (21).) This shows,
firstly, that every µ ∈ M is a quadratic integer. Moreover, since N (µ) > 0 for
all µ 6= 0 it follows

|a| ≤ 2
√
b

which, in case µ = π is the Frobenius operator, yields the Riemann hypothe-
sis (2) in view of (15).

We may assume that Hasse, who in his letter to Davenport of November 21,
1935 had expressed his satisfaction to have found his “genuine proof” of alge-
braicity, will have changed his mind after having seen Deuring’s arguments, and
perhaps he will have considered that as the true “genuine” proof.

Remark: It is not without purpose that in (24) we have used the nota-
tion µ. (Hasse in [Has36d] did not use it.) This is the same notation which
we have used for the Rosati anti-automorphism as defined by Deuring. Note
that the conorm map in (24) induces a homomorphism of divisor classes of
degree 0. But the group of divisor classes of degree 0 is the Jacobian of the
given elliptic curve Γ, and hence it is isomorphic to Γ by means of (3). Thus the
conorm map in (24) defines a homomorphic map of Γ into itself and, as Deuring
[Deu37] has observed, this map can indeed be represented by a meromorphism
in the sense of Hasse. It follows from Deuring’s theory that this is the Rosati
anti-automorphism of M.

We see that in reality Hasse’s formula (24) refers to Rosati’s anti-automor-
phism, without Hasse having been aware of this fact.

3.4 Consequences

In [Deu40] Deuring presents more results concerning the structure of M, as
consequences of his shortcut arguments involving the Rosati anti-automorphism:

34This letter, as well as other correspondence of Hasse concerning the R.H. for higher genus,
including the letters exchanged with A. Weil, will be discussed in more detail in Part 5.
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3.4.1 The norm

If µ /∈ Z then it follows from (30) and (32) that µ 7→ µ is the Galois action of
Z[µ], and N is the ordinary norm function from the quadratic field Q(µ) to Q –
which in the first place was the reason for Hasse to call N the “norm” and not
just “degree”.

If µ = n ∈ Z then n = n and hence from (30)

N (n) = n2. (33)

This is the formula which Hasse had obtained when he proved theorem (iv),
section 2.4. But here the formula (33) appears quite naturally from (30), without
cumbersome comparison of divisor degrees – once the above theorem (iv) is
established which says that M is of characteristic 0. The latter is necessary to
ensure that the endomorphism n · 1 6= 0. For, on the left hand side of (33), the
symbol n stands for the n-th fold identity endomorphism n · 1 which thereafter
is identified with n ∈ Z because of characteristic 0. For the proof of theorem (iv)
Deuring still refers to Hasse’s formula (14), although in retrospective we observe
that this would not have been necessary; it is easy to verify that not all P ∈ Γ
are annihilated by a single prime number.

If n 6≡ 0 mod p then it follows from (33) that n as a meromorphism of F
is separable, and hence N (n) = n2 equals the order of the n-torsion group Γn
of Γ. This gives immediately Hasse’s structure theorem for the whole torsion
group of Γ, as long as only torsion 6≡ 0 mod p is considered, namely: this group
is isomorphic to the pairs (r1, r2) of rational numbers modulo 1 with the specifi-
cation that the denominators of the ri are not divisible by p. We have reported
on that theorem in section 2.1 already.

3.4.2 `-adic representation

Let ` be a prime number different from the characteristic p. The group of
`-power torsion of Γ is isomorphic to the pairs (r1, r2) of rational numbers mod-
ulo 1 whose denominators are powers of `. The group theoretic endomorphisms
of this group can be represented by 2×2 matrices with coefficients in the `-adic
integers Z`. This yields a faithful representation of M by 2×2 matrices over Z`.

It seems that Deuring was the first who in a publication had defined these
`-adic representations and used it to investigate elliptic function fields. (But we
find them already earlier in a letter of Hasse to Davenport dated October 21,
1935.)

In his second correspondence paper (1940) Deuring considered the case when
M is non-commutative and hence an order in a quaternion division algebra Σ.
The `-adic representation of M extends uniquely to a representation of Σ by 2×2-
matrices over the `-adic rationals Q`. The existence of such a representation
implies that Σ splits over Q`. This holds for all prime numbers ` 6= p. But
every quaternion division algebra over Q is ramified at 2 primes at least (where
“primes” include ∞ in this context). It follows that Σ is necessarily the unique
quaternion division algebra H∞,p which is ramified at ∞ and at p only.35

35Deuring writes Q∞,p.
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This is the first structure theorem on M which goes beyond Hasse’s results.
At the end of his paper Deuring announces more precise structure theorems.
These appeared one year later in the Hamburger Abhandlungen, through a more
detailed investigation of the `-adic representation. See section 6.

Note: It was well known in 1935 that quaternion algebras over Q are in 1-1
correspondence with the finite subsets S of primes p in Q (including p = ∞) –
with the specification that the cardinality of S is even. This is a consequence of
Hasse’s theory of what today are called “Hasse invariants” of finite dimensional
simple algebras over number fields. The set S is the set of prime numbers which
are ramified in the quaternion algebra. See [Has33b]. Certainly Deuring was
well acquainted with the theory of algebras and in particular with their Hasse
invariants, for this was covered in his book [Deu35] on algebras.

If p = 2 then H∞,2 is just the ordinary quaternion algebra over Q, generated
by i and j with the relations ij = −ji and i2 = −1, j2 = −1. If the last relation
is replaced by j2 = −p then we obtain generators of H∞,p for p > 2, provided
p ≡ −1 mod 4. In the case p ≡ 1 mod 4 one has to change the first relation
too, namely i2 = −r where r ≡ −1 mod 4 is a positive prime number which is
a quadratic non-residue modulo p.36

3.4.3 p-torsion

As to the group of p-power torsion of Γ, it suffices to determine the group Γp
of those endomorphisms which are annihilated by p. Note that the order of Γp
equals the separability degree Ns(p), hence from (33) it is either 1, p, or p2. But
the last alternative does not appear. This follows from the representation of M
on the K-module Ω of holomorphic differentials of F . That representation yields
a homomorphic mapping of M into the field K of characteristic p, and conse-
quently p ∈ M is mapped onto zero. This signifies that p as a meromorphism of
F is inseparable. See our section 2.3.1 on Abel’s theorem.

It follows that either Γp is of order p , or Γp = 0. In the first case the full
p-power torsion of Γ is isomorphic to the group of rational numbers r modulo 1
whose denominator is a power of p, and in the second case the p-power torsion
of Γ is 0. However, this argument gives no clue whether any of those possibilities
can occur, and under what circumstances. This will be discussed below with
the help of Hasse’s invariant A which vanishes if and only if Γp = 0.

If Γp 6= 0 then, similarly as above for `, we obtain a faithful p-adic repre-
sentation of M, but this time by 1 × 1 matrices, which is to say in the p-adic
integers. In particular it follows that M is commutative in this case. It follows
that in the non-commutative case one has necessarily Γp = 0.

36I am indebted to Patrick Morton for reminding me that those relations are stated by
Hasse in his Italian paper [Has43], p.346. (Note that Hasse forgot to say that r should be a
prime number with the stated properties.) That paper will be discussed in detail in Part 5.
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3.5 Summary

In Hasse’s Hamburg lecture notes the proofs were often given as a sketch only.
During the next years he worked out the details. His final version was published
1936 in three parts in Crelle’s Journal. There he had to rely on a number of
general properties of function fields which were not known before, and which
therefore he had to establish first in separate papers. This preparatory work
includes: the theory of differentials and the theorem of the residues; the theory
of higher derivations and differentials; the arithmetic of cyclic extensions of
function fields including the Artin-Schreier extensions, in particular their rami-
fication structure; the construction of unramified cyclic extensions of degree p .
Some of this work was done in collaboration with others: F. K. Schmidt, Teich-
müller, Behrbohm, Witt and Deuring.

One of the main theorems which Hasse presented in his Crelle papers is what
he called the “norm addition formula”. He found it after he had learned from
Davenport a somewhat weaker result, when he tried to fit Davenport’s proofs
into his framework of abstract function fields. Once the norm addition formula
was established, the structure of the endomorphism ring could be immediately
obtained. It turned out that the endomorphism ring is either Z, or an order in
an imaginary quadratic number field, or else an order in a quaternion division
algebra over Q. Hasse showed by an example that also the third type does occur in
characteristic p. The discovery of non-commutative endomorphism rings came
as a surprise to the people working in this area.

Starting in 1936 Deuring developed the algebraic theory of correspondences of
curves (or function fields) which turned out to provide the basis for the proof of
the Riemann hypothesis for higher genus. But Deuring’s theory was also useful
for the elliptic case and provided a shortcut for some essential parts of Hasse’s
proofs. This was due to the discovery of the Rosati anti-automorphism of the
endomorphism ring which probably was obtained following a hint in a letter of
Lefschetz to Hasse. But Deuring did not only simplify and streamline Hasse’s
proofs; by using the `-adic representations of the endomorphism ring he showed
that in the non-commutative case the quaternion division algebra which appears
was the one which is uniquely determined by the fact that only ∞ and p (the
characteristic) are ramified.

4 The Hasse invariant A

4.1 p-torsion

Even before Deuring’s shortcut, Hasse was well aware about the two alternatives
for the p-torsion Γp. In fact, as early as November 1933 Hasse had communicated
this to Davenport; we have mentioned this letter already in section 2.1, last
paragraph. Hasse was able to define an invariant of the elliptic field which he
called A, which vanishes if and only if the p-torsion Γp = 0; if A 6= 0 then Γp is
cyclic of order p. As above, Γp denotes the group of those points P ∈ Γ which
are annihilated by p.
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This result was really new. The structure of Γp is quite different from what
was known from the analytic theory in characteristic 0. So it was not just a
question of transferring known classical results to prime characteristic. Hasse
was the first to develop an idea how to approach this problem in characteristic p .
Let us discuss the way how he arrived at this and similar results.

The structure problem for Γp is equivalent to the problem of unramified
cyclic extensions of F . To see this, consider the meromorphism µp which induces
the multiplication with p, i.e., µpX = pX for all X. Consider the subfield
Fµp ⊂ F . The field extension F |Fµp is not separable; let F ′|Fµp be the
separable part while F |F ′ is purely inseparable. Then F ′|Fµp is unramified
and abelian, and its Galois group is the group of translations τP for P ∈ Γp;
this group is isomorphic to Γp. Hence Hasse’s theorem about Γp is equivalent
to a statement about the Galois group of unramified abelian extensions of Fµp.
Since Fµp is isomorphic to F we see that Hasse’s theorem can also be formulated
in the following way:

Theorem: Let F |K be elliptic with algebraically closed base field K of char-
acteristic p > 0. Either there exists precisely one cyclic unramified extension of
degree p, or there is none. This alternative is given by the Hasse invariant A
being 6= 0 or A = 0.

Let us first discuss Hasse’s definition of A. Actually, Hasse in [Has34d]
assumed that p > 2. But his idea works also for p = 2, and so we will present
his theory without any restriction on the characteristic; this certainly would get
his approval.

4.2 Motivation and definition

In the elliptic function field F |K there exists a unique holomorphic differential
ω 6= 0 (up to a constant factor). In this connection, “holomorphic” is to be
understood in the algebraic sense; it means “without poles”. The differential
divisor (ω) is trivial, i.e., ω has no zeros either. Let t be a uniformizing variable
at the point P0 of reference, and consider the power series expansion at P0:

ω = (c0 + c1t+ c2t
2 + · · · ) dt . (34)

Here, c0 6= 0 since ω has no zeros. Then Hasse defines the invariant

A =
cp−1

cp0
. (35)

If ω is replaced by a multiple c ω with 0 6= c ∈ K then A has to be replaced
by c−(p−1)A which is immediate from the definition (35). Thus the element A
itself is not really an invariant of the field, but the fact that A 6= 0 or A = 0 is
invariant.37

In his letter of November 5, 1933 to Davenport, Hasse explains how he
discovered this invariant A. He refers to the classical case where the base field

37Recall that we assume here that the base field K is algebraically closed. If K is arbitrary
perfect then the residue class of A modulo (p− 1)-th powers of K is an invariant.
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K = C is the field of complex numbers. In this case the “integral of the first
kind” u =

∫
ω has the expansion

u = c0t+
c1
2
t2 +

c2
3
t3 + · · · (36)

in view of (34). Explicitly, if the field F is generated in Weierstrass normal
form:

F = K(x, y) with y2 = 4x3 − g2x− g3, ∆ = g3
2 − 27g2

3 6= 0 (37)

one usually takes the following normalization of the holomorphic differential and
a uniformizing variable at the point at infinity:

ω =
dx
y

and t =
−2x
y

(38)

(This normalization implies that in the expansion (34) one has c0 = 1.) Then
u satisfies the differential equation du = dx

y or, equivalently, y = dx
du . In other

words: If x and y are regarded as analytic functions of the local parameter u
then y appears as the derivative of x.38

Having pointed out this classical procedure of uniformization, Hasse writes
to Davenport:

This is not possible for characteristic p , on account of the well-
known denominators in the development of x = ℘(u), y = ℘′(u)
in power series in u or of the reciprocal series of u in t = −2x

y =

− 2℘(u)
℘′(u) . But one can get an approximation, by taking

u = c0t+
c1
2
t2 +

c2
3
t3 + · · ·+ cp−2

p− 1
tp−1 (39)

instead of (36). Then, Hasse continues,

ω = du+ cp−1t
p−1dt+ · · · (40)

= du+ cp−1
up−1

cp−1
0

du
c0

+ · · · (41)

= (1 +Aup−1)du+ · · · (42)

where the dots represent terms of higher order. We see:

The Hasse invariant A defined in characteristic p by formula (35) represents
the first obstacle to integrating the holomorphic differential ω, and it leads to an
approximate integral u of the form (39), satisfying a differential equation of the
form (42).

A does not depend on the choice of the point P0 of reference since the group
of translation automorphisms acts transitively on the points.

38One usually writes x = ℘(u), y = ℘′(u); this is the classical Weierstrass notation. But
Hasse in his papers on the Riemann hypothesis mostly avoids this notation, presumably
because he wishes to use the symbol ℘ for the Artin-Schreier operator ℘(x) = xp−x. See the
next section 4.3. But in his letter to Davenport cited below he uses the function symbol ℘(u)
in the Weierstrass meaning.
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4.3 Unramified cyclic extensions

Having explained the definition of A, Hasse now proceeds to prove his theorem
about unramified cyclic extensions and the alternative A 6= 0 or A = 0 (see
section 4.1).

Today this theorem is well known, and it is the starting point of all inves-
tigations involving p-extensions of elliptic fields. In Hasse’s time, the necessary
tools for its proof were not yet available, and so Hasse had to provide them him-
self. In particular Hasse had to use the results of his paper [Has34d] concerning
Artin-Schreier extensions of function fields.

In 1927 Artin and Schreier [AS27] had shown that in characteristic p > 0
every cyclic field extension E|F of degree p can be generated in the form E =
F (y) where y satisfies an equation of the form

yp − y = z with z ∈ F . (43)

Today such extensions are called “Artin-Schreier extensions”, and an equation
of the above form is called “Artin-Schreier equation”. Introducing the Artin-
Schreier operator ℘(y) = yp − y , such an equation can also be written in the
form ℘(y) = z . The element z is called an “Artin-Schreier radicand” of E. It
is uniquely determined modulo ℘F . (More precisely, the additive subgroup of
F/℘F of order p generated by z is determined by the cyclic extension E.)

By 1934 the Artin-Schreier theory was well known but, for application in
function fields F , it had still to be amended by valuation theoretic considera-
tions, in particular with respect to ramification properties. This was done by
Hasse in his 1934 paper on cyclic fields. Before Hasse, little was known about a
cyclic p-extension of function fields. In a letter of July 7, 1933 Hasse wrote to
Davenport:

My dear Harold, I have succeeded in proving my presumption on the
exponentials. For yp − y = f3(x) the genus is really p− 1 . . .

And one day later:

I have got much more general results on yp − y = C than I first
thought . . .

Here, Hasse studied Artin-Schreier extensions over a rational function field. And
finally, in his 1934 paper on cyclic fields Hasse was able to compute the genus of
an Artin-Schreier extension over an arbitrary function field of characteristic p
– he obtained the formulas which today are given in any textbook on function
fields. (See e.g., Stichtenoth [Sti93].)

Let P be any point of F and denote by vP the corresponding valuation,
normalized such that vP (F×) = Z. Suppose the cyclic p-extension E|F is given
by the Artin-Schreier radicand z ∈ F as explained above. Hasse showed: There
exists zP ∈ F such that z ≡ zP mod ℘F and that the following alternative
holds: either vP (zP ) ≥ 0, or vP (zP ) < 0 and vP (zP ) 6≡ 0 mod p. In the first
case E|F is unramified at P , and in the second case the ramification degree is p.
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Moreover, if in the second case vP (zP ) = −mP < 0 then the contribution of P
to the different of E|K equals (p− 1)(mP + 1). Hence, if gF denotes the genus
of F |K and similarly gE then by the Riemann-Hurwitz genus formula one has

2gE − 2 = 2gF − 2 +
∑

P ramified

(p− 1)(mP + 1) . (44)

For elliptic fields the genus is 1 and it follows:

Suppose F is elliptic and E|F a cyclic extension of degree p. Then E|F is
unramified if and only if E is elliptic too.

Now, if F is elliptic: Which radicands z ∈ F lead to unramified cyclic
extensions E|F ? To every P ∈ Γ there has to exist zP ≡ z mod ℘F such that
vP (zP ) ≥ 0. Now, Hasse proceeds to normalize z in a suitable way so that
he could classify those z. This means to replace z by a suitable representative
≡ z mod ℘F .

Let P0 be the point of reference. Hasse’s first normalization process replaces
z by an element which has P0 as its only pole; this can be achieved by the
so-called “strong approximation theorem”. The second process replaces z by an
element whose pole order at P0 is p (while still there is no pole of z other than
P0). This can be done because the genus of F is 1 and therefore, for every r > 1
there exist elements which have P0 as their only pole, and of order r.

This being done, there is still the condition that for P0 there exists zP0 =
z − ℘(w) such that vP0(zP0) ≥ 0. Since the pole order of z at P0 is p, it follows
that the pole order of w at P0 is 1 (of course w has other poles as well). Hence,
if u is any uniformizing variable at P0 we may write w = c

u with some 0 6= c ∈ K
and we obtain

z =
cp

up
− c

u
+ · · · (45)

as the Laurent series expansion of z at the point P0, where the dots represent
terms of higher order. We see:

Every unramified extension E|F of degree p can be generated by an Artin-
Schreier equation ℘(y) = z where the radicand z has P0 as its only pole, and a
Laurent expansion of the form (45) with 0 6= c ∈ K.

The above construction shows that z is unique up to a substitution z 7→ az+b
with a, b ∈ K and ap = a, i.e. a ∈ Fp; hence E|F is unique.

In the following let us take the uniformizing variable u as in the definition
of the Hasse invariant A in (42). Now consider the differential zω. This has P0

as its only pole, and has the Laurent expansion:

zω =
(
cp

up
− c

u
+ · · ·

)(
1 +Aup−1 + · · ·

)
du (46)

=
(
cp

up
+
cpA− c

u
+ · · ·

)
du (47)

Accordingly the residue of zω at the pole P0 is cpA− c. But P0 is the only pole
of zω. Since the sum of all its residues vanishes it follows

cpA− c = 0 , i.e., A = c−(p−1) 6= 0 . (48)
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Conversely, if A 6= 0 then choose c according to (48); define a differential
by the expansion (47) with the specification that P0 is the only pole of this dif-
ferential; writing it in the form (46) as zω, this element z is the Artin-Schreier
radicand of a cyclic unramified extension E|F . This proves the theorem formu-
lated in section 4.1.

Remark: In the above argument Hasse had to use the “Theorem of the
residues” which says that the sum of the residues of a differential of F vanishes.
At the time of Hasse this theorem had not yet been established in the algebraic
framework. Hence Hasse had to develop this himself; he did it in his 1934 paper
on differentials. In particular he had to prove that the residue of a differential
at a point P is independent of the choice of the local parameter. This of course
was well known in characteristic 0 but in characteristic p there arose difficulties.
Today we are used to the proof by specializing the assertion from character-
istic 0 to characteristic p. This is an idea which Artin used to present in his
lectures; however this was much later.39 Hasse’s proof was somewhat lengthy
in characteristic p.

4.3.1 The Hasse-Witt matrix

Actually it is possible to avoid differentials and hence the theorem of the residues
altogether, by defining the Hasse invariant A through the following property
which is obtained in the way as explained above leading to the expansion (45):

Let u be any uniformizing variable at P0. There exists an element z ∈ F
having P0 as its only pole, with the Laurent expansion

z =
1
up
− A

u
+ · · · . (49)

z is uniquely determined up to an additive constant from K.

If A 6= 0 write A = c1−p with c ∈ K, then cpz is an Artin-Schreier radicand
for an unramified cyclic extension of degree p.

In this form the invariant A can be defined quite generally for an arbitrary
function field F |K of genus g > 0, not as an element in F but as a g×g matrix.
Thus is done in the joint paper of Hasse and Witt [HW36]. The paper appeared
in 1936 but was submitted already on October 22, 1935. This was the time when
Hasse was in the process of completing his Crelle papers (I)-(III) where, in the
elliptic case, his above mentioned theorem on unramified cyclic extensions was
used. We can imagine that he showed the manuscripts of his Crelle papers to
his assistent Witt and asked him for proofreading and for his comments. And
Witt, with his known gift for immediately seeing the essentials, pointed out
the possibility of generalization. The new joint paper Hasse-Witt solved the
same problem for function fields of arbitrary genus g. The rank γ ≤ g of the
matrix AAp · · ·Apg−1

equals the rank of the Galois group of the maximal abelian
unramified extension E|F of exponent p. This Galois group is isomorphic to
the p-torsion of the Jacobian of F .

To prove this one has to develop a kind of semi-linear algebra for operators
T which satisfy Tα = αpT . Today this is standard, and it is contained in the

39We do not know where in the literature this idea was first used.
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calculus of the so-called Cartier operator. But in 1935 this was quite unusual.
If we are not mistaken then we can allot this idea to Witt as his contribution.

4.4 The extreme cases

Consider the situation of the Riemann hypothesis. Thus there is given an elliptic
function field Fq over the finite field Fq with q elements, and F = FqK is its
constant field extension with the algebraic closure K of Fq. And π ∈ M is the
corresponding Frobenius meromorphism, which induces in Fq the exponentiation
with q.

The “extreme cases” (Grenzfälle) of Hasse are those for which π = ±π; this
means π2 = ±q. According to (1) and (2) this is equivalent to

N =

{
q + 1 or
q + 1− 2

√
q

(50)

where in the second case q = p2r has to be a square. Already in November 1933
Hasse had written to Davenport that these extreme cases can occur only when
A = 0. In his Crelle paper (III) he gives a proof:

An extreme case occurs if and only if the Hasse invariant A = 0. If A 6= 0
then 0 < |N − q − 1| < 2

√
q .

In fact, let µp denote the meromorphism which induces the multiplication
with p. The relation A = 0 signifies that the field extension F |Fµp is purely
inseparable. Since this is of degree N (p) = p2 it follows Fµp = F p

2
. Repeating

this for powers of p instead of p we obtain by induction: Fµq = F q
2
. On

the other hand, F |Fπ is purely inseparable of degree q, hence Fπ = F q and
therefore Fπ2 = F q

2
. Thus the two normalized meromorphisms π2 and µq have

the same image field. Hence they differ by a factor ε which is an automorphism
of F . In the endomorphism ring M (where we have identified µq = q) we obtain
the relation π2 = εq, where ε ∈ M is a unit. If ε 6= ±1 then π =

√
εq ∈ M would

be of degree > 2 which is not the case. Thus π2 = ±q.

Remark: In [Has36d] Hasse says:

Ist . . .π 6= π, so ist der Meromorphismenring M eine Ordnung eines
imaginär quadratischen Zahlkörpers. . .

If . . .π 6= π then the endomorphism ring M is an order in an imag-
inary quadratic number field . . .

And he uses the argument that every meromorphism µ commutes with π.

This, however, is not true in the extreme case if π = −π. For, as we shall
see below, Deuring has proved that whenever A = 0 then M is an order in a
quaternion algebra. Hasse’s argument is valid for those meromorphisms µ only,
which are defined over Fq already, i.e., which map Fq into itself. For, the Frobe-
nius operation π acts on Fq as the exponentiation with q. The meromorphisms
which are defined over Fq form a subring of M, and it is obviously this subring
which Hasse tacitly had in mind when he formulated his theorem above.
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4.5 Summary

Given an elliptic curve in characteristic p, its p-torsion group is either cyclic of
order p or it vanishes. This is equivalent to whether the function field admits
precisely one cylic unramified extension of degree p, or no such extension. Al-
ready in November 1933 Hasse was aware of this dichotomy; he mentioned it in
a letter to Davenport. The so-called Hasse invariant A of the curve regulates
this behavior; A vanishes if and only if there is no cyclic unramified extension
of degree p. Hasse published this theorem in 1934. By definition, A can be
viewed as the first obstruction for the integration of the holomorphic differential
on the curve. In the third 1936 Crelle paper Hasse showed that the vanishing of
A signifies the presence of an “extreme case”, which means that the conjugate
π of the Frobenius endomorphism satisfies π = ±π.

If the endomorphism ring is non-commutative then A = 0, but Hasse did not
know yet whether the converse also holds. This was verified later by Deuring
(see section 6).

5 Some general comments

Hasse’s work on elliptic function fields culminated in his three Crelle papers (I)–
(III). He had started this work in December 1932 after his conversation with
Artin in Hamburg; see Part 2. Since then (from 1933 to 1936) Hasse published
15 papers on the theory of function fields, mostly for the elliptic case but some
of them in more generality paving the way for the investigation of function fields
of higher genus. The guiding line was to establish the necessary tools for the
proof of the Riemann hypothesis, first for the elliptic case, and with the hope to
obtain a proof also for higher genus. But the final aim of Hasse was not only the
Riemann hypothesis; in addition he wanted to provide a coherent framework in
which to consider various other problems of “diophantine geometry”40. He had
expressed this very clearly in his Oslo talk at the Conference of the International
Mathematical Union 1936.41

In this spirit Hasse wished to clarify the complete structure of the endomor-
phism rings of elliptic function fields in characteristic p, even if this would not
all be necessary for the proof of the Riemann hypothesis. We have said this
before already. But now we observe that he did not complete his program. It
is true that in his last Crelle paper (III) he had already some results, namely
the theorem mentioned in section 3.1 with the list of the three possible types
for the structure of an endomorphism ring. Hasse noted that all of those three
types do occur. But a more detailed investigation about which of these types

40This is today’s terminology; in the 1930s this terminology did not yet exist. Hasse en-
visaged the theory of function fields, or curves, over base fields which carry an arithmetic
structure, e.g., number fields, p-adic fields or finite fields.

41See [Has37b]. In his talk Hasse mentioned, among other things, the recent paper of
Elisabeth Lutz on the structure of the group of rational points on an elliptic curve over a
p-adic field. Lutz was a student of André Weil in Strasbourg. When Weil had informed him
about her result (an announcement of which appeared in [Lut36]), Hasse was so delighted
that he immediately offered publication in Crelle’s Journal [Lut37]. Weil, in his letter of
April 26, 1936 to Hasse, considered this as a sign of continued cooperation (“ein Zeichen der
fortgesetzten Zusammenarbeit”).
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occur in given characteristic p and under which circumstances, was still missing.
Hasse himself in his later publications never returned to these questions about
the elliptic case.

Why not? We do not know. But one of the reasons, it seems to us, was
his wish to concentrate his efforts towards the Riemann hypothesis for function
fields of higher genus.

We conclude this from several remarks of Hasse in his letters. For instance,
in a letter to Siegel dated December 19, 1935 Hasse wrote:

Leider bin ich bei den abstrakten Funktionenkörpern vom Geschlechte
g > 1 noch immer in Anfängen. Ich musste ja meine wissenschaftliche
Tätigkeit von Mai 1934 an zunächst einmal gründlich unterbrechen und
konnte erst in diesem Oktober wieder damit anfangen, meine Forschun-
gen aufzunehmen.

Unfortunately I am still at the very beginnings with the abstract func-
tion fields of genus g > 1. For I had to interrupt my scientific activ-
ities since May 1934 and was able to start in October only to resume
my research work.

The reason for the interruption of his scientific activities was, of course, the
chaotic and almost bizarre situation which Hasse had to face when he moved
from Marburg to Göttingen in the summer of 1934. Due to the antisemitic policy
of the German Nazi government the Mathematical Institute in Göttingen had
lost many of its members, and with them its role and reputation as one of the
flourishing mathematical centers in the world. The situation has been described
in several articles: [Fre77], [Seg80], [Sch87], [Seg03].

One of the many obstacles which were put into Hasse’s way in Göttingen
was connected with Deuring’s habilitation.

Emmy Noether had warmly recommended Deuring (e.g., in a letter from
Bryn Mawr dated March 6, 1934; see [LR06]). Accordingly, Deuring was sched-
uled to have his Habilitation in Göttingen in December 1935. However, a posi-
tion of Dozent for him was finally rejected by the Göttingen university faculty;
this was due mainly to the dealings of Hasse’s colleague Tornier in Göttingen
who posed as a fervent Nazi and tried, for political reasons, whatever he could
to counteract Hasse’s plans if these were not in line with his Nazi ideology.42

It seems that also Teichmüller was involved in this rejection (he had been a
representative of the Fachschaft, the student organization which in those times
was completely dominated by Nazi followers). We conclude this from a letter
of Hasse to Deuring of June 11, 1936, when Hasse discussed the possibility of
repeating the application for Dozent position in Göttingen. Hasse wrote that

42In the files of the German ministry (Ministerium für Wissenschaft, Volksbildung und
Erziehung) we have found a 3-page opinion (Gutachten) on Hasse, signed by Tornier and
dated May 2, 1935, in which he writes that Hasse is not able to fill the position of Director
of the Mathematics Institute. For, Tornier writes, Hasse cannot understand the New Time
(“. . . hindert ihn sein Charakter und sein jüdischer Einschlag, die heutige Zeit zu verstehen”).
Tornier also criticized that Hasse had kept close contact to jewish mathematicians, in partic-
ular to Emmy Noether – and that Hasse had ordered a wreath to be placed on her coffin in
the name of her Göttingen colleagues. (Emmy Noether had died on April 14, 1935.)
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this would be possible, but that certain obstructions should be out of the way.
He wrote:

Es wäre insbesondere wünschenswert, daß dann von vornherein sicher
steht, daß von der hiesigen Fachschaft kein Widerstand mehr aus-
geht. Solange aber Herr Teichmüller noch hier ist, kann ich dafür keine
Garantie übernehmen.

In particular it would be desirable that from the “Fachschaft” there
will be no more objection. But as long as Mr. Teichmüller is still
here, I cannot guarantee this.

Deuring did not fit into the political picture which those “Fachschaft” peo-
ple wished to establish among the Dozenten in Göttingen. Hasse was much
disappointed (“aufs Tiefste enttäuscht”) by these dealings which, for political
reasons, did not allow him to get the best people to Göttingen. He wrote to van
der Waerden on December 16, 1935: “We have lost a battle.” 43

The rejection to promote Deuring had not been an isolated affair in Göttin-
gen. We conclude this from a letter to Toeplitz dated already April 18, 1935
where Hasse had said:

Was mich vielmehr bedrückt, ist die Tatsache, dass ich einerseits der
mathematischen Welt gegenüber die Verantwortung für den Wiederauf-
bau Göttingens zu einem mathematischen Platz von Rang trage, mir
aber andrerseits durch die bestehenden hochschulpolitischen Regelun-
gen fast jeder entscheidende Einfluss auf die personelle Gestaltung hier
genommen ist. Dies betrifft nicht nur die Besetzung der Ordinariate,
sondern gilt in gleicher Weise für die Lehraufträge, Assistenten- und
Hilfsassistentenstellen.

I am more downhearted by the fact that, on the one hand, I am
carrying the responsibility toward the mathematical world for the re-
construction of Göttingen to a mathematical place of high ranking,
but on the other hand I have got almost no decisive influence on
whom to offer a position here, due to the present political regula-
tions. This concerns not only the professors but also the lecturers,
the assistents and postdocs.

When Hasse mentions his “responsibility toward the mathematical world”
then this can be seen as his reaction to the encouragement which he got from
several quarters. Among the Hasse papers there are a number of letters ex-
pressing the hope that Hasse might answer the challenge and restore Göttingen
to a leading mathematical place; let us mention only the names of some of the

43At that time Deuring held a position as assistant professor in Leipzig with van der Waer-
den. There had developed some external difficulties, from the political side, for Deuring to
have his Habilitation in Leipzig, and so Hasse, in agreement with van der Waerden, had
planned to follow Emmy Noether’s recommendation to get Deuring to Göttingen. This ex-
plains why Hasse wrote the above cited letter on Deuring to van der Waerden. Actually, in
the same letter Hasse proposed to van der Waerden a meeting so that they could talk about
the situation and how to secure Deuring’s future as a mathematician; it appears that Hasse
did not wish to put his ideas in writing. That meeting took place on January 4, 1936.
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senders: Hermann Weyl, Emmy Noether, Abraham Fraenkel, H. Rademacher
and F. K. Schmidt. And there were more. All this caused Hasse to try and to
put his energy towards the task to restore Göttingen as a mathematical center.

But from the beginning he (and his colleagues) had to realize that there
existed a strong opposition and that this deprived Hasse of much time and
energy. This had not remained unknown to the mathematical community, and
it had led Toeplitz to inquire whether Hasse might perhaps consider a change
from Göttingen to the University of Bonn. In answer to this Hasse wrote the
letter from which we have cited above. In principle, Hasse wrote, he was willing
to consider a change, in view of the reasons which he had stated in his above
cited letter. Accordingly, Bonn tried hard to get Hasse but the ministry in
Berlin did not agree.

We have mentioned all this in order to explain, to some extent, the reason
why Hasse in 1936 had decided to quit his work on elliptic curves. After all he
had been able to complete his proof of the Riemann hypothesis in the elliptic
case, notwithstanding all those annoyances and hostilities which he had to cope
with in Göttingen. He now wished to concentrate on his long standing project
about the Riemann hypothesis for higher genus.

But the ball was taken up by Deuring. He published in the next years (1940-
1943) four papers in which more detailed questions on elliptic function fields in
characteristic p were treated, with complete and important results about the
structure of their endomorphism rings. We do not know whether Hasse had
directly proposed to Deuring to follow up on the theory of elliptic function
fields which he (Hasse) had started. The correspondence file Hasse-Deuring as
preserved in the Göttingen Handschriftenabteilung does not give any clue to
this question. And so we rather tend to believe that this was not the case.
After Deuring had found out that his general theory of correspondences was
suitable to provide essential simplifications of Hasse’s proofs in the elliptic case
(see section 3.3), it seems to us quite natural that he tried to go ahead and settle
the questions which were left open in Hasse’s papers. And that is precisely what
he did.

6 Deuring’s contributions

6.1 Deuring

Let us briefly insert some biographic information about Deuring:

Max Deuring (1907–1984) had been a student of Emmy Noether who had
called him “one of the best students” (in a letter to Hasse of November 13, 1929;
see [LR06]). His book “Algebren” [Deu35], written under the guidance of Emmy
Noether, appeared 1935 and became a classic. At that time he had already a
number of other significant papers on algebraic numbers and on algebraic func-
tions. He was considered to be one of the most promising young mathematicians
in Germany at the time. Deuring had studied one year in Rome (1929/1930)
and another year as a Rockefeller fellow in Yale with Ore (1932/1933). In 1935
he held a position at the University of Leipzig as assistant to van der Waerden.
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In the foregoing section we have already reported that Hasse wished to get
Deuring as Dozent to Göttingen but that this was unsuccessful. Nevertheless
Hasse continued his contact with Deuring and supported him whenever he was
able to. In 1938 Deuring got a position as Dozent at the University in Jena
(where F. K. Schmidt held a professorship). His two papers on the algebraic
theory of correspondences (1937/40) gave rise to a decisive turn in the direction
towards the proof of the Riemann hypothesis for curves of arbitrary genus. But
also for elliptic curves he provided essential contributions. Here we shall discuss
those of his papers which we have mentioned in section 1.2. Later in his life,
from 1950 on, he published more on elliptic curves: First an algebraic treatment
of classical complex multiplication [Deu49], [Deu52], and then in several papers
a comprehensive study of zeta functions of elliptic curves over number fields.
We shall report on those papers elsewhere.

For more biographic information on Deuring see [Kne87], [Roq89].

6.2 The supersingular case

As above, F |K denotes an elliptic function field with base field K algebraically
closed of characteristic p.

It was Hasse who had discovered that for p > 0 the endomorphism ring M
may be non-commutative. In his third Crelle paper 1936 he had given three
possible structure types for M (see section 3.1). The third type III is when M
is non-commutative, namely an order in a quaternion division algebra over Q.
Hasse comments on this as follows:

Das Beispiel p = 3, y2 = x3 − 2x− 1 lehrt jedenfalls, dass der Typ III
wirklich vorkommt.

The example p = 3, y2 = x3−2x−1 shows that type III does in fact
occur.

But Hasse did not say more. The available evidence points to the conclusion
that Hasse did not know much more about type III, besides this example and
maybe some others.

Deuring, in his 1941 paper on endomorphism rings, gives a complete de-
scription of the elliptic fields whose endomorphism ring is non-commutative.
Deuring calls these fields “super-singular”. The motivation for this terminology
is as follows:

In the classical case, when the base field is the complex numbers, any elliptic
function field F |K can be generated by an equation of Weierstrass form (37).
The element

j = 123 g
3
2

∆
(51)

is called the absolute invariant of F |K. It is well known that F |K is uniquely
determined (up to isomorphisms) by j, and that every j ∈ K is the invariant of
some elliptic field F |K.
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Now, in the classical case the invariant j was called “singular” if the en-
domorphism ring of the corresponding elliptic field F is an order in an imagi-
nary quadratic field. From classical complex multiplication it was known that
those singular invariants j are algebraic numbers, and they are abelian over
the corresponding imaginary quadratic field. Thus they are very special com-
plex numbers. Classically the terminology “singular” expresses the fact that
these numbers are quite special, in contrast to the “general” case in which the
endomorphism ring is Z.

For characteristic p > 0, Deuring used essentially the classical terminology.
He called an elliptic field F |K (or its invariant j) “singular” if the endomorphism
ring is an order in an imaginary quadratic field. But as pointed out above, in
characteristic p > 0 the endomorphism ring may be even larger, namely non-
commutative. These fields, or their invariants, are then somewhat more singular
than the others, and so Deuring called them “supersingular”.

This was the motivation for Deuring to introduce the word “supersingular”.

As to the absolute invariant j of an elliptic function field of prime char-
acteristic p, it is defined for p > 3 by the same formula (51) as above. Note
that for p > 3 every elliptic function field F |K admits a Weierstrass normal
form (37). The definition of the invariant in characteristics p = 3 and p = 2 will
be discussed below.

Now, in his second paper on correspondences 1940, Deuring had shown that
if j is supersingular then the p-torsion Γp vanishes; see section 3.4.3. This in turn
is equivalent to the vanishing of the Hasse invariant A; see section 4.1. But it
was not yet clear whether, conversely, A = 0 would imply j to be supersingular.
This is indeed the case, and it is one of various results which Deuring proved in
his long 1941 paper on endomorphism rings.

Let us recall the definition (35) of the Hasse invariant A. Hasse was well
aware of the fact that his abstract definition would be of no use if one could
not compute his invariant A directly. In principle, of course, this can be done
by computing the coefficients of the expansion (34). For this purpose, one has
to start with an explicit expression of the holomorphic differential ω. Suppose
for the moment that p > 3 so that F can be generated in the form F = K(x, y)
with x, y related by an equation in Weierstrass normal form (37). Then the
holomorphic differential ω can be chosen in the form (38). Expanding this at
the point at infinity with respect to the uniformizing variable t = −2x

y we get the
coefficients ci in (34) as functions of the coefficients g2, g3 in (37). Now, Hasse
in his 1934 paper on unramified cyclic extensions had stated that A can be put
into the following form, where ∆ denotes the discriminant and j the absolute
invariant (51):

The Hasse invariant A defined by (35) is of the form:

A =


∆

p−1
12 P (j) for p ≡ 1 mod 12

g2 ∆
p−5
12 P (j) for p ≡ 5 mod 12

g3 ∆
p−7
12 P (j) for p ≡ 7 mod 12

g2g3 ∆
p−11
12 P (j) for p ≡ 11 mod 12

(52)

where P (X) is a polynomial, depending on p only, with coefficients in the prime
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field Fp , of degree at most equal to the exponent of ∆ in the formula.

But Hasse adds:

Ich vermute, daß P (X) immer genau von diesem Grade ist. Die vorste-
henden Ausführungen lassen aber noch nicht einmal erkennen, ob P (X)
nie identisch Null ist.

I suspect that P (X) is always of this degree. But the preceding ar-
guments do not even show whether P (X) is never identical zero.

It is with this question that Deuring begins in his 1941 paper on endomorphism
rings. In this paper he proves the following

Theorem:
1. The relation A = 0 is not only necessary but also sufficient for j to be

supersingular.
2. As conjectured by Hasse, the polynomial P (X) in (52) has precisely the

degree which is given by the exponent of ∆ in the formulas (52), and
its roots are different. Consequently, the number of supersingular in-
variants j equals that degree, plus one additional invariant in the cases
p ≡ 5, 7 mod 12 and two additional invariants if p ≡ 11 mod 12 – these
additional invariants corresponding to the cases g2 = 0 (hence j = 0) and
g3 = 0 (hence j = 123) respectively.

3. Supersingular invariants j satisfy jp
2

= j, hence they are contained in
Fp2 , the quadratic extension of the prime field Fp.44

4. If j is supersingular then the corresponding endomorphism ring M is iso-
morphic to a maximal order in H∞,p, the quaternion division algebra which
is ramified at ∞ and p only. Conversely, every maximal order in H∞,p
appears as the endomorphism ring M for some supersingular invariant. If
the prime divisor of p in M is principal then there is exactly one supersin-
gular invariant j belonging to M, and j is contained in the prime field Fp.
If not, then there are exactly two such supersingular invariants j, they are
contained in Fp2 and they are conjugate to each other.

5. The number of supersingular invariants equals the class number of H∞,p.

In addition, Deuring writes down an explicit formula for the polynomial P (j)
which, he says, is useful to compute the values of the supersingular invariants
for small p .45 In fact, his paper contains a list of all supersingular invariants
for primes p < 100.46

These results on the supersingular case are very precise and complete. Al-
though in our discussion we had assumed p > 3, it turns out that the theorem

44Ogg has proved that there are precisely 15 primes for which all supersingular invariants
are contained in Fp already: 2 ≤ p ≤ 31 and p ∈ {41, 47, 59, 71}. See [Ogg75] and also [Mor07].

45The investigation of those polynomials for the supersingular invariants has produced a
number of highly interesting papers, some of them connecting to the theory of modular forms.
See, e.g., the list of references in [Mor06]. I would like to thank Patrick Morton for pointing out
to me that those papers arose from the interest generated by Deuring’s paper. In particular
the question of determining directly the number of roots of P (j) was solved, which Deuring
could solve only indirectly by means of Eichler’s class number formula for quaternions [Eic37].

46In the paper [BM04] the authors state that they have checked the entries in Deuring’s
table and found only two errors, for p = 73 and 97.
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holds also in characteristic p = 3 and p = 2, except of course its second sec-
tion which refers to the Weierstrass normal form (37). The definition of the
invariant j for p = 2 and p = 3 is as follows:

Classically, besides the Weierstrass normal form there is another normal
form, called Legendre’s, which is as follows:

y2 = x(x− 1)(x− λ) with λ 6= 0, 1 . (53)

Then

j = 28 (1− λ(1− λ))3

λ2(1− λ)2
(54)

This works also in all prime characteristics p ≥ 3.

Referring to the Legendre normal form, Deuring gives a formula for the
computation of the Hasse invariant A by means of the parameter λ, namely:

A = (−1)
p−1
2

∑
0≤i≤ p−1

2

(p−1
2

i

)2

λi . (55)

For p = 3 this reduces to A = −(1+λ) and we see that this vanishes for λ = −1
only which gives j = 0 in characteristic 3. And so in characteristic 3 there is
only one supersingular invariant, j = 0. This belongs to the example which
Hasse had found in characteristic 3; we have mentioned this above already.

In characteristic 2 the situation is quite different. Before Deuring there did
not exist a definition of an absolute invariant j of an elliptic function field F of
characteristic 2. The difference to characteristic 6= 2 can be explained as follows:

Since F |K is elliptic, i.e., of genus 1, there exists x ∈ F whose pole divisor
is P 2

0 . Recall that P0 denotes the point of reference, which however can be
arbitrarily chosen. x is unique up to a linear transformation x → ax + b with
a, b ∈ K and a 6= 0. We have [F : K(x)] = 2. If the characteristic is 6= 2
then F is generated over K(x) by an element y with y2 ∈ K(x). After suitable
normalization we have y2 = f(x) where f(x) ∈ K[x] is a polynomial. Since F
is of genus 1 it is seen that f(x) is of degree 3 with three distinct roots. After
a linear transformation of x this leads either to the Weierstrass normal form
in characteristic 6= 3 (where the coefficient of x2 in f(x) vanishes), or to the
Legendre normal form (where two of the roots of f(x) are 0 and 1.) However,
if the characteristic is p = 2 then F cannot be generated as above; instead we
have to use an Artin-Schreier equation y2 − y = f(x).

Accordingly, for characteristic 2 Deuring in [Deu41b] obtains the normal
form

y2 − y = jx2 +
1
jx

, (56)

and he defines the coefficient j which appears in this formula as the invariant;
it is verified that F |K is uniquely determined by j and vice versa. There is one
exception, though, namely if F |K is generated by the equation

y2 − y = x3 (57)

in which case Deuring assigns to it the invariant j = 0.
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Deuring also states a normal form which he first [Deu41b] claims to be valid
for all characteristics but later [Deu47] has to admit that in characteristic 3 the
case j = 0 has to be excepted:47

y2 − y + αxy = x3 with α3 6= −27 . (58)

For this he gives the expression

j = −α
3(α3 + 24)3

α3 + 27
. (59)

From this one can compute the Hasse invariant A and one finds A = α in
characteristic 2, therefore A = 0 if and only if α = 0, i.e., j = 0. Thus the only
supersingular invariant in characteristic 2 is j = 0, which corresponds to the
exceptional case (57) above.

6.3 Singular invariants

In his 1941 paper Deuring also treats singular invariants in characteristic p, i.e.,
those invariants whose endomorphism ring is an order in an imaginary quadratic
field. Perhaps, from a systematic point of view, we should have reported about
the singular case first before discussing the supersingular case. But we have de-
cided to start with the supersingular case because those results are particularly
interesting in view of the fact that non-commutative endomorphism rings do
not appear in the classical case and hence represent new discoveries.

Deuring’s results on singular invariants are as follows. Recall that F |K is
assumed to be an elliptic function field of characteristic p > 0 with the base
field K algebraically closed. j denotes the absolute invariant of F |K and M its
endomorphism ring.

Theorem:

1. j is singular if and only if A 6= 0 and j is absolutely algebraic (i.e., alge-
braic over the prime field Fp).

2. If j is singular then the corresponding endomorphism ring M is isomorphic
to an order in an imaginary quadratic field Σ with the following specifica-
tions: p splits in Σ into two different prime ideal factors, and the conductor
of M is prime to p. Conversely, every order M of an imaginary quadratic
field Σ with these properties appears as the endomorphism ring belonging
to some singular invariant j in characteristic p. If h is the class number
of M then there are precisely h singular invariants belonging to M.

3. Let p denote one of the two prime ideal factors of p in M. If f is the order
of p in the class group of M (i.e., f is the first exponent such that pf is a
principal ideal) then j is of degree f over the prime field, i.e., Fp(j) = Fpf .
The f conjugates of j are also singular invariants belonging to the same
endomorphism ring M.

47Silverman [Sil86] calls this the “Deuring normal form”, whereas Husemöller [Hus04] speaks
of the “Hessian family” of elliptic curves.
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Recall that the conductor of M is defined to be the smallest positive number
m ∈ Z such that every integer α ∈ Σ with α ≡ 1 mod m is contained in M. It
is well known that M is uniquely determined by m, and consists of all integers
α ∈ Σ which are congruent modulo m to some a ∈ Z. The (fractional) ideals
of M which are prime to the conductor form a group. The class group (modulo
principal ideals) is finite, and its order is the class number h.

Whereas in characteristic 0 every order in an imaginary quadratic field is
the endomorphism ring of some elliptic function field, Deuring had discovered
that in characteristic p > 0 this is not so. The restriction concerns the behavior
of the characteristic p in M, and it is the result of Deuring’s detailed study
of the `-adic representation of M, including ` = p when the representation is
1-dimensional.

The only remaining invariants in characteristic p > 0, i.e., those which are
neither singular nor supersingular, are the transcendental ones. They are pre-
cisely those whose endomorphism ring M = Z.

6.4 Elliptic subfields

It is not possible here to give a detailed report on Deuring’s proofs of the above
cited two theorems. These proofs, although not particularly difficult, are some-
what roundabout and not straightforward. But we wish to present the main
ideas of Deuring because they are quite remarkable, and also because they are
essential tools for Deuring’s further investigations concerning the algebraic foun-
dation of of classical complex multiplication (starting 1949 in the Hamburger
Abhandlungen [Deu49]).

One of those main ideas is to study the elliptic subfields of the given elliptic
field F . (It is assumed that the subfields have the same base field K as does F .)

Recall that for 0 6= µ ∈ M we have denoted by Fµ the image of F under the
normalized meromorphism µ. (See section 2.2.) Now, if 0 6= a ⊂ M denotes any
left ideal, let Fa denote the field theoretic compositum of all Fµ with µ ∈ M.
This is an elliptic subfield of F . Deuring showed:

We have [F : Fa] = N (a). The Galois group of F |Fa consists of all
translation automorphisms τP with P in the kernel Γa ⊂ Γ of the
ideal a. The endomorphism ring of Fa is the right order of a.

HereN (a) ∈ Z denotes the norm of the ideal a ⊂ M. Since F may be inseparable
over Fa, the Galois group is to be interpreted as the Galois group of the maximal
separable subextension. The right order of a consists of all elements ρ in the
quotient field of M for which aρ ⊂ a.

These theorems exhibit a close relationship between the subfield structure
of F and the ideal structure of its endomorphism ring M. Moreover:

If F is supersingular then every elliptic subfield of F is of the form
Fa for some left ideal a ⊂ M.
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This turns out to be the main reason for the validity of the theorem in section
6.2 in the supersingular case.

In the singular case there are more elliptic subfields. Note that every elliptic
subfield F ′ ⊂ F defines an isogeny from the curve Γ generating F to the curve
Γ′ for F ′. The field F ′ is uniquely determined by the kernel Γ0 of this isogeny,
together with the degree of inseparability of F |F ′. Γ0 is a finite subgroup of
Γ, and the translation automorphisms τP with P ∈ Γ0 constitute the Galois
group of F |F ′. Conversely, given any finite subgroup Γ0 ⊂ Γ, the translation
automorphisms belonging to Γ0 determine a subfield F ′ of F consisting of the
elements fixed by those isomorphisms; this is an elliptic subfield of F , as well
as any purely inseparable subfield of F ′.

Based on these facts, combined with a detailed study of the `-adic repre-
sentations of M (including the p-adic representation for the characteristic p),
Deuring shows:

Suppose F is singular, i.e., M is an order in an imaginary quadratic
field Σ. If F ′ ⊂ F then the endomorphism ring M′ of F ′ is an
order in the same field Σ. Conversely, any order M′ of Σ is the
endomorphism ring of some elliptic subfield F ′ ⊂ F – provided that
M′ satisfies the condition set forth in the theorem of section 6.3, i.e.,
the conductor of M′ is prime to the characteristic p.

The above result is used by Deuring for the existence proof of singular ellip-
tic fields F in characteristic p with prescribed endomorphism rings in a given
imaginary quadratic field Σ. For, by the above result he needs only to construct
an elliptic field F whose endomorphism ring is some order in Σ; then among its
elliptic subfields there will appear one with the prescribed order. Of course, Σ
has to satify the condition set forth in the theorem of section 6.3, namely that
p splits in Σ in two different prime ideals. And the prescribed order has to have
conductor prime to p .

6.5 Good reduction

In characteristic 0 it is well known from analytic uniformization that every
order M in an imaginary quadratic field is the endomorphism ring of some
suitable elliptic function field. One has to view M as a 2-dimensional lattice
in C and then take F to be generated by that Weierstrass function ℘(u) which
has period lattice M, and its derivative ℘′(u).

In characteristic p one has to assume that M satisfies the specifications set
forth in the theorem stated in section 6.3. But there is no direct way of proving
the existence of an elliptic field F with a given such M as its endomorphism ring
– except to construct F as a reduction of a suitable function field in character-
istic 0. In order to be able to do this, Deuring had to establish the necessary
tools from the theory of good reduction.

More precisely, he had to develop the theory of good reduction since until
that time no systematic way of reducing curves was known. It is true that Hasse
in his first proof used the idea of lifting an elliptic curve in characteristic p
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suitably to characteristic 0 and then studying the behavior of the lifted curve
by reducing it again. But he had no general theory of reduction at his disposal;
therefore he had to check directly every detail in the reduction process. Since
he relied on explicit computations with generating equations, this resulted in
several restrictions which he had to impose, e.g., the characteristic should be
p > 3, and the invariant j of the elliptic curve should have odd degree over Fp.
(See Part 2, section 5.3.) But also in Hasse’s second proof which works solely
in characteristic p , he had to use several constructions which today we would
subsume under the theory of good reduction. (See section 2.2.) The same holds
for Deuring’s proofs in his general theory of correspondences [Deu37].

Now, Deuring wished to systematize those arguments through a general
theory of good reductions; he did it in his 1942 paper [Deu42]. Although that
paper appeared one year later than his 1941 paper on endomorphism rings, it
was completed at the same time, and Deuring relies on it in his 1941 paper.
What are the main results which Deuring had achieved?

Deuring’s theory of good reduction refers to the following situation: Given
an algebraic function field F |K (or curve) whose base field K is equipped with a
prime p, i.e., valuation, or place. Deuring assumed that the valuation is discrete
but a straightforward check shows that this assumption is not really necessary.
p can be any valuation, or place, in the general sense of Krull. Accordingly we
may keep our general assumption that the base field K is algebraically closed
whereas Deuring, working with discrete valuations only, often has to perform a
finite extension of the base field in order to ensure the validity of his argument.
The residue map (place) of K belonging to p is denoted by z 7→ zp. We also
write z instead of zp.

Suppose that p can be extended to a place P of F with the following prop-
erties:

1. The residue field F = FP is an algebraic function field with base field
K = Kp.

2. There exists a separating element x ∈ F such that x = xP is transcen-
dental over K and [F : K(x)] = [F : K(x)].

3. The genus of F equals the genus of F . 48

In this situation F |K is called a “good reduction” of F |K at p. Actually,
Deuring did not use the terminology of “good reduction” which was introduced
later. Deuring spoke of a “regular reduction”, and P was called a “regular
extension” of p to F . For a given F |K, almost all primes of K (i.e., all but
the poles of finitely many elements) admit a regular extension to F . Deuring
in [Deu42] did not yet know that the regular extension P of p, if it exists, is
unique (if the genus g > 0). For genus g = 1 he proved it later in [Deu55], and
for arbitrary g > 0 this was shown by Lamprecht [Lam57].

If F is a good reduction of F in the above sense then this leads, according to
Deuring [Deu42], to a “reduction map” of the divisor group D(F ) to the divisor

48Recall that we have assumed K and hence K to be algebraically closed. Much of Deuring’s
theory remains true without this assumption; then one has to add the condition that F |K
and F |K are conservative, i.e., their genus should be preserved under extensions of the base
field.
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groupD(F ) such that the relations between divisors, elements and divisor classes
are preserved. In particular this means that integral divisors are mapped to
integral divisors, the image of a divisor has the same degree as the divisor itself,
principal divisors are mapped to principal divisors, etc. More precisely, if D is a
principal divisor in D(F ), say D = (z) with 0 6= z ∈ F then z can be normalized
by a constant factor from K such that its residue z = zP 6= 0,∞, and then the
image D of D equals the principal divisor (z).49

This being said, Deuring in his 1941 paper on endomorphism rings shows in
addition:

Suppose F |K to be elliptic. Then:

(1) F |K admits good reduction at p if and only if its absolute invari-
ant j is p-integral, i.e., jp 6=∞. If this is the case then the absolute
invariant of F |K is the image j = jp ∈ K.

(2) If F |K admits good reduction at p then there is a natural iso-
morphism µ 7→ µ of the endomorphism ring M of F into the endo-
morphism ring M of F such that µP = µP for any point P of F and
its reduction P of F .

M may be identified with its image in M so that

M ⊂ M

and the formula in (2) appears as

µP = µP .

M may be larger than M. If F is singular then F is either singular or super-
singular. If both F and F are singular then M and M have the same quotient
field Σ. If in addition M is a maximal order of Σ, then M = M.

The following theorem can be used to lift an elliptic function field from
characteristic p to characteristic 0.

Theorem:

As above, suppose K equipped with a place p and residue field K =
Kp. Let F |K be a given elliptic field, and µ one of its endomor-
phisms. Then there exists an elliptic field F |K admitting F |K as
a good reduction modulo p such that its endomorphism ring M con-
tains µ.

In other words: The elliptic field F , equipped with a given endomorphism µ,
can be lifted from the residue field K to K.

This is an important result. It explains and systematizes Hasse’s procedure
in his first proof of the Riemann hypothesis (see Part 2). Consider the situation
of the Riemann hypothesis, i.e., an elliptic curve defined over a finite field of

49Deuring’s theory of good reduction was later generalized by Shimura [Shi55], in the frame-
work of algebraic geometry to varieties of arbitrary dimension.
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characteristic p. (see section 2.5). Hasse, in his first proof not yet being aware of
the notion of Frobenius operator, succeeded somehow to lift the elliptic function
field to characteristic 0 such that after lifting (and after suitable base field
extension) p splits in the endomorphism ring p = ππ. Using class field theory
and reduction modulo a prime divisor of p Hasse verified that this π has the
properties which we now use to define the Frobenius operator.

The method of Hasse worked in the framework of the analytically based
classical complex multiplication. In particular he used the so-called “invariant-
equations” (meaning the algebraic equations between the invariants of different
elliptic fields) which used to be a common tool in classical complex multipli-
cation. Deuring also uses invariant-equations but he is able, by means of the
above reduction theorems, to derive the relevant facts by purely algebraic means.
This includes the so-called u-expansions of the roots of the invariant-equations,
u being a suitable uniformizing variable at ∞. Deuring says in [Deu41a]:

Die solchermassen aufgestellten u-Entwicklungen für die Wurzeln der In-
variantenpolynome leisten für die Theorie der komplexen Multiplikation
das gleiche wie die q-Entwicklungen (nach q = e2πiw) in der analyti-
schen Theorie. Es kommt also auf die Konvergenz der q-Entwicklungen
gar nicht an. Die Galoissche Theorie der Invariantengleichungen kann
mit Hilfe der u-Entwicklungen genau so behandelt werden wie mittels
der q-Entwicklungen . . .

The u-expansions as given above for the roots of the invariant-poly-
nomials are useful in the theory of complex multiplication in the
same way as the q-expansions (with respect to q = e2πiw) in the
analytic theory. Thus the convergence of the q-expansions is com-
pletely irrelevant. The Galois theory of the invariant-equations can
be treated with the help of u-expansions in the same way as with the
q-expansions . . .

And Deuring cites the third algebra volume by Weber [Web08] for the q-expan-
sions. When he mentions “Galois theory” of the q-expansions then this is in
fact the class field theory of complex multiplication.

Here we do not wish to go into more details of Deuring’s work. We have
included the above citation for two reasons: First, we want to point out again
that for Hasse, Deuring and contemporaries, the algebra book by Weber had
been a valuable and inspiring source. Through his book50 Weber has exerted a
decisive influence on the making of today’s algebraic number theory. Secondly,
we would like to recall that Hasse in his treatment of classical complex multipli-
cation [Has26], [Has31] has based the whole theory on q-expansions, which in his
setup remained the only analytically based tool. Now, Deuring had algebraized
this too, and so the road was open to completely algebraize the classical theory
of complex multiplication.

In fact, Deuring did this in two papers designed to match Hasse’s two above
cited papers. In the first paper [Deu49] in the Hamburger Abhandlungen he used
the general class field theory, whereas in the second [Deu52] in Mathematische

50and, of course, through his many articles
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Annalen he was able to deduce the class field theory of imaginary quadratic
fields from the algebraic results of his paper [Deu41a].

By the way, Hasse himself had foreseen that through his algebraic treat-
ment of complex multiplication it would eventually be possible to algebraize the
whole classical body of analytically based complex multiplication. In his 1934
Hamburg lecture Hasse had said:

Von der analytischen Theorie der elliptischen Funktionen ausgehend
habe ich bereits vor einem Jahr . . . einen Beweis der Riemannschen
Vermutung in elliptischen Funktionenkörpern mit endlichem Konstan-
tenkörper skizziert. Kurz gesagt, wurde dort die Riemannsche Vermu-
tung aus dem Klassenkörperzerlegungsgesetz der durch die Teilwerte der
elliptischen Funktionen gelieferten Relativkörper über einem imaginär-
quadratischen Zahlkörper gefolgert. Hiernach ist es verständlich, dass
ein Beweis dieser Riemannschen Vermutung auf algebraischer Grundlage
umgekehrt auch zu einem Beweis jenes Klassenkörperzerlegungsgesetzes
führt . . . Überdies erscheint diese Schlussrichtung viel naturgemäßer.

Starting from the analytic theory of elliptic functions I have already
last year . . . sketched a proof of the Riemann hypothesis based on
the class field decomposition law of extension fields of imaginary
quadratic number fields, namely those extensions which are generated
by the division values of the elliptic functions. From this viewpoint
it is understandable that an algebraically based proof of the Riemann
hypothesis leads, in the other direction, to a proof of the said class
field decomposition law . . . Moreover, this kind of reasoning appears
much more natural.

This seems just a vision, for at the time of writing this Hasse had not yet worked
out all details, as we have seen above. Finally it was Deuring who completed
this project of Hasse’s.

Later, Deuring’s work was reformulated in the context of Chevalley’s class
field theory using “idèles”. See [Bo66].

6.6 Summary

Originally, Hasse had wished to prove the Riemann hypothesis for curves over
finite fields, of arbitrary genus. The motivation for this came from a discussion
with Artin in December 1932; we have reported on this in Part 2. Hasse consid-
ered the elliptic case as the first step towards this goal; he was able to solve the
problem in the elliptic case because of his detailed knowledge of classical complex
multiplication. While writing down the proof he discovered that complex multi-
plication for elliptic curves can be developed in a purely algebraic manner, and
that the Riemann hypothesis is immediate if enough is known about the structure
of the endomorphism ring of the elliptic curve.

However, gradually there arose the wider project of a complete description
of the structure of endomorphism ring – even if not all those details are neces-
sary for the proof of the Riemann hypothesis. For some reason which we can
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only guess, Hasse did not complete this project but stopped this line of inves-
tigation after the Riemann hypothesis was established in the elliptic case. But
Deuring continued Hasse’s project and gave a full classification of all possible
endomorphism rings in characteristic p, and more. These results paved the way
for the complete algebraization of classical complex multiplication and its class
field theory. Hasse had already foreseen this possibility in his Hamburg lectures,
but it was Deuring who had executed these ideas in full detail.
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[Has26] H. Hasse. Neue Begründung der komplexen Multiplikation I: Einord-
nung in die allgemeine Klassenkörpertheorie. J. Reine Angew. Math.,
157:115–139, 1926. 58

[Has30] H. Hasse. Bericht über neuere Untersuchungen und Probleme aus der
Theorie der algebraischen Zahlkörper. II: Reziprozitätsgesetz. Jahres-
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gewissen elliptischen Fällen. Vorläufige Mitteilung. Nachr. Ges. Wiss.
Göttingen, Math.–Phys. Kl. I, 1933(42):253–262, 1933. 7

[Has33b] H. Hasse. Die Struktur der R. Brauerschen Algebrenklassengruppe
über einem algebraischen Zahlkörper. Insbesondere Begründung der
Theorie des Normenrestsymbols und Herleitung des Reziprozitätsge-
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Semin. Univ. Hamb., 10:106–108, 1934. 6

[Zas37] H. Zassenhaus. Lehrbuch der Gruppentheorie. Bd. 1., volume 21 of
Hamburg. Math. Einzelschriften. B. G. Teubner, Leipzig, Berlin, 1937.
VI, 152 pp. 6

[Zor33] M. Zorn. Note zur analytischen hyperkomplexen Zahlentheorie. Abh.
Math. Semin. Univ. Hamb., 9:197–201, 1933. 4

65


	Introduction
	The Hamburg Lectures
	Our sources
	The task
	Summary

	Algebraic uniformization
	The addition of points
	Meromorphisms and endomorphisms
	The addition of meromorphisms
	Abel's theorem

	First structure theorems
	Higher derivatives and differential determinants

	The Frobenius operator and the R.H.
	Summary

	More structure theorems
	The norm addition formula
	Hasse's proof
	Deuring's shortcut
	Consequences
	The norm
	-adic representation
	p-torsion

	Summary

	The Hasse invariant A
	bold0mu mumu ppDeu:1935bpppp-torsion
	Motivation and definition
	Unramified cyclic extensions
	The Hasse-Witt matrix

	The extreme cases
	Summary

	Some general comments
	Deuring's contributions
	Deuring
	The supersingular case
	Singular invariants
	Elliptic subfields
	Good reduction
	Summary

	References

