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The Riemann hypothesis in characteristic p,
its origin and development

Part 2. The first steps by Davenport and Hasse

Von Peter Roquette (Heidelberg)

Abstract

This paper is a continuation of Part 1. We report on how Hasse
met Davenport in 1931, how the latter introduced his friend Hasse to
the problem on diophantine congruences, and how Artin identified this
problem with the Riemann hypothesis for function fields. We discuss
Hasse’s first proof for elliptic fields which used classic uniformization and
complex multiplication; the idea for this developed during a discussion
with Mordell about Siegel’s great paper on binary diophantine equations.
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1 Introduction

This paper is the second part of a larger work on the Riemann hypothesis for
function fields; more parts will follow in due course. Part 1 has appeared in
[Rq:2002a].

We have described in Part 1 how Artin’s thesis in 1921 had triggered a re-
markable development, viz., the systematic investigation of algebraic function
fields with finite base fields. The aim of those investigations was to transfer
the main structure theorems of number fields to the case of function fields with
finite base fields, thus exhibiting the close analogy between these two classes of
fields. Artin in his thesis had done this for quadratic function fields, and now
arbitrary function fields were considered. This happened in the 1920s.

Today it is common usage to treat both cases, number fields and function
fields with finite base fields, simultaneously under the name of “global fields”.
These global fields can be characterized by a set of axioms referring to their
valuations. 1 We should be aware that these axioms resulted from the findings
obtained during the said development in the 1920s.

1Such axioms were given by Hasse in his book “Zahlentheorie” (English translation
[H:2002]) and also by Artin-Whaples in their well-known paper [A-Wh:1945]. The essen-
tial axiom is the product formula for valuations, combined with some natural finiteness
conditions.
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But not only algebraic number theory, also some analytic number theory was
transferred to the function field case. Artin in his thesis had introduced the zeta
function in the case of quadratic function fields. We have seen in Part 1 that
F.K. Schmidt [FK:1926] had generalized Artin’s theory for arbitrary function
fields F with finite base fields, and he established a birational invariant theory
of the zeta function

ζF (s) =
∏
p

1
1− |p|−s

=
∑
a≥0

|a|−s (1)

where p ranges over the primes (or valuations) of the field F , and where |p|
denotes the absolute norm, i.e., the order of the residue field Fp. On the right
hand side, a ranges over the positive divisors and |a | is defined multiplicatively
in terms of |p|. F.K. Schmidt obtained, among other results, the functional
equation of ζF (s), and also class number formulas, similar to those which Artin
had given in the quadratic case.

The “Riemann hypothesis” for a function field F with finite base field predicts
that all zeros s of F.K. Schmidt’s zeta function have real part R(s) = 1

2 . Artin
in his thesis had verified this by numerical computation in a number of ex-
amples; he had discussed about 40 function fields over base fields with small
primes, most of them elliptic (i.e., of genus 1) and some of genus 2.

In the following, when we talk about the “Riemann hypothesis” then we mean
the “Riemann hypothesis for F.K.Schmidt’s zeta function for function fields
over finite base fields” in the sense we have just explained – except if we ex-
plicitly say otherwise.

However, as we have pointed out in Part 1, this Riemann hypothesis did not
play a dominant role in the development of the 1920s, not in Artin’s thesis
and not in the papers by F.K. Schmidt or others. Instead, one of the main
motivation for the transfer of analytic number theory to the function field case,
was the establishment of class field theory for function fields. (At that time
class field theory was based on analytic number theory, viz., L-functions and
zeta functions. See [Rq:2001].)

Herglotz, who had been Artin’s thesis advisor, spoke of a “curious fact” only
when he reported that Artin had verified the Riemann hypothesis in some
numerical examples. It seems that this opinion was shared by others too.
There were only few voices which expressed some more explicit interest in a
proof of the Riemann hypothesis. One of them was Artin himself, not in his
thesis 2 but in some letters which he wrote in November 1921 to Herglotz (see
section 2.2.3 of Part 1). Another one was Hasse who in his Jahrbuch-review of
Artin’s thesis [H:1924a] explicitly points to the Riemann hypothesis. But in

2In Artin’s report [A:1921] on his thesis he did not even mention that he had verified the
Riemann hypothesis in some numerical examples.
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general it seems that in the 1920s, the proof of the Riemann hypothesis was
not considered to be a pressing problem. In any case, nobody at that time had
a definite idea how to approach it.

This situation changed dramatically in the early 1930s when Hasse took up the
question and succeeded in proving the Riemann hypothesis for elliptic function
fields. After that the Riemann hypothesis for arbitrary function fields moved
into the center of mathematical research interest. Let us cite from a letter of
Mordell to Hasse of March 9, 1933. Hasse had informed him that he (Hasse) had
just succeeded in proving the Riemann hypothesis in the elliptic case. Mordell
replied:

“. . . I was exceedingly interested in your mathematical news and was
very glad to hear that you had completely knocked down the bottom
out of y2 ≡ f4(x) mod p. It is a wonderful achievement and I shall
look forward with the greatest interest to seeing your paper in print.
I hope you will make it as easy as possible for the reader to under-
stand, without reference to all the theorems on Klassenkörpertheorie
etc. For as this is the first case of any exact result for zeros of Zeta-
functions on R(s) = 1

2 , the paper is sure to attract an enormous
amount of attention. . . ”

In Mordell’s notation, f4(x) denotes a monic polynomial of degree 4. Whenever
necessary he assumes it to be non-degenerate, i.e., without multiple roots. Thus
the equation y2 = f4(x) defines an elliptic function field F = K(x, y) over
any field of characteristic 6= 2 which contains the coefficients of f4(x) . And
conversely, every elliptic function field F |K of characteristic 6= 2 is generated
by such equation – at least if the base field is finite since then there exists a
prime divisor of degree 1 , as F. K. Schmidt had shown. 3 Thus when Mordell
speaks of the congruence y2 ≡ f4(x) mod p then he is referring to elliptic
function fields over the prime field Fp of characteristic p > 2.

His prediction about the “enormous amount of attention” turned out not to be
overdone.

Hasse had become interested into questions of this kind through his friend
Harold Davenport who had been introduced to him by Mordell in 1931. At
that time Davenport was working on the estimate of the number of solutions

3There is a slight discrepancy between the notion of “elliptic function field” as used by
Hasse, and that of today’s use. Hasse required that the function field F |K is of genus 1
whereas today it is often required in addition that F |K admits a prime of degree 1. If the
base field K is finite then the two notions coincide, due to F. K. Schmidt’s theorem. But for
a general base field K, a function field F |K of genus 1 need not have a K-rational prime. In
fact, Shafarevich [Sh:1957] showed that over an algebraic number field there exist function
fields of genus 1 whose minimal prime divisor degree is arbitrary large; this had been a long
time open problem.
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of certain diophantine congruences. Hasse tried to improve Davenport’s and
Mordell’s results by putting them into the framework of modern algebraic num-
ber theory. It was Artin who suggested to Hasse that the Davenport-Mordell
problem was in fact identical with the Riemann hypothesis for function fields.
This happened in November 1932 and is well documented by the letters from
Hasse to Davenport and by Hasse’s own notes. (See secion 3.4 .) Thus Artin,
who had not published anything about the Riemann hypothesis since his thesis,
was instrumental in directing Hasse to this problem.

The connection between the Riemann hypothesis and Davenport’s problem
on diophantine congruences was a completely new aspect; it had not been
considered before. It motivated Hasse to work on the Riemann hypothesis for
the next 10 years.

In the present Part 2 we will report on how Hasse met Davenport in 1931,
how the latter introduced his friend Hasse to his problem on diophantine con-
gruences, and how Artin identified this problem with the Riemann hypothesis.
We will discuss Hasse’s first proof for elliptic function fields, which used classic
uniformization and complex multiplication; the idea for this developed during
a discussion with Mordell about Siegel’s great paper on binary diophantine
equations. Hasse’s second and final proof, working directly in characteristic p,
will be discussed in the next Part.

Remark 1: Nowadays it is common to use geometric language and to speak of
“curves” instead of “function fields”. Accordingly one speaks of the “Riemann
hypothesis for curves”. Both terminologies are essentially equivalent since any
irreducible curve defines a function field as its field of rational functions and,
conversely, every function field (of dimension 1) is the field of rational functions
on some irreducible curve. This curve can be chosen to be smooth 4 and
projective, and then it is essentially uniquely determined by its function field.

In the early days of Hasse and Artin, the terminology of “fields” was prevalent
because the main motivation came from the comparison of number fields and
function fields. Later it was observed that some important special features
of function fields have no immediate analogue in the number field case and
could be better understood through the analogy to the geometric situation with
curves. This led to the gradual adoption of the geometric language which today
is in general use because of its flexibility. We can even pinpoint the date when
the geometric language has first been considered in this context in a relevant
manner. This was July 16, 1937 when A. Weil in a letter to Hasse pointed out
that the Italian school and Severi’s “Trattato” [Sev:1927] had results which,
when transferred to the algebraic situation, would be of relevance. This will be
discussed in detail in one of the future Parts.

In this Part 2 we shall use the terminology of “function fields”, like Artin and

4at least if the base field is perfect.
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Hasse did. But it should be understood that everything can easily be translated
into the geometric language.

Remark 2: In the preparation of this paper we have used not only published
material but also the information contained in personal documents like letters,
manuscripts etc. All those documents which we cite are contained in the Hand-
schriftenabteilung of Göttingen University Library, except when we explicitly
mention another source. As a general rule, letters which were addressed to
Hasse can be found in Göttingen, whereas letters which Hasse wrote to other
people are preserved at other places (if preserved at all). Letters from Hasse to
Mordell we have found in the archives of King’s College, and those from Hasse
to Davenport at Trinity College, both in Cambridge, England.

Although quite a number of letters from the Hasse correspondence is preserved,
the reader should be aware that, on the other hand, quite another number of
letters seems to be lost. What we have found does not constitute a complete
set of the Hasse correspondence.

Remark 3: Since publication of Part 1 [Rq:2002a] we have found some further
documents which led us to make some changes in that manuscript. These
changes concern certain details only, mostly the timing of events, and will be
mentioned here in due course. In our homepage we show the manuscript of
Part 1 with those changes already performed.

Acknowledgement: I would like to thank Keith Conrad for careful proof-
reading and many valuable comments, not only for this manuscript but also
for several others from my homepage.

2 Biographic Notes

Let us start with some notes on the biographies of the three main actors in the
scene of this Part 2. We do not attempt complete biographies here. We have
included those biographical informations only which seem to be relevant to our
topic. For more we refer to the standard literature.

Besides of the three names mentioned in the next three sections there are also
E. Artin and F. K. Schmidt who were involved in the development. Biographic
notes about them are to be found in Part 1.

2.1 Hasse 1930

Helmut Hasse was born 1898 5 in Kassel, an old medium sized town in Hessen
not far south from the university town of Göttingen. When he was 14 his

5Thus Hasse was of the same age as Artin. In their joint paper [A-H:1925] they mention
that the write-up of the paper was done by the “younger” of the two. Since both were born

6



The Riemann hypothesis in characteristic p, Part 2

family moved to Berlin. In 1915 he obtained his “Abitur” and volunteered for
service in the navy. In 1917 he got permission to study at the University of
Kiel, with Toeplitz. One year later he moved to Göttingen where he studied
mainly with Hecke. When the latter left Göttingen in 1920, Hasse changed
again universities and went to Marburg to study with Kurt Hensel.

In May 1921 he received his doctorate. In his thesis he formulated the famous
“Local-Global Principle” for quadratic forms over the rational number field Q.
His papers on quadratic forms culminated 1924 in the (nontrivial) proof that
the Local-Global Principle for quadratic forms holds over an arbitrary algebraic
number field [H:1924]. With this paper he solved, at least partially 6, the 13th
problem of Hilbert which reads: 7

“. . . to solve a given quadratic equation with algebraic numerical co-
efficients in any number of variables by integral or fractional num-
bers belonging to the algebraic realm of rationality determined by
the coefficients.”

(We remark that Artin too had solved one of Hilbert’s problems, the 17th, on
positive definite rational functions [A:1927]. Thus both Hasse and Artin belong
to the “honors class of the mathematical community” in the sense of Hermann
Weyl. See [Weyl:1944]. 8)

In the meantime Hasse had obtained a position as Privatdozent at the Uni-
versity of Kiel. The mathematicians in Kiel had close contacts to their col-
leagues in Hamburg. And so Hasse and Artin met frequently, and a long lasting
friendly relationship began, documented in a number of letters between Artin
and Hasse. 9 In 1925 Hasse accepted a professorship at the University of Halle.
In the summer semester 1930 he returned to Marburg, as the successor of his
academic teacher and “fatherly friend” (väterlicher Freund) Kurt Hensel.

in the same year it takes a precise knowledge of their birth dates to decide who indeed was
the younger one. Fact is that Hasse was 175 days younger than Artin.

6Hilbert’s wording admits two interpretations. One of them is to regard the phrase “in-
teger or fractional numbers” as denoting arbitrary numbers of the number field in question.
In this interpretation Hasse could be said to have solved the problem completely. The other
interpretation is that Hilbert actually meant two different problems: One is to solve the
quadratic equation in integers of the field, and the second problem requires solutions with
arbitrary numbers of the field. In this interpretation, which is usually accepted by the
mathematical community because it would generalize Minkowski’s work for the rationals to
arbitrary number fields, Hasse would have solved only one of the two problems. The other
problem (solution in integers) has been studied by Siegel and others.

7Hilbert in his address of 1900 used German language. The following is a free translation.
On this occasion we would like to state that whenever we cite a source which is originally
written in German, or in French, then we have translated it into English.

8The expression “honors class” has been taken over from Weyl by Yandell in his book
[Yan:2002] about the people who worked on Hilbert’s problems.

9We plan to publish the commented Artin-Hasse correspondence, jointly with G. Frei.
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Following up his work on quadratic forms, Hasse got interested into higher
reciprocity laws and class field theory. He wrote his seminal 3-part “class
field report” [H:1926], [H:1927a], [H:1930] which influenced a whole generation
of mathematicians. He worked on the theory of complex multiplication; his
two great papers [H:1927], [H:1931] on this topic are still of current interest.
Starting from 1928 there developed a cooperation with Richard Brauer and
Emmy Noether which culminated 1931 in their famous paper on the Local-
Global Principle for algebras over number fields [BHN:1932]. This was not
only an important achievement in the structure theory of algebras and their
representations, but it also had far-reaching consequences for class field theory,
preparing the way for the introduction of algebraic cohomology.

From this brief vita we see that by 1930 Hasse, like Artin, had become a
successful mathematician and one of the leaders in number theory research. 10

But until then, nothing in his vita points to a particular interest in the Riemann
hypothesis, although he kept himself well informed about the advances in the
theory of function fields. Hasse’s special interest in the Riemann hypothesis
arose when he met Davenport. This happened after Hasse had written a letter
to Mordell in November 1930.

2.2 Mordell 1930

Louis Joel Mordell was born in Philadelphia, Pennsylvania, in the year 1888.
Thus he was 10 years older than Hasse. At the age of 19 he went to Cambridge,
England and obtained a scholarship at St. John’s College. His main interest
in mathematics was number theory, in the direction of diophantine equations.
In particular he investigated the equation y2 = x3 + k over and over again
from different angles, so that this equation sometimes was called “Mordell’s
equation” (although it had been studied much earlier already, e.g., by Fermat).
As he himself reports, in Cambridge at that time there was not much interest
in such problems. He considered himself as “self taught”. In 1922 he became
Reader at the University in Manchester, 1923 Professor there.

Mordell’s name became widely known through his paper [Mor:1922] where he
proved the finite basis theorem for the group of points of an elliptic curve
over the rationals. His theorem was later generalized by A. Weil to abelian
varieties over arbitrary number fields of finite degree [W:1928]. This theorem
is nowadays known as “Mordell-Weil theorem”. 11 At the end of the same

10For a more complete biography of Hasse see [Fr:1985] and [Fr-Rq:2002].
11Mordell himself never accepted this terminology. He insisted that these are two different

theorems, one to be called “Mordell’s theorem” and the other “Weil’s theorem”. But somehow
the mathematical community did not heed to his wish. – In a similar situation, however, the
naming of a theorem by the mathematical community turned out to be different. For, Hasse
proved the Riemann hypothesis for elliptic curves, and his theorem was later generalized by
A. Weil to curves of arbitrary genus (over finite base fields). Nevertheless the theorem is not
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paper [Mor:1922] we find also the famous “Mordell conjecture”, raising the
question whether absolutely irreducible curves of genus > 1 over the rationals
should have only finitely many rational points. For a long time this conjecture
withstood all attempts for proof until finally Faltings [Fa:1983] succeeded.

In the “Dictionary of Scientific Biography” Mordell is characterized as “prob-
lem solver, not a system builder”. In fact he had acquired an enormous
amount of knowledge about solutions of special diophantine equations. His
book [Mor:1969] is a treasure of interesting examples. He has never made a
secret of his dislike of pure “high brow” theories (this was his standard ex-
pression); in his eyes such theories could be justified, if at all, only if they do
contribute to solving interesting problems.

In Manchester Mordell was able to build a strong school of mathematicians,
but this was later, in the last part of the thirties. During the years 1924–1927
he had a brilliant student, Harold Davenport. 12

We do not know when Mordell and Hasse met for the first time. The first letter
from Hasse to Mordell which is preserved, dates from Nov. 26, 1928. We know
that on July 16, 1930 Mordell had visited Marburg for a colloquium talk on
the invitation of Hasse.

Hasse’s letter to Mordell which we mentioned at the end of the foregoing section
is dated Nov. 25, 1930. Mordell had asked Hasse for his opinion about Maclagan
Wedderburn who had been proposed for election into the Royal Society. Now
Hasse responded to this request. At the end of the letter we read: 13

“. . . I enclose, as you wanted, a few words about the work of Wed-
derburn. I am much enjoyed to have such an occasion for doing
something for the glory of this big man.

I hope to agree with you that it was better to write that acknowl-
edgement in German. It would be better, and easier for me too, to
write this letter in German. But I am happy to have got an oppor-
tunity for practice my knowledge in English. You may be interested
to hear that I have continued my zealous studies in your language
this summer. . . ”

And Hasse continues, apparently in a rather quaint 14 English:

“In order to have further occasion for applying and enriching my
knowledges I would much like to get a young English fellow at home.
It would be very kind of you, if you could send me one of your

called “Hasse-Weil theorem”.
12More biographical information about Mordell can be found in Cassels’ article [Ca:1974].
13Hasse’s letter is written in English.
14This is the expression which Davenport used in a letter to Mordell.
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students during next summer term (April-July). We would invite
that student to dwell and eat with us. He would be obliged to speak
English with us at any time we are together (at breakfast, dinner,
tea, lunch etc.). . . From my point of view it would be best, if he were
student of pure mathematics out of an advanced course of yours. . . I
would much like to hear from you, whether you know a clever and
handsome fellow for this purpose.”

Thus Hasse wished to polish up his English. He had found his English not
sufficient to write a letter of opinion on Wedderburn for the Royal Society. At
those times, English had not yet become the lingua franca for science and not,
in particular, for mathematics. Usually mathematicians wrote their papers (or
books, or letters) in one of the major European languages, viz. English, French,
German or Italian. It was tacitly assumed that their mathematical colleagues
everywhere were able to read any of these languages. But, of course, it was
another thing to be able to write in a foreign language. 15

The correspondence with Mordell was perhaps not the only motivation for
Hasse to update his English. Quite generally he wished to read English texts
more easily than he was able to at the time. 16 Also, it may be that already
at this time he contemplated to write a paper in English language. In fact,
we know that half a year later, in May 1931, Hasse submitted a long paper in
English to the Transactions of the American Mathematical Society [H:1932b].
That paper provided a thorough introduction to the new results and methods
on cyclic algebras which Hasse had obtained recently, jointly with R. Brauer
and Emmy Noether. Although for that paper he could enlist linguistic advice
elsewhere 17, Hasse wished that in the future he would be able to write English
without having to rely on external help; so he turned to Mordell with his
request.

Already two days after Hasse had sent the letter, on Nov. 27, 1930, Mordell
replied to him as follows:

“. . . I can suggest the very person you want to go to Marburg. Mr.
Harold Davenport, Trinity College, Cambrigde. He was formerly
one of our students, the best we have had for many years. He is

15Even Hilbert had to admit, in a letter to Felix Klein of May 23, 1893, that he was not
able to write a paper in English. See [Fr:1985a]. We note that at those times, in a German
Gymnasium (secondary school) the teaching of modern languages was somewhat a matter
of second importance as compared with the teaching of classical Greek and Latin, the latter
being considered to carry Bildungswert . And among the modern languages taught in school,
French was dominant.

16Hasse himself had told this to Günther Frei when asked about the case. I am grateful to
Professor Frei for providing me with this information.

17He got it from H.T.Engstrom, a young American postdoc who studied in Göttingen
with Emmy Noether at that time.
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now doing research, and lately he has proved some such result as∑p−1
n=0

(
n4+an2+bn+c

p

)
= O(p

3
4 ) where the left hand ( ) is the symbol

of quadratic reciprocity. I think Hopf in the Zeitschrift a year or
two ago showed the right hand side < p

6 !! 18 He is interested in
certain aspects of number theory and I believe he would be free to
go. I have written to him and asked him to write direct to you. . . ”

2.3 Davenport 1930

Davenport needed some time to think it over. On Nov. 30, 1930 he wrote to
Mordell thanking him for passing Hasse’s request on to him. He regarded it
as a great compliment, especially, he wrote, in view of the phrase “handsome
fellow”. And he was very interested by Prof. Hasse’s scheme. The only possible
objections which he could see were the following:

1) “. . . there may be nobody at Marburg interested in the analytical theory of
numbers,”

2) “ there may be too many distractions there for me to get much work done;
and I must write a fellowship thesis by next August. . . ”

By Dec. 7, 1930 Davenport had obviously waived these objections since he wrote
to Hasse:

“Dear Prof. Hasse,

Prof. Mordell has told me of your letter to him, in which you say
that you would like to know of an advanced English student of pure
mathematics, whom you could invite to Marburg next summer term.
May I offer you my services?

I used to be a student of Mordell’s at Manchester, but for the last
three years I have been studying here. I am particularly interested in
the analytical theory of numbers – Gitterpunktprobleme, ζ-function,
etc. Are you interested in these subjects, or is there anyone else at
Marburg who is? So far I have only written two short papers, which
will appear soon in the Journal of the London Mathematical Society;
one on the distribution of quadratic residues mod (p), the other on
Dirichlet’s L-functions.

I am 23 years old, and not at all ‘handsome’ (as you required in
your letter). Also I do not swim or drink beer – and I understand
that these are the principal recreations in Germany. . . ”

18Mordell seems to have forgotten a square root sign, for Hopf had proved the right hand
side < p√

6
. See section 3.1.
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Hasse seems not to have minded the “shortcomings” with which Davenport
had advertised himself and he sent Davenport a definite invitation. And in
this letter he said that he is very interested in the analytical theory of numbers
and that the Seminar at Marburg is inviting several distinguished German
mathematicians to give lectures there next summer. 19

So in the next summer (1931) Davenport stayed as “language teacher” with
the Hasses in Marburg. There developed a friendship for many years between
the Hasse family and the younger Davenport. Certainly this had an effect on
Hasse’s proficiency in English, but at the same time Davenport succeeded to
raise Hasse’s interest in English history, English literature and quite generally
in everything which was considered as “typically English”. Hasse kept this
interest throughout his life. On the other hand, Davenport also profited from
this contact; later on he was fluent in German. 20

This friendship between Hasse and Davenport had a very remarkable conse-
quence for the work of Hasse in the 1930s. For, the conversation between the
two was not confined to the English language and literature but, of course, it
soon included mathematics. It seems quite natural that one of the first ques-
tions of Hasse to his younger colleague was about Davenport’s results in the
two papers which he had mentioned in his letter. In particular the paper on
the distribution of quadratic residues mod p got the attention of Hasse. We
will report about it and more in the next sections.

The article for Davenport in the “Dictionary of Scientific Biography” says
that he became a “natural academic leader”, and one of the “most influential
mathematicians of his time”. The following citation from Rogers’ biography
[Rog:1972] will explain this in some more detail:

“... the extent to which he helped others can only be guessed, he
was probably responsible for encouraging work at least as exten-
sive as his own. ... He made his collaborators and colleagues his
friends, and gave them generously of his humour and wisdom. He
made a practice of writing helpful letters to all who approached him
on mathematical matters whether they were professionals, students,

19This letter not preserved, but we know about it since Davenport reports on it to Mordell
on Dec 13, 1930.

20Excerpt from a letter of Davenport to Mordell in September 1931, from Bad Elster where
he was staying with Hasse during the annual meeting of the DMV (=Deutsche Mathematiker
Vereinigung):

“The Hasses and I have been on a motor tour during the past 12 days, in which we have
visited the Black Forest, Switzerland, the Italian Lakes, and Tyrol, with very much pleasure
and edification. Hasse is now taking an active part in the D.M.V. congress here, I a more
passive part. I can never be sufficiently grateful to you for passing on Hasse’s invitation to
me: I have had an excellent time in Marburg.”

By the way, the car of that motor tour was Davenport’s; at that time Hasse did not own
a car.
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amateurs or even cranks. By correspondence and by direct contact
he stimulated and encouraged many mathematicians to do much of
their best mathematics. . . ”

Two disciples of Davenport were awarded the Fields Medal. 21

But all this came much later. When Davenport was visiting Hasse in 1931 he
was 23, a young mathematician who had studied from 1924 to 1927 in Manch-
ester with Mordell, and thereafter in Cambridge at Trinity College. He had
distinguished himself in the examinations at both Manchester and Cambridge.
Now he was preparing a thesis for his fellowship award (which he would obtain
in 1932) and had just published his first papers. 22

His results in these papers were considered to be important, as Mordell had
mentioned in his letter to Hasse cited above. But in Marburg he was exposed for
the first time with what was called “Modern Algebra”, which means thinking
in terms of algebraic structures like fields, rings, ideals etc., as it was propa-
gated by Emmy Noether. Hasse had adopted Emmy Noether’s ideas to a large
degree. 23 In their correspondence we can read that Hasse, upon request from
Davenport, explained to him the fundamentals about finite fields and their mul-
tiplicative characters. Also, Davenport learned the theory of algebraic numbers
from the classical work of Dirichlet-Dedekind which Hasse had recommended
to him. 24

Halberstam 25 reports that in later years, Davenport would say that although
he had learned a great deal from Hasse, he had not learned nearly as much
as he would have done if he had been “less pig-headed”. Rogers [Rog:1972]
interprets this term as “more receptive”. I am inclined to interpret this “pig-
headedness” as a sign of intellectual independence, not absorbing Hasse’s ideas
and Hasse’s style without critical scrutiny, and standing on his own.

In any case, it seems to me quite remarkable that a close friendship between
Hasse and the nine years younger Davenport arose, both being (or becom-
ing) quite dominant characters, of different mathematical tastes and different
academic backgrounds. Hasse seems to have recognized the outstanding math-
ematical stature of Davenport, and accordingly he treated Davenport not as a
young student to be educated but as a colleague on equal terms. From their
correspondence we see that Hasse often reported to his young friend about his
own (Hasse’s) work, his problems and results. And he asked Davenport for his

21K. F.Roth 1958 and A.Baker 1970.
22For more details of Davenport’s biography see [Mor:1971], [Rog:1972].
23See Hasse’s 1929 lecture in Prague on “Die moderne algebraische Methode” (The modern

algebraic method), one year before he met Davenport [H:1930a].
24Frei [Fr:1977] reports that Hasse himself, as a young man of 18 during his service in the

Navy, had read the book of Dirichlet-Dedekind on the recommendation of his school teacher,
Dr. Herrmann Wolff.

25In his comments to the Collected Works of Davenport [Da:1977].
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opinion which he highly valued although he did not always share this opinion.

3 Estimating character sums and exponential sums.

3.1 Distribution of quadratic residues

In Mordell’s letter to Hasse as cited in section 2.2 , he had mentioned Daven-
port’s recent result that for a biquadratic polynomial

f(x) = x4 + ax2 + bx + c

with integer coefficients, one has

S(f) :=
∑

x mod p

(
f(x)

p

)
= O(p

3
4 ) for p →∞ . (2)

Here, p is an odd prime number and
(

z

p

)
denotes the quadratic residue

character modulo p , defined for z ∈ Z, which assumes the value 1,−1 or 0
according to whether z is a quadratic residue, or z is a quadratic non-residue,
or z ≡ 0 mod p respectively. On the right hand side of (2) the symbol O is the
so-called Landau symbol; the relation (2) means that there is a constant C,
not depending on p and not on a, b, c, such that |S(f)| < Cp

3
4 .

On first sight, Davenport’s result (2) looks like a rather special technical lemma.
But then, why did Mordell call this a “really significant result” ? (He did so in
[Mor:1971] where he gave a survey of Davenport’s results.)

The importance of statement (2) stems from its connection to various num-
ber theoretic problems. Davenport’s motivation in his paper [Da:1930] is the
distribution of quadratic residues. 26 Let n ∈ N. For a prime p > n consider
sequences of n consecutive quadratic residues modulo p. Do there exist such
sequences and if so, how many (modulo p) ? This is an old problem going back
to Gauss. Davenport cites Jacobsthal [Ja:1906], [Ja:1910] for n = 2, 3. 27

For arbitrary n, it was expected that the number Rn of such sequences is about
p

2n
. More precisely, it was expected that

Rn =
p

2n
+O(

√
p) for p →∞ . (3)

26 Another, perhaps more important problem connected with estimation problems like
(2), is the number of solutions of diophantine congruences; this we shall discuss in the next
sections.

27 We had mentioned these papers in Part 1 already, in connection with Artin’s work. See
section 2.3.2 of Part 1.
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In particular it follows that Rn → ∞ for p → ∞. Similarly, one may also
consider the number Nn of sequences of n consecutive non-residues modulo p
or, more generally, of sequences a, a + 1, a + 2, . . . , a + n − 1 with prescribed
quadratic residue characters ε1, ε2, . . . , εn where each εi = ±1 . For brevity
we will discuss here sequences of consecutive residues only although Davenport
includes also these other problems.

Davenport considers the cases n = 4 or 5 and he shows that

R4 =
p

16
+O(p

3
4 ) and R5 =

p

32
+O(p

3
4 ) . (4)

We see that this is a partial result towards the expected (3).

The relation of this problem to the problem of estimating sums like S(f) is
seen if the definition of the quadratic residue symbol is put into the form

1+
(

z

p

)
=


2 if z is a quadratic residue mod p

0 if z is a quadratic non-residue mod p

1 if z ≡ 0 mod p .

(5)

In any case, 1+
(

z

p

)
is the number of solutions x modulo p of the congruence

x2 ≡ z mod p . From this it is almost immediate that

Rn =
1
2n

∑
1≤x≤p−n

∏
0≤i<n

1+
(

x + i

p

)
.

Expanding the product it is seen that Rn differs from
p

2n
by a number, not

greater than 2n, of sums of the type

S(f) =
∑

x mod p

(
f(x)

p

)
(6)

for polynomials f(x) of the form

f(x) = (x + a1)(x + a2) · · · (x + ar) with ai 6≡ aj mod p (i 6= j) (7)

where r ≤ n. Thus we are led to the estimation of sums (6) which are similar
to (2) but for polynomials of the form (7) .

Davenport’s proof of (4) consists of showing that S(f) = O(p
3
4 ) for degrees

r = 3 and r = 4. The cases r = 1 and r = 2 were easy and well known, while in
the case r = 5 only the special polynomial f(x) = x(x+1)(x+2)(x+3)(x+4)
had to be considered which Davenport could handle too.
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How did Davenport become interested in this problem of distribution of quadratic
residues ? Mordell [Mor:1971a] writes that the problem had been given to Dav-
enport by Littlewood, who supervised the work of young Davenport. On the
other hand, Rogers [Rog:1972] reports that Littlewood regarded his supervision
of Davenport as “nominal”, saying that Davenport thought of his own prob-
lems and that he (Littlewood) just read his work and made encouraging noises.
Thus it appears that Davenport got interested in the problem after reading
papers.

Some time before Davenport wrote his paper, but in the same year, there had
appeared a paper by Heinz Hopf [Ho:1930] who had proved |S(f)| < p√

6
for

degree r = 4, if p is sufficiently large. We have seen above that Mordell had
mentioned Hopf’s paper in his letter to Hasse and had put two exclamation
signs behind it, in order to stress that Davenport’s result was much stronger.
Davenport too cites Hopf’s result in the introduction to his paper. We can
imagine that Davenport, when reading Hopf’s paper, found that he himself
could do better and thus became interested in the subject. And when he re-
ported to Littlewood about it then he was encouraged by Littlewood’s “noises”.

It seems quite remarkable that the brief and unpretentious note by Hopf 28

on the distribution problem for quadratic residues has caused, via Davenport–
Mordell–Artin–Hasse, the tremendous step forward to the proof of the Riemann
hypothesis, and more. “Problems”, says Mordell, “are the lifeblood of mathe-
matics”. Here we see an outstanding example. Let us cite Mordell’s own words
from [Mor:1971a]:

“It is well known what an important part has been played by prob-
lems, even of the simplest character, in furthering research, dis-
covery and the advancement of mathematics. . .The solution of a
problem frequently requires new ideas and new methods. The gen-
eralization it suggests, its consideration from a different point of
view or its rephrasing may lead to a new problem of far greater
significance than the original one which may turn out to be only a
very special case of a general theorem. Sometimes it seems almost
incredible what striking and far-reaching fundamental developments
have arisen in directions which seem very remote indeed from the
problem from which they arose. Problems are the lifeblood of math-
ematics.”

When Hasse wrote his textbook “Vorlesungen über Zahlentheorie” [H:1950] he
included the distribution problem for quadratic residues into his book – as

28Most of the work of Heinz Hopf belongs to algebraic topology. In the course of time
he rose to one of the leading algebraic topologists. The paper in question seems to be an
outgrowth of his student years in Berlin where he had been close to I. Schur, scientifically
and personally. See [Fr-St:1999].
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an example of an elementary number theoretic problem which leads to the
Riemann hypothesis for function fields. Since his book is meant to be an
elementary textbook, Hasse does not present there a proof of the Riemann
hypothesis. But he devotes the whole chapter §10 of his book to the distribution
problem for quadratic residues. He discusses the cases n = 2, 3 very thoroughly
and gives some kind of preview for higher n. From all we know about Hasse
and his relation to Davenport it seems to me quite evident that the inclusion
of this problem into Hasse’s book can be traced back to the summer of 1931
when he was confronted with it by Davenport.

3.2 Diophantine congruences

Now, the distribution problem for quadratic residues is certainly an interesting
problem of number theory but when Mordell called Davenport’s result “really
significant” then he was not referring to that problem only. There is a more
fundamental problem of number theory connected with the sums of type (2),
namely counting the number of solutions of diophantine congruences.

Let f(x, y) be a polynomial of two variables with integer coefficients; in this
context f(x, y) is assumed to be absolutely irreducible. For a prime number p
we consider the “diophantine congruence”

f(x, y) ≡ 0 mod p . (8)

Let N denote the number of solutions modulo p ; we also write N [f(x, y) ≡
0 mod p ] . There arises the question whether such solutions exist, i.e., whether
N > 0, at least for large prime numbers p . If so then what can be said about
the growth of N for p → ∞ ? From heuristic arguments it was expected that
N is about p . More precisely, it was expected that

N [f(x, y) ≡ 0 mod p ] = p +O(
√

p) for p →∞ . (9)

At the time of Davenport’s paper this was regarded as an important unsolved
problem of number theory. Any result of the form

N [f(x, y) ≡ 0 mod p ] = p +O(pγ) for p →∞ (10)

for some γ < 1 was considered as a step towards the expected (9).

Davenport’s result (2) can be regarded a special case of this. For, assume that
f(x, y) is of the special form y2 − f(x) with a polynomial f(x) of one variable
and integral coefficients. 29 Then (8) can be written in the form

y2 ≡ f(x) mod p . (11)
29We take the liberty of using the same symbol f once for denoting a polynomial f(x, y)

of two variables, and then for a polynomial f(x) of one variable. We hope this will not
create confusion, and that it will always be clear from the context what is meant in the
particular situation. By the way, this notation is also used in the original papers of Mordell
and Davenport.
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Without restriction we assume that f(x) has no multiple roots. From (5) it is
almost immediate that

N [ y2 ≡ f(x) mod p ] =
∑

x mod p

(
1 +

(
f(x)

p

))
= p + S(f) (12)

where S(f) is the sum as in (6) for the polynomial f(x) appearing in (11). We
see that Davenport’s result (2) yields (10) in the special case (11) with f(x) of
degree 4. In this case, according to Davenport one can take γ = 3

4 .

The problem (9) for diophantine congruences is closely related to the Riemann
hypothesis. We have explained this in section 6.4 of Part 1, where we have
discussed Hasse’s survey article [H:1934]. There it is shown that the Riemann
hypothesis for the function field F = Fp(x, y) defined by (8) would imply (9).
Also, any result that the zeros s of the zeta function of F have real part
R(s) ≤ γ < 1 for some γ would imply (10).

Seen in this way, Davenport’s result was closely linked with the Riemann hy-
pothesis for quadratic function fields in the sense of Artin’s thesis. Of course,
Hasse’s survey article [H:1934] had not yet appeared when Davenport wrote his
article. But Davenport was concerned with the special case y2 ≡ f(x) mod p
which means that the function field F = Fp(x, y) is quadratic. These quadratic
fields had been extensively discussed in Artin’s thesis.

Nevertheless, Artin was not mentioned in Davenport’s paper [Da:1930] . It
seems that in 1930 when Davenport wrote the paper, he did not yet know
Artin’s thesis. He learned about it from Hasse during his visit 1931 in Marburg,
as reported by Halberstam in [Da:1977].

3.3 Reducing exponents

Artin’s thesis was mentioned, however, in Mordell’s subsequent paper [Mor:1933]
where quite a number of new results about diophantine congruences were pre-
sented. Mordell had become interested in the subject after reading Davenport’s
paper, and he seemed to be intrigued by Davenport’s method. By refining that
method Mordell was able to obtain a better exponent in certain cases, and also
to cover quite a number of new cases, i.e., other diophantine congruences in
two variables.

Mordell’s paper appeared in 1933 but he had obtained the results already in
1931. For, on Nov. 8, 1931 he wrote to Hasse:

“. . . during the last three weeks I became very interested in Dav-
enport’s note on the distribution of quadratic residues and I could
not do anything else. I have only within the last few days proved
that the number of solutions of y2 ≡ ax3 + bx2 + cx + d mod p is
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p + O(p
3
4 ) & more generally when y2 is replaced by ym except in

one trivial case. Davenport has also found the theorem & proof of
a different case about the same time. If I remember any German,
I might speak on this to your students etc. as the method is very
elementary.”

In the last sentence Mordell refers to his future visit in Marburg which was
planned in early 1932. One month later, on Dec 14, 1931 Mordell wrote again:

“. . .You may also be interested in knowing that I have made further
progress with congruences. The cubic congruence f(x, y) ≡ 0 has
in general p + O(p

2
3 ) solutions. Also ym ≡ a1x

n + · · · + an+1 has
in general p +O(pγ(m,n)) solutions where

γ(m,n) =
2
3

if n = 4, m = 2

=
7
8

if n = 6, m = 2

=
5
6

if n = 4, m = 4

=
3
4

if n = 3, (m = 2 included above) 30

=
1
2

if n = 3, m = 3 .

Davenport has also found results of this kind; and I saw him three
days ago. . . ”

As to Davenport’s results, he had obtained in addition

γ(4, 4) =
2
3

, γ(m, 4) =
5
6

, γ(5, 5) =
5
6

, γ(3, 6) = γ(6, 6) =
7
8

, γ(2, 7) =
19
20

in his papers [Da:1932] and [Da:1933a].

In the printed version of Mordell’s paper we find also the following result which
he did not mention in his letter to Hasse:

N [axm + byn + c ≡ 0 mod p ] = p +O(p
1
2 ) . (13)

This congruence is today called “Davenport-Hasse” congruence. We shall re-
turn to this in Part 3.

30Indeed, if m = 2 and n = 3 then the above result for “cubic congruence in general”
applies. Of course, the same applies if m = n = 3 but in this case the next line gives a better
result.
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We see that now the investigations went beyond congruences of the form (11)
which define quadratic function fields over Fp in the sense of Artin. Those
with higher m > 2 lead to cyclic extensions of degree ≤ m of Fp(x) – at least
if p ≡ 1 mod m which is a reasonable assumption in this context and will be
imposed tacitly in the sequel in this context. 31

If m > 2 then the sums like (2) have to be replaced by so-called character
sums which are defined as follows. Let χ denote a character of order m of the
multiplicative group F×p . The values of χ are the m-th roots of unity in the
complex number field. Put χ(0) = 0. For any polynomial f(x) with coefficients
in Fp we put

Sχ(f) :=
∑

x mod p

χ(f(x)) . (14)

In the case m = 2 there is only one character of order 2, namely the quadratic

residue symbol χ(z) =
(

z

p

)
and then the character sum (14) coincides with (2).

An element t ∈ F×p is an m-th power residue if and only if χ(t) = 1, and we
have

1+χ(t)+χ2(t)+· · ·+χm−1(t) =


m if t is an m-th power residue mod p

0 if t is not an m-th power residue mod p

1 if t ≡ 0 mod p ,

(15)
in generalization of statement (5). The right hand side gives the number of
solutions y ∈ Fp of the equation ym = t. From this it is immediate that

N [ ym ≡ f(x) mod p ] =
∑

x mod p

(
1 + χ(f(x)) + χ2(f(x)) + · · ·+ χm−1(f(x))

)
= p + Sχ(f) + Sχ2(f) + · · ·+ Sχm−1(f)

We see that any result of the form

Sχµ(f) = O(pγ)

for the non-trivial powers of χ implies

N [ym ≡ f(x) mod p ] = p +O(pγ) .

In this way the above relations were proved by Mordell and Davenport.

But Mordell also says very clearly in his paper that the same problem arises
for the number of solutions of any congruence of the form (8). He considered

31For otherwise, m could be replaced by the greatest common divisor of m and p − 1
without changing the number N of solutions.
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the “general cubic congruence” (for which he had obtained the exponent 2
3 ) as

a starter only, as well as (13).

In the introduction of his paper, Mordell gives some historical account of the
problem of counting solutions of diophantine congruences of the form (8). The
oldest reference is a paper of 1832 by Libri [Lib:1832] in which the cubic con-
gruence

x3 + y3 + 1 ≡ 0 mod p , (16)

is investigated and where explicit expressions for the number N of solutions
are found; from this one can see that N = p +O(p

1
2 ). This is in fact the best

possible exponent, and Mordell was able to generalize it for the case n = m = 3
in the last line of his list. 32

As said above already, Mordell also mentions Artin in his paper. After dis-
cussing Libri’s result with the best possible exponent 1

2 , he remarks:

“Perhaps some of the other exponents are too great. Prof. Artin
informs me that the case m = 2, n = 3 arises in some of his
investigations and that he thinks the best possible result then is

γ(2, 3) =
1
2

.

In fact, he gives the empirical result for p > 3 ,

−2
√

p < S < 2
√

p

where

S =
∑

x mod p

(
x3 + ax + b

p

)
. ”

After that Mordell reports about Artin’s line of arguments with his ζ-function.

I am somewhat puzzled by Mordell’s remark. First of all, by “empirical result”
he obviously means Artin’s tables of class numbers in his thesis [A:1924] (see
Part 1, section 2.1.2). There, Artin presented the result of his computations for
a number of explicitly given quadratic function fields, each of them verifiying
the validity of the Riemann hypothesis. The majority of Artin’s examples
have characteristic p = 3 (only some have p = 5 or 7). So why did Mordell
write p > 3 ? Was this a misprint only and he meant p > 2 ? More puzzling,
why should Artin tell Mordell that he expects γ(2, 3) only, i.e., for elliptic
function fields ? We know from Artin’s letters to Herglotz that Artin expected
the Riemann hypothesis to be true in all quadratic cases. We would therefore

32It has been pointed out to me by Franz Lemmermeyer that the congruence (16) had been
discussed in Gauss’ Disquisitiones Arithmeticae already, in connection with the problem of
counting pairs of consecutive cubes modulo p . See chapter 7, section 358 of D.A.
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expect Artin to tell Mordell that he thinks γ(2, n) = 1
2 to be true for all n and

not only for n = 3.

We know that Mordell had shown Hasse the raw manuscript of his paper (this
was in January 1932). Certainly, Hasse knew about Artin’s thesis. Why did
not Hasse tell him ?

Perhaps Mordell’s remark about Artin’s work was not yet included in the raw
manuscript which Hasse had seen, and it was added later. Mordell (as well as
Hasse) attended Artin’s famous Göttingen lectures on class field theory which
took place from February 29 to March 2, 1932. 33 But Mordell had submitted
his manuscript [Mor:1933] shortly before already; it was received by the editors
of Mathematische Zeitschrift on Feb 25, 1932. We can imagine that Mordell
talked about his already submitted paper to Artin in Göttingen, and that the
latter informed him on his (Artin’s) thesis, in particular on his numerical com-
putations with some elliptic function fields, verifying the Riemann hypothesis
in a number of cases. Upon this Mordell may have hastily written a short
remark on Artin’s work which he then added to his manuscript.

In any case, Mordell and Davenport continued their work; they used their
methods to treat also the so-called exponential sums, which are expressions of
the form

Se(f) :=
∑

x mod p

e(f(x)) with e(z) = e
2πi z

p (17)

where f(x) is a polynomial mod p . Mordell [Mor:1932] showed that for such
sums

Se(f) = O(p1− 1
n ) (18)

where n = deg f(x). If n = 3 then 1 − 1
n = 2

3 . Davenport later [Da:1933]
reduced this exponent to 5

8 . Moreover, for n ≥ 4 Davenport obtained the
exponent 1− 1

m where m is the largest integer of either of the forms 2r , 3 · 2r

not exceeding n.

Exponential sums like (17) can also be formed for a rational function instead
of a polynomial, where in the summation the poles of the rational function are
to be omitted. For rational functions of the form

f(x) = axn + bx−n with n 6= 0

Davenport showed that Se(f) = O(p
2
3 ), which was an improvement of some

result of Mordell. For n = 1 these are the so-called Kloosterman sums. 34

The estimation of such exponential sums is closely related to the Riemann
hypothesis for function fields of the form F = K(x, y) with yp − y = f(x) over

33Notes of these lectures were taken by Olga Taussky. An English translation of her notes
appeared in H. Cohn’s book [Co:1978].

34For such Kloosterman sums, the same exponent 2
3

had been obtained, at the same time
but independent of Davenport, by H. Salié [Sal:1931].
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Fp . But in 1932 this was not yet known to Mordell or Davenport; we shall
return to this question later.

So we see that in 1931/32, shortly after Davenport had stayed with Hasse in
Marburg, there started quite an activity in the direction of estimating character
sums and exponential sums. At first, Hasse himself was not actively participat-
ing 35 but he appears to have shown keen interest in this work. He was always
kept informed about the newest results, by mail and also personally because
he met Davenport as well as Mordell several times in 1932 . 36

Nevertheless, although Hasse held these results and their authors in high re-
gard he was not much impressed by the methods used, and not by the general
attitude of the authors towards these problems. Hasse tended to think about
diophantine congruences not as problems per se, but as manifestations of math-
ematical structures. Thus, he said to Davenport, the results so far are obtained
only through clever computations, manipulating and estimating algebraic and
analytic expressions. Hasse acknowledged that the methods used may be non-
trivial 37 but they did not seem to him adequate since they lead to many
different exponents in the remainder term in so many special cases, whereas
in every case the exponent 1

2 was expected. Perhaps it would be possible to
reduce some of the exponents a little further by refining those methods. But
instead of “reducing exponents” 38 the proper thing to do would be to find out
the structure behind this, and to see how and why the optimal exponent 1

2 is
connected with that structure.

Davenport may have replied that he does not believe that those abstract meth-
ods can do much better than the very explicit methods which he and Mordell
had developed and used. After all, what only counts are the results and not
the methods. And when Hasse still insisted on his view, Davenport challenged
him to solve the problem with his abstract structural methods. Finally Hasse
accepted this challenge and started to work on the problem.

The above description of a possible dispute between Hasse and Davenport is
not purely fictional. Hasse used to tell us this story along these lines when
asked about his first steps towards the proof of the Riemann hypothesis. At

35This may have been because he was busy with quite a number of other mathematical
research activities. In the years 1931-1933 there appeared 25 papers of Hasse, the highlights
among them belonging to complex multiplication, local and global theory of algebras, class
field theory and norm residues, including his famous Marburg lecture notes. The late twenties
and early thirties can be considered as the most productive years in Hasse’s life.

36Besides of several meetings of Davenport and of Mordell with Hasse in Germany and
Switzerland, the latter visited them in England in October 1932.

37Mordell in [Mor:1933] even said that Davenport’s method was “very ingenious”.
38The terminology “reducing exponents” seems to have been established between Hasse

and Davenport, somewhat ironically on the side of Hasse (you should do better than reduc-
ing exponents) and in a sense provocative on the side of Davenport (I can at least reduce
exponents, and what can you do with your abstract methods?). In one letter of Feb. 25, 1932
Davenport writes “I haven’t reduced any exponents recently, I regret to say.”

23



Peter Roquette

the other side, Davenport told the story in the same spirit to Mordell to whom
he was quite close. Mordell reports in [Mor:1971a] :

“Davenport was staying with Hasse at Marburg in the earlier thirties
and challenged him to find a concrete illustration of abstract algebra.
This led Hasse to his theory of elliptic function fields. . . ”

3.4 The Hamburg colloquium and Artin’s comment

Probably in the fall of 1932 Hasse started to seriously think about possible
strategies to find the structure behind the problem of diophantine congruences.

Consider a diophantine congruence of the form (8). This can be regarded as
an equation f(x, y) = 0 over the finite field Fp and as such it defines a function
field F over Fp if p is sufficiently large. 39 As we have already said, Hasse knew
that the Riemann hypothesis for this function field would imply (9), at least in
the case of quadratic congruences (11) which had been treated by Artin in his
thesis [A:1924]. Nevertheless it seems that at first Hasse hesitated to attack
the Riemann hypothesis directly. After all, in the number field case all the
attempts to prove the classic Riemann hypothesis had not succeeded (this is so
even today, at the time of writing this article). Artin in his thesis had said that
the general proof of the Riemann hypothesis for function fields will probably
“have to deal with difficulties of similar type as with Riemann’s zeta function.”
This did not sound very encouraging. 40

In the number field case there are several theorems which were proved without
use of the classic Riemann hypothesis, although they are known to be conse-
quences of it. And so Hasse at first tried to attack the problem of diophantine
congruences without the Riemann hypothesis for function fields. He studied
the proofs in Davenport’s and Mordell’s papers in detail and, as a first step,
tried to simplify them in his sense, i.e., to do them more systematically, hoping
that finally he would be able to cover more situations than just those special
examples of Davenport and Mordell.

But soon, as we shall see, he changed his viewpoint as a result of a discussion
with Artin on the occasion of a colloquium talk in Hamburg.

During all his life, whenever Hasse gave a talk at a colloquium or at an-
other occasion, he carefully prepared a manuscript for it. Since many of those
manuscripts are preserved we know today what he was talking about and how.

39 Note that if f(x, y) ∈ Z[x, y] is absolutely irreducible then for all sufficiently large
primes p the reduced polynomial mod p is absolutely irreducible too. This is an old theorem.
I do not know who had first formulated and proved it. F. K. Schmidt in a letter to Hasse
writes that he had learned this theorem from a paper by Ostrowski [Os:1919].

40Although Artin had added that in the function field case “the situation is clearer and
more lucid because it essentially concerns polynomials”.

24



The Riemann hypothesis in characteristic p, Part 2

There were several talks in 1932/33 where Hasse reported about his work on
the Davenport-Mordell results, and so from his own lecture notes we can follow
the progress of his thoughts. These talks were:

November 1932 Kiel
some days later 1932 Hamburg
January 1933 Göttingen
February 1933 Marburg
May 1933 Marburg again
September 1933 Würzburg
January 1934 Hamburg again

Kiel was the place where Hasse had started his mathematical studies in 1917,
and also where he had taught as a Privatdozent during 1922-1925. In 1928
there had been strong attempts by Adolf Fraenkel who at that time still was
in Kiel, to draw Hasse back again to Kiel with an attractive offer. Although
this was not successful, Hasse kept always good relations not only to Fraenkel
but also to his other colleagues and his former teachers in Kiel. 41 Therefore
it is not surprising that it was Kiel where Hasse presented the results of his
newly acquired interest for the first time. According to Hasse’s lecture notes
he covered in this colloquium the most striking recent results of Mordell and
Davenport, those which we have discussed in section 3.3 above. Hasse tried to
present the proofs in a more systematic manner. Mordell’s paper had not yet
appeared at that time. 42

After his November colloquium 1932 in Kiel, Hasse planned to visit Hamburg
with “the only purpose to be together with the Artins” as he wrote to Davenport.
It seems that he wished to consult Artin about several mathematical questions
which had come up in their correspondence. But somehow Artin had talked
Hasse into delivering his Kiel lecture a second time in Hamburg. This lecture
had the same title as that in Kiel, namely:

41During his visit to Kiel, Hasse stayed with the Fraenkels.
42In Hasse’s legacy we have found two manuscripts carrying the note: “Kiel, November

1932”. Besides of the one which we have reported about here, there is another one about the
structure theorems on algebras over number fields, containing a brief survey on the Local-
Global-Principle and cyclicity of algebras. We do not know whether Hasse had given two
talks in Kiel. But this seems to us rather unlikely since he did not mention a word on it in
his letter to Davenport. Rather, it seems that the talk about algebras had been originally
proposed by Hasse when he received the invitation to Kiel. This was the same talk which he
had presented in September 1932 in Zürich at the International Congress. We know from the
correspondence Hasse-Fraenkel that Hasse’s colloquium lecture in Kiel had been discussed
in Zürich among the two, and at that time it seemed natural that Hasse would propose the
same subject as he had talked in Zürich. But in the meantime, in October 1932 Hasse had
visited England and met Davenport and Mordell; there he became interested in the problem
of congruences modulo p and, hence, changed the subject of his talk on short notice.
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“On the asymptotic behavior of numbers of solutions of congruences
modulo p .”

There is no hint in the title, nor in Hasse’s own lecture notes, of a connection
of this topic to function fields and the Riemann hypothesis.

But in Hamburg, Hasse’s lecture contained more than the Kiel lecture several
days earlier. For, in a letter of Dec 7, 1932 Hasse reported to Davenport: 43

“My lectures found much interest with the Hamburg and Kiel mathe-
maticians. In Hamburg, I was able to produce a couple of new
results, which I had found during my journey back from Kiel in a
Personenzug. I have proved that

Se(f) =
∑
x∈Fq

e(f(x)) = O(q1− 1
n ) (19)

where n is the degree of f(x) (a polynomial with coefficients also in
Fq) and

e(z) = e
2πi

p tr(z) (z ∈ Fq) (20)

where tr denotes the trace:

tr(z) = z + zp + · · ·+ zpr−1
(q = p r). (21)

I have also applied my (i. e. Mordell’s) method to the character
sums and found that in the elliptic case

N [ y2 = f(x)] = q +O(q1− 1
6 ) (x, y ∈ Fq). (22)

My method has been very rough, and I am pretty sure I can improve
this to O(q1− 1

4 ) corresponding to your best–known result. . . 44

It seems that Hasse’s original motivation for this generalization was to ob-
tain the Davenport-Mordell results for diophantine congruences in an arbitrary
algebraic number field of finite degree. To do this, one has to consider polyno-
mials with integer coefficients in that number field, and to count solutions of

43Hasse’s letters to Davenport are generally written in English, hence translation has not
been necessary. It seems that as a result of Davenport’s instructions, Hasse’s English was
not that “quaint” any more than it used to be in his first letter to Davenport.

44For the convenience of the reader we have changed Hasse’s notation somewhat. So
we have written Fq where Hasse wrote Eq (with “E” for “endlich”). Secondly, we have
incorporated the trace into the definition of e(z) in (20) which Hasse does not do. (In his
letter he writes e(tr z) instead. But later he switched to the notation which we have given
here.) Finally, Hasse defines the exponential sums as a mean, involving the denominator q

which we do not write; accordingly his estimate is O(q−
1
n ) instead of O(q1− 1

n ). Hasse calls
the mean 1

q
Se(f) the “distribution function” (Verteilungsfunktion).
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congruences like ym ≡ f(x) mod p for a prime ideal p. But instead of congru-
ences modulo p one may write equations in the finite residue field. This then
led Hasse to consider the generalization of Davenport’s and Mordell’s results
to arbitrary finite base field K = Fq. In fact, Hasse explains on a postcard
(dated Feb. 7, 1933) to Davenport: “There is no need of representing the ab-
stract Galois field as a residue class field for a prime ideal p in a (suitably
chosen) algebraic number field.”

In this general setting the error term is again given by character sums of the
form (14), this time referring to an arbitrary non-trivial character χ of the
multiplicative group of the finite field K, and the summation extended over
x ∈ K (instead of Fp). If m is the order of χ then necessarily q ≡ 1 mod m and
the function z 7→ χ(z) is a homomorphism of K× onto the group of m-th roots
of unity in the complex number field. Putting χ(0) = 0 the summation in (14)
extends over x ∈ K. For the problem (22) one has to take for χ the uniquely
determined quadratic character of K×.

As to exponential sums, the exponential function e(z) = e
2πiz

p in (17) is to be
re-defined including the trace as in (20). Then z 7→ e(z) is a homomorphism of
the additive group of the finite field K onto the group of p -th complex roots
of unity.

It turned out that this generalization, namely from Fp to an arbitrary finite
field K, was a straightforward routine – we note that Hasse could do it while
travelling in a “Personenzug” from Kiel to Hamburg. 45 Then why did Hasse
report it to Davenport with such apparent emphasis ? I believe that he wished
to inform Davenport about Artin’s comment on this. For, Hasse’s letter con-
tinues as follows, referring to statement (22) in the elliptic case:

“As Artin pointed out, this means that the zeros of his congruence
ζ–function lie all in R(s) ≤ 1− 1

6 , or 1− 1
4 respectively.”

In other words, Artin had said: “If you can prove the validity of the estimate
(22) not only over Fp but also over any finite extension Fq of Fp (with p replaced
by q and with the constant implied by the O-symbol being independent of q)
then this has consequences for the nontrivial zeros of my ζ-function of the
function field defined by y2 = f(x) over Fp. Namely, those zeros will have real
part R(s) ≤ 1− 1

6 . Similar argument if in (22) the exponent 1− 1
6 is replaced

by 1− 1
4 .”

We may add that the same holds if 1 − 1
6 is replaced by arbitrary γ < 1. If

γ = 1
2 then the Riemann hypothesis will follow.

45In the hierarchy of trains within the German railway system at that time, the “Perso-
nenzug” ranged as a slow train, stopping at each station. Today the travelling time from
Kiel to Hamburg in a slow train is about 75 minutes. In 1932 it may have been roughly the
same.
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It appears that Hasse had not known this fact before, since otherwise he would
not have reported it to Davenport in the form he did. We have said in Part 1
(section 2.3.1) already that Artin had never published this although he had
mentioned it in a letter to Herglotz written in November 1921 already. I do not
know whether Artin had communicated it to other people in the meantime. In
any case he told it to Hasse after the colloquium talk in November 1932.

This comment by Artin seems to have decidedly changed the viewpoint of
Hasse. He now realized that the Davenport-Mordell results could be regarded
as giving information on the zeros of the respective zeta functions – provided
these results could be obtained for an arbitrary finite base field K instead of Fp

only. And he realized that not only the Riemann hypothesis would imply the
Davenport-Mordell estimates with the best possible exponent 1

2 but also the
converse: the latter estimates are indeed equivalent to the Riemann hypothesis,
again under the provision that they could be obtained over any finite base field
K instead of Fp . In this spirit Hasse wrote his last sentence of his above
mentioned letter to Davenport:

“I hope to be able to extend all your and Mordell’s results to Galois
fields.”

It may well be that Artin’s comment was referring to quadratic function fields
only, which he had discussed in his thesis and in his letters to Herglotz. In any
case we shall see that under Hasse’s hand, with the help of F. K. Schmidt, the
same reasoning became valid for arbitrary function fields with finite base field.

Thus Hasse, after his discussion with Artin, had now found the algebraic struc-
ture behind the various estimates of Davenport and Mordell, namely function
fields over finite base fields and the zeros of their zeta functions. These were
the structures which were first investigated by Artin in his thesis, followed in
the 1920s by F. K. Schmidt and others (see Part 1). Hasse was well informed
about the theory of function fields, and now he realized that it is closely related
to the estimation problems of Davenport and Mordell.

There arose the task to study these structures with the aim to find out more
about the region which contains the zeros of the zeta functions. Hasse wished
to obtain estimates about the real parts of the zeros s, in the form R(s) ≤ γ
with γ as small as possible. (γ = 1

2 would be the Riemann hypothesis.) It
appears that at the time of his Hamburg colloquium lecture, Hasse did not yet
believe in the general validity of the Riemann hypothesis. We conclude this
from an account of S. Iyanaga who was present at Hasse’s colloquium talk in
Hamburg and narrates the following in a letter to me dated July 29, 1998: 46

46I am indebted to Prof. Iyanaga for letting me share his recollections. The cited text is a
translation from his letter. – Remark: In Part 1 [Rq:2002a] I have said that S. Iyanaga had
been present at Hasse’s Hamburg lecture in 1934 (see section 3.6 of Part 1). In the meantime,
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“. . . I was reminded that I had been there when Hasse gave a talk
in Hamburg 1932. At that occasion Artin voiced his strong opinion
that the same results would hold in arbitrary function fields, to which
Hasse replied: “I am not so optimistic, I have studied the problem.”
Now we see that Artin had been right, but I still remember with
admiration the great progress which Hasse had achieved with his
work . . . ”

It is a common observation in the history of mathematics that a problem can
be more easily solved if it can be put into a structural framework which seems
“adequate” to it – at least in the eyes of those people who work on that problem.
In any case, after his Hamburg lecture Hasse realized that the framework of
function fields and their zeta functions was adequate to the Davenport-Mordell
problem. And three months later, at the end of February 1933, Hasse succeeded
to prove the Riemann hypothesis for elliptic function fields. (See section 5.1
below). Another 11 months later, when Hasse again adressed the Hamburg
colloquium, he was already convinced that the Riemann hypothesis holds for
function fields of arbitrary genus. (See Part 3.)

3.5 Summary

In 1931 Hasse met the young student Davenport who had been recommended
to him by Mordell. There developed a friendship between the two, and Hasse
became interested in Davenport’s work which was concerned with estimating the
number of solutions of diophantine congruences. Some months later Mordell
extended and generalized Davenport’s results. Although Hasse appreciated the
high value and the ingenuity of Mordell’s and Davenport’s methods he voiced
his opinion that the structural methods of “modern algebra” would lead to bet-
ter estimates. Davenport challenged him to solve the problem with abstract
structural methods. Hasse accepted this challenge and started to work on the
problem, looking for the adequate algebraic structure connected with it.

In November 1932 Hasse delivered a colloquium lecture in Hamburg and met
Artin there. From Artin’s comments Hasse learned that the Riemann hypothesis
is indeed equivalent to the Davenport-Mordell problem for diophantine congru-
ences, provided the latter is extended to arbitrary finite base fields instead of the
prime field Fp only. And so he saw the structure behind the Davenport-Mordell
problem, namely the theory of algebraic function fields and their zeta functions
according to F. K. Schmidt.

however, after I have learned that Hasse had talked in Hamburg twice on elliptic function
fields – once in 1932 and another time in 1934 – Professor Iyanaga has confirmed (in a letter
dated April 2, 2003) that it was 1932 and not 1934 when he attended Hasse’s lecture. Hence,
in this respect I have to revise my corresponding statement in Part 1 .
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4 Hasse’s new point of view

4.1 The Göttingen colloquium

On January 10, 1933, not much more than one month after his Hamburg talk,
Hasse delivered another talk on the same topic, this time in Göttingen at the
Mathematische Gesellschaft (Mathematical association).

A visit to the Mathematische Gesellschaft had been proposed by Emmy Noether
about a year ago already; originally she had wished Hasse to report on their
joint paper about the structure of algebras [BHN:1932]. But somehow the
plans were changed; in the summer of 1932 Hasse had talked in Noether’s
seminar and not in the Mathematische Gesellschaft. Nevertheless Hasse had
been “put on the list” which meant somewhat like a standing invitation to the
Gesellschaft. Emmy Noether then proposed that he should come in the winter
semester 1932/1933; she wrote to Hasse that

“Courant will be here in the winter, and some of the newest number
theory will be good for him.”

On November 11, 1932 she wrote again to Hasse and asked for a date for his
visit. 47

It seems that Hasse in his reply mentioned what he had learned from Artin
in Hamburg, and that he now was interested in function fields and their zeta
functions. For in Noether’s next letter, dated Dec 9, 1932, she asked for the
precise title of Hasse’s talk and wrote:

“You may mention zeta functions as a lure”,

meaning that such title would attract more mathematicians, also those (includ-
ing Courant) whose field of interest was somewhat distant from number theory.
Hasse chose the title:

On the zeros of Artin’s congruence zeta functions.

Through this title Hasse advertised his new view point. In Kiel and Hamburg
the title had been “On asymptotic behavior of numbers of solutions of con-
gruences”. Now he wished to point out that those asymptotic estimates are

47She invited him to stay at her home: “But this time you should really stay with me. My
guest room has been initiated already by Alexandroff who stayed for 4 weeks.” – By the way,
one day after his talk at the Gesellschaft Hasse gave a second talk, upon Noether’s request
in her seminar where she had prepared the participants, as she wrote, for the Local-Global
Principle. Hasse talked about his Local-Global Principle for quadratic forms.
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of interest mainly because they give information about the position of zeros of
the zeta function. It is evident that this change of paradigm had come about
as a consequence of Artin’s comment. Looking through Hasse’s notes we find
that he did not present any essential new results when compared to Hamburg.
The difference was just his viewpoint. 48

According to the title, Hasse discussed mainly quadratic function fields and
therefore Artin’s zeta functions only. But we can see from his notes that Hasse
briefly mentioned also F. K. Schmidt’s zeta functions for arbitrary function
fields.

Let Hasse himself explain his new vision in his own words, to be found in his
Zentralblatt review of Mordell’s paper [Mor:1933], the same paper which we
have discussed above in section 3.3. The following text is an excerpt from this
review. 49

“The paper is concerned with special cases of the following general
problem: Let f(x, y) be a polynomial with integer coefficients which
is absolutely irreducible over the finite field Fp of p elements, and
N the number of solutions of f(x, y) = 0 in Fp. One should find an
estimate of the form

(A): |N − p | ≤ Cpγ

where the exponent γ < 1 is as small as possible, and C is a positive
constant. Both γ and C should not depend on p, and also not on
the special choice of the coefficients of f , but only on the algebraic
invariants of the function field F defined by the equation f(x, y) = 0
over Fp .

I would like to remark in advance that the final solution of this
general problem is closely related to the analogue of the Riemann
hypothesis for F.K. Schmidt’s zeta function ζF (s) for F . If the infi-
nite solutions are correctly included into the count then N becomes
the number of prime divisors of degree 1 of F and the theory of ζF (s)
shows that γ can be chosen as the maximal real part θ of the zeros
of ζF (s). In addition, one can choose C = 2g where g is the genus
of F . It is known that θ < 1 but a bound which is independent of p
is not yet known. The analogue of the Riemann hypothesis, θ = 1

2 ,
would imply that one could choose γ = 1

2 .

48Remark: In Part 1, section 3 I have said that Hasse in this Göttingen lecture talked
about his proof of the Riemann hypothesis in the elliptic case. Now I have to correct that
statement in view of Hasse’s own lecture notes. From his correspondence with Davenport it
is clear that Hasse had obtained the proof for the elliptic case at the end of February 1933
only. See section 5.1 below.

49The notation is ours, not always coinciding with that of Hasse in the review.
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Conversely, the statement (A) for F and for all constant field ex-
tensions of F (where on both sides p is to be replaced by the order
q = pr of the field of constants, and γ , C are independent of r
too) would imply that θ ≤ γ, hence for γ = 1

2 the analogue of the
Riemann hypothesis for F would follow. – The author explains this
connection in the hyperelliptic cases f(x, y) = y2 − f(x) only, with
the special congruence zeta functions of Artin.”

Only after this introduction Hasse proceeds to review the results of Mordell’s
paper in more detail; these are essentially the same as Mordell had stated in his
letter to Hasse of Dec 14, 1931, where he obtained the values γ = 2

3 , 7
8 , 5

6 , 3
4 , 1

2
in various situations; see section 3.3.

The above review text shows clearly Hasse’s change of viewpoint. Whereas
Mordell regarded the theory of the zeta function as a means to obtain good
estimates of the form (A), Hasse now proposed to look in the other direction.
Namely, any estimate of the form (A) would lead to a result about the real
parts of the zeros of the zeta function, provided that the estimate (A) can be
proved over all finite field extensions of Fp too. In this spirit Hasse added a
last paragraph to his review, confirming what he had already announced in his
letter to Davenport:

“I would like to add that the results of the author can be transferred
almost word for word to the case of an arbitrary finite field K instead
of Fp as field of coefficients. Hence, as said at the beginning, they
lead to a bound of the maximal real part of zeros θ by the respective
γ and, if γ = 1

2 , to the Riemann hypothesis for the respective zeta
function of F.K. Schmidt.”

In this review text we see those ideas emerge which later appeared in detail in
Hasse’s survey paper [H:1934].

Some of Hasse’s statements in the above review need explanation. Let us
discuss this in the context of an arbitrary finite field K instead of Fp ; let q
be the order of K. Every absolutely irreducible polynomial f(x, y) over K
determines an affine curve Γ ; let F = K(x, y) be its function field over K,
where (x, y) is a generic point of Γ over K. The solutions in K of the equation
f = 0 are precisely the K-rational points of Γ. Let NΓ denote their number.

The first thing to do, Hasse says in his review, is to “include the infinite solu-
tions correctly into the count”. What does Hasse mean by this?

If the curve Γ is smooth then the local ring of each point of Γ is a valuation ring
of F . The point is K-rational if and only if the residue field of that valuation
ring coincides with K. In this way the K-rational points of Γ correspond
bijectively to certain prime divisors of F of degree 1. But these are not all
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prime divisors of degree 1 ; there are also the poles of either x or y. These
poles, according to Hasse, are to be viewed as the “infinite solutions”. 50 Of
course, not every pole of x or y is necessarily of degree 1. Anyhow, there are
at most nx := [F : K(x)] poles of x and ny := [F : K(y)] poles of y of degree 1.
Therefore, if N denotes the number of all prime divisors of degree 1 of F , we
have |N − NΓ| ≤ nx + ny . Now, these numbers nx and ny are not altered if
F is replaced by any base field extension F (m) = FK(m) , with |K(m)| = qm.
That is, we have nx = [F (m) : K(m)(x)] and similarly for ny. Thus, if we put
c = nx + ny then

|NΓ −N | ≤ c (23)

where the bound c remains unaltered under base field extension.

When Hasse said that “the infinite solutions should be correctly included into
the count” then he means that NΓ should be replaced by N ; the inequality
(23) shows that this is permitted if one wishes to obtain an estimate like (A).

However, if the curve Γ is not smooth then the above bound is not correct.
We have reasons to believe that Hasse, in his review of Mordell’s paper, had
in mind Artin’s case of quadratic function fields only, given by an equation
of the form y2 = f(x) where f(x) has no multiple roots – or, more generally,
ym = f(x) with m 6≡ 0 mod p . In these cases the curve Γ is indeed smooth
and Hasse’s wording is correct.

But in general, if Γ has a singular point then there may be several prime
divisors of F lying above it ; these are called the “branches” of that singularity.
In general not all of those branches are of degree 1. But in any case it is
necessary to obtain a bound (independent of q) about the possible number of
branches over singular points.

It seems that Hasse, when he finally discovered this necessity, was not quite
sure about such a bound, and so he asked F. K. Schmidt to confirm it. Hasse’s
letters to F. K. Schmidt are lost but the replies of F. K. Schmidt are preserved
and contained in Hasse’s legacy. We have found 6 letters and postcards from
F. K. Schmidt to Hasse between Jan 18 and Feb 6, 1933 where F. K. Schmidt
explained that the relation (23) was true in general with a suitable modification
of c. He exhibited a bound d for the number of branches lying over some
singularity of Γ. The main point is that d is essentially defined by the singularity
degree of Γ and hence is a geometric invariant, which means it is not altered
by any extension of the base field. And so, (23) remains valid with the (very

50In general these are not identical with the points at infinity of the projectivization of Γ.
For instance, let Γ be the lemniscate x2+x2y2+y2 = 1. Its projectivization has two points on
the line at ∞, but these are singular points, each having two branches. These four branches
are the “infinite solutions” which Hasse has in mind, and they have to be counted together
with the finite solutions of the congruence. This had already been observed by Gauss in his
“last entry”. See Part 1, section 3.
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rough) bound c = nx + ny + d. 51

Thus, instead of only mentioning the “infinite solutions” which have to be
taken into account, Hasse should also have mentioned the “branches of the
singular solutions” in case the curve Γ has singularities. (Later in his survey
paper [H:1934] he correctly used F. K. Schmidt’s bound.)

Consequently, also for singular curves, NΓ can be replaced by the number N
of prime divisors of degree 1 of F |K. Geometrically speaking, the problem to
obtain an estimate like (A) is of birational nature, and hence Γ may be replaced
by the smooth projective curve (not necessarily planar) which is birationally
equivalent to Γ over K.

Now, the connection with the Riemann hypothesis stems from the fact that
this number N appears in the theory of F. K. Schmidt’s zeta function ζF (s)
defined as in (1). After introducing the new variable t = q−s it turns out that
ζF (s) becomes a rational function in t, of the form 52

ζF (s) =
L(t)

(1− t)(1− qt)
(t = q−s) (24)

where
L(t) = 1 + (N − q − 1)t + · · ·+ qgt2g (25)

is a polynomial whose degree is twice the genus g of the function field F . The
coefficient of t is N − q − 1. This formula is stated in one of the letters of
F. K. Schmidt to Hasse which we mentioned above; it can be extracted in a
straightforward manner from F. K. Schmidt’s original paper [FK:1926]. If we
write

L(t) =
∏

1≤i≤2g

(1− ωit) (26)

then the numbers ωi are algebraic integers, and they are the inverses of the
roots of ζF when regarded as a function of t . Thus the Riemann hypothesis
says that |ωi| = q

1
2 for i = 1, . . . 2g . From (25) and (26) we obtain

N − q − 1 = −(ω1 + · · ·+ ω2g) . (27)

In this way the number N is connected with the inverse roots ωi of the L-
polynomial L(t) of F .

Let θ denote the maximal real part of the zeros of ζF (s) ; then qθ is the maxi-
mum of the |ωi| and it follows from (27)

|N − q − 1| ≤ 2g · qθ. (28)
51F. K. Schmidt does not explicitly use the singularity degree. He works with the dis-

criminant degree of f(x, y) with respect to y , assuming y to be separable and integral over
K[x].

52See Part 1, section 6.1.
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This is essentially the relation which Hasse mentions in his review of Mordell’s
paper. But here we see the term N − q − 1 appearing whereas Hasse speaks
about N−q (or rather N−p). Of course, the relation (28) implies |N−q| < C ·qθ

for some constant C, as in formula (A) of Hasse’s review, but in order to take
C = 2g the relation (28) is not quite sufficient. Again we have the impression
that Hasse, in his review of Mordell’s paper, had in mind quadratic function
fields only and Artin’s zeta function.

Let us close this section by citing from a letter which Hasse had sent to Dav-
enport on July 23, 1933.

It seems that Davenport had criticized Hasse’s review of Mordell’s paper be-
cause it contained too much of Hasse’s view instead of a description of Mordell’s
methods. In his letter Hasse offered some apology but also gave a broad ex-
planation of his motivation and his new viewpoint. Therefore we believe it
worthwhile to be cited here.

“My dear Harold, many thanks for your letter. . . I quite agree
with you that I ought to have mentioned something about Mordell’s
method instead of laying the main stress upon my own point of view.
I most certainly appreciate the high value and the ingenuity of his
line of attack and I do not in the least shut my eyes to the fact that
his argument is at present the only one leading to definite results
with the overwhelming lot of all these problems. On the other hand,
the difference between us is that I do not consider the asymptotic
questions as the original problem, particularly not when p is con-
sidered variable, perhaps a little more when r in q = pr is variable
for fixed p . From my present point of view the analogue to Rie-
mann’s hypothesis lies in the center of interest, and the asymptotic,
or rather non–asymptotic, behaviour of certain numbers of congru-
ence solutions is the rational expression for this problem. From this
point of view the question whether the F. K. Schmidt function con-
tributes by itself to the solution of the congruence questions or not
is quite unimportant. The line of idea is:

F.K. Schmidt’s function

−→ its zeros and their Riemann hypothesis
−→ connection with character sums or numbers of solutions
−→ sizing up of them by Mordell’s method (or, if possible, exact

determination by uniformization or arithmetical argument 53

53We shall see later in sections 5 and Part 3 what Hasse means when he speaks of “uni-
formization” or “arithmetical argument” in connection with the zeros of F. K. Schmidt’s zeta
function.
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I will not say that, by putting F. K. Schmidt’s function at the
beginning, I confess myself as a decided analyst. On the contrary:
F. K. Schmidt’s function again is only a formal expression for the
arithmetic and algebraic properties of the field F of algebraic func-
tions, and it is the study of this field, which I consider as the origi-
nal problem. In particular, the number of solutions, slightly filled up
by the “infinite solutions” 54, appears from here as the number of
prime divisors of degree one, i. e. , the analogue to the well–known
densities in the common algebraic number theory. 55 The analogy
of the algebra and arithmetic in a . . . function field to the common
algebraic number theory is perhaps the deepest reason for my own
interest in all those questions as well as for their permanent signi-
ficance altogether.

That is exactly the line of ideas which I am going to follow in
my great paper 56 on fields F of genus 1 . . . . you must allow me the
right of putting my discoveries my own way . . . I think, however,
to serve you by this in the long run. For, while it is certain that
Mordell’s and your publications will find due interest with mathe-
maticians of your own tendency, they must certainly run the risk
of being overlooked or even regarded as uninteresting. . . by a great
school of mathematicians that undoubtably forms an integrating and
most active part of contemporary mathematics altogether.

That is the reason why I dared bringing my own point of view
even in a review on Mordell’s paper. It seemed to me far more
important to review for those who are liable to overlook the golden
core in his paper . . . than for those who, as you, already know the
essence of it. I do not agree with you that a Zentralblatt review
ought to save the reader reading the original paper, at any rate not
in general. It ought to show the interested reader that there is some-
thing which deserves his particular interest. It should give therefore
the ideas (in words) more than the details (in formulae), and of
course no proofs at all. It should show where a result belongs in the
system of knowledge. And it should be written with the intention to
interest as far a circle of mathematicians as possible for the thing,
provided that the thing deserves interest altogether. . . ”

We observe that when Hasse wrote this letter he was already in the possession
of his proof of the Riemann hypothesis in the elliptic case. (See section 5.)
He had already published a short preliminary announcement in the “Göttinger

54and the branches of the singular solutions, we may add. See our discussion above.
55We cannot quite follow Hasse here. In our opinion the exact analogue to the “well known

densities” in algebraic number theory would be something different. Nevertheless it seems to
be of historical interest that Hasse was motivated by this “analogy” as invoked by him here.

56Hasse means “long” paper.
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Nachrichten” [H:1933]. In contrast to that short paper he was preparing a
long paper where he intended to present all the details of proof. This long
paper however did never appear in print because during its preparation Hasse
changed his proof; the final proof appeared in three parts in 1936 only. Compare
section 5.

By the way, upon Davenport’s reminder Hasse decided to add a sentence to his
review describing roughly Mordell’s method.

4.2 The GF-method

As we have seen, Hasse in his letter to Davenport was quite outspoken about his
new view. From Davenport we have not found any statement of similar general
principle, not in his letters and not elsewhere. But we have got the impression
that in contrast to Hasse, he continued to be predominantly interested in good
estimates of diophantine congruences; he accepted the theory of zeta functions
as a powerful method to this end only. In his discussions with Hasse he created
a name for this method, namely “GF-method” where “GF” stands for Galois
field, i.e. finite field.

The name “GF-method” appears in a letter of Davenport to Hasse dated
Feb. 21, 1933. It seems that Hasse had asked him to explain Mordell’s proof
for the congruence y3 ≡ f3(x) mod p where f3(x) is a polynomial of degree 3
without multiple roots. This congruence is the last entry in the list which
Mordell had sent to Hasse in his letter of Dec 14, 1931. (See section 3.3.) In
this particular case Mordell had already obtained the best possible exponent 1

2
and Hasse wished to find out the main ideas behind Mordell’s proof. Davenport
wrote:

“. . .One way of seeing that y3 ≡ f3(x) has p+O(
√

p) solns. is your
G.F. method. In Fp3r f3(x) splits up, and the problem is the same
as that for y3 ≡ f2(x) , and I suppose there will be no difficulty in
showing that this has p r + O(p

1
2 r) solutions. (In particular this

follows from the corresponding result for ax2 + by3 + c ≡ 0 , a case
of axm + byn + c ≡ 0 ). The result for p follows from that for Fp3r ,
although f3(x) does not split up mod p . Have I understood your +
Artin’s method correctly ? Has any account of it appeared in print,
by the way ? . . . ”

We see that he indeed had understood the “GF-method” correctly. This con-
sists of the following steps:

1. Find a suitable finite extension K of Fp (a GF=Galois field) and a curve
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Γ birationally equivalent over K to the curve y3 = f3(x), which is suitable
for the problem in the following sense:

2. The number NΓ of K-rational points should admit an estimate of the form
|NΓ − q| ≤ C q

1
2 where q denotes the order of K. Moreover, a similar

estimate should be valid for every finite extension K(m) of K, of degree
m , with the same constant C . In other words: |N (m)

Γ − qm| ≤ C q
m
2 for

m →∞ .
3. If this can be achieved then the Riemann hypothesis holds for the function

field F = K(Γ) over K .
4. But then the Riemann hypothesis holds also for the original field Fp(x, y)

with y2 = f3(x) ; for F is a base field extension of it.
5. This implies that the number of Fp-rational solutions of y3 = f3(x) is

p +O(
√

p) .

Clearly, this “method” can be applied not only for y3 = f3(x) but for any
absolutely irreducible equation f(x, y) = 0 over Fp . Moreover, instead of Fp

one can work over any arbitrary finite field instead.

Davenport in his letter applies this method in the following way: Let K be any
finite field over which f3(x) has a linear factor; this is certainly the case over
Fp3 . After a linear transformation over K one can assume that this factor is just

x. After replacing x, y by
1
x

,
y

x
the equation attains the form y3 = f2(x), where

f2(x) is a quadratic polynomial with different roots. By a linear transformation
f2(x) can be brought into the form f2(x) = ax2 + b. Now we have an equation
of the form y3 = ax2 + b which, Davenport believes, will present no difficulties.
He refers to the more general equation axm + byn + c = 0 about which there
had been an exchange of letters between Davenport and Hasse before.

I do not know Hasse’s reply to Davenport’s letter. Certainly Davenport had
understood the GF-method correctly but Hasse, perhaps, would have omitted
the last point 5. because his main interest was in the Riemann hypothesis which
is already reached in point 4.

In the spirit of this GF-method, we remark that Davenport could have applied
the method further to obtain additional simplification in this example. For,
the curve y3 = f3(x) is an elliptic curve with invariant j = 0 and therefore,
over the algebraic closure of Fp it can be transformed into Weierstrass normal
form y2 = x3 − 1 . This is the curve for which Artin had settled the Riemann
hypothesis in his letter to Herglotz. Alternatively, the curve is birationally
equivalent to x3+y3 = 1 ; this is the equation which Libri had already discussed
in 1832, and also Gauss in his Disquisitiones.

We observe that in this “GF-method”, p denotes a fixed prime number and
thus the limit p → ∞ is no longer of interest – as Hasse had said in his letter
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to Davenport. Instead, if one works over a field of q elements then the GF-
method implies that one has to consider also its finite extensions K(m) with
qm elements; in this sense the limit m →∞ acquires relevance.

4.3 The Marburg seminar and Hasse’s survey article

In Hasse’s legacy we find notes for lectures delivered in February 1933 in Mar-
burg. These notes cover more details than the notes for his Göttingen lecture.
It seems to us that all this could not have been covered in one or two hours,
so it is likely that Hasse gave a series of talks in his special algebra seminar in
Marburg.

Looking through these notes we have found that the whole arrangement and
the general formulas are similar to the published text in Hasse’s survey article
[H:1934] which appeared in the proceedings of the Berlin Academy of Sciences.
A detailed discussion of that survey article has already been given in Part 1,
section 6. There, I said that the article was written in 1934, but in the meantime
I have come to the conclusion that this article may have been composed earlier
already, perhaps even in February 1933 parallel or shortly after his seminar
talks in Marburg where he presented this material.

Let us review the indications which seem to support the timing in favor of
February 1933:

1. The article carries the subtitle: Based in part on information obtained by
Prof. Dr. F. K. Schmidt and Prof. Dr. E. Artin. Now we have seen in the
foregoing section that Hasse’s correspondence with F. K. Schmidt about the
zeta function had been in February 1933 and shortly before, more precisely:
between Jan 20 and Feb 6, 1933. And the meeting with Artin had been at the
end of November 1932, also not long before February 1933. It is not unrea-
sonable to assume that Hasse wrote down the information which he had thus
obtained as soon as possible.

2. In a letter to Davenport dated February 2, 1933, Hasse’s remarks:

“After carefully studying F. K. Schmidt I am very much satisfied.
This paper is really far better than Artin’s, for the simple reason
that all his formulae and notions are birationally invariant.”

Here, Hasse refers on the one hand to Artin’s thesis [A:1924], and on the other
hand to F. K. Schmidt’s paper [FK:1931] 57. The latter had appeared in 1931
after a long delay. Much earlier, Hasse had already been informed about the
content of this paper through F. K. Schmidt’s letters but now we see that in
January 1933 Hasse has read the paper in detail. It appears that his aim was

57See Part 1, sections 2 and 5.
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to obtain a solid foundation for his survey article which, indeed, is based on
the birationally invariant zeta function of F. K. Schmidt.

3. We note that Hasse does not mention in his article [H:1934] that he had
already succeeded to prove the Riemann hypothesis for elliptic function fields.
But he had obtained that proof, at least its early stages, at the end of February
1933 (as we shall see in the next section). This again points towards the
conclusion that Hasse had prepared his manuscript for the article along with
his seminar talks, hence before the end of February 1933.

4. We have seen in the foregoing section that Davenport, in a letter to Hasse
dated Feb. 21, 1933, used what he called the “GF-method” and then asked:
“Has any account of it appeared in print, by the way ?” This might have
caused Hasse to sit down and write up the relevant facts, which he just had
presented in his seminar, for publication.

Now, if indeed Hasse had prepared his survey article [H:1934] in February 1933
already, there arises the question why it appeared 1934 only. The publication
date given in the paper is July 12, 1934 but there is no date of receipt men-
tioned. Perhaps, when Hasse wrote the manuscript in 1933 he did not intend
to publish it but only wished to collect all information known at the time about
zeta functions for function fields, and to arrange them in a form which is in
line with his new point of view, just for himself and for Davenport. After all,
the results which Hasse presents in this paper are for the most part not his
own but due to Artin and F. K. Schmidt. And perhaps it was at a later stage
only that Hasse decided to submit this survey article to publication, at a time
when Hasse wished to have a convenient place for later reference.

Another reason for the delay may have been the political turbulences which
had swept Germany after the Nazi party had come to power on Jan. 30, 1933.
This may have had consequences for the operation of the Berlin Academy of
Sciences, where Hasse’s survey article appeared, resulting in a delay of its
editorial dealings.

But all this is only speculation; we do not have evidence for this since, as
already said, the article does not show a date of receipt.

4.4 Summary

From Hasse’s own lecture notes for various colloquium lectures we can recon-
struct the evolvement of his ideas on the Riemann hypothesis. After his meeting
with Artin at the Hamburg colloquium (November 1932) the emphasis of his
work was directed towards the study of the structure of function fields and their
zeta functions. He voiced his new viewpoint in a Göttingen lecture (January
1933) to which he had been invited by Emmy Noether. Also, he publicized his
view on the occasion of a Zentralblatt review of a paper by Mordell. He pre-
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sented the details in several seminar lectures in Marburg (Feb 1933). On this
occasion Hasse may have drawn up his survey paper on F. K. Schmidt’s zeta
functions which, however, appeared in 1934 only. In that paper he gathered
all results known at that time about zeta functions of function fields, including
unpublished results of Artin and F. K. Schmidt. That paper had been discussed
in detail in Part 1.

5 The elliptic case: Hasse’s first proof

5.1 The breakthrough

We all know that a good way to study a mathematical subject is to give a lecture
course about it. The necessity to arrange the theory in a systematic way and to
explain to the audience the various connections between the different results,
often leads to new insights and, in consequence, to new results.

This happened also with Hasse on the occasion of his lectures in the Marburg
seminar in February 1933 (see section 4.3). For in this same month Hasse
succeeded to prove the Riemann hypothesis for elliptic function fields, i.e.,
for function fields of genus 1. This was three months after Hasse’s notable
conversation with Artin in Hamburg which had helped him to find his new
viewpoint, i.e., directing his interest to the abstract algebraic theory of function
fields over finite base fields.

But the structure theory of function fields in characteristic p was not yet suf-
ficiently developed at the time, and so Hasse could not draw much from it for
his problem. In fact, in the next years we can see Hasse himself busy pushing
forward that theory, in order to find adequate structures which would explain
his success. For the time being, Hasse’s proof was based on classic complex
multiplication and class field theory – techniques which hitherto nobody had
seen to have any connection with the theory of zeta functions and the Riemann
hypothesis in characteristic p . 58 In this respect Hasse’s proof constituted a
definite breakthrough although he could only deal with elliptic fields at the
time. But he realized what should be done with fields of higher genus, namely
using the analytic theory of abelian functions (where, however, the correspond-
ing theory of CM-fields was not yet sufficiently developed).

From Hasse’s correspondence with Davenport and with Mordell we can fairly
accurately determine the date when this breakthrough happened. It seems that
Davenport was the first one whom Hasse informed about it. That letter is lost,
but the reply of Davenport is preserved, dated February 21, 1933. There we
read:

58Including Herglotz [Her:1921] in his discussion of the lemniscate x2y2 +x2 + y2 = 1 over
Fp (see Part 1, section 3). Herglotz does not even mention the Riemann hypothesis.
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“. . . I am much excited as to whether your new idea for y2 ≡ f3(x)
comes off. The result for f3(x, y) ≡ 0 follows from it without fur-
ther work. Are you going to get new automorphisms or birational
transformations from your method, or what ? . . . ” 59

When Davenport writes that f3(x, y) ≡ 0 follows from the former case “without
further work” then this shows that he realizes the problem to be of birational
nature; this he had learned from Hasse.

From Davenport’s wording it is not absolutely certain that Hasse at that time
had already completed his proof. His words could also be interpreted such that
Hasse had given him a rough outline of his ideas without having them worked
out already. This interpretation seems not to be unrealistic because in the next
letter of Davenport we read:

“. . . I am waiting with great eagerness to hear what the final re-
sult of your work will be. It will be a marvellous achievement,
and should lead to the solution of other problems, i.e., Klooster-
man sums, which are closely connected to y2 ≡ f3(x). I re-read
your letter in which you explained your method the other day. . . I
hope in a few days I shall be able to congratulate you on a final
solution of the problem. . . ”

In a letter dated March 6, 1933 Hasse reported his new result to Mordell. That
letter is preserved. It leaves no doubt that at this date Hasse was in possession
of the proof:

“ Dear Prof. Mordell, I succeeded recently in proving that the num-
ber of solutions of y2 ≡ f4(x) mod p is p + term which is less than or
equal to 2

√
p . Moreover, the same holds for any Galois–field instead

of rational Galois–field mod. p , that is, the analogue to Riemann’s
hypothesis is true for the corresponding Artin Zetafunction.”

And Hasse continues:

“It is a curious fact that the leading idea of my proof may be con-
sidered as the fruit from our reading Siegel’s great paper last year,
or rather of my learning your method in the elliptic case. For, as
there the equation y2 = f4(x) is treated by uniformizing it through

59It is amusing that Davenport always writes y2 = f3(x) when he is talking about ellip-
tic function fields, whereas Mordell prefers y2 = f4(x). Of course, every elliptic function
field (with finite base field of characteristic > 2) can be generated by both of these normal
forms. Hasse, in his correspondence with Davenport and with Mordell, used f3(x) or f4(x)
respectively, according to his adressee.

42



The Riemann hypothesis in characteristic p, Part 2

elliptic functions, so I now treat the congruence y2 ≡ f4(x) mod.p
by uniformizing it the same way. . . ”

Here, Hasse refers to Mordell’s visit one year earlier, during the Easter vacations
1932. The Mordells had stayed with the Hasses in Marburg. It happened that
Hasse at that time had to write a Jahrbuch review of Siegel’s paper [Si:1929],
and he used Mordell’s presence to read Siegel’s paper together. 60 It seems that
on that occasion Mordell had explained to Hasse his use of the uniformization
of elliptic curves in his old paper [Mor:1922] which contained Mordell’s part of
the “Mordell-Weil theorem”. – We shall explain in section 5.3.2 what Hasse had
in mind when he said he is treating the elliptic congruence by “uniformizing
through elliptic functions”.

Mordell’s reply to Hasse’s letter is dated March 9 ; we have cited it partly in
the introduction already. After the text which we have cited there, Mordell
writes:

“What a tremendous vindication (for those who need it and have
not appreciated the K.k.theory 61 that the proof should depend upon
such a comparatively high brow theory. I feel rather relieved to think
I did not spend too much time on further results of this kind with
my method, and very pleased that my old paper should have supplied
even an amount ε of usefulness. We must read another paper some
other time.”

The first sentence reflects what we have already mentioned in section 2.2, that
Mordell was no friend of “high brow theory”. In this case, however, he seems
to have accepted it; to him the proof of the Riemann hypothesis seems to carry
sufficient “vindication”.

Perhaps it was the use of class field theory in Hasse’s first proof which later, in
October 1933, induced Mordell to ask Hasse about a possible English transla-
tion of Hasse’s Marburg Lecture Notes [H:1932] on class field theory. 62 Those
notes contained the foundations of general class field theory according to the
state of the art at the time, they had been mimeographed and distributed
among interested mathematicians (including Davenport and Mordell). Perhaps
Mordell wanted his British colleagues and students to learn class field theory
in order that they would be able to follow Hasse’s first proof of the Riemann

60The review appeared in volume 56 of the Jahrbuch für die Fortschritte der Mathematik.
It has the unusual size of more than 5 pages.

61K.k.theory = Klassenkörpertheorie = class field theory
62It may well be that also Emmy Noether, when she was in England in the fall of 1933,

had strongly proposed this plan for translation. She indicates this in a letter to Hasse of
March 6, 1934 from Bryn Mawr where she reports that she had insisted to produce more
copies of the translation because of strong demand.
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hypothesis. 63 Hasse consented to the translation and recommended Reinhold
Baer as someone who would well be able to do it. 64 Moreover, Baer was to
edit and add the second part of Hasse’s lecture, covering Hasse’s new theory
of norm residues; this part had not yet been included in the published lecture
notes. In the end Baer and Mahler were designated for the translation. But in
spring 1934 this plan was abandoned for reasons not known to me. One reason
may have been that Hasse had changed his proof of the Riemann hypothesis
and the second proof did not use class field theory any more.

In the following sections we will discuss Hasse’s first proof in more detail.

5.2 The problem

Let F be an elliptic function field with finite base field K, and let q = pr be
the order of K. The genus of F is g = 1, and hence the L-polynomial (25) of
F is quadratic:

L(t) = 1 + (N − q − 1)t + qt2 = (1− ω1t)(1− ω2t) .

The Riemann hypothesis claims that |ω1| = |ω2| = q
1
2 . It is convenient to work

with the reciprocal polynomial:

L∗(t) = t2 + (N − q − 1)t + q = (t− ω1)(t− ω2) (29)

which has ω1 and ω2 as its roots. If L∗(t) is irreducible over Q then ω1,
ω2 are conjugate integers in some quadratic number field Ω. If this Ω is an
imaginary quadratic field then |ω1| = |ω2| , and since their product is q the
Riemann hypothesis follows. We see that it suffices to solve the following
problem (independent of whether L∗(t) is irreducible or not):

Given an elliptic function field F |K with finite base field K with q
elements, let N denote the number of prime divisors of degree 1 in
F |K. Find an imaginary quadratic number field Ω and an element
π ∈ Ω such thatN (π) = q and S(π) = −(N − q − 1) (30)

where N , S denote norm and trace for Ω|Q .

For, it follows from this that π and its conjugate π′ are the roots of L∗(t) and
hence ω1, ω2 can be identified with π, π′.

63Mordell himself did not need a translation since he had fairly good knowledge of German.
64Reinhold Baer had to leave Germany due to the antisemitic policy of the German Nazi

government, and he had come to England after Hasse had recommended him to Mordell.
Hasse held a friendship with Baer from their time as colleagues in Halle – a friendship which
lasted lifelong. Hasse hoped that Baer would get some additional financial support through
the translating job.
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Note that N (π− 1) = N (π)−S(π)+ 1, hence the relations (30) are equivalent
to

N (π) = q and N (π − 1) = N .
65

) (31)

Today we can readily solve this problem, as follows:

F is the function field of an elliptic curve E defined over K, i.e., F = K(E) .
We may regard E as an abelian variety of dimension 1. The K-rational points
of E form a finite subgroup E(K), and its order equals the number N of prime
divisors of degree 1 of F . Consider the endomorphism ring End(E). It is known
that (up to a few exceptional cases) this endomorphism ring is a subring of an
imaginary quadratic field Ω.

Every endomorphism µ ∈ End(E) has a degree, and this degree equals the norm
N (µ) from Ω to Q. If µ is separable then the degree equals the order of the
kernel of µ.

Now, the q-Frobenius endomorphism π ∈ End(E) is defined over K, and it raises
the coordinates of any point of E into their q-th power. Applied to a generic
point, we see that its degree is [F : F q] = q , which gives the first relation in
(31). On the other hand, by definition π fixes precisely the K-rational points;
hence E(K) is the kernel of π − 1 . This gives the second relation in (31) since
π − 1 is separable.

In other words: The polynomial L∗(t) is the characteristic polynomial of the
Frobenius endomorphism within the endomorphism ring End(E), and the latter
is a subring of an imaginary quadratic field Ω .

The “few exceptional cases” mentioned above are those where E is “supersin-
gular” , i.e., where End(E) is not commutative 66. Then End(E) is contained
in the quaternion algebra which is ramified at p and ∞ only. Every maximal
commutative subfield of this quaternion algebra is imaginary quadratic. Since
the Frobenius endomorphism π is contained in such a maximal subfield, the
same argument as above can be applied in this case. (N denotes the reduced
norm from this quaternion algebra.)

But this line of argument was not yet available when Hasse started his work in
1933. The standard notions and results about elliptic curves in characteristic p
and their endomorphism rings which we have used here, were unknown. In fact,
what we have sketched above constitutes Hasse’s second proof which we will
discuss in more detail in the next part. It was quite a formidable task to develop
the theory of elliptic function fields and the structure of their endomorphism
rings from scratch, sufficiently far so that the above reasoning could be applied.

65)Compare this with the last entry in Gauss’ diary which we have discussed in Part 1,
section 3.

66Those elliptic curves had been discovered by Hasse [H:1934d], [H:1936c] . The terminol-
ogy “supersingular” seems to have been introduced by Deuring [Deu:1941].
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Nevertheless, in his first proof Hasse succeeded to construct, starting from F |K,
a certain imaginary quadratic field Ω and π ∈ Ω satisfying (31). He found Ω
and π on a detour via characteristic zero, lifting the given function field F |K
suitably to an elliptic function field over an algebraic number field, and then
applying the classic theory of complex multiplication. It was only after having
completed his first proof, while preparing the manuscript, that Hasse discovered
he was able to transfer the relevant results from classic complex multiplication
to the case of characteristic p – thus arriving at his second proof we have
sketched above already.

5.3 The proof

Hasse has never published his first proof completely. But there is enough
material from which we can quite well extract his main ideas and are able
to reconstruct the proof. For the discussion in this section we have used the
following sources:

1. Hasse’s letter to Mordell dated March 6, 1933 – the same letter from which
we have cited above already. It contains not only an announcement of
Hasse’s results but also a clear description of his ideas for his first proof,
without details however.

2. Hasse’s preliminary announcement which appeared in the proceedings of
the “Gesellschaft der Wissenschaften in Göttingen” [H:1933]. The paper
is dated April 14, 1933 and was communicated by E. Landau in the
meeting of the society of April 28, 1933. Again, this is a decription of
the method only, without details of proof. It is still encumbered with
certain restrictive assumptions on the degree f of the invariant of the
given elliptic function field. In Hasse’s letter to Mordell these restrictions
had not been mentioned, from which we may perhaps conclude that he
was pretty sure to be able to overcome this difficulty in due course. But
in his Göttingen preliminary announcement Hasse was cautious, and so
he worded the title of this paper as:

“Proof of the analogue of the Riemann hypothesis for Artin’s
and F. K. Schmidt’s congruence zeta functions in certain ellip-
tic cases.”

Thus he does not yet claim to have a proof for “all” but only for “certain”
elliptic cases.

It is in this paper that Hasse acknowledged fully the role of Mordell and
Davenport; he wrote:

“. . . and anyway, for my whole investigation I got the main mo-
tivation in many discussions with him [Davenport] and Mordell
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about numbers of solutions of congruences and related things.” 67

3. Hasse’s own lecture notes for a lecture in Marburg, May 1933. This lec-
ture was meant as a continuation of his lecture in the foregoing semester,
in February of the same year (see section 4.3). Now he wished to report
about his progress, i.e., his (first) proof for the elliptic case.

4. Another manuscript of Hasse’s lecture notes, this time for a talk at the
annual DMV-meeting in Würzburg, September 1933. These notes are
written with typewriter, and they contain more details, though not the
full proof. 68 It seems improbable that Hasse could have covered all
this in a short talk at the DMV-meeting. We have the impression that
this manuscript was conceived as a publication somewhere, probably in
the Jahresbericht der DMV where it was common to report about the
talks at the DMV-meetings, and at the same time add some additional
information which could not be covered in the talk. But when Hasse
actually wrote his report [H:1934b] in the Jahresbericht then this turned
out to be brief, containing the following announcement:

“In the meantime I succeeded to carry the proof for all ellip-
tic cases with characteristic not 2 with purely algebraic meth-
ods. . . Since this new proof seems to me to be more suited to the
problem, I will refrain from the detailed publication of the first
analytic proof. The publication of the second algebraic proof will
shortly be given as a sketch in the “Abhandlungen des Mathe-
matischen Seminars Hamburg”, and in detail in Crelle’s Jour-
nal.”

The announced sketch in the “Hamburger Abhandlungen” appeared in
[H:1934a], even without the restriction that the characteristic p 6= 2.
The publication in Crelle’s Journal appeared in three parts: [H:1936a],
[H:1936b], [H:1936c].

5. An extensive manuscript, comprising 94 pages, from Hasse’s own hand
where he presents all the details. 69 It seems to us that this was conceived
as part of the manuscript for Crelle’s Journal where Hasse planned to
publish his proof. Consider what he said later in [H:1966], in accordance
with what we have cited above in 4.:

“ I had the intention of letting detailed proofs follow in Crelle’s
Journal. I never made that true however. For shortly after-
wards I discovered an entirely new proof based on the theory of

67It was this remark which induced me to search for more details about the cooperation
between Hasse, Mordell and Davenport, with the result as presented in the foregoing sections.

68At the end of this manuscript Hasse had added a chapter about his work with Davenport
on the Riemann hypothesis in the case axm + byn = 1 , solving this with Gauss sums. Hasse
had worked on this during the summer of 1933 jointly with Davenport, who stayed that
semester in Göttingen but often came over to Marburg. We shall discuss it in Part 3.

69I am indebted to Reinhard Schertz for providing me with a copy of this manuscript.
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abstract elliptic function fields, and free from the restrictions
to p 6= 2, 3 and f odd.”

The restriction “f odd” refers to the degree restriction mentioned above
in 2. already.

6. Hasse’s proof, many years later in [H:1966], of an important lemma which
he had to use in his first proof. Hasse says there:

“I outlined all this [the proof of the Riemann hypothesis in the
elliptic case] briefly in a preliminary communication. When
today I come back to my original proof, it is because I think
that the fundamental lemma on which my uniformization was
based has sufficient interest in itself to be published with full
proof.”

The “fundamental lemma” is the same lemma which we have called
“invariant-lifting lemma.” See section 5.3.1 below.

7. Shiratani’s proof of the invariant-lifting lemma [Shi:1967]. While Hasse
[H:1966] still had to impose the said degree restrictions, Shiratani was
able to free the lemma from these restrictions. However he had to use
results which had not yet been available in 1933.

We will discuss Hasse’s first proof in the next three sections. In this proof
Hasse assumed p > 3 . The reason was that for p = 2 or 3 the explicit formulas
for generating the function field, for the computation of the absolute invariant,
for addition of points and for complex multiplication, are different from the
general case. Hasse was confident that if a proof could be achieved for p > 3
then it would be a matter of routine only to include p = 2 and p = 3 too.

5.3.1 Lifting of the absolute invariant

In characteristic p > 3 the given elliptic function field F |K of characteristic p
can be generated by two elements x, y satisfying an equation in Weierstrass
normal form:

y2 = 4x3 − ax− b with a, b ∈ K . (32)

The discriminant
∆ := a3 − 27b2

does not vanish, and the absolute invariant

j := 123 a3

∆
(33)

characterizes the elliptic function field F |K up to base field extensions. More
precisely: If F ′|K is another elliptic function field having the same invariant j
then F and F ′ become isomorphic under some finite base field extension.
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Hasse excludes the cases j = 0, 123 since, he says, these cases can easily be
dealt with directly. He refers to a forthcoming joint paper with Davenport. 70

The first step of Hasse’s “uniformization” of the function field F , or rather of
the projective curve defined by (32), is to lift the invariant j ∈ K to charac-
teristic 0 . Hasse does it by means of the analytically defined modular function
j(w). As follows.

An elliptic curve Γ over the complex field C can be regarded as a Riemann
surface of genus 1. Every such surface is analytically uniformized by the factor
space Ew := C/w where w is the lattice of the periods. We write Γw for the
elliptic curve uniformized by w. The function field Fw of Ew over C is generated
by the Weierstrass ℘-function and its derivative:

Fw = C(℘, ℘′)

where

℘(z|w) =
1
z2

+
∑

0 6=w∈w

(
1

(z − w)2
− 1

w2

)
, (34)

z being a complex variable. ℘(z|w) as a function of z is meromorphic with a
pole of order 2 at 0, and it is periodic with respect to w, i.e., it is a meromorphic
function of C/w = Ew. This function satisfies the differential equation 71

℘′ 2 = 4℘3 − g2℘− g3 (35)

where
g2(w) = 60

∑
0 6=w∈w

1
w4

, g3(w) = 140
∑

0 6=w∈w

1
w6

. (36)

The points of Γw (in suitable coordinates) are then given by the pairs(
℘(z|w) , ℘′(z|w)

)
for z ∈ Ew .

The point at ∞ of Γw corresponds to z = 0 .

The invariant j(w) of the lattice (or of the function field) is defined by

j(w) = 123 g2(w)3

∆(w)
where ∆(w) = g2(w)3 − 27g3(w)2 . (37)

These are the classical formulas for the uniformization of the elliptic curves (or
function fields) over C . Two elliptic curves Γw and Γw′ are isomorphic if and

70It is not clear whether he meant the paper [Da-H:1934] since he also planned another
joint paper with Davenport which, however, was never completed. But in [Da-H:1934] the
cases j = 0, 123 are contained as special cases.

71Differentiation is to be understood with respect to the complex variable z.
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only if their lattices w and w′ are proportional, which means that there exists
a complex number λ such that λw = w′. We have:

g2(λw) = λ−4g2(w) , g3(λw) = λ−6g3(w) , j(λw) = j(w) . (38)

If w and w′ are not proportional then j(w) 6= j(w′) . Every complex number
is the invariant j(w) of some lattice w .

A multiplier of w is defined to be a complex number µ such that µw ⊂ w. This
defines an endomorphism µ : Ew → Ew . The ring M of all those multipliers
contains Z . If there are other multipliers in M then these are not real numbers;
in this case the lattice w (or the elliptic curve Γw) is said to admit complex
multiplication. From this the whole theory derives its name.

If the multiplier ring M is complex then it is a subring of some imaginary
quadratic number field Ω. 72 In this case the lattice w is proportional to
some lattice a ⊂ Ω , and a is an ideal (integral or fractional) of M. 73 The
ring M is determined by its conductor m ∈ N , in such a way that M consists
of all algebraic integers in Ω which are congruent to some rational integer
modulo m. 74 Let us write Mm if we wish to indicate the conductor m of M .

Now, the first observation in the theory of complex multiplication is that the
invariant j(a) of such a “singular” lattice is an algebraic number. Moreover,
the field extension Ωm := Ω(j(a)) depends on m only, and it is abelian over Ω.
Its Galois group is canonically isomorphic to a certain group of divisor classes
of Ω, namely the factor group Dm/Hm where Dm is the group of all divisors
of Ω relatively prime to m, and Hm the group of the principal divisors of the
form (ab−1) where 0 6= a, b ∈ Mm are both prime to m. This isomorphism is
an example of Artin’s general reciprocity law.

Ωm is called the m-th ring class field over Ω. According to general class field
theory, Ωm can be characterized by the splitting properties of the prime divisors
p of Ω which are prime to m. Such a prime divisor splits completely in Ωm if
and only if p ∈ Hm. More generally, let pf be the smallest power of p contained
in Hm; then f is the relative degree of a prime divisor P|p of Ωm.

All these facts were well known from the classical theory of complex multipli-
72In today’s algebraic theory the terminology “endomorphism ring” is used instead of

“multiplier ring”.
73In the following, the letter a will denote a lattice contained in some imaginary quadratic

field. In the older literature these are called the “singular” lattices. Perhaps it is not super-
fluous to point out that this terminology of “singular” does not have anything to do with
“singular points” etc. in algebraic geometry. In the old terminology “singular” just means
“special” (and “general” often means “except perhaps some singular cases”). Nowadays,
in order to avoid misunderstandings, the terminology “singular” for a lattice which admits
complex multiplication is not in use any more, but in Hasse’s time it still was. Same with
“supersingular”.

74Hasse says “index” instead of “conductor”, following the classic terminology in the theory
of complex multiplication.
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cation. Hasse was quite familiar with the theory of complex multiplication.
Early in his youth, when he was in Kiel as Privatdozent, he was confronted
with the theory of complex multiplication through the study of Takagi’s paper.
In Part I of his class field theory report [H:1926] he had discussed the Weber-
Takagi class field theory, in particular the so-called Jugendtraum of Kronecker
which claimed that every abelian field over Ω is contained in the field generated
by the singular values j(a) and the roots of unity. Since Takagi and Fueter we
know that this is not quite true because one has to add certain division values
of elliptic functions. Already in his report Hasse announced that he himself
will give a more adequate treatment, in as much it is possible to work with
Weber’s function τ only.

And he did so in his papers [H:1927], [H:1931] whose aim was to systematize the
theory of complex mutiplication, once from the viewpoint of modern class field
theory, and a second time to derive class field theory for imaginary quadratic
fields with analytic methods. 75 Concerning these papers, Hasse had had an
exchange of letters with Hecke and with Artin; both had read and commented
his manuscripts. And in 1931 there followed three more papers on complex
multiplication [H:1931a], [H:1931b], [H:1931c]. In Hasse’s legacy we have found
an extensive manuscript on complex multiplication, going beyond his published
papers. 76

This familiarity with complex multiplication was quite decisive for Hasse’s suc-
cess in solving the above mentioned problem (31). Without this knowledge
Hasse would not have found the motivation to look for the construction of Ω
and π within the realm of complex multiplication.

Hasse’s invariant-lifting lemma now reads as follows:

Let K be a finite field of order q = pr. Let j be an element of K
and f its degree, so that Fp(j) = Fpf and f | r.
There exists an imaginary quadratic number field Ω and a lattice
a ⊂ Ω with multiplier ring M such that:

(i) p = pp′ splits in Ω into prime divisors (which may be equal or
not).

(ii) p (or equivalently, p) does not divide the conductor m of M .
(iii) Each prime divisor P of p in the ring class field Ωm = Ω(j(a))

is of degree f , hence its residue field Ωm/P is isomorphic to
Fpf .

75An excellent survey of the theory in the same style which Hasse had used is contained
in Deuring’s article [Deu:1958]. Today, the theory of complex multiplication can be derived
without the use of analytic functions; see [Deu:1949], [BCHIS:1966].

76Prof. Schertz has pointed out to me that this manuscript is modeled after Weber’s treat-
ment of complex multiplication in [Web:1908].
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(iv) After suitable identification of Ωm/P with Fpf we have

j(a) ≡ j mod P . (39)

“In general” the lattice a is uniquely determined, up to a propor-
tionality factor which has to be contained in Ω; exceptions can arise
only when p is ramified in Ω, and f = 1 or f = 2.

In other words: The value j(a) ∈ C of the modular j-function at the “singular”
lattice a is a lift of the given element j ∈ K , with the properties as announced.

Actually, Hasse in [H:1933] states this theorem under the already mentioned
extra condition that the degree f is odd . 77 This is indeed necessary for Hasse’s
method [H:1966] to work. For he had to choose the invariant j(a) (and hence a)
among the roots of the so-called “invariants equation” of transformation de-
gree p f ; the behavior of that equation modulo p for f > 1 is somewhat involved
and yields the result only if f is odd.

Hasse said that this extra condition is of “technical” nature, and he was sure
that this obstacle could be overcome in due course. As we remarked above
already, Shiratani [Shi:1967] indeed showed that Hasse’s invariant-lifting lemma
holds also if the degree f is even, but for this he used the later work of Hasse
and Deuring which had not yet been available in 1933. 78

From today’s knowledge, the “technical” obstacle which Hasse encountered is
not completely technical but it is partly due to the inherent structure. This
becomes clearer if we consider the uniqueness assertion in the above lemma
which holds “in general” only. In fact, Hasse found exceptions of that unique-
ness, but for odd f he showed that these can occur only if f = 1 and p is
ramified in Ω. (In such exceptional case, there are two essentially different
solutions a , a′ .) Today we know that uniqueness fails to hold if and only if the
endomorphism ring of F is non-commutative, i.e., F is “supersingular”. And
that those supersingular cases can occur only if f = 1 or f = 2.

At the time when Hasse conceived his proof he had not yet discovered the
existence of those “supersingular” cases; this happened later. See [H:1934d]
and [H:1936c]. It may well be that this discovery occurred while he attempted
to free his proof from his extra condition. As it turns out, this extra condition

77Therefore the case f = 2 in the last sentence of the lemma does not show up in Hasse’s
manuscript.

78Among other results, Shiratani used Deuring’s lemma that every elliptic function field
in characteristic p equipped with a multiplier can be obtained as a good reduction of some
elliptic function field in characteristic 0 with a multiplier. See [Deu:1941] . This lemma is
in fact the essential ingredient of Shiratani’s proof, and Hasse’s invariant-lifting lemma is
a more or less direct consequence of it. It should be noted that Deuring’s paper became
possible only after Hasse had developed the general theory of the endomorphism rings of
elliptic curves over arbitrary characteristic.
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avoided the supersingular cases for f = 2. In the case f = 1, Hasse was
able to deal with the supersingular cases because the “invariants equation”
of transformation degree p, as is well known in complex multiplication, is of
particular simple form modulo p , namely

Jp(t, t) ≡ −(tp − t)2 mod p .

Now, in the situation of the invariant-lifting lemma let p denote the prime
divisor of Ω induced by P. Since P is of degree f it follows from class field
theory that pf is a principal divisor of some element in the multiplier ring M
relatively prime to m. Since f divides r it follows that pr ∼= π is principal too.
Similarly for p′ . Consequently we have

q = p r = ππ′ (40)

with some conjugate elements π, π′ ∈ M relatively prime to m .

This takes care of the first relation in (31) .

5.3.2 Uniformization

Before discussing the second relation in (31) let us explain what Hasse, in his
letter to Mordell of March 6, 1933, describes as “uniformization of an elliptic
congruence”. (See section 5.1.)

Instead of the Weierstrass functions ℘(z|w), ℘′(z|w) Hasse uses the modified
functions 79

℘̃(z|w) = 12
℘(z|w)
6
√

∆(w)
, ℘̃′(z|w) =

℘′(z|w)
4
√

∆(w)
. (41)

Accordingly the Weierstrass equation (35) is to be replaced by the modified
Weierstrass equation

123 ℘̃′
2

= 4℘̃ 3 − 12γ2 ℘̃− 8γ3 (42)

where γ2(w) and γ3(w) are modular functions which can be expressed by j(w) :

γ2(w) = 3
√

j(w) and γ3(w) = 2
√

j(w)− 123 . (43)

79The notation is ours. Classically, Hasse writes π , π̂ instead of ℘̃ , ℘̃′ . Note that ℘̃′ is the
modification of the derivative ℘′ and not the derivative of the modification ℘̃. – Observe that
the modular functions 6

√
∆(w) and 4

√
∆(w) are multi-valued. The formulas below are to be

understood that one branch of 12
√

∆(w) has to be chosen, and then in (41) its respective
powers are to be taken. Similarly the third and second roots in (44) below have to be

interpreted coherently with 12
√

∆(w) .
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One of the reasons for this modification is that the coefficients γ2(w) ,γ3(w) of
the algebraic equation (42) are directly expressible (although not rationally)
by the absolute invariant j(w).

Now take w = a to be the “singular” lattice of the invariant-lifting lemma.
Then the coefficients of the corresponding modified Weierstrass equation are

γ2(a) = 3
√

j(a) and γ3(a) = 2
√

j(a)− 123 . (44)

and hence algebraic over Ω(j(a)). In fact, it is known that together with j(a)
they generate an abelian extension of Ω which can also be described as a certain
ring class field, namely Ωtm with certain t dividing 6. The elliptic curve Γa

with the equation

Γa : 123 y2 = 4x3 − 12γ2(a)x− 8γ3(a) (45)

is defined over Ωtm , and its absolute invariant is j(a) . Thus Γa admits
Ea = C/a as its uniformization. This uniformization is given by the modi-
fied Weierstrass functions, in such a way that the points (x, y) ∈ Γa are given
by

x = ℘̃(z |a) , y = ℘̃′(z |a) (for z ∈ Ea) . (46)

Now consider the prime divisor P of Ωm as in the invariant-lifting lemma. We
extend P to a prime divisor (valuation) first of Ωtm and then of the complex
field C; for simplicity the extended prime will also be denoted by P . Let
γ2, γ3 be the residue classes of γ2(a), γ3(a) modulo P; they are elements in the
algebraic closure of K. Then the “reduced curve”

Γ : 123y2 = 4x3 − 12γ2x− 8γ3 (47)

is defined over some finite overfield of K, and its absolute invariant is j in view
of (39). Consequently, Γ and the given curve (32) are birationally equivalent
over some finite overfield of K. Since a base extension is permitted (GF-
method !) we may assume from the start that γ2, γ3 are already in K and that
the two curves are birationally equivalent over K. 80

In other words, we have Hasse’s Uniformization theorem:

After a suitable finite base field extension we may assume that F =
K(Γ) where Γ denotes an elliptic curve defined by an equation of
modified Weierstrass form (47) with coefficients γ2 , γ3 ∈ K and

γ2 = 3
√

j , γ3 = 2
√

j − 123 , (48)

80Observe that by performing a base field extension, q is replaced by a power of q. Ac-
cordingly, π and its conjugate π′ which are defined by (40) are also to be replaced by their
respective powers.
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j being the absolute invariant of F . This curve Γ is the reduction
modulo P of the curve Γa in (45), i.e., we have

γ2 ≡ γ2(a) , γ3 ≡ γ3(a) mod P (49)

in addition to (39) . By definition, Γa is uniformized by Ea = C/a

via the modified Weierstrass functions ℘̃(z|a) , ℘̃ ′(z|a) . Conse-
quently, given any point z ∈ Ea then the congruences

x ≡ ℘̃(z|a) , y ≡ ℘̃ ′(z|a) mod P (50)

define a point (x, y) ∈ Γ .

Here, the points at infinity of Γa and Γ have to be taken into account in the
usual manner.

5.3.3 Lifting of rational points

The curve Γ is smooth and therefore, the number of K-rational points of Γ
(including the one point at infinity) equals the number N of prime divisors of
degree 1 of the function field F |K of Γ. Hence in order to prove the second
relation in (31) one has to count the number of K-rational points of Γ. For
this purpose, Hasse proves that the K-rational points of Γ are lifted bijectively
to the π − 1-division points of Γa. Let us first explain the notion of division
point.

Let 0 6= µ ∈ M be any multiplier a . The “µ-division points” of Ea are defined
to be those points z ∈ Ea = C/a which are annihilated by µ, i.e. µz ≡ 0 mod a.
These points form a finite additive group 1

µa/a which is isomorphic to a/µa .
To determine the order of this group, take a Z-basis a1, a2 of a and express
µa1, µa2 by this basis. The determinant of the ensuing 2 × 2-matrix is the
order of a/µa. On the other hand, this determinant equals the norm N (µ) of
µ within the imaginary quadratic field Ω.

Hasse considers the division points for µ = π − 1. Thus N (π − 1) equals the
number of those division points.

The π− 1-division field Ωπ−1 of Γa is defined by adjoining to Ωtm the division
values of the modified Weierstrass functions:

Ωπ−1 = Ωtm

(
℘̃(z|a) , ℘̃′(z|a) : z ∈ a

π − 1

)
(51)

It is known, and Hasse shows it, that Ωπ−1 is abelian over Ω, and it is a certain
ray class field.

Hasse’s lifting theorem says:

55



Peter Roquette

Let π be as in (40). After replacing π by −π if necessary, we have:
The residue field of the π−1-division field is K, i.e., Ωπ−1/P = K .
Consequently, for every division point z ∈ Ea the corresponding
point (x, y) ∈ Γ defined by (50) is K-rational. Conversely, every K-
rational point (x, y) ∈ Γ can be lifted to a π−1-division point z , and
this is unique. Hence the number N of K-rational points of Γ equals
the number of π − 1-division points of Ea, hence N = N (π − 1) .

This takes care of the second relation in (31) .

Since Γ is a good reduction of Γa modulo P , today we would consider the
statement of this lifting theorem almost self evident, provided the ± sign in
front of π is chosen such that π induces in Γ the Frobenius endomorphism.
But we should remember, once again, that in the year 1933 no such systematic
theory of good reduction existed. In fact, the latter had been introduced by
Deuring [Deu:1941] in order to algebraize the theory of complex multiplication
by means of Hasse’s algebraic theory of endomorphisms.

Hasse himself used in his proof the analytic and arithmetic properties of the
elliptic functions (including Weber’s τ -function). By looking through Hasse’s
manuscript 81 we have found quite an amount of detailed information (based
on his former papers [H:1927] and [H:1931]) which he had to collect in order
to come to the final conclusion. One of the main problems for him was to
decide which of the two signs ±π has to be chosen. To this end, Hasse starts
to consider both the π − 1- and the π + 1-division points (which are the same
as the (−π)− 1-division points). He considers the ray class fields obtained by
adjoining the values of ℘̃ and ℘̃′ for both these kinds of division points, and
carefully studies the splitting of P in these fields, using the decomposition laws
of class field theory which he derives from the arithmetic properties of the so-
called q-expansions (in the sense of classical theory of modular functions) of
the elliptic functions involved.

Hasse sketches this method in his letter to Mordell which we cited in 1. of
section 5.3, and he adds:

“. . .There is of course much detail which I could not give here, and
my proof will be pretty long and difficult in print. On the other hand
I am glad that this is so. For it shows that the theory of singular
moduli and singular values of elliptic functions, and even the general
Klassenkörpertheorie which I need for certain conclusions, are far
from being very abstract castles built into the air but concrete enough
to yield non-trivial results on rational numbers. . . ”

And then he adds:
81the one mentioned in 5. of section 5.3
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“Perhaps my argument will become clearer to you if I expose it in
the trivial case y2 ≡ x2 − 1 mod p . . . ” (52)

Of course this congruence is not elliptic but of genus 0. This was precisely the
reason why Hasse thought that this example was suitable for the explanation
of the method because instead of class fields over imaginary quadratic fields,
only cyclotomic fields over Q appear, but the line of proof is quite similar to
the elliptic case.

The equation y2 = x2 − 1 is uniformized by

x = cos 2πz , y = i sin 2πz .

with z ∈ R/Z (the real numbers modulo 1). For any n ∈ N, the n-th division
points are given by those z for which nz ≡ 0 mod Z. The division values are
then given by

cos
2πν

n
, i sin

2πν

n
(0 ≤ ν < n) .

The n-th division field is obtained by adjoining these division values to Q ; this
is precisely the n-th cyclotomic field Q( n

√
1).

The prime p splits completely in the p− 1-th cyclotomic field, let P be one of
its extensions 82. Then the congruences

xν ≡ cos
2πν

p− 1
, yν ≡ i sin

2πν

p− 1
mod P

define p − 1 solutions (xν , yν) of the given congruence in the prime field Fp ,
and it is easy to verify that these are all different mod p . The analogue of
Hasse’s lifting theorem in this situation would be to show that every solution
of the congruences

y2 ≡ x2 − 1 mod p with x, y ∈ Fp (53)

is obtained in this way. (In this context there are no solutions at ∞ to be taken
into consideration.) This is not difficult to verify but Hasse wishes to present
this fact in a similar way which he had used in his proof of the above lifting
theorem for elliptic congruences. Thus he compares the p − 1-division values
with the p + 1-division values. He writes:

“For any n, the division values cos 2πν
n (ν = 0, 1, . . . n−1) generate

the real subfield of the nth cyclotomic field. If n divides p±1 then p
splits into prime divisors of degree 1 in that field. Take the equation
with all those p− 1 + p + 1 = 2p division values as roots. By a very
easy calculation one finds its left hand side ≡ (xp − x)2 mod p .
This means that those division values form twice a complete set of
residues modulo P .”

82P can be extended to the algebraic closure of Q. We will denote this extension also by P.
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Consequently, if (x, y) is a solution in Fp of the congruence (53) then x ≡
cos 2πν

p−1 mod P for some ν , or x ≡ cos 2πµ
p+1 mod P for some µ. Suppose the

latter. Then we have y ≡ i sin 2πµ
p+1 mod P (after replacing µ by −µ if nec-

essary). Observe that Q(cos 2πµ
p+1 , i sin 2πµ

p+1 ) is the n-th cyclotomic field for
n = p+1

gcd(µ,p+1) . Also observe that if n > 1 then p does not split completely
in this cyclotomic field, and accordingly i sin 2πµ

p+1 mod P is not in the prime
field Fp . Hence necessarily n = 0 or n = 1 and therefore y ≡ 0 mod P which
implies x ≡ ±1 mod P . Thus (x, y) = (xν , yν) with ν = 0 or ν = p−1

2 .

It seems that Hasse wrote this not only to Mordell but also to Davenport. For
the latter replied, under the date of March 17, 1933, the following:

“. . . I re-read your letter in which you explained your method the
other day, and can now follow it more or less in so far as it relates
to y2 ≡ x2 − 1 . But I do not see how you discovered the fact
about cos( ν

p−1 ), cos( µ
p+1 ) . What is the connection between the

solutions as they arise in your method, and the parametric solution
x ≡ 1

2 (t + t−1) , y ≡ 1
2 (t− t−1) ? . . . ”

Here, the “fact” about those division values is that p splits completely in the
field generated by those values, i.e. in the real parts of the cyclotomic fields
Q( n
√

1) for n | p±1. Davenport’s question how Hasse “discovered” that fact is,
it seems to us, not quite to the point. Hasse did not “discover” this fact for the
cyclotomic fields; this was well known. Of course, Davenport’s suggestion to use
directly the parametric solution makes the arguments much easier. But Hasse
wished to explain the main ideas of his method by transferring his arguments
from complex multiplication to the case of cyclotomy – in the hope that in this
way also those people who were not too familiar with complex multiplication,
would be able to appreciate his ideas. Hasse was able to “discover” that fact
in the complex multiplication case because, as we mentioned above already, he
was quite familiar with complex multiplication.

At this point let us compare Hasse’s method with the method of Herglotz
[Her:1921] who had discussed the lemniscate congruence

x2 + x2y2 + y2 ≡ 1 mod p for p ≡ 1 mod 4 . (54)

(See Part 1, section 3.) In this case the invariant is j ≡ 123 mod p which
Hasse had excluded, nevertheless it may be worthwhile to compare Hasse’s
with Herglotz’ method. The lifting of the invariant yields j(a) = 123 with
multiplier ring M = Z[i] , and one can take a = M since M is a principal ideal
ring. The uniformization of the lemniscate equation which Herglotz used was
given by the lemniscate functions

x = sin lemn(u) , y = cos lemn(u)
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instead of Hasse’s ℘̃ , ℘̃′ . Herglotz showed that

“the solutions of (54) coincide precisely with the congruence solu-
tions modulo π of the division equation, by π−1, for the lemniscate
functions.”

Here, π denotes a prime number of M dividing p . We see that this is precisely
the lifting theorem of Hasse in the case of the lemniscate congruence. The
problem which one of the ±π , ±iπ to take did not occur since Gauss had al-
ready stated the normalization condition: π ≡ 1 mod (1 − i)3 . 83 The use of
class field theory is hidden in Herglotz’ paper because he explicitly discusses
the division equation which, when taken modulo p , shows directly that mul-
tiplication by π acts as Frobenius operator on the division values, provided π
is taken in the normalization as prescribed by Gauss. Hence the prime ideal
p ∼= π splits completely in the field generated by the division values of the
lemniscate functions.

Thus Hasse’s proof of his lifting theorem can be regarded as a direct general-
ization and adaption of Herglotz’ proof for the lemniscate.

As we have already said in Part 1, all the available evidence points towards the
fact that Hasse did not know Herglotz’ paper, nor did Davenport or Mordell.

5.3.4 Normalization

Davenport in his letter of March 17, 1933 asks Hasse:

“What do you think the form of the ordinates of the zeros of Artin’s
ζ–function will be ? . . .There must be an enormous amount of
ingenuity in your method when it comes to y2 ≡ f3(x). Best wishes
for its success. . . ”

We do not know Hasse’s reply to this question. But we can imagine that in
Hasse’s opinion this question was not well put. Hasse wished to have the zeros
s of the zeta function, or rather the numbers ω = qs, characterized not by their
rectangular or polar coordinates but by their arithmetic structure. This means,
firstly, the prime decomposition of ω. In addition there may be other properties,
e.g., congruence conditions which serve to determine the ω completely.

In the elliptic case (with the technical restrictions as mentioned) Hasse’s result
was that ω = π with π ∼= pr where p is a prime divisor of p in Ω, of degree 1,
and where r is the degree of K over Fp . See (40), and the statement (i) of the

83Note that in the case of the lemniscate, the multiplier ring is M = Z[i] which contains
four units, namely ±1 ,±i .
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invariant-lifting lemma. This takes care of the prime decomposition of ω. But
the prime decomposition determines ω up to a unit only, i.e., up to a factor
±1. 84

Therefore, Hasse [H:1933] looked for a normalization condition which deter-
mines π completely, with no uncertainty which of the ±π to take – similarly
as in the case of the lemniscate where the normalization was given by Gauss,
namely π ≡ 1 mod (1− i)3 .

Let D < 0 denote the discriminant of the imaginary quadratic field Ω. Then
Hasse’s normalization condition works only if q ≡ 1 mod 4 and it reads:

π ≡ 1 mod 4 if
(

D

2

)
= +1

π3 ≡ 1 mod 4 if
(

D

2

)
= −1

where 2 - D and
(

D
2

)
is the quadratic residue symbol in Ω . There is also some

condition if
(

D
2

)
= 0 , i.e., if 2 is ramified in Ω . But this is rather technical

and so we abstain from giving it here.

Hasse says: “In the case q ≡ −1 mod 4 the normalization seems to be more
difficult.” As to our knowledge, the problem is not solved up to this day.

5.4 The case of arbitrary genus

Already in Hasse’s preliminary announcement [H:1933] Hasse says he expects
the Riemann hypothesis to be true also for “general binary congruences”, which
is to say for function fields of arbitrary genus. Compare the date of the an-
nouncement, namely April 28, 1933, with the date of Hasse’s Hamburg collo-
quium lecture which was end of November 1932. At the latter colloquium Hasse
was not yet convinced about the general validity of the Riemann hypothesis –
contrary to Artin who at that occasion had voiced his strong opinion in favor
of it. (We know this from Iyanaga’s report about the Hamburg colloquium; see
section 3.4.)

Thus it took less than 5 months for Hasse to change his outlook concerning
the Riemann hypothesis. It seems that Artin’s comment in Hamburg had been
instrumental in this, for it induced Hasse to look at the problem from a different
point of view. Certainly, Hasse’s success in the elliptic case made him more
confident concerning the general case.

84 Recall that Hasse had excluded the cases j = 0 and j = 123 which implies that j(a) 6=
0, 123 in C. Therefore, as is well known from complex multiplication, the multiplier ring M
of a contains ±1 as the only units.
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In the preliminary announcement [H:1933] Hasse points out the formal analogy
of his method, to the method of Siegel [Si:1929] developed in the theory of
diophantine approximations. (This he had said already in his letter to Mordell
of March 6, 1933; see section 5.1). Now Hasse mentions

“. . . Siegel’s principle that algebraic relations between values of power
series are in general based on algebraic relations between the corre-
sponding functions”

and says that this corresponds to his (Hasse’s) principle

“that solutions of a congruence are based on a corresponding equa-
tion between algebraic numbers.”

Hasse continues:

“And like Siegel has solved the problem of finiteness of solutions of
a general binary diophantine equation by uniformizing with general
abelian functions, it is to be expected that similarly the problem
of number of solutions for general diophantine congruences can be
solved by uniformizing with general abelian functions – and that in
this way the analogue of the Riemann hypothesis can be solved for
the general zeta functions of F. K. Schmidt.”

We see that even in this early stage, Hasse expects that abelian functions have
to be used in the case of higher genus, in place of elliptic functions. But it
seems that he did not yet have detailed ideas how to achieve this aim, and that
he was not quite sure whether he would be able to do it. Anyway, in his letter
to Mordell of March 6, 1933 which we have already cited several times, and in
which he explained the main ideas of his proof by elliptic functions, he added
a postscript as follows.

“P. S. Obviously the general congruence f(x, y) may be treated the
same way, “only” with the “slight” generalisation of the elliptic
functions into abelian functions quite analogous to Siegel ! Do it ! ”

Thus Hasse tried to transfer the problem to Mordell. The latter, however, did
not keep the ball but threw it back. In his reply on March 9, 1933 Mordell too
put a postscript, and this read:

“P. S. I think the results for y2 ≡ fn(x) etc. should follow without
infinite difficulty, but the zeta fn. theory will not be so simple now.
Obviously you are now the one to try it.”
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Today we know that the later development went a somewhat different course,
because the use of analytic abelian functions in characteristic 0 can be avoided
by working directly in characteristic p > 0. But in some way Hasse’s idea
was indeed used, in as much as the algebraic theory of abelian function fields
(or abelian varieties) in characteristic p have played an important role in the
context of the Riemann hypothesis. We shall report this in more detail in one
of the future Parts.

At the end of his preliminary announcement [H:1933] Hasse himself says that
the use of analytic functions (which would require to extend the theory of com-
plex multiplication) may perhaps be replaced by algebraic-arithmetic methods.
For those he cites the thesis of André Weil [W:1928]. 85 We shall see in Parts 3
and 4 that indeed Weil was to play an important role in the further develop-
ment of the Riemann hypothesis for curves. But already in 1933 Weil seems
to have become interested in Hasse’s work. We conclude this from a remark
in a letter of Hasse to Davenport of July 24, 1933. There, Hasse informed
Davenport that Weil had come over from Frankfurt for a day. We can imagine
that Weil, who visited Siegel in Frankfurt, had heard about Hasse’s ideas and
thus came over to Marburg for a day in order to get details.

One year later, on June 18, 1934, Weil wrote to Hasse as follows: 86

“I have again thought about your problem. According to my ex-
periences in this subject it seems not to be expected that one can
perform useful computations with abelian functions if one does not
have theta functions at one’s disposal. . . In my opinion there is no
choice other than to operate with theta functions in the usual way,
by defining them algebraically. For, the theta function is nothing
else than a divisor on the Jacobian variety. . . ” 87

We do not know whether Hasse and Weil had met in the meantime and dis-
cussed the problem of higher genus further, or whether this letter was referring
to their discussion in July 1933. Nor do we know the reply of Hasse to Weil’s
letter. We have cited Weil’s letter here in order to point out that as early as
1933/34 Hasse had the idea of an algebraic theory of abelian functions, and

85It seems that he had in mind Weil’s theory of “distributions” which Weil had developed
and used in his thesis.

86I am indebted to Günther Frei for granting me access to the correspondence file Hasse-
Weil. – The cited letter seems to be the first one with mathematical content. There is one
earlier letter, dated Aug 4, 1931, where Weil informs Hasse about the tragic death of Jacques
Herbrand who some days earlier had an accident in the Alps. Herbrand had spent some time
in Germany with a Rockefeller grant, and he had close contacts (among others) to the people
working on the foundation of class field theory, around Artin, Hasse and Emmy Noether.

87Weil wrote in German, we have translated it into English. – Weil was able to write and
speak German perfectly, without any accent. Hasse in a later letter called him a “Sprachge-
nie”.
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that he had discussed it with André Weil. For a more detailed discussion of the
developments in the following years we refer to the forthcoming Parts 3 and 4
of our report.

Let us close this section with a citation from a letter of Emmy Noether to
Hasse, dated March 3, 1933 88:

“First of all my congratulation to the “Riemann hypothesis”. You
have done unbelievably many things lately ! I assume that now you
will be able to get at the general Artin-Schmidt zeta function since
you already use general class field theory. . . ”

When she mentions the “general Artin-Schmidt zeta function” then of course
she means the zeta function for function fields of arbitrary genus.

5.5 Summary

At the end of February 1933, during or shortly after his seminar lectures in
Marburg, Hasse obtained his first proof of the Riemann hypothesis for elliptic
function fields.

The proof proceeded by lifting an elliptic curve which is defined over a finite
field K, to a suitable elliptic curve which is defined over an algebraic number
field and admits complex multiplication. This lifting process turns out to be
essentially unique (up to some exceptional cases called “supersingular”). Let Ω
denote the imaginary quadratic field containing the complex multipliers of the
lifted curve. The order q of the finite base field K splits in Ω into a product q =
ππ′ of conjugate elements which, after suitable normalization by unit factors,
turn out to be the inverse zeros of the zeta function of the given elliptic curve
over K (if the zeta function is considered as rational function of the variable
t = q−s). To show this, the decomposition laws of class field theory are applied
to the π − 1-division field over Ω. By the reduction theory of curves (which
however was not yet established at that time) these decomposition laws imply
that after reduction, π is the Frobenius endomorphism of the original elliptic
curve.

Hasse’s first proof was never published but preliminary announcements ap-
peared. From several documents of Hasse’s legacy, including his lecture notes
for the DMV-congress in Würzburg (Sep 1933) the proof can be recovered in all
details. It is, however, not quite complete since for technical reasons Hasse had
to exclude several cases which he could not cover in the first attempt. While

88This was a few weeks before Emmy Noether was dismissed as a university professor
and was forced to emigrate, due to the antisemitic policy of the Nazi regime. The friendly
correspondence between Hasse and Emmy Noether continued until her untimely death in
Bryn Mawr, 1935.
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writing up the manuscript for publication he tried to eliminate those restric-
tions and during this activity he found a simpler proof, valid quite generally,
and working without the detour over characteristic zero and class field theory.
The final published proof will be discussed in one of the following Parts.

Starting from about February or March 1933, Hasse became convinced that the
Riemann hypothesis holds for function fields of arbitrary genus over finite base
fields. Already in his first preliminary announcement he said that the theory of
abelian functions should give the result in a similar way as the theory of elliptic
functions did in the case of genus 1 . He also mentioned the methods of A.
Weil’s thesis as possibly useful for this aim, and he met Weil to discuss this
idea.

Additional Comment:

This first proof of Hasse is of historical interest not only because it shows us
the genesis of the ideas leading to the proof of the Riemann hypothesis in char-
acteristic p . It also carries the first instance of a non-trivial application of good
reduction. Later this was systematically developed by Deuring who, with this
tool, established an algebraic theory of the class fields of complex multiplication
in characteristic 0, without using complex analysis. Moreover, Hasse’s lifting
lemmas became the basis for Deuring’s later results on the so-called Hasse-Weil
zeta functions of elliptic curves defined over number fields. It is no surprise
that Deuring’s theory works for CM-curves, i.e., curves with complex multipli-
cation. Here in Hasse’s first proof we see some of the main ideas of that further
development in a nutshell already.
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