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Abstract. Given a field K with finitely many valuations; does there
exist an extension of K which at these valuations has a prescribed local
behavior? The Grunwald-Wang theorem answers this question in the
case of abelian field extensions. Originally developed for algebraic num-
ber fields in the context of class field theory, it has turned out that it is
valid quite generally, for arbitrary multi-valued fields, provided the valu-
ations are of rank one or, more generally, are mutually independent and
dense in their respective henselizations. In this paper we present a sim-
ple proof which is based on Kummer theory for cyclic Galois algebras,
and on Witt theory in case of characteristic p.
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1 Introduction

1.1 Statement of main results. A field K, equipped with a finite non-
empty set V of inequivalent valuations, archimedean or non-archimedean, is called
a multi-valued field. 1 Since we include the archimedean case we write the valua-
tions multiplicatively; if a ∈ K and v ∈ V then |a|v ∈ R denotes the corresponding
value, |a|v ≥ 0. We put

|a|V = max
v∈V

|a|v.

This defines a metric topology on K. Let K̂V denote the corresponding completion.
If it is clear from the context which set V we are referring to, then we omit the
subscript V and write simply K̂. Since the valuations v ∈ V are independent, K̂
splits into the direct product of complete fields:

K̂ =
∏

v∈V

K̂v . (1)

We see that K̂ is a commutative semisimple K-algebra. 2

Now let L|K be a finite Galois extension with Galois group G. Every valuation
v ∈ V has finitely many extensions to L, and so we obtain a finite set of valuations
w of L. Thus L, as an extension of the multi-valued field K, is again multi-valued
in a canonical way. We have

L̂ =
∏

v∈V

L̂v with L̂v =
∏

w|v
L̂w (2)

where w|v indicates that w is an extension of v. Note that L̂v = L ⊗K K̂v since
L|K is separable. Hence

L̂ = L⊗K K̂ (3)

The Galois group G acts on the left factor of this tensor product and hence on L̂.
With respect to this action L̂ becomes a Galois G-algebra over K̂. 3

The structure of L̂ as a Galois G-algebra over K̂ describes the local behavior of
the valuations v ∈ V in the Galois extension L|K. For instance, the decomposition
groups Gv ⊂ G of the valuations v ∈ V in the sense of valuation theory can

1In this paper all valuations are supposed to be of rank one, i.e., the values are real num-
bers. More generally, as the reader will observe, our arguments remain valid for finitely many
independent Krull valuations of K such that K is dense in the respective henselizations.

2We use the terminology “semisimple algebra” in the sense that it implies the algebra to be
Artinian. Hence a commutative semisimple algebra is a direct sum of finitely many fields, and
conversely.

3See A.10. For the convenience of the reader, the definitions and basic facts concerning
Galois algebras are recalled in the appendix. References to the appendix are prefaced by capital
A. Thus A.10 refers to statement A.10 of the appendix.
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be identified with the decomposition groups of the Galois G-algebra L̂|K̂. 4 There
arises the question whether for a given finite group G, there exists a Galois extension
L|K with Galois group G with prescribed local behavior at the valuations v ∈ V .
In other words:

Given a finite group G and a Galois G-algebra A over K̂, does there exist
a Galois extension field L|K on which G acts as Galois group, such that L̂ is
isomorphic to A as a Galois G-algebra over K̂ ?

L̂ ≈ AÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ? L

G

? L
|
|
|
|
|
|
|
||
KK ÃÃÃÃÃÃÃ

ÃÃÃÃÃÃÃ
ÃÃÃÃÃÃÃ

ÃÃÃÃÃÃÃ
ÃÃÃÃÃÃÃ

K̂

G

K̂

|
|
|
|
|
|
|
||

L̂ ≈ A

If G is an abelian group then the above question has been studied by W. Grun-
wald, a student of Hasse, in his 1933 paper [2], in the case when K is an algebraic
number field of finite degree. He assumed that G is generated by the decomposition
groups Gv for v ∈ V 5 and then claimed that, indeed, such L|K does exist. His
proof was based on class field theory.

Grunwald’s theorem became important in the context of class field theory and
the arithmetic theory of central simple algebras. In 1942 G. Whaples [13] presented
a new proof which was based on class field theory too but did not use analytic
methods, as it had been necessary in Grunwald’s time. 6

However in 1948 Sh. Wang [10] presented a counter-example to Grunwald’s
theorem, and 1950 in his thesis [11] he corrected the error in Grunwald’s (as well
as in Whaples’) paper, giving precise conditions under which Grunwald’s theorem
holds for an algebraic number field. It turned out that there are only certain
“special” cases of number fields in which Grunwald’s theorem may fail to hold
without further conditions, but that in all “non-special” cases the theorem holds as
had been stated by Grunwald. Those “special” cases can occur only if the exponent
of G is divisible by 8, and they depend on the behavior of the field of 2-power roots
of unity over K.

Since then the theorem is called the Grunwald-Wang theorem.
In the same year 1950, H. Hasse [4] also presented a correction of Grunwald’s

theorem in the context of class field theory; Hasse had known Wang’s counter-
example but not his thesis [11]. See also Chap.X of the Artin-Tate notes [1] on class

4For the notions and facts about decomposition groups of Galois G-algebras see the appendix,
in particular A.6.

5In case of a number field Grunwald’s assumption is no essential restriction; see Corollary 3
below.

6Whaples erroneously called it “Gruenwald’s theorem” but the correct name is “Grunwald”.
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field theory for a discussion of the Grunwald-Wang theorem. Hasse asked whether a
proof of the Grunwald-Wang theorem could be given by means of Kummer theory,
independent of class field theory.

Here we shall answer Hasse’s question and prove, on the basis of Kummer
theory for Galois algebras, that the Grunwald-Wang theorem is valid for arbitrary
multi-valued fields. (In case of characteristic p we use the additive theory of Witt
vectors instead of the multiplicative Kummer theory.)

In this generality, however, the existence of a Galois field extension with group
G cannot be expected (not for instance, if K is algebraically closed). Instead, we can
only assert the existence of a Galois G-algebra L|K whose completion is isomorphic
to A. The easiest way to define the completion L̂ of a Galois G-algebra L|K over a
multi-valued field K is by using the formula (3); in the case of a multi-valued field
extension this coincides with the definition given above. In any case, formula (3) is
what we will refer to in our proof.

Before stating our main result we have to give the definition of “non-special”.
Let n be an integer. Following Artin-Tate [1] we shall call a field “non-special” with
respect to n if it satisfies the following

Wang condition: Let 2ν denote the highest power of 2 dividing n; then the
field of 2ν-th roots of unity is cyclic over K. 7

If K is of prime characteristic > 0 then the Wang condition is always satisfied,
for every n. If char(K) = 0 and n is odd then, again, the Wang condition is
satisfied; more generally this holds for ν ≤ 2. However, if ν ≥ 3 then, for instance,
the rational number field Q does not satisfy the Wang condition. The field of 8-th
roots of unity over Q is of degree 4 and generated by square roots:

Q( 8
√

1) = Q(
√−1,

√−2) .

Its Galois group is not cyclic. This fact was essential in Wang’s counter-example:
He worked with K = Q as base field, and with V consisting solely of the 2-adic
valuation of Q. Wang showed, and this is not difficult, that there does not exist a
cyclic extension L|Q of degree 8 such that L̂2|Q̂2 is the unramified field extension
of degree 8.

If a field K contains at least one of the square roots
√−1,

√−2 then again, K
satisfies the Wang condition, for all n.

For a detailed description of the special cases we refer to the literature, e.g., to
Artin-Tate [1] Chap.X.

Our main result can now be stated as follows:

Theorem 1 (General Grunwald-Wang theorem) (i) Let (K, V ) be a mul-
ti-valued field with completion K̂. Let G be a finite abelian group, of exponent n,
and let a Galois G-algebra A over K̂ be given. Then there exists a Galois G-algebra
L|K such that its completion L̂ is isomorphic to A as a Galois G-algebra over K̂ –
provided K satisfies the Wang condition with respect to n.

(ii) It suffices already that every completion K̂v for v ∈ V satisfies the Wang
condition with respect to n.

From the definition we see that the Wang condition for K implies the Wang
condition for every overfield of K, in particular for the completions K̂v (v ∈ V ).

7This should include the case char(K) = 2 when there are no proper roots of unity of 2-power
order.
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Hence the statement (ii) contains (i) but is more general. We have separated (ii)
from (i) because this reflects our proof: First we shall prove Theorem 1 under the
assumption that K satisfies the Wang condition and then we amend our proof such
as to cover also the more general case (ii); this will be done in section 3. Note
that if n is odd then the Wang condition is always satisfied, hence the odd case is
covered by statement (i).

Remark: If a valuation v is non-archimedean of residue characteristic > 2 then
its completion K̂v satisfies the Wang condition; same for an archimedean valuation.
Consequently, if V contains valuations v of this kind only, then (ii) shows that the
conclusion of the Grunwald-Wang theorem does hold without mentioning any extra
condition.

As said above already, the existence of a Galois field extension L|K cannot
be expected in the general situation of Theorem 1. However, if we assume (like
Grunwald has done) that the decomposition groups of A generate G then it turns
out that, indeed, L|K is a Galois field extension. This is easy to see. For, as
explained in the appendix, the Galois G-algebra L|K has only one decomposition
group H ⊂ G since its base K is a field. From L ⊗K K̂ ≈ A it follows that the
decomposition groups of A are subgroups of H (see A.10). If these subgroups
generate G then it follows H = G and, hence, L|K is a field. Thus we can state
the following result as an addition to the general Grunwald-Wang theorem.

Theorem 2 (Irreducibility theorem) Consider the same situation as in
Theorem 1. Suppose that the decomposition groups of the given Galois G-algebra
A|K̂ generate the group G. Then the Galois G-algebra L|K as announced in that
theorem is in fact a Galois field extension.

We have called this the “Irreducibility theorem” since a Galois algebra is said
to be irreducible if it is not properly decomposable into a direct sum, i.e., if it is a
Galois extension of fields.

Corollary 3 (Number field case) Suppose that K is a number field of finite
degree. Then the Grunwald-Wang theorem can be sharpened, to the effect that the
Galois G-algebra L|K as announced in that theorem, can be chosen to be a Galois
field extension – regardless of whether the decomposition groups of A|K̂ generate G
or not.

Proof : Suppose the decomposition groups of A|K̂ do not generate G. Then
we choose a cyclic subgroup H ⊂ G which is not contained in the group generated
by the decomposition groups of A. We enlarge the given set V of valuations of K
by adding a non-archimedean valuation v of K, independent of the valuations in
V . We take care that K̂v satisfies the Wang condition, e.g., by choosing v such
that the residue characteristic is 6= 2. There exists a cyclic extension Mv|K̂v of
degree |H| , e.g., the unique unramified extension of degree |H|. There exists an
isomorphism of the Galois group of Mv|K̂v with H. In other words: we have an
injection Gal(Mv|K̂v) ↪→ G with image H. This injection gives rise to a Galois
G-algebra Av|K̂v by means of the induction process from H to G (see A.7). By
construction, the decomposition group of Av|K̂v is H.

Now let V ′ := V ∪ {v}. This is a finite set of valuations of K. Its completion
is K̂V ′ = K̂V × K̂v. If we put A′ = A×Av, then A′ is a Galois G-algebra over K̂V ′

and the set of decomposition groups of A′ contains H, besides of the decomposition
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groups of A. Thus the subgroup of G generated by the decomposition groups of A′

is larger than that with respect to A. Repeating this process we finally obtain a
finite set of valuations V ′ ⊃ V and a Galois G-algebra A′|K̂V ′ whose decomposition
groups generate G; moreover, A′ contains the given A as a direct factor. Applying
Theorem 2 to V ′ and A′ we obtain a Galois field extension L|K with group G such
that L̂V ′ ≈ A′. By construction, this implies L̂V ≈ A.

Remark: The same argument works not only for a number field of finite
degree, but for any field K which carries infinitely many independent valuations v

whose completions K̂v satisfy Wang’s condition and admit cyclic field extensions
of a given degree m. For instance, K may be an algebraic function field of one or
several variables over some subfield.

1.2 Reduction to cyclic groups of prime power order. If the group G

is a direct product G = G1 × G2 then the Galois G-algebra A|K̂ is isomorphic
to a tensor product A = A1 ⊗K̂ A2 of a Galois G1-algebra A1|K̂ with a Galois
G2-algebra A2|K̂ (see A.11). It suffices to prove the Grunwald-Wang theorem for
each of the factors A1, A2.

For, if there exists a Galois G1-algebra L1 over K such that L̂1 ≈ A1, and
similarly L̂2 ≈ A2, then L = L1 ⊗K L2 is a Galois G-algebra over K (see A.11
again) and L̂ = L̂1 ⊗K̂ L̂2 ≈ A1 ⊗K̂ A2 = A. Observe that the exponent n of G
is the least common multiple of the exponents n1, n2 of G1 and G2. Hence if K
satisfies the Wang condition with respect to n then it does so for n1 and n2 too.

Accordingly, we assume from now on that G is not decomposable as a direct
product. Since G is assumed to be abelian this implies that G is cyclic of prime
power order. The order of G is denoted by

|G| = n = pν .

The Wang condition can now be formulated to say that the field K( n
√

1) of n-th
roots of unity should be cyclic over K. As said above, this is always satisfied if
p > 2, or if char(K) > 0, or if at least one of the square roots

√−1,
√−2 is

contained in K.

1.3 Plan of work. Our main idea of proof is to use a parametrization of Galois
G-algebras for a cyclic group G of prime power order n = pν . If the given Galois
G-algebra A|K̂ is described by parameters in K̂ then after a small perturbation of
those parameters one can assume that they are contained in K already. But in K
they define a Galois G-algebra over L|K which then turns out to be a solution of
the Grunwald-Wang problem.

This simple idea works well in the case when p 6= char(K) and the n-th roots
of unity are contained in K. For in this case we can use Kummer theory of Galois
G-algebras; these can be parametrized by their Kummer radicands. We have to use
Kummer theory over commutative semisimple algebras and not only over fields; for
the convenience of the reader we include a short presentation of Kummer theory in
this framework. See section 2.1.

But if the n-th roots of unity are not in K then the situation becomes a little
more involved. Our idea is first to adjoin the n-th roots of unity to K, and then
characterize those Kummer radicands whose corresponding Galois G-algebra has
been obtained by base extension. It is here where we have to impose the Wang
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condition with respect to the group order n = pν . If the Wang condition is not
satisfied (and hence p = 2) then a parametrization of the Galois G-algebras is still
possible but not in a form which allows the use of the perturbation idea mentioned
above. In fact, Wang’s counter-example shows that this is not a failure of the
method but that the theorem fails to hold in general.

But even if the Wang condition is satisfied there is a certain exception. Whereas
“in general” the Galois G-algebras can be parametrized by just one parameter
(which we call “Kummer parameter”, see Prop. 8 in section 2.3) there are certain
exceptions where two parameters are needed. These exceptions arise when p = 2
and

√−1 /∈ K. Although in this exceptional case our main idea is still applicable,
we have to treat both cases separately. Thus we first deal with the non-exceptional
case in section 2.3. The exceptional case, where p = 2, is treated in section 3,
together with the proof of statement (ii) of the theorem.

Once the basic facts on the Kummer parametrization of cyclic Galois algebras
are available, the proof of the Grunwald-Wang theorem turns out to be quite short
and straightforward (see sections 2.4 and 3.2).

Finally, there is the case p = char(K). This case can be treated without
problems by using Witt’s parametrization of cyclic Galois G-algebras of p-power
rank. Witt has developed this theory for cyclic field extensions only; hence we shall
briefly treat Witt’s theory in the framework of Galois G-algebras. See section 4.

1.4 Further comments. (1) Connection to embedding problem: The
larger part of our paper is concerned with the presentation of Kummer parametriza-
tion and, in the case of p = char(K), of Witt parametrization. We would like to
point out that this may be regarded as “well known” in the sense, that it can be
extracted from the general theory of embedding problem for Galois G-algebras with
abelian groups G. This theory has been started from a systematic point of view
by Hasse [3] in a series of three papers on this subject. In modern language, the
parametrization of such algebras can be described by certain cohomology invari-
ants. But it would have taken some space and effort to show that those cohomology
invariants can be parametrized by elements in the base algebra, in the way which
we need for our proof of the Grunwald-Wang theorem. Hence we have decided to
give a direct and relatively short presentation of the material, in a form which is
suitable for our purpose. In order to put the simplicity of our method into evidence,
we have tried to assume not too many prerequisites from algebra or cohomology
theory. We have in mind a reader with the knowledge from an algebra course, say,
[6].

(2) Historical remarks: We would like to point out that Miki [8] in 1978
had been the first who followed Hasse’s suggestion and proved Grunwald’s theorem
in the setting of valuation theory, using Kummer theory as we do. His methods
appear to be similar to ours, but he discussed discrete valuations only. And he
imposed quite strong conditions concerning the “special” case, which later were
relaxed by Sueyoshi [12] in 1980 but they are still more restrictive than ours. We
believe that our method of putting the theorem in the framework of Galois algebras
instead of Galois field extensions is more adapted to the problem. In fact, it puts
into evidence that the discreteness of the valuations is not needed at all.

A completely new idea was introduced into the subject by the interesting pa-
per of Saltman [9]. He approached the problem of the Grunwald-Wang theorem
by means of his theory of generic Galois polynomials. In fact, our work started
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after reading Saltman’s paper; although the theory of generic Galois polynomials
is of interest there arose the question whether his ideas of specialization could be
transformed into parametrization. Although we do not do it explicitly in our pa-
per, the reader will notice that if the Kummer parameter of a Galois G-algebra is
transcendental over R in a suitable sense, then every Galois G-algebra over R is a
specialization of that transcendental algebra.

(3) Open problem: In this paper we deal with the non-special case only. Over
a number field, however, the “special” case is also discussed in the framework of
class field theory, giving necessary and sufficient conditions for a Galois G-algebra
A|K̂ to be the completion of a Galois G-algebra L|K. Those conditions refer to the
behavior of local norm residue symbols of the field of roots of unity of 2-power order,
locally at the critical valuations. There arises the question whether conditions of
such type can be given in terms of Kummer parameters or similar invariants, over an
arbitary multi-valued field. We leave it as an open problem to find such conditions.

2 Parametrization of cyclic Galois algebras

As said above, G is now supposed to be a cyclic group of prime power order
n = pν . Let K be a field. Until section 4 it is assumed that p 6= char(K).

2.1 Kummer theory. In the present section we assume in addition that the
n-th roots of unity are contained in K. Let µn ⊂ K× denote the group of n-th
roots of unity and

χ : G → µn (4)

an isomorphism from G to µn. This isomorphism is kept fixed in the sequel and all
statements refer to the given χ although this is not mentioned explicitly.

Let R be a semisimple commutative K-algebra. Our aim is to give a description
of the Galois G-algebras over R.

R× denotes the multiplicative group of units, i.e., invertible elements, in R.
Let a ∈ R×. Consider an R-algebra Aa = R[x] which is generated by an element x
satisfying

xn = a (5)

as a defining relation over R. This means that any other polynomial relation for x
over R is a consequence of the relation (5). In other words: Let R[X] denote the
polynomial algebra over R and consider the map R[X] → Aa given by X 7→ x, then
the kernel of this map should be the ideal generated by the polynomial Xn − a, so
that we obtain an isomorphism

R[X]/(Xn − a) ≈ Aa (6)

of R-algebras. If y ∈ Aa is any other element satisfying yn = a then there is a
unique R-algebra homomorphism Aa → Aa such that x maps onto y.

Let σ ∈ G. We have (χ(σ)x)n = xn = a; hence there is a unique R-algebra
homomorphism σ : Aa → Aa which takes x into

xσ = χ(σ)x (σ ∈ G) . (7)

The homomorphism property χ(στ) = χ(σ)χ(τ) yields xστ = (xσ)τ . In this way
Aa becomes a G-algebra. By construction, it is uniquely determined by a (up to
isomorphisms of G-algebras over R).
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Proposition 4 (Kummer Theory for Galois algebras) (i) Let a ∈ R×.
Any G-algebra A|R generated by an element x ∈ A satisfying the relations (5),(7)
is a Galois G-algebra over R, and A is isomorphic to Aa.

(ii) If a ≡ b mod R×n, i.e., if a = b · un with u ∈ R×, then Aa is isomorphic
to Ab, and conversely.

(iii) Every Galois G-algebra A|R is isomorphic to Aa for suitable a ∈ R×.
Such element a is called a Kummer radicand of A, and the corresponding x is
called a Kummer radical of A.

Proof of (i): First we show that Aa is a Galois G-algebra. We decompose
R into a direct product of fields; using A.3 we see that it suffices to prove the
assertion for each direct factor separately. In other words: we may assume that R
is a field. We use A.4 and see that we have to prove the following:

(a) Aa is semisimple.
(b) Fix(G,Aa) = R.
(c) [Aa : R] = n.

Statement (a) follows from (6) since the polynomial Xn − a has no multiple
roots. Note that a 6= 0, and that n is not divisible by the characteristic of the field
R.

Statement (c) follows also from (6) since the n elements 1, x, . . . , xn−1 form an
R-basis of Aa.

As to statement (b), let u ∈ Aa and write

u =
∑

0≤i≤n−1

cix
i with ci ∈ R.

For σ ∈ G we have according to (7):

uσ =
∑

0≤i≤n−1

ciχ(σ)ixi .

Hence if u is fixed under σ then by comparing coefficients we obtain ci = ciχ(σi).
Now take σ to be a generator of the cyclic group G; then we have χ(σi) 6= 1 for
1 ≤ i ≤ n− 1 since χ is an ismomorphism. It follows ci = 0 for those i (since R is
a field) and hence u = c0 ∈ R.

Now let A be an arbitrary G-algebra over R, generated by an element x sat-
isfying (5) and (7). We do not require a priori that the relation (5) is a defining
relation for x over R. In any case, we have a unique R-homomorphism R[X] → A
mapping X to x ∈ A. This is surjective because A is generated by x. In view of
(5) this factors through the residue class algebra modulo Xn − a, and we obtain a
homomorphism R(X)/(Xn − a) → A as R-algebras, mapping the residue class of
X to x. In view of (7) this is a homomorphism of G-algebras.

Now, we know from the above that Aa = R(X)/(Xn−a) is a Galois G-algebra.
Hence the map Aa → A is injective; see A.12. Since it is surjetive by construction,
it is an isomorphism. (And, hence, the relation (5) is indeed a defining relation for
x over R.)

Proof of (ii): Consider the Galois G-algebra Aa = R[x] with (5) and (7), and
similarly Ab = R[y]. Suppose that a = bun with u ∈ R×. We are going to establish
an isomorphism ϕ : Aa → Ab as G-algebras over R.

The relation xn = a is a defining relation for x over R. Hence, in order to
obtain an homomorphism ϕ : Aa → Ab as R-algebras, it is sufficient to assign to
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x some element z ∈ Ab such that z satisfies the same relation zn = a as x does.
Clearly this holds for z := yu (since bun = a).

Hence we have a uniquely defined homomorphism ϕ : Aa → Ab as R-algebras,
such that xϕ = yu. We claim that this is a homomorphism as G-algebras, which
means that σϕ = ϕσ for σ ∈ G. Indeed: xσϕ = (χ(σ)x)ϕ = χ(σ)xϕ = χ(σ)yu =
yσu = (yu)σ = xϕσ since σ acts trivially on u ∈ R.

Since both Aa and Ab are Galois G-algebras over R it follows that ϕ : Aa → Ab

is an isomorphism. (See A.12.)
Conversely, assume that Aa ≈ Ab. Let us identify Aa = Ab = A by means of

that isomorphism. Thus on the one hand, A = R[x] with the relations (5), (7),
and on the other hand A = R[y] with corresponding relations for y and b. When
applying σ ∈ G both x and y take the same factor, namely χ(σ). Let us put
u := yx−1; this is fixed under G and hence u ∈ R. Note that x is a unit in A since
xn is a unit in R; similarly we have y ∈ A×. It follows u ∈ R×. From y = xu we
compute b = yn = xnun = aun ≡ a mod R×n .

Proof of (iii): Now consider an arbitrary Galois G-algebra A over R; we have
to find x ∈ A× and a ∈ R× satisfying the relations (5), (7) and such that A is
generated over R by x. Since A is a Galois G-algebra it admits a normal basis over
R. Let u ∈ A generate such a normal basis. Starting from such u we consider the
“Lagrange resolvent”

x :=
∑

τ∈G

χ(τ)−1uτ .

A straightforward computation shows that xσ = χ(σ)x, for σ ∈ G. Let us put
a := xn. Then aσ = xσn = (χ(σ)x)n = xn = a . Hence a is fixed under G and
therefore contained in R.

If a would not be a unit in R then there would exist a primitive idempotent e 6= 0
in R such that ea = 0. (Observe that R is supposed to be semisimple.) It follows
(ex)n = enxn = ea = 0 and hence ex = 0, since A is commutative and semi-simple
and therefore has no nilpotent elements 6= 0. We have 0 = ex =

∑
σ∈G eχ(σ−1)uσ.

Since the uσ form an R-basis of A we conclude that eχ(σ−1) = 0 for all σ ∈ G.
Taking σ = 1 we obtain e = 0, a contradiction. Thus indeed a ∈ R×. Since xn = a
we conclude x ∈ A×.

Thus x ∈ A× satisfies relations of the form (5), (7). From (i) we conclude that
the algebra R[x] is a Galois G-algebra, with the action of G induced by its action
on A. The inclusion map R[x] ↪→ A is a homomorphism of Galois G-algebras over
R, hence an isomorphism by A.12. Thus R[x] = A.

We can reformulate Proposition 4 as follows:
Every element a ∈ R× defines (uniquely up to isomorphisms) a Galois G-

algebra A|R such that a is a Kummer radicand of A. The structure of A depends
only on the residue class of a modulo n-th powers in R×. Conversely, every Galois
G-algebra A|R admits an element a ∈ R× as its Kummer radicand.

Remark: Let A|R be a Galois G-algebra and a ∈ R× a Kummer radicand of
A. The corresponding Kummer radical x ∈ A of a is not uniquely determined. An
element y ∈ A is another Kummer radical of a if and only if y = ζx with ζ ∈ R and
ζn = 1. If R is a direct product of d fields then there are nd such elements ζ. The
nd substitutions x 7→ ζx yield nd automorphisms of A as Galois G-algebra over R,
and every automorphism of A is of this form.
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2.2 Galois action on the n-th roots of unity. Now we drop the assumption
that the n-th roots of unity are contained in K.

Let K ′ = K( n
√

1) be the field of n-th roots of unity over K. As in (4) we fix an
isomorphism χ of G onto the group µn ⊂ K ′× of n-th roots of unity Let g denote
the Galois group of K ′|K. Every automorphism τ ∈ g is uniquely determined by
its action on µn. There exists t ∈ Z such that

χ(σ)τ = χ(σ)t (σ ∈ G) . (8)

The exponent t modulo n is uniquely determined by τ . The mapping τ 7→ t gives
an injection of the Galois group g into the group (Z/n)×.

Let s denote the order of τ . We have

τs = 1 hence ts ≡ 1 mod n .

Let ` ∈ Z be defined as

` =
ts − 1

n
. (9)

At this point we use the assumption introduced in section 1.2 that n = pν is a
prime power, p 6= char(K). We shall need it in the proof of the following lemma. 8

Lemma 5 (Normalization) Let τ ∈ g. The exponent t ∈ Z can be normal-
ized in its residue class modulo n such that gcd(`, n) = 1 except in the case when
p = 2, s = 2, t ≡ −1 mod n. In this exceptional case we normalize t = −1 hence
` = 0.

Proof : n = pν is a p-power. The condition gcd(`, n) = 1 is satisfied if

ts 6≡ 1 mod pν+1 . (10)

Suppose that ts ≡ 1 mod pν+1, then we try to replace t by t + pν . We have

(t + pν)s ≡ 1 + sts−1pν mod pν+1 .

If s 6≡ 0 mod p then we see that t + pν satisfies (10). If however s ≡ 0 mod p then
we argue as follows: ts/p is of order p modulo pν . If p > 2 the group (Z/pν)× is
cyclic and, hence, it admits only one subgroup of order p. This subgroup consists
of the p elements 1 + ipν−1 for 0 ≤ i ≤ p− 1. Hence

ts/p ≡ 1 + ipν−1 mod pν for some i 6≡ 0 mod p .

Taking p-th powers we conclude that ts ≡ 1 + ipν mod pν+1 and hence (10).
Now let p = 2. Every element in (Z/2ν)× has order a power of 2. If ν ≥ 3

then there are 3 elements of order 2 in (Z/2ν)×, namely −1 and ±1 + 2ν−1. If
ts/2 ≡ ±1 + 2ν−1 mod 2ν then after squaring we obtain ts ≡ 1 + 2ν mod 2ν+1, thus
again (10). The exceptional case ts/2 ≡ −1 mod 2ν can occur only if s = 2 since
−1 is not a square in (Z/2ν)×.

In the following we assume that the exponent t is normalized in the above
sense. We define τ to be non-exceptional if indeed gcd(`, n) = 1, and otherwise
exceptional. If τ is exceptional then ` = 0.

Perhaps it is not unnecessary to mention that the trivial automorphism τ = 1
is non-exceptional; in this case we normalize t to be t = 1 + n and hence ` = 1.

Definition. g is called exceptional if it contains an exceptional automorphism.

8This is taken from Saltman [9].
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If this is the case then necessarily p = 2 and there is only one exceptional
automorphism in g, namely the automorphism of order s = 2 which keeps the
elements in K fixed and maps every n-th root of unity into its inverse.

Lemma 6 If g is non-exceptional then g is cyclic, hence K satisfies the
Wang condition with respect to n.

Proof : If g is non-cyclic then necessarily p = 2 and g is isomorphic to a subgroup
of (Z/2ν)×. The group (Z/2ν)× is non-cyclic if ν ≥ 3, and then it is generated by
−1 (of order 2) and 5 (of order 2ν−2):

(Z/2ν)× = 〈−1〉 × 〈5〉 . (11)

Every non-cyclic subgroup of (Z/2ν)× necessarily contains −1, and this corresponds
to the exceptional automorphism of g.

Remark: The invariants s, t, ` describe the action of τ ∈ g on the n-th roots of
unity. If we wish to indicate which automorphism τ they belong to then we write
more precisely sτ , tτ , `τ . But for simplicity of notation we mostly drop the index τ
if it is clear from the context which automorphism τ we are referring to.

In addition we will have to use the operator N = Nτ as follows:

N = ts−1 + ts−2τ + · · ·+ tτ s−2 + τs−1 . (12)

N operates on any module on which τ operates. We have (t−τ)N = ts−τs = ts−1
and hence, using the definition (9) of `:

(t− τ)N = `n . (13)

We will use this relation several times in the sequel. 9

2.3 Parametrization in the non-exceptional case. Let R be a commu-
tative semisimple K-algebra. As above, K ′ denotes the field of n-th roots of unity
over K. We put

R′ = K ′ ⊗K R (14)

and call R′ the “algebra of n-th roots of unity” over R. The Galois group g of K ′|K
acts on the left hand side of the tensor product, and by this action R′ becomes a
Galois g-algebra over R (see A.10). On the other hand, R′ can be regarded as a
commutative semisimple algebra over K ′, and since K ′ contains the n-th roots of
unity, the Kummer Theory of Proposition 4 can be applied to Galois G-algebras
over R′.

9The notation N for the operator on the right hand side of (12) has been chosen to indicate
that it behaves somewhat like the norm operator in cohomology theory. In fact, if we introduce
the so-called “twist” τ = tτ−1 and its norm N = τs−1 + τs−2 + · · · + 1 then N = τ (s−1)N . By
using the twist τ instead of τ it would have been possible to put our following discussion into a
more systematic and general framework of cohomology theory. For, the condition of Prop. 7 below
can be stated to the effect that a′, if regarded in the factor group R′×/R′×n, should be a norm
with respect to the twist τ , which can be interpreted that the comology class determined by a′ in
H0(g, R′×/R′×n) is trivial. In this form, Prop.7 can be regarded as a very special case of Hasse’s
general theory of abelian algebras [3], as we have already mentioned in the introduction. (However,
Hasse’s theory would first have to be extended, such as to cover not only abelian algebras over a
field but also over a semisimple algebra as a base.) After some deliberation we have decided not
to work with the twist (which nowadays is also called “Tate twist”) because it seems not to be
relevant for our purpose, namely the parametrization of Galois G-algebras for cyclic G.
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Consider a Galois G-algebra A over R and put

A′ = A⊗R R′ . (15)

Then A′ is a Galois G-algebra over R′ (see A.10). It is obtained from A by
extending the base algebra from R to R′. Let a′ ∈ R′× be a Kummer radicand of
A′. We ask:

What are the properties of a′ which express the fact that A′ is obtained from
the Galois G-algebra A over R by base extension from R to R′ ?

g

A⊗R R′ = A′
ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ? A

G

? A
|
|
|
|
|
|
|
||
R

g

R ÃÃÃÃÃÃÃ
ÃÃÃÃÃÃÃ

ÃÃÃÃÃÃÃ
ÃÃÃÃÃÃÃ

ÃÃÃÃÃÃÃ
R′

G

R′
|
|
|
|
|
|
|
||

A⊗R R′ = A′

In this section we treat the case that g is non-exceptional in the sense as defined
in section 2.2. By Lemma 6 this implies that g is cyclic. Let us choose a generator
τ ∈ g, so that

g = 〈τ〉 .
τ is a non-exceptional automorphism in g. The invariants s, t, `, N belonging to τ
have been introduced in section 2.2.

Proposition 7 Suppose that g = 〈τ〉 is non-exceptional. Let A′|R′ be a
Galois G-algebra with Kummer radicand a′ ∈ R′×. If there exists a ∈ R′× such
that a′ ≡ aN mod R′×n then A′ is representable as a tensor product A′ = A⊗R R′

with some Galois G-algebra A|R. And conversely.

This is immediate from the following result which gives a complete parametriza-
tion of the Galois G-algebras A|R.

Proposition 8 (Parametrization, non-exceptional case) Suppose that g is
non-exceptional and that g = 〈τ〉. Then:

(i) Every element a ∈ R′× determines a Galois G-algebra A(a) over R by way
of the following two-step construction.

Step 1:: Construct the Galois G-algebra A′ over R′ with aN as its Kummer
radicand. Hence A′ = R′[x] with xn = aN and xσ−1 = χ(σ).

Step 2:: Extend the action of g on R′ to an action of g on A′ such that xt−τ =
a` . This extension is possible and unique. Then put A(a) := Fix(g, A′) ; this
is a Galois G-algebra over R. Moreover, A(a)⊗R R′ ≈ A′.

(ii) If a ≡ b mod R′×n then A(a) ≈ A(b).
(iii) Every Galois G-algebra A over R is isomorphic to A(a) for suitable a ∈

R′×. Such an element a is called a Kummer parameter for A.
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Remark: We can reformulate Proposition 8 as follows:
If g is non-exceptional then the elements a ∈ R′× parametrize the Galois G-

algebras A|R (up to isomorphisms) as their Kummer parameters. Elements which
differ by n-th power factors parametrize isomorphic Galois G-algebras.

Note that we do not claim the Kummer parameter a to be uniquely determined
modulo n-th powers. It may well be that A(a) ≈ A(b) but a 6≡ b mod R′×n . If
however K contains the n-th roots of unity then K ′ = K and g = 1, and the
Kummer parameters coincide with the Kummer radicands, i.e., A(a) = Aa in the
sense of Proposition 4.

Proof of (i): Let A′ be constructed as in Step 1. We try to extend the action
of τ on R′ to an action on A′.

We recall from Kummer Theory (Prop. 4) that the relation xn = aN is a defining
relation for x over R′. Consequently, in order to extend the action of τ to an algebra
homomorphism of A′ it suffices to assign to x an element y ∈ A′ which satisfies the
image of that relation under τ , which is to say yn = aNτ . We claim that this holds
for y = xta−`. Indeed, we compute using (13):

(
xta−`

)n = aNta−`n = aNt−`n =
aNτ . We conclude:

There is a unique algebra homomorphism τ of A′ into itself, extending the given
algebra automorphism τ of R′ and satisfying

xτ = xta−` or, equivalently xt−τ = a` . (16)

Next we claim that τs = 1, i.e., τ has order s not only as an operator on R′

but also on A′. Since this relation holds on R′ it suffices to verify it when applied
to the generator x of A′|R′. Now, as operators on the unit group A′× we have
τs− 1 = (ts− 1)− (ts− τs) = `n− (t− τ)N ; remember the definitions (9) of ` and
(12) of N . Thus τs = 1 is equivalent to (t− τ)N = `n. We have to verify this when
applied to x. Indeed, using (16) we have: x(t−τ)N = a`N , and on the other hand:
xn` = aN` since xn = aN .

Next we show that the action of τ on A′ commutes with the action of G,
i.e. that στ = τσ holds on A′. Again, this relation holds on R′ (because σ acts
trivially on R′) and therefore it suffices to verify this when applied to x. Indeed:
xσ(t−τ) = (χ(σ)x)t−τ = xt−τ = a` since τ acts on χ(σ) as the exponentiation with
t. On the other hand, x(t−τ)σ = a`σ = a` since σ acts trivially on a` ∈ R′. Thus
xσ(t−τ) = x(t−τ)σ and therefore xστ = xτσ.

We have proved the following
Statement (i): 10 The relation (16) establishes uniquely an action of the cyclic

group 〈τ〉 as a group of G-algebra automorphisms of A′, extending the action of 〈τ〉
on R′.

Now, according to the hypothesis of the Proposition, 〈τ〉 = g and hence A′

appears as a g-algebra. In fact, A′ is a G × g-algebra since the actions of G and
of g on A′ commute elementwise. From the general theory we conclude that A′|R
is in fact a Galois G × g-algebra (since R′|R is a Galois g-algebra and A′|R′ is a
Galois G-algebra; see A.13). From this the other assertions of (i) follow, namely:
the fixed algebra A(a) = Fix(g, A′) is a Galois G-algebra over R, and A(a) ⊗R R′

is isomorphic to A′ (see A.11).

10For later reference we observe that, in this part of proof, until now we have not used the
fact that g = 〈τ〉. Hence this statement remains valid for an arbitrary cyclic subgroup 〈τ〉 of g.
The group g may be exceptional or not.
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Proof of (ii): As above, A′ denotes the Galois G-algebra over R′ with Kummer
radicand aN ; thus A′ = R′[x] with xn = aN . Similarly let B′ = R′[y] with yn = bN .
Suppose that a = bun with u ∈ R′×. We are going to establish an isomorphism
ϕ : A′ → B′.

We have shown in part (ii) of the proof of Prop. 4 that the assignment

xϕ = yuN (17)

defines uniquely a G-isomorphism A′ → B′ over R′. Now we claim that, in addition,
ϕ is compatible with the action of τ , i.e., that τϕ = ϕτ . This holds on R′ since
ϕ leaves the elements of R′ fixed. Hence again, it is sufficient to verify this when
applied to x. Now from (16) we see that x(t−τ)ϕ = a`ϕ = a`; and on the other
hand: xϕ(t−τ) = (yuN )t−τ = b`uN(t−τ) = b`u`n = a`, where we have used (13).
Thus x(t−τ)ϕ = xϕ(t−τ) and therefore xτϕ = xϕτ . We have now shown the validity
of

Statement (ii):10 Suppose a = bun with u ∈ R′×. Then the relation (17)
establishes an R′-algebra isomorphism ϕ : A′ → B′ which is compatible with the
action of G and of τ .

Now, according to the hypothesis of the Proposition, τ generates g. Hence ϕ :
A′ → B′ is an isomorphism of G-algebras and of g-algebras, i.e., of G× g-algebras.
It follows that ϕ maps the fixed algebra A(a) = Fix(g, A′) onto A(b) = Fix(g, B′).

Proof of (iii): Now let A|R be an arbitrary Galois G-algebra. Let us put
A′ := A ⊗R R′. This is a Galois G × g-algebra and we have A = Fix(g, A′) (see
A.11). In particular, τ acts on A′, and this action commutes with every σ ∈ G.
We are going to construct a Kummer radical x of A′|R′ such that, firstly, xn = aN

with a ∈ A′×, and secondly the relation (16) holds: xt−τ = a`.
We start with an arbitrary Kummer radical x ∈ A′×. Since τ commutes with

σ ∈ G we have x(t−τ)σ = xσ(t−τ) = χ(σ)t−τxt−τ = xt−τ . Hence the element
u := xt−τ is kept fixed by all σ ∈ G and therefore u ∈ R′×.

Now we use the fact that τ is non-exceptional, which by definition means that
` is relatively prime to n. Let m ∈ Z be a multiple of ` such that m ≡ 1 mod n.
Then xm−1 ∈ R′× since xn ∈ R′× and n|m − 1. Hence xm = x · xm−1 differs
from x by a factor from R′×, and therefore xm too is a Kummer radical of A′|R′.
We put a = um/` and compute: (xm)(t−τ) = um = a`, and (xm)n = x`n(m/`) =
x(t−τ)N ·(m/`) = uN ·(m/`) = aN , where we have used (13). We have shown:

Statement (iii):10 For any Kummer radical x of A′|R′ the element u := xt−τ

is contained in R′×. Let m ∈ Z be a multiple of ` such that m ≡ 1 mod n (such m
exists since τ is assumed to be non-exceptional). Then the m-th power xm is also a
Kummer radical of A′|R′. Its radicand is (xm)n = aN where a := um/`. Moreover,
we have (xm)(t−τ) = a`.

Now, changing notation we write again x instead of xm. We have found a
Kummer radical x of A′|R′ such that xn = aN and xt−τ = a` for some a ∈ R′×, as
required.

We shall have occasion to consider base extensions. Suppose that R is contained
in the semisimple commutative K-algebra S. We assume that the unit element of
R is also the unit element of S. Let A|R be a Galois G-algebra, and consider the
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Galois G-algebra AS := A⊗R S over S. 11 We say that AS is obtained from A by
base extension from R to S.

Let a be a Kummer parameter for A, so that A = A(a). We claim that a is
also a Kummer parameter for AS . To see this, consider the diagram of R-algebras,
with A′ = A⊗R R′:

g
A′ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃA

G

A
|
|
|
|
||
R

g

R ÃÃÃÃÃÃÃ
ÃÃÃÃÃÃÃ

ÃÃÃÃÃÃÃ
R′

G

R′
|
|
|
|
||
A′

Within A′, the algebra A is characterized as the fixed algebra A = Fix(g, A′). By
tensoring with S we obtain the diagram

g
A′SÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃAS

G

AS

|
|
|
|
||

RS

g

RS
ÃÃÃÃÃÃÃ

ÃÃÃÃÃÃÃ
ÃÃÃÃÃÃ

R′S

G

R′S

|
|
|
|
||

A′S

where A′S = A′ ⊗R S and similarly AS , RS , R′S . Again, we have AS = Fix(g, A′S)
(see A.10). The action of g = 〈τ〉 on A′ is given by the formulas

xn = aN (18)
xσ−1 = χ(σ) (for σ ∈ G) (19)

xt−τ = a` (20)

where A′ = R′[x]; this establishes a as a Kummer parameter of A. Now, the same
formulas hold in A′S = R′S [x], and hence a is also a Kummer parameter of AS .
Thus we have:

Lemma 9 (Base extension) Let A be a Galois G-algebra over R with
Kummer parameter a ∈ R′×. If a is considered as an element in S′×, then it
is a Kummer parameter for the Galois G-algebra AS = A ⊗R S over S, which is
obtained from A by base extension from R to S.

2.4 Proof of Grunwald-Wang theorem. Based on the above parametriza-
tion we will now give a simple proof of the Grunwald-Wang theorem. This proof
is restricted to the non-exceptional case since we shall use Kummer parameters ac-
cording to Proposition 8. The exceptional case will be treated in the next section.

11See A.10 for the fact that A⊗R S is a Galois G-algebra over S.
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We consider the situation of the Grunwald-Wang theorem; thus K is a multi-
valued field and K̂ its completion. We have to use the following Lemma. Of course
this is well known; we present the proof for the convenience of the reader.

Lemma 10 Suppose that n is not divisible by the characteristic of K̂. If
z ∈ K̂ is sufficiently close to 1 then z = un is an n-th power, with u ∈ K̂×.

Proof : K̂ is a direct product of the complete fields K̂v. It suffices to discuss
each factor K̂v separately. In other words: we may assume that K̂ is a field with a
single valuation |·|.

If the valuation of K̂ is archimedean, then either K̂ = R or K̂ = C. In this
case the assertion is clear.

If K̂ is non-archimedean then we use the so-called Hensel-Rychlik Lemma. 12

Consider the polynomial f(X) = Xn − z; the condition un = z is equivalent to
f(u) = 0. We have

|f(1)| = |z − 1| and |f ′(1)| = |n| ≤ 1.

Note that |n| > 0 since n is not divisible by the characteristic of K̂. Therefore, if

|z − 1| < |n|2 (21)

then the Hensel-Rychlik Lemma guarantees the existence of u ∈ K̂ such that

f(u) = 0 and |u− 1| < |n| .

Proof of Grunwald-Wang theorem:
Besides of K we consider K ′ = K( n

√
1) and its completion K̂ ′ = K ′⊗K K̂. We

apply Prop. 8 to Galois G-algebras over R = K̂.
Let A be a Galois G-algebra over K̂, and let a ∈ K̂ ′× be a Kummer parameter

for A, according to Proposition 8. We observe that K ′ is dense in K̂ ′; hence there
are elements b ∈ K ′ which are arbitrarily close to a. Then a−1b is close to 1 and
we infer from Lemma 10 (applied to K̂ ′ instead of K̂) that a−1b ≡ 1 mod K̂ ′×n.
Hence by Proposition 8, b is also a Kummer parameter for A. We change notation
and write again a instead of b. We have seen:

There exists a Kummer parameter a for A|K̂ which is contained in K ′.
Now we use again Proposition 8, but over K instead of K̂. Hence a is the

Kummer parameter of a certain Galois G-algebra L over K. We apply Lemma 9
with respect to the base extension K ⊂ K̂ and conclude that L⊗K K̂ ≈ A. In view
of (3) we see that L̂ ≈ A.

3 The exceptional case

In this section we consider the case when g is exceptional in the sense as defined
in connection with Lemma 5. Then we have necessarily p = 2 and n = 2ν ≥ 2. The
group g contains a unique exceptional automorphism; this will be denoted by ε. By
definition, ε acts on the roots of unity as the inverse operator: χ(σ)ε = χ(σ)−1.

g is the direct product of the subgroup 〈ε〉 of order 2 and a cyclic group gener-
ated by a non-exceptional automorphism τ :

g = 〈τ〉 × 〈ε〉 . (22)

12For this we refer to [6] II, §23, F14.
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This follows from the fact that g is isomorphic to a subgroup of (Z/2ν)× which has
the product decomposition (11), and ε corresponds to −1 in this isomorphism.

We do not exclude the case τ = 1 in which case g = 〈ε〉 is cyclic and hence K
satisfies the Wang condition with respect to n.

Let s denote the order of τ . The defining relations for τ and ε as generators of
g are

τs = 1 , ε2 = 1 , τε = ετ . (23)

The invariants sτ , tτ , `τ , Nτ referring to τ will simply be denoted by s, t, `, N ,
as in the foregoing section. The corresponding invariants for ε are

sε = 2, tε = −1, `ε = 0, Nε = ε− 1 .

We shall denote by K ′
ε the fixed field of ε within K ′. Thus K ′|K ′

ε is a quadratic
field extension.

3.1 Parametrization in the exceptional case. Again, let R be a commu-
tative semisimple K-algebra, and consider the Galois g-algebra R′ = K ′ ⊗K R of
n-th roots of unity over R. Let

R′ε = Fix(ε, R′) = K ′
ε ⊗K R

denote the subalgebra of the elements which are fixed under ε. Then R′ is a Galois
〈ε〉-algebra over R′ε and R′ε is a Galois 〈τ〉-algebra over R; see A.9. The map
z 7→ zε+1 is the ordinary norm map from the algebra R′ to R′ε.

In the exceptional case it will turn out that not every a ∈ R′× is admissible as
a Kummer parameter for Galois G-algebras.

Definition: An element a ∈ R′× is called admissible if its ε-norm aε+1 is an
n-th power in R′×ε , i.e., if there exists c ∈ R′× such that

aε+1 = cn and cε−1 = 1 . (24)

If this is the case then (a, c) is called an admissible pair. The admissible pairs
form a multiplicative subgroup W ⊂ R′× ×R′×ε .

In the exceptional case, the following propositions are analogous to Propositions
7 and 8.

Proposition 11 Suppose g = 〈τ〉×〈ε〉 is exceptional. Let A′|R′ be a Galois
G-algebra and a′ ∈ R′× a Kummer radicand of A′. If there exists an admissible
a ∈ R′× with a′ ≡ aN mod R′×n then there exists a Galois G-algebra A over R
such that A′ = A⊗R R′. The converse does also hold – provided the decomposition
groups of the Galois g-algebra R′|R are cyclic.

This is an immediate consequence of

Proposition 12 (Parametrization; exceptional case) Suppose g is excep-
tional, and write g = 〈τ〉 × 〈ε〉 as explained above.

(i) Every admissible pair (a, c) ∈ W determines a Galois G-algebra A(a, c) over
R by means of the following two-step construction.

Step 1:: Construct the Galois G-algebra A′|R′ with the Kummer radicand aN .
Hence A′ = R′[x] with xn = aNand xσ−1 = χ(σ).

Step 2:: Extend the action of g on R′ to an action of g on A′ such that
xt−τ = a` and xε+1 = cN . This extension is possible and unique. Then put
A(a, c) := Fix(g, A′) . This is a Galois G-algebra over R and A(a, c)⊗R R′ ≈
A′.
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(ii) If (b, d) is another admissible pair and (a, c) ≡ (b, d) mod Wn then
A(a, c) ≈ A(b, d).

(iii) Suppose that the decomposition groups of the Galois g-algebra R′|R are
cyclic. Then every Galois G-algebra A over R is isomorphic to A(a, c) for a suitable
admissible pair (a, c) ∈ W . Such a pair is called a Kummer parameter pair
for A.

Remark: We can reformulate Prop.8 as follows:
Let g be exceptional. Suppose the decomposition groups of R′|R are cyclic.

Then the admissible pairs (a, c) ∈ W parametrize the Galois G-algebras A|R (up
to isomorphisms). Pairs which differ by n-th power factors from W parametrize
isomorphic Galois G-algebras.

The proof of parts (i),(ii) will be quite analogous to the proof in the non-
exceptional case, the only difference being that now, besides of τ , also the excep-
tional automorphism ε has to be considered. In part (iii) there will be some new
consideration necessary, taking into account the hypothesis about the decomposi-
tion groups of R′|R.

Proof of (i): Let A′ be constructed as in Step 1. We try to extend the actions
of both τ and ε on R′ to actions as G-algebra automorphisms of A′.

As to τ , we have done this in the proof of Prop. 8 already; see Statement (i)
there. (Observe footnote 10.) Accordingly, the action of 〈τ〉 on R′ extends uniquely
to an action of 〈τ〉 on A′ such that xt−τ = a`.

As to ε, we argue as follows. In order to extend the action of ε to an algebra
homomorphism of A′ it suffices to assign to x some element z ∈ A′ which satisfies
the relations zn = aNε. This holds for z = x−1cN . Indeed: we compute (x−1cN )n =
a−NcnN = (a−1cn)N = aεN where we have used the relation (24) which expresses
admissibility of the pair (a, c).

As operator on A′, ε remains to be of order 2, for: xε2−1 = x(ε+1)(ε−1) =
cN(ε−1) = c(ε−1)N = 1 since c is fixed by ε in view of (24). Note that as operators
on R′ we have τε = ετ and hence Nε = εN .

But we also have τε = ετ on A′. To see this we compute: x(t−τ)(ε+1) =
a`(ε+1) = c`n in view of (24), and on the other hand x(ε+1)(t−τ) = cN(t−τ) = c`n

where we have used (13).
We have shown that the extended actions of τ , ε satisfy the defining relations

(23) of the group g. In other words: The formulas

xt−τ = a` and xε+1 = cN (25)

define uniquely an extension of the action of g = 〈τ〉 × 〈ε〉 on R′ to an action of g
as R-algebra automorphisms on A′.

Next we claim that g acts on A′ by G-automorphisms, which is to say that τ as
well as ε commute with each σ ∈ G. As to τ , we again refer to Statement (i) in the
proof of Prop. 8. For ε we verify: xσ(ε+1) = (χ(σ)x)ε+1 = xε+1 = cN since ε acts
on χ(σ) as the exponentiation with −1. On the other hand, x(ε+1)σ = cNσ = cN

since σ leaves cN ∈ R′ fixed.
We have seen:
The action of g on A′ given by (25) commutes elementwise with the action

of G.
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Hence A′ now becomes a G × g-algebra. Again, as in the non-exceptional
case, we conclude that A′ is a Galois G×g-algebra over R (since R′|R is a Galois g-
algebra and A′|R′ a Galois G-algebra; see A.13). From this it follows that A(a, c) =
Fix(g, A′) is a Galois G-algebra over R and that A(a, c)⊗R R′ ≈ A′ (see A.11).

Proof of (ii): As in the proof of Prop. 8(ii) we let A′ = R′[x] with xn = aN

and B′ = R′[y] with yn = bN . Again, we have to exhibit an R′-isomorphism
ϕ : A′ → B′ which is an isomorphism as G × g-algebras. Suppose that a = bun

and c = dvn with (u, v) ∈ W . Then we define ϕ by the same formula (17) as in
the proof of prop. 8. According to Statement (ii) there, this indeed defines an R′-
algebra isomorphism, and it is compatible with the action of τ and of each σ ∈ G
(see footnote 10). It remains to verify that it is also compatible with ε. To this end
we compute: x(ε+1)ϕ = cNϕ = cN since ϕ acts as the identity operator on R′; on
the other hand xϕ(ε+1) = (yuN )ε+1 = dNu(ε+1)N = (dvn)N = cN where we have
used that the pair (u, v) is admissible and hence uε+1 = vn.

Proof of (iii): In this part of proof we suppose that the decomposition groups
of R′|R are cyclic.

R is the direct product of the fields eR where e ranges over the set P (R) of
primitive idempotents of R. For each e we have eR′ = K ′ ⊗K eR, thus we see that
eR′ is the algebra of roots of unity over eR. If A|R is a Galois G-algebra then
eA|eR is a Galois G-algebra too (see A.3). Accordingly it suffices for each e to
exhibit an admissible pair in eW with respect to eA; since W is the direct product
of the eW we obtain an admissible pair for A.

Consequently, we may assume from now on that R is a field.
Therefore there is only one decomposition group of R′|R, say h (see A.6). h

is a subgroup of g, and h is cyclic by hypothesis. In our discussion we will have
to distinguish the cases ε /∈ h and ε ∈ h. In each of these cases, given a Galois
G-algebra A|R we have to construct a Kummer radical x of A′ := A ⊗R R′ such
that xn = aN for some admissible a ∈ R′×, and that in addition (25) holds for some
c ∈ R′× for which (a, c) is an admissible pair. Note that A′ is a Galois G×g-algebra,
and hence τ, ε act on A′ as G-algebra automorphisms.

Case 1: ε /∈ h.
We first claim: If u ∈ R′× is fixed under ε then there exists v ∈ R′× such that

u = vε+1. In other words: The norm map v 7→ vε+1 from R′× to R′×ε is surjective.
Proof : Consider the set P (R′) of primitive idempotents of R′. Since R is a

field, g acts transitively on P (R′). (See A.5.) The decomposition group h is defined
to be the stabilizer of an idempotent in P (R′). This does not depend on the choice
of this idempotent since g is abelian. Consequently, the assumption that ε /∈ h
implies that ε does not leave any primitive idempotent in P (R′) fixed. Accordingly
P (R′) splits into pairs of idempotents which are mutually conjugate under ε. Let
E be a set of representatives of those pairs, so that

P (R′) = E ∪ Eε , E ∩ Eε = ∅ .

Let e denote the sum of the primitive idempotents in E . Then e is an idempotent
of R′ (not primitive in general) and we have

1 = e + eε , e · eε = 0 .
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This leads to a direct product decomposition

R′ = eR′ × eεR′

= eR′ × (eR′)ε

≈ S′ × S′ where S′ := eR′ . (26)

Using this isomorphism, every u ∈ R′× can be written as a vector in the form u =
(u1, u2) with u1, u2 ∈ S′×. We have e = (1, 0) and eε = (0, 1). The automorphism
ε acts on vectors by interchanging the components:

(u1, u2)ε = (u2, u1) .

If uε = u then u1 = u2. Hence, putting v := (1, u1) we have vε+1 = (u1, 1)(1, u1) =
(u1, u1) = u .

Our claim is proved.
Now let A|R be any Galois G-algebra, and A′ = A ⊗R R′. We are looking for

a Kummer radical x of A′|R′ such that xn = aN , and that (25) holds for some
admissible pair (a, c).

We start with an arbitrary Kummer radical x ∈ A′×. Since ε commutes with
σ ∈ G we compute

x(ε+1)σ = xσ(ε+1) = χ(σ)ε+1xε+1 = xε+1 , (27)

because ε acts on χ(σ) as the inverse operator. Thus xε+1 is stable under G and
therefore xε+1 =: u ∈ R′×. It follows uε−1 = xε2−1 = 1 and therefore, as shown
above, u = vε+1 with some v ∈ R′×. Hence (xv−1)ε+1 = 1. Changing notation and
writing again x instead of xv−1 we have shown:

There exists a Kummer radical x of A′|R′ such that xε+1 = 1.
With this Kummer radical x we now use the Statement (iii) as formulated in the

proof of Prop. 8 (see footnote 10). We conclude that xm is another Kummer radical
of A′|R′, and that for certain a ∈ R′× we have (xm)n = aN and (xm)t−τ = a` .
Explicitly, a is given as a = x(t−τ)m/`, from which we conclude that aε+1 = 1. In
addition, (xm)ε+1 = 1 . Changing notation, we write again x instead of xm. Thus
we have produced a Kummer radical x of A′|R′ with the properties:

xn = aN and xt−τ = a` and xε+1 = 1 .

In addition we have aε+1 = 1 which shows that the pair (a, 1) is admissible, as
required.

Case 2: ε ∈ h.
In this case we have to invoke our hypothesis that the decomposition group h

is cyclic. Hence, since ε is not a square in h we conclude that h = 〈ε〉 is of order 2.
The powers 1, τ, τ2, . . . , τ s−1 represent the cosets of g modulo h = 〈ε〉. Let

e be a primitive idempotent of R′. The stabilizer of e in g is the decomposition
group h, and the conjugates e, eτ , eτ2

, . . . , eτs−1
are precisely the different primitive

idempotents of R′. The decomposition

1 = e + eτ + · · ·+ eτs−1
(28)
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into orthogonal primitive idempotents leads to a direct decomposition

R′ = eR′ × eτR′ × · · · × eτs−1
R′

= eR′ × (eR′)τ × · · · × (eR′)τs−1

≈ S′ × S′ × · · · × S′ with S′ := eR′ (29)

This decomposition is the analogue, in Case 2, of the decomposition (26) which we
have used in Case 1.

Now let A|R be a Galois G-algebra and A′ = A⊗R R′. Then g acts on A′ such
that A = Fix(g, A′). We claim:

There exists a Kummer radical x of A′|R′ such that x = yN with y ∈ A′×.
This can be seen as follows: The primitive idempotent e ∈ R′ may not be primitive
in A′. Nevertheless, the decomposition (28) yields a decomposition of A′ similarly
to (29), namely:

A′ = eA′ × eτA′ × · · · × eτs−1
A′

= eA′ × (eA′)τ × · · · × (eA′)τs−1

≈ B′ ×B′ × · · · ×B′ with B′ := eA′ . (30)

According to this decomposition, every element x ∈ A′ can be written as a vector

x = (x0, x1, . . . , xs−1) with xi ∈ B′ . (31)

In this representation the automorphism τ acts as the right shift:

xτ = (xs−1, x0, x1, . . .) .

The automorphism ε acts component-wise:

xε = (xε
0, . . . , x

ε
s−1) .

Note that B′ = eA′ is stable under ε since e is.
We start with an arbitray Kummer radical x of A′|R′. We refer to State-

ment (iii) of the proof of Prop. 8 for the fact that the element u := xt−τ is contained
in R′× (see footnote 10). We write x in the form (31) and similarly u; we conclude
that xt

ix
−1
i−1 = ui ∈ S′×. By induction it follows xts−1−i

s−1 = xivi (0 ≤ i ≤ s − 1)
where the elements vi are power products of the ui; for our purpose it is sufficient
to know that vi ∈ S′× and hence v = (v0, v1, . . . , vs−1) ∈ R′×. Putting y := xs−1,
we conclude(

yts−1
, yts−2

, . . . , yt, y
)

= (x0, x1, . . . , xs−1)(v0, v1, . . . , vs−1) = x · v . (32)

The vector on the left hand side can be written as yN if we identify B′× with the
first factor of the product B′× × · · · × B′×, so that y is identified with the vector
(y, 1, 1, . . . , 1). Indeed, the definition of the operator N reads N = ts−1 + ts−2τ +
· · · + τs−1 and if we apply this operator to (y, 1, 1, . . . , 1) we obtain the vector on
the left hand side in (32) since τ acts as the shift. So we have

yN = x · v .

Since x is a Kummer radical of A′|R′ and v ∈ R′×, it follows that xv is a Kummer
radical too. Changing notation, we write again x instead of xv and thus have
obtained a Kummer radical x such that x = yN .

Our above claim is proved. But we have obtained more information. Namely,
since y = xs−1 appears as the last component of x, it follows that yn is the last
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component of xn. Since xn ∈ R′× it follows yn ∈ S′×. Let us put a := yn ∈ S′× ⊂
R′×.

Moreover, we know from (27) that xε+1 is contained in R′×. 13 Now, yε+1 is
the last component of xε+1 and therefore it follows that yε+1 ∈ S′× ⊂ R′×. Let us
put c := yε+1.

We have proved:
There exists a Kummer radical x of A′|R′ such that x = yN for some y ∈ A′×.

Moreover, yn = a and yε+1 = c with a, c ∈ R′×.
For this Kummer radical we compute:

xn = ynN = aN

xt−τ = y(t−τ)N = y`n = a`

xε+1 = y(ε+1)N = cN ,

these are the relations (25), and

aε+1 = y(ε+1)n = cn

cε−1 = y(ε+1)(ε−1) = 1 .

this shows that the pair (a, c) is admissible.

Proposition 12 is proved.
Again we shall have occasion to consider base extension. Suppose that R is

contained in the semi-simple commutative K-algebra S. We assume that the unit
element of R is also the unit element of S, hence R× ⊂ S×. Moreover, R′ = K ′⊗KR
is contained in S′ = K ′ ⊗K S and R′× ⊂ S′×. In this situation we have in the
exceptional case too:

Lemma 13 (Base extension) Suppose that g is exceptional, and that the
decomposition groups of the Galois g-algebra R′|R are cyclic. Let A be a Galois
G-algebra over R with Kummer parameter pair (a, c). If a and c are considered as
elements in S′×, then (a, c) is a Kummer parameter pair for the Galois G-algebra
A⊗R S over S, which is obtained from A by base extension R ⊂ S.

The proof proceeds as in the non-exceptional case.
The following Lemma gives a method to generate admissible pairs. As intro-

duced above, R′ε = Fix(ε, R′) denotes the subalgebra of elements which are fixed
under the exceptional automorphism ε.

Lemma 14 If (a, c) ∈ R′××R′×ε is admissible then a can be written in the
form a = ãε−1cn/2 with ã ∈ R′×. Conversely, if ã ∈ R′× and c ∈ R′×ε are arbitrary,
then by putting a = ãε−1cn/2, the pair pair (a, c) is admissible.

In other words: The map (ã, c) 7→ (a, c) as described above is a surjective
homomorphism from R′× ×R′×ε onto the group W of admissible pairs.

Proof : (a, c) to be admissible means that aε+1 = cn and cε = c. From this it
follows (ac−n/2)ε+1 = 1. We apply “Hilbert’s Theorem 90” (see A.14) to the Galois
〈ε〉-algebra R′|R′ε. We conclude that there exists ã ∈ R′× such that ac−n/2 = ãε−1,
hence a = ãε−1cn/2.

13In (27) we have only used that ε commutes with every automorphism of G; this is true in
both cases, Case 1 and Case 2.
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The converse is directly verified.

3.2 Proof of Grunwald-Wang theorem. We consider the situation of The-
orem 1 in the exceptional case; this implies in particular that n = 2ν is a power
of 2.

Again, K ′ = K( n
√

1) denotes the field of n-th roots of unity over K. Let
K ′

ε = Fix(ε,K ′) denote the fixed field of the exceptional automorphism ε. Let Let
K̂, K̂ ′

ε, K̂ ′ be the completions of K, K ′
ε, K ′ respectively.

The decomposition groups in K ′ of the valuations v ∈ V are precisely the
decomposition groups of the Galois g-algebra K̂ ′ over K̂. We assume that all those
decomposition groups are cyclic. According to Proposition 12 this implies that
every Galois G-algebra A over K̂ admits a Kummer parameter pair (a, c).

Similarly as in the non-exceptional case we try to choose a Kummer parameter
pair (a, c) for A such that a, c ∈ K ′×.

We start with an arbitrary parameter pair (a, c) for A and write a = ãε−1cn/2

as in Lemma 14. Since K ′ is dense in K̂ ′ there exists b̃ ∈ K ′ which is close to ã .
Applying Lemma 10 we conclude that

ã ≡ b̃ mod K̂ ′×n.

Similarly, since K ′
ε is dense in K̂ ′

ε, we find d ∈ K ′
ε close to c, and conclude

c ≡ d mod K̂ ′×n
ε .

Putting b = b̃ε−1dn/2 we obtain an admissable pair (b, d) (by Lemma 14) and
we have b ∈ K ′ and d ∈ K ′

ε. Moreover, Lemma 14 shows that we have

(a, c) ≡ (b, d) mod Wn.

Consequently, Proposition 12(ii) says that the admissible pair (b, d) parametrizes
the same algebra A as (a, c).

We change notation and write again (a, c) instead of (b, d). We have shown:
There exists a Kummer parameter pair (a, c) for A|K̂ such that a ∈ K ′× and

c ∈ K ′×
ε .

Now we use Proposition 12(i), but over K instead of K̂. Hence (a, c) is a pair of
Kummer parameters of a certain Galois G-algebra L over K. We apply Lemma 13
with respect to the base extension K ⊂ K̂ and conclude that L⊗K K̂ ≈ A. In view
of (3) we see that L̂ ≈ A.

4 The case of characteristic p

As before, G is a cyclic group of prime power order n = pν , and K is a field.
Now we consider the case that char(K) = p .

4.1 Preliminaries on Witt vectors. Let A be a commutative ring with unit
element such that pA = 0; thus A is an Fp-algebra. We denote by Wν(A) the ring of
Witt vectors x = (x0, . . . , xν−1) of length ν over A. 14 Addition and multiplication
of those vectors are defined by polynomials. More precisely, if the Witt vector z is

14For the basic facts about Witt vectors we refer to [6] II. § 26.
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the sum (or product) of x and y then the i-th component zi is a certain polynomial,
with integer coefficients, in x0, . . . xi, y0, . . . , yi. 15

The Frobenius operator F on Wν(A) is defined by

F (x) = (xp
0, x

p
1, . . .) ;

this is an endomorphism of the ring Wν(A). The Artin-Schreier map ℘ on Wν(A)
is defined by

℘(x) = F (x)− x .

This map is additive. For ν ≥ 1 the shift operator V : Wν−1(A) → Wν(A) is defined
by

V (x0, x1, . . . , xν−2) = (0, x0, x1, . . . , xν−2) .

This map is useful for induction arguments. 16 V is additive and injective, and
it satisfies FV = V F . It follows ℘V = V ℘. The image of V is the kernel of the
canonical homomorphism Wν(A) → A which maps every vector x onto its first
component x0. Thus we have the exact sequence

0 → Wν−1(A) V−→ Wν(A) −→ A → 0

For x0 ∈ A we denote by {x0} the vector 17

{x0} = (x0, 0, 0, . . . , 0) .

The map x0 7→ {x0} is a section for the projection homomorphism Wν(A) → A; it
is multiplicative but not additive. The fundamental rules for the addition of Witt
vectors imply 18 for x = (x0, x1, . . . , xν−1) that

x = {x0}+ V x̃ with x̃ = (x1, x2, . . . , xν−1) ∈ Wν−1(A) . (33)

We shall have to use this formula in the sequel.

4.2 Witt radicals for cyclic Galois algebras. Now let R be a semisimple
commutative K-algebra. We want to give a description of the Galois G-algebras
over R.

We consider Wν(Fp) as a subring of Wν(R). The additive group Wν(Fp)+ is well
known to be cyclic of order pν (see [6] II. § 26 p.147). We choose an isomorphism

χ : G → Wν(Fp)+ .

This isomorphism is kept fixed throughout and all statements in the sequel refer to
the given χ.

Let a = (a0, . . . , aν−1) ∈ Wν(R). Consider the R-algebra A = R[x] generated
by ν elements x0, . . . , xν−1 which, when interpreted as a vector x = (x0, . . . , xν−1) ∈
Wν(A), satisfy

℘(x) = a (34)
as their defining relations. This means that A is isomorphic to the factor algebra
of the polynomial algebra R[X] = R[X0, . . . , Xν−1] modulo the ideal I generated
by the polynomials f0, . . . , fν−1 ∈ R[X] which describe the relation (34), i.e.,

℘(X)− a = (f0(X), . . . , fν−1(X)) in Wν(R[X]) ;

15For later use we note that these polynomials have vanishing constant coefficients.
16In our notation of F ,V and ℘ we suppress the dependence on ν; even for different ν we

shall use the same symbols F ,V and ℘.
17This is Witt’s original notation [14].
18See [6] II. § 26 p.140
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and xi denotes the image of Xi in A (0 ≤ i ≤ ν − 1). In this sense, the relation
(34) in Wν(A) is to be interpreted as a system of polynomial relations

fi(x0, . . . , xν−1) = 0 (0 ≤ i ≤ ν − 1)

and these are defining relations for the generators x0, . . . , xν−1 of A|R.
If we assign to the generating vector x = (x0, . . . , xν−1) some vector y =

(y0, . . . , yν−1) with components yi ∈ A satisfying the same relation ℘(y) = a, then
this defines uniquely an R-algebra homomorphism of A into itself which maps the
xi onto the yi. 19 Let σ ∈ G. We have ℘(χ(σ)) = 0 since χ(σ) ∈ Wν(Fp).
Hence for y = x + χ(σ) we have ℘(y) = ℘(x) = a. Thus σ defines an R-algebra
homomorphism of A into itself. By general functorial properties of Witt vectors,
this extends canonically to a ring homomorphism of Wν(A) into itself, denoted also
by σ, and we have

xσ = (xσ
0 , . . . , xσ

ν−1) . (35)

So the definition of the action of σ on A can be put into the formula

xσ = x + χ(σ) (σ ∈ G) (36)

(which again is to be interpreted as a system of polynomial equations for the compo-
nents of the respective vectors). The homomorphism property χ(στ) = χ(σ)+χ(τ)
yields xστ = (xσ)τ . In this way we see that G acts on A and also on Wν(A).

Thus the relations (36) define on A the structure of G-algebra over R. We
denote this algebra by Aa since it is uniquely determined by the Witt vector a ∈
Wν(R).

The following result, valid in characteristic p , is Witt’s additive analogue to
the multiplicative Kummer Theory of Proposition 4.

Proposition 15 (Witt Theory for Galois algebras) (i) Let a ∈ Wν(R).
Then any G-algebra A|R generated by the components of some Witt vector x ∈
Wν(A) satisfying the relations

℘(x) = a and xσ = x + χ(σ) , (σ ∈ G) (37)

is a Galois G-algebra, and A is isomorphic to Aa (as G-algebras over R).
(ii) If a ≡ b mod ℘Wν(R), i.e., if a = b+℘(u) with u ∈ Wν(R) then the Galois

G-algebra Aa determined by a is isomorphic to the Galois G-algebra Ab determined
by b. And conversely.

(iii) Every Galois G-algebra A|R is of the type described in (i), i.e., A is iso-
morphic to Aa (as Galois G-algebra over R) for suitable a ∈ Wν(R). Such a Witt
vector a is called a Witt radicand of A, and the corresponding x is a Witt rad-
ical of A.

Remark: We can reformulate Proposition 15 as follows:
Every Witt vector a ∈ Wν(R) defines (uniquely up to isomorphisms) a Galois

G-algebra A|R such that a is a Witt radicand of A. The structure of A depends
only on the (additive) residue class of a modulo ℘Wν(R). Conversely, every Galois
G-algebra A|R admits a vector a ∈ Wν(R) as its Witt radicand.

Proof of (i): We shall use induction with respect to ν.

19In other words: the map R[X] → A given by Xi 7→ yi (0 ≤ i ≤ ν − 1) can be factored
through R[X]/I ≈ R[x].
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Using A.3 (and basic functorial properties of Witt vectors) we may suppose
that R is a field. To show that A is a Galois G-algebra we use A.4. Hence we have
to show that

(a) A is semisimple.
(b) Fix(G,A) = R.
(d) G acts faithfully on A.

Statement (d) is immediate from the second relation in (37). It remains to verify
(a) and (b).

First consider the case ν = 1. Then W1(A) can be identified with A itself;
in the relation (37) we now have x ∈ A and a ∈ R. Thus the generator x of
A|R satisfies an Artin-Schreier equation in the usual sense: xp − x = a. Let
f(X) = Xp − X − a ∈ R[X] (one variable X). Then we have Aa ≈ R[X]/f(X).
Since f(X) is separable (i.e., it has no multiple roots), it follows that Aa is semi-
simple; this gives (a) for Aa. If f(X) is irreducible over R then Aa|R is a Galois
extension of fields of degree p, and assertion (b) follows for Aa. If f(X) is not
irreducible over R then it splits completely in R[X]:

f(X) = (x− ϑ1) · · · (x− ϑp)

where ϑ1, . . . , ϑp ∈ R are the roots of f(X). It follows that

Aa ≈ R× · · · ×R

this decomposition is defined by assigning to x the vector (ϑ1, . . . , ϑp) and, accord-
ingly, to every polynomial h(x) ∈ R[x] = Aa the vector (h(ϑ1), . . . , h(ϑp)). Here,
h(x) may be assumed to be of degree < p. The automorphisms σ ∈ G permute the
ϑi cyclically. If h(x) is fixed under all σ ∈ G then h(ϑi) = h(ϑ1) for all i. It follows
that h(x) is a constant polynomial, i.e., h(x) ∈ R. Thus we have (b) for Aa.

We have now shown (for ν = 1) that Aa is a Galois G-algebra over R. As to
A, since it is generated by x over R, there is a natural surjective G-homomorphism
Aa → A as G-algebras; applying A.12 it follows that this is an isomorphism and,
hence, A too is a Galois G-algebra.

Now suppose ν > 1. Consider the projection homomorphism Wν(A) → A given
by (x0, . . . , xν−1) 7→ x0. Then A = R[x] is projected onto A0 = R[x0] with the
relations

℘(x0) = a0 and xσ
0 = x0 + χ0(σ) (σ ∈ G)

where χ0(σ) ∈ Fp denotes the first component of the Witt vector

χ(σ) = (χ0(σ), . . . , χν−1(σ)) .

We have χ0(σi) = i · χ0(σ) = 0 if and only if i ≡ 0 mod p. Hence the group Gp of
p-th powers in G acts trivially on A0 while the factor group G/Gp acts faithfully
on A0. By what we have seen in the case ν = 1, A0 is a Galois G/Gp-algebra over
R. In particular, A0 is semisimple and we have

Fix(G/Gp, A0) = R . (38)

Now consider A as a Gp-algebra over A0. We claim that A|A0 is a Galois
Gp-algebra.

A is generated over A0 = R[x0] by x1, . . . , xν−1 which we regard as the com-
ponents of the Witt vector x̃ = (x1, . . . , xν−1) ∈ Wν−1(A), of length ν − 1. Let us
put b := ℘(x̃). Using (33) we compute

V b = V ℘(x̃) = ℘V (x̃) = ℘(x− {x0}) = a− ℘{x0}
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from which we infer that the components of V b, hence those of b, are polynomi-
als (with integer coefficients) in a0, a1, . . . , aν−1 and x0. We conclude that the
components of b are contained in A0 = R[x0]. Thus we have

℘(x̃) = b ∈ Wν−1(A0).

A similar computation for the action of an automorphism τ ∈ Gp leads to the
following: We have already seen above that the first component χ0(τ) = 0 since
τ = σp ∈ Gp. Thus

χ(τ) = (0, χ1(τ), . . . , χν−1(τ)) = V χ̃(τ)

where χ̃(τ) = (χ1(τ), . . . , χν−1(τ)) ∈ Wν−1(Fp) . Now we observe that the operator
τ acts componentwise, i.e., xτ = (xτ

0 , . . . , xτ
ν−1). We have seen above already that

τ ∈ Gp acts trivially on A0, hence xτ
0 = x0. We compute, using (33):

V x̃ τ = xτ − {xτ
0} = x + χ(τ)− {x0}

= (x− {x0}) + χ(τ)

= V x̃ + V χ̃(τ) = V (x̃ + χ̃(τ))

and hence
x̃ τ = x̃ + χ̃(τ) .

We have seen that A, as a Gp-algebra over A0, is generated by the components of
the Witt vector x̃ of length ν − 1, satisfying relations of the same form as does x
over R, namely:

℘(x̃) = b ∈ Wν−1(A0) and x̃ τ = x̃ + χ̃(τ) , (τ ∈ Gp) .

By induction hypothesis we conclude that, indeed, A is a Galois Gp-algebra over
A0.

In particular A is semisimple, which gives (a). Moreover, A0 = Fix(Gp, A) and
hence, using (38):

Fix(G,A) = Fix(G,A0) = Fix(G/Gp, A0) = R .

This gives (b).
We have now shown that A is a Galois G-algebra over R. It follows that Aa too

is a Galois G-algebra over R, since Aa satisfies the same hypotheses as announced
in the statement of the proposition. Now again, since A is generated by x there is
a natural surjection Aa → A, and we infer from A.12 that this is an isomorphism.

Proof of (ii): Consider the algebra Aa = R[a] with (37), and similarly Ab =
R[y]. Suppose that a = b + ℘(u) with u ∈ Wν(R). We are going to establish an
isomorphism ϕ : Aa → Ab as G-algebras over R.

The relation ℘(x) = a is a defining relation for x over R. Hence, in order to
obtain a homomorphism ϕ : Aa → Ab as R-algebras, it is sufficient to assign to x
some vector z ∈ Wν(A) such that z satisfies the same relation ℘(z) = a as x does.
Clearly this holds for z := y + u since ℘(y + u) = b + ℘(u) = a.

Hence we have a uniquely defined R-algebra homomorphism ϕ : Aa → Ab such
that xϕ = y + u. We claim that this is a homomorphism as G-algebras. Indeed:
for σ ∈ G we have xσϕ = (x + χ(σ))ϕ = xϕ + χ(σ) = y + u + χ(σ) = yσ + u =
(y + u)σ = xϕσ since σ acts trivially on u ∈ Wν(R).

Since both Aa and Ab are Galois G-algebras over R it follows that ϕ : Aa → Ab

is an isomorphism. (See A.12.)
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Conversely, assume that Aa and Ab are isomorphic Galois G-algebras. Let us
identify Aa = Ab = A by that isomorphism. Thus on the one hand, Aa = R[x]
with (37), and on the other hand Aa = Ab = R[y] with corresponding relations for
y and b. When applying σ ∈ G both x and y take the same additive summand,
namely χ(σ). We conclude (y − x)σ = y − x for all σ ∈ G. It follows that the
coordinates of the vector u := y − x are contained in R, i.e., u ∈ Wν(R). We have
b = ℘(y) = ℘(x) + ℘(u) = a + ℘(u) ≡ a mod ℘R .

Proof of (iii): Now let A be an arbitrary Galois G-algebra over R. We have
to find x ∈ Wν(A) and a ∈ Wν(R) satisfying the relations (37), and such that A is
generated over R by the components of x.

Since G acts on A it also acts on the ring Wν(A) of Witt vectors by means of
(35). Consider the trace operator S on Wν(A) defined by

S(u) =
∑

τ∈G

uτ for u ∈ Wν(A) .

Since the vector S(u) is fixed by every σ ∈ G, its components are fixed by G and
hence are contained in R ; we conclude that S(u) ∈ Wν(R). We claim: There exists
u ∈ Wν(A) such that S(u) is a unit in Wν(R).

To see this we recall that a vector is a unit in Wν(R) if and only if its first
component is a unit in R. 20 Now the first component of S(u) is S(u0) where u0 ∈ A
is the first component of u. Since A is a Galois G-algebra it admits a normal basis
over R. If we choose u0 ∈ A as a generator of such a normal basis then S(u0) ∈ R×.
For, if this were not the case then there would exist c 6= 0 in R such that

c · S(u0) =
∑

τ

c · uτ
0 = 0

which contradicts the fact that the uτ
0 form a basis of A over R.

Thus indeed, there exists a vector u ∈ Wν(A) such that S(u) ∈ Wν(R)×; we
have to choose u such that its first component u0 is a generator of a normal basis
of A|R. After replacing u by S(u)−1u we may assume that

S(u) = 1 .

We start from such u and put

x :=
∑

τ∈G

χ(τ−1)uτ ,

like we did in the multiplicative Kummer theory. We compute for σ ∈ G:

xσ =
∑

τ∈G

χ(τ−1)uτσ =
∑

τ∈G

χ(τ−1σ)uτ

=
∑

τ∈G

(χ(τ−1) + χ(σ))uτ

=
∑

τ∈G

χ(τ−1)uτ + χ(σ)
∑

τ∈G

uτ

= x + χ(σ) .

Let us put a := ℘(x). Then we compute

aσ = ℘(xσ) = ℘(x + χ(σ)) = ℘(x) = a

20See e.g., Witt [14], p.131, Satz 5.
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since ℘(χ(σ)) = 0. Hence the components of a are fixed under G and therefore
contained in R; it follows a ∈ Wν(R).

Thus the vector x ∈ Wν(A) satisfies relations of the form (37). From (i) we
conclude that the subalgebra R[x] ⊂ A is a Galois G-algebra, with the action of G
on R[x] induced by the action of G on A. The inclusion map R[x] ↪→ A is a map of
Galois G-algebras and hence an isomorphism by A.12; this shows that R[x] = A.

Remark: Let A|R be a Galois G-algebra and a ∈ Wν(R) a Witt radicand of
A. The corresponding Witt radical x ∈ Wν(A) of a is not uniquely determined.
An element y ∈ Wν(A) is another Witt radical of a if and only if y = x + c with
c ∈ Wν(R) and ℘(c) = 0. If R is a direct product of d fields then there are nd such
elements c. The nd substitutions x 7→ x + c yield nd automorphisms of A as Galois
G-algebra over R, and every automorphism of A is of this form.

Similarly as in multiplicative Kummer theory, we shall need the following
lemma concerning base extension. Suppose that R is contained in the semi-simple
commutative K-algebra S. We assume that the unit element of R is also the unit
element of S. Then Wν(R) ⊂ Wν(S). In this situation we have:

Lemma 16 (Base extension) Let A be a Galois G-algebra over R with Witt
radicand a ∈ Wν(R). If a is considered as a vector in Wν(S), then it is a Kummer
parameter for the Galois G-algebra A ⊗R S over S, which is obtained from A by
base extension R ⊂ S. 21

The proof is again immediate: We have A ⊂ A ⊗R S and hence Wν(A) ⊂
Wν(A ⊗R S). If x ∈ Wν(A) satisfies the relations (37) then it satisfies the same
relations when considered as a vector in Wν(A⊗R S).

4.3 Proof of Grunwald-Wang theorem. We consider the situation of the
Grunwald-Wang theorem; thus K is a multi-valued field and K̂ its completion. We
assume that char(K) = p. We have to use the following Lemma, which is the
additive analogue to the corresponding Lemma 10 in the multiplicative case.

Lemma 17 Suppose that n = pν where p is the characteristic of K. If the
components zi ∈ K̂ of the Witt vector z ∈ Wν(K̂) are sufficiently close to 0 then
there exists u ∈ Wν(K̂) such that z = ℘(u).

Proof : K̂ is a direct product of the complete fields K̂v. It suffices to discuss
each factor K̂v separately. In other words: we may assume K̂ to be a complete
field with a single valuation |·|. Note that the valuation is non-archimedean since
char(K) = p.

We claim that the condition

|zi| < 1 for 0 ≤ i ≤ ν − 1

is already sufficient: if this condition is satisfied then we claim there exists a vector
u = (u0, . . . , uν−1) ∈ Wν(K̂) with ℘(u) = z. Moreover, u can be chosen such that
|ui| < 1 for 0 ≤ i ≤ ν − 1. We use induction on ν.

If ν = 1 we have W1(K̂) = K̂. We use Hensel’s lemma for the polynomial
f(X) = Xp −X − z ∈ K̂[X]. If u is a zero of f(X) then z = ℘(u). We have

|f(0)| = |z| and |f ′(0)| = 1.

21See A.10 for the fact that A⊗R S is a Galois G-algebra over S.
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Therefore, if |z| < 1 then Hensel’s lemma guarantees the existence of a unique
u ∈ K̂ such that f(u) = 0 and |u| < 1.

Now suppose ν > 1 and write (see (33)):

z = {z0}+ V z̃ .

Using what we have just seen for ν = 1, we let u0 ∈ K̂ with |u0| < 1 such that
℘(u0) = z0. Using the induction hypothesis we find ũ ∈ Wν−1(K̂) such that
℘(ũ) = z̃, and each component of ũ has value < 1. Now we write

z = {℘u0}+ V ℘(ũ)

= ℘ ({u0}+ V ũ) + ({℘u0} − ℘{u0})
= ℘u + t

if we put
u := {u0}+ V ũ and t := {℘u0} − ℘{u0} .

Thus the vector u as constructed does not yet solve our requirements; we still have
to discuss the remainder t.

Let us write t = {t0}+ V t̃ . By definition of t we have t0 = ℘(u0)− ℘(u0) = 0
and therefore t = V t̃ with t̃ = (t1, . . . , tν−1) ∈ Wν−1(K̂). We can use the induction
hypothesis and conclude that t̃ = ℘(u′) with u′ ∈ Wν−1(K̂) – provided we know
that |ti| < 1 for all i. Now, from the definition of t we see that each ti is a
polynomial in u0 with integer coefficients. Since these polynomials do not have
constant coefficients 22 and since |u0| < 1 we conclude that each |ti| < 1. Recall
that the valuation of K̂ is non-archimedean.

Thus by the induction hypothesis we have t̃ = ℘(u′) with u′ ∈ Wν−1(K̂), and
all components of u′ have value |u′i| < 1. It follows t = V ℘(u′) = ℘(V u′) and hence

z = ℘(u) + ℘(V u′) = ℘(u + V u′) .

This proves our assertion since, by footnote 15 again, all components of u + V u′

have value < 1.

Proof of Grunwald-Wang theorem:
Besides of K we consider its completion K̂. We apply Prop.15 to Galois G-

algebras over R = K̂.
Let A be a Galois G-algebra over K̂, and let a ∈ Wν(K̂) be a Witt radicand

for A, according to Prop.15(iii). We observe that K is dense in K̂; hence there are
elements bi ∈ K which are arbitrarily close to the components ai of a (0 ≤ i ≤ ν−1).
Then the ai − bi are close to 0 and we infer from Lemma 17 that b − a ≡ 0
mod ℘Wν(K̂). Hence by Prop.15(ii), b = (b0, . . . , bν−1) is also a Witt radicand for
A. Changing notation, we have seen:

There exists a Witt radicand a for A|K̂ which is contained in Wν(K).
Now, we use Prop.15(i), but over K instead of K̂. Hence a is a Witt radicand

of a certain Galois G-algebra L over K. We apply Lemma 16 with respect to the
base extension K ⊂ K̂ and conclude that L⊗K K̂ ≈ A. In view of (3) we see that
L̂ ≈ A.

22See footnote 15.
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5 Appendix: On Galois algebras

All algebras considered here are supposed to be algebras over a field, and to
have a unit element. 23

Let R be a semisimple commutative algebra and G a finite group. A G-algebra
over R is defined to be a commutative R-algebra A, together with an action of G
on A, such that every σ ∈ G acts as an R-algebra automorphism of A. We use the
exponential notation for this action, thus xσ denotes the image of x ∈ A under the
action of σ ∈ G. Every such G-algebra carries the structure of a right RG-module,
where RG denotes the group ring of G over R.

A.1 Definition: A G-algebra A|R is called Galois G-algebra if the
following two conditions are satisfied:

(a) A is semisimple.
(b) A is a free RG-module of rank 1.

Property (b) is equivalent to the existence of a normal basis for A|R, i.e., the
existence of an element u ∈ A such that its G-images uσ (σ ∈ G) form an R-basis
of A. In particular it follows that G acts faithfully on A. Moreover, the existence
of an R-basis of A implies that we can identify R = R · 1A with a subalgebra of A.
Then R = Fix(G,A), the fixed algebra of G in A, consisting of those x ∈ A which
are fixed under all σ ∈ G.

A.2 Note: Every Galois extension of fields L|K with Galois group G is
a Galois G-algebra in a natural way. (Normal Basis theorem, cf. [6] §12.)

Any commutative semisimple algebra R is the direct product of fields:

R = K1 × · · · ×Km

where the component fields Ki are uniquely determined as subsets of R (cf. [6],
§29). If ei denotes the unit element of Ki, then

1 = e1 + · · ·+ em with eiej =

{
ei if i = j

0 if i 6= j

We have Ki = eiR, and as an R-module we have the direct sum decomposition

R = e1R⊕ · · · ⊕ emR = K1 ⊕ · · · ⊕Km .

Every idempotent e ∈ R is a partial sum of e1, . . . , em. An idempotent of R is
called primitive if it cannot be written as a sum of two orthogonal idempotents of
R. The ei are precisely the primitive idempotents of R. In the following we use the
notation

P (R) := {e1, . . . , em}
for the set of all primitive idempotents in R.

A.3 Reduction Lemma: Let A|R be a G-algebra. Consider the direct
product decomposition

A =
∏

e∈P (R)

eA . (A1)

For A|R to be a Galois G-algebra it is necessary and sufficient that eA|eR is a
Galois G-algebra for each e ∈ P (R).

23For the general terminology and the basic facts which are used without citation we refer
to [6], in particular §§28–29.
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For the proof one observes that each of the definining conditions (a) and (b) is
satisfied for A|R if and only if it is satisfied for all components eA|eR in (A1).

Note that for the algebra eA|eR the ground ring eR is a field . Hence, in the
discussion of Galois G-algebras A|R, Lemma A.3 will often allow us to reduce the
discussion to the case when R is a field; this explains the name “Reduction Lemma.”

Remark: In the situation of A.3 each eA is also an R-subalgebra of A. How-
ever, if R is not a field (i.e., if e 6= 1) then eA|R is not a Galois G-algebra.

A.4 Galois algebras over a field: Suppose R = K is a field. Let A|K
be a G-algebra satisfying the following three conditions:

(a) A is semisimple
(b) Fix(G,A) = K
(c) [A : K] ≥ |G|

where [A : K] denotes the K-dimension of A, and |G| the order of G. Then A|K
is a Galois G-algebra and, in fact, we have [A : K] = |G|. If G is abelian then the
condition (c) can be replaced by the following condition:

(d) G acts faithfully on A.

We shall prove this together with the following structure theorem for Galois
algebras. In fact, we shall give the proof of the structure theorem under the hy-
potheses of A.4, and then conclude that A is indeed a Galois G-algebra.

A.5 Structure of Galois algebras over a field. Suppose R = K is a
field. Let A|K be a G-algebra satisfying (a), (b), (c) above (or (a), (b), (d) if G is
abelian). Then G acts transitively on the set P (A) of primitive idempotents of A.
Let e ∈ P (A) and put L := eA; this is a field. Then

A =
∏

σ∈G mod Ge

Lσ . (A2)

Here, Ge denotes the subgroup of those elements in G which leave e fixed, and σ
ranges over a set of representatives of left cosets Geσ of G.

The group Ge operates on L and with this operation, L is a Galois Ge-algebra
over eK. In other words: If L is regarded as an extension field of K (by identifiying
K = eK), then L is Galois over K and the action of Ge on L yields an isomorphism
Ge ≈ Gal(L|K).

Proof : The sum s =
∑

σ∈G mod Ge
eσ is left fixed by G. Using (b) we conclude

s ∈ K. Since s is an idempotent and K is a field it follows s = 1. Hence 1 ∈ A is
the sum of the distinct primitive idempotents eσ. It follows

P (A) = {eσ : σ ∈ G mod Ge}
and we obtain the decomposition (A2). The fact that eA is a field follows from
hypothesis (a), that A is semi-simple.

Suppose a ∈ L is left fixed by Ge. Then b :=
∑

σ∈G mod Ge
aσ is left fixed by

G. From (b) it follows b ∈ K and hence a = eb ∈ eK. Thus eK = Fix(Ge, L). It
follows that L|eK is a Galois extension of fields, and its Galois group is induced by
the action of Ge on L. Thus the Galois group of L|eK is a homomorphic image of
Ge and therefore

[L : K] ≤ |Ge| . (A3)
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It remains to show that Ge acts faithfully on L, which by Galois theory is
equivalent to [L : K] = |Ge|. If we consider A as a K-module then

A = ⊕
∑

σ∈G mod Ge

Lσ , (A4)

the direct sum of the K-modules Lσ. Comparing K-dimensions we get from (A3)

[A : K] = (G : Ge) · [L : K] ≤ (G : Ge) · |Ge| = |G| .
From (c) we obtain [L : K] = |Ge|.

If G is abelian then, using (d) we have the following argument to show that Ge

acts faithfully on L: Let τ ∈ Ge and suppose that aτ = a for each a ∈ L. Then
for any σ ∈ G we have aστ = aτσ = aσ, and hence τ leaves every aσ fixed (a ∈ L,
σ ∈ G). From (A4) we conclude that τ leaves every element in A fixed. Hence from
(d): τ = 1.

Proof of A.4: We have to verify that A admits a G-normal basis over K.
We use the structure theorem A.5 which we have proved under the hypotheses of
A.4. The field L as defined by the structure theorem is a Galois field extension
of K whose Galois group we may identify with Ge. There exists a normal basis of
L|K. Accordingly let u ∈ L be such that the uτ with τ ∈ Ge form a basis of L|K.
Each element in G has a unique representation of the form τσ with τ ∈ Ge, and
σ ranging over a set of representatives of left cosets of G modulo Ge. Looking at
(A4) we see that the uτσ form a K-basis of A.

A.6 Decomposition groups. The subgroup Ge ⊂ G in A.5 is called the
decomposition group of A|K associated to the primitive idempotent e.

The decomposition group associated to eσ is σ−1Geσ. Hence the Galois G-
algebra A|K determines a class of conjugate subgroups of G as its decomposition
groups. If G is abelian then the decomposition group is uniquely determined by A
and is called the decomposition group of the Galois G-algebra A|K; it is denoted
by GA.

This definition applies only if the ground ring of A is a field. For a Galois G-
algebra A|R over an arbitrary semisimple algebra R, we consider the decomposition
(A1). The primitive idempotents of R will now be denoted by ε. Thus A is the
direct product of the Galois G-algebras εA|εR, ε ∈ P (R). Each εR is a field,
and hence εA|εR determines a decomposition group contained in G, unique up to
conjugates. Thus, any Galois G-algebra A|R determines finitely many classes of
conjugate decomposition groups in G. Every such class corresponds to a primitive
idempotent ε ∈ P (R).

A.7 Induced algebras: Let A|K be a Galois G-algebra over a field K.
The formula (A2) shows that as G-algebra over K, A is “induced ” by the Ge-algebra
L|K 24 which in turn is a Galois extension of fields whose Galois group is isomorphic

24Here we use the notion of “induced G-algebra” in a similar way as the notion of “induced
G-module” is used in representation theory. For the latter, we have to regard A as a G-module
over K and the formula (A4) shows that and how A is obtained from the Ge-module L over K.
If, besides of the addition in A we consider also the multiplication, i.e., if we consider A not only
as G-module over K but also as G-algebra over K, and similarly for L, then we speak of “induced
G-algebra”. In this case we prefer to use the notation of direct product instead of direct sum, i.e.,
we use formula (A2) instead of (A4).
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to Ge. In particular we see that A as G-algebra over K is uniquely determined by
the Galois field extension L|K and the isomorphism Gal(L|K) ≈ Ge ⊂ G.

Conversely, if L|K is an arbitrary Galois extension of fields and Gal(L|K) ↪→ G
is any injection of its Galois group into G then the construction (A2) yields a
G-algebra A|K; this is a Galois G-algebra as follows from Proposition A.2. Its
decomposition group is, up to conjugates, the image of Gal(L|K) in G. In this
sense, the theory of Galois G-algebras over a field K is essentially the same as the
theory of Galois extensions L|K, together with an injection Gal(L|K) ↪→ G.

A.8 Subalgebras: If A|R is a Galois G-algebra, then every R-subalgebra
B ⊂ A is semisimple.

To see this, we observe that B is commutative, has no nilpotent elements and
is finitely generated over R (hence Artinian) since A has these properties. 25

A.9 Fixed subalgebras: Let A|R be a G-algebra. For a normal subgroup
H ⊂ G let B := Fix(H, A) be the corresponding fixed algebra. B is naturally a
G/H-algebra over R, and A an H-algebra over B. We claim: If A|R is a Galois
G-algebra then:

(i) B|R is a Galois G/H-algebra,
(ii) A|B is a Galois H-algebra.

Proof : (i) Choose a normal basis uσ (σ ∈ G) of A|R . Let % run through a set
of representatives for the cosets %H of G modulo H. The elements u% :=

∑
τ∈H u%τ

are fixed under H and hence contained in B. A direct verification shows that these
u% form an R-basis of B. Since H is normal in G, the left and right cosets of G
modulo H coincide: %H = H%. Hence for the basis constructed above, we have
u% = u%

1. Thus the u% form a G/H-normal basis of B|R. Since B is semisimple by
A.8, it follows that B|R is a Galois G/H-algebra.

(ii) Next we show that A is a Galois H-algebra over B. In view of the reduction
lemma A.3 we may assume from the start that R = K is a field.

(iia) If B is a field too then we simply apply A.4 to the H-algebra A over the
field B. In our case, condition (c) of A.4 reads [A : B] ≥ |H|. This condition is
satisfied because on the one hand |G| = [A : K] = [A : B] · [B : K], and on the
other hand we know from (i) that [B : K] = (G : H) (since B admits the K-basis
u% corresponding to the cosets %H of G modulo H); it follows [A : B] = |H|.

(iib) In general, however, B is not a field and we have to discuss the structure
of B in more detail. Again using A.3 it suffices to show that for every primitive
idempotent ε ∈ P (B) the H-algebra εA is a Galois H-algebra over εB. Here, εB
is a field. We also note that εB = εFix(H, A) = Fix(H, εA). We shall see in (iic)
that εA|εK is a Galois Gε-algebra for some subgroup Gε ⊂ G containing H. Thus
for εA and the group Gε we have precisely the situation as discussed above in (iia),
and we conclude that, indeed, εA is a Galois H-algebra over εB.

(iic) The primitive idempotent ε of B need not be primitive in A. In any case ε
is a sum of orthogonal primitive idempotents of A; let e be one of them. Since ε is
fixed under H, all H-conjugates eτ with τ ∈ H are also summands of ε. Consider
the sum

∑′
τ∈H eτ where the prime indicates that each H-conjugate of e appears

only once. The above sum is an idempotent fixed under H, hence is contained in

25See [6] §29, Satz 2.
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B. Since ε is primitive in B it follows

ε =
∑

τ∈H

′eτ . (A5)

To say that each H-conjugate of e appears only once in ε, is equivalent to saying
that τ ranges over a set of coset representatives of H modulo Ge ∩ H. Here, the
notation is the same as in A.5, namely Ge = Fix(e,G). These τ form a set of
representatives of GeH modulo Ge; note that GeH is a group since H is normal in
G. We put Gε := GeH. It is straightforward to verify that Gε = Fix(ε,G).

εA is naturally a Gε-algebra, and we have from (A5)

εA =
∏

τ∈Gε mod Ge

eτA =
∏

τ∈Gε mod Ge

Lτ (A6)

where we have put L := eA; this is a field. We conclude that the Gε-algebra εA is
induced from the Ge-algebra L|eK, the latter being a Galois extension of fields with
Galois group Ge according to A.5 (applied to the original Galois G-algebra A over
K). We conclude from A.7 that εA is a Galois Gε-algebra over εK, as contended.

A.10 Base extension: Let A|R be a Galois G-algebra. Let S be a
commutative semisimple R-algebra. Then A⊗R S is a Galois G-algebra over S, the
action of G on A⊗R S being defined by (x⊗ y)σ = xσ ⊗ y. Moreover:

(i) For any subgroup H ⊂ G we have Fix(H, A⊗R S) = Fix(H, A)⊗R S.
(ii) Each of the decomposition groups of A ⊗R S is contained in some decom-

position group of A.

Proof : Starting with a normal R-basis uσ (σ ∈ G) for A we obtain a normal
S-basis uσ ⊗ 1 for A⊗R S.

For a subgroup H ⊂ G we use the notation of the proof of A.9; the u% as defined
there form an R-basis of Fix(H,A) and the u% ⊗ 1 an S-basis of Fix(H, A) ⊗R S,
where % ranges over a set of representatives of the cosets of G modulo H.

To show that A⊗R S is semisimple, we first decompose S into a direct product
of fields; note that S is assumed to be semisimple. This reduces the proof to the
case where S, and hence R too, is a field.

Secondly, we decompose A into a direct product of fields: A =
∏

e∈P (A) eA .

By the structure theorem, each eA is a Galois field extension of eR, and its Galois
group is one of the decomposition groups of A|R. This reduces the proof to the case
where A|R is a Galois extension of fields, and G the Galois group of this extension.

Now, the tensor product A ⊗R S of two field extensions A|R and S|R, one
of which is algebraic, separable and of finite degree, is well known to be a direct
product of finitely many fields. Hence A ⊗R S is semisimple. In fact, each direct
field component of A⊗R S is the field compositum A · S after an embedding of A
into an algebraically closed overfield of S. It is well known that A · S is a Galois
extension of S, its Galois group being naturally isomorphic to the Galois group of
A|A ∩ S, hence a subgroup of G.

A.11 Tensor products: (i) If A|R is a Galois G-algebra and B|R a
Galois H-algebra then A ⊗R B is a Galois G × H-algebra. Here, the action of
G×H on A⊗R B is defined by (x⊗ y)(σ,τ) = xσ ⊗ yτ .
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(ii) Conversely, every Galois G × H-algebra C over R is isomorphic to the
tensor product A ⊗R B of the Galois G-algebra A := Fix(H, C) with the Galois
H-algebra B := Fix(G,C).

Proof : (i) By A.10 A ⊗R B is semi-simple. If u ∈ A generates a G-normal
basis of A over R and v ∈ B generates an H-normal basis of B over R then u⊗ v
generates a normal G × H-basis of A ⊗R B over R. Hence A ⊗R B is a Galois
G×H-algebra.

(ii) Since G and H are normal in G×H we see from A.9 that A is a Galois G-
algebra and B is a Galois H-algebra over R. Hence A⊗RB is a Galois G×H-algebra
over R, as shown in (i). The natural map A⊗R B → C is a map of G×H-algebras
over R. The following lemma shows that this is an isomorphism.

A.12 Lemma: Suppose A|R is a Galois G-algebra and B|R is any G-
algebra. Let f : A → B be a homomorphism of G-algebras over R (i.e., a homo-
morphism of R-algebras which is also a homomorphism of G-modules). Then f is
injective. If B too is a Galois G-algebra over R then f is an isomorphism.

Proof : It is enough to prove, for each e ∈ P (R), that the restriction eA → eB
is injective. Thus we may suppose R = K to be a field.

In this case we know from the Structure Theorem A.5 that the primitive idem-
potents of A are permuted transitively by G. Hence the kernel of f cannot contain
any primitive idempotent of A. For, if this would be the case then Ker(f) (which is
stable under G) would contain all primitive idempotents, hence their sum 1, which
gives a contradiction. Since A is semisimple we conclude Ker(f) = 0. Thus f is
injective. If B too is a Galois G-algebra over K then both A and B have the same
dimension over K and hence f(A) = B.

A.13 Tower of Galois algebras: Let g and G be two finite groups. Let
R′|R be a Galois g-algebra and A′|R′ be a Galois G-algebra. Suppose the action of
g on R′ is extended to an action of g on the R-algebra A′ in such a way that as
operator group on A′, g commutes elementwise with G. (Thus A′|R can be viewed
as G × g-algebra.) Put A := Fix(g, A′). (Because of the imposed commuting
condition A is a G-algebra over R.) Then we have:

(i) A′|R is a Galois G× g-algebra.
(ii) A|R is a Galois G-algebra.
(iii) The natural map A⊗R R′ → A′ is an isomorphism of G× g-algebras.
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A′ ≈ A⊗R R′

Proof : (i) We again refer to A.3. So it suffices to show, for a given e ∈ P (R),
that the G×g-algebra eA′|eR is Galois; after changing notation we thus may assume
that R = K is a field.

Since A′|R′ is a Galois G-algebra, it is a free R′-module of rank |G|. Similarly,
[R′ : K] = |g|. It follows

[A′ : K] = |G| · |g| = |G× g| . (A7)

Now the assertion follows from A.4, applied to the G × g-algebra A′|R; note that
Fix(G× g, A′) = R = K.

(ii) and (iii) follow from (i), see Lemma A.12.
Hilbert’s Theorem 90: This theorem holds for arbitrary Galois G-algebras.

However, we need it in this paper for a very special case only, namely for quadratic
Galois G-algebras, which means that the group G is of order 2. In that case the
statement and proof is rather trivial. For the convenience of the reader we shall
present it here.

A.14 Lemma: Suppose A|R is a Galois G-algebra for a group G of
order 2, i.e., G = 〈σ〉 and σ2 = 1. Let a ∈ A×. If aσ+1 = 1 then there exists b ∈ A×

such that a = bσ−1. And conversely.

Proof : Using A.3 we may suppose that R = K is a field. If we put b := 1+a−1

then we compute bσ = a · b using aσ = a−1. Hence if b is a unit in A then b is a
solution of the problem.

If b is not a unit in A then bσ+1 is not a unit either; since bσ+1 is contained
in the field K it follows bσ+1 = 0. But bσ+1 = ab2 and since a is a unit we have
b2 = 0, hence b = 0 because A does not contain nilpotent elements. We conclude
a = −1.

Thus if a = −1 then the above definition of b has to be modified. In that case
we put b := u− uσ where u ∈ A is chosen such that u, uσ are linearly independent
over K (normal basis). Then again, bσ = −b = a · b. This time we can be sure
that b is a unit: otherwise b = 0 (as above) which would imply that u and uσ are
linearly dependent over K.

The converse is directly verified.
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