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1 Statement of main result

Let p be a prime number. We consider exponential sums which are expres-
sions of the form

Sf =
∑

a mod p

e

2πi f(a)
p

where f(x) ∈ Z [x] is a polynomial with integer coefficients. More generally,
instead of the prime field Z /p we may work over any finite field K with
q = pk elements. Let tr : K → Z /p denote the trace operator from K to its
prime field. Then, an exponential sum over K is any expression of the form

Sf =
∑
a∈K

e

2πi tr f(a)
p

where f(x) ∈ K[x] is a polynomial. In order to simplify notation, we put

χ(a) = e

2πi tr (a)
p (a ∈ K) . (1)

This is the canonical character χ : K → Wp from the additive group of
K onto the multiplicative group Wp of p-th roots of unity in the field of
complex numbers. Now the exponential sum as above can be written in the
form

Sf =
∑
a∈K

χf(a) . (2)

1) These notes are meant as reading material for an introductory course on algebraic
function fields. They contain proofs and references for some part of my lectures at the
Escola de Algebra in Rio de Janeiro, July 1996. The notations here, however, may not
always be the same as are used in the lecture. – The present version contains some minor
corrections of the published version.
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Our aim is to derive an upper bound for the absolute value |Sf | of such an
exponential sum.

Every summand of Sf is a complex number of absolute value 1. Since
there are q summands we have the trivial estimate

|Sf | ≤ q . (3)

For some polynomials f(x) we have equality here. For instance, if f(x) =
c is a constant polynomial then χf(a) = χ(c) for every a ∈ K and hence:
Sf = qχ(c), |Sf | = q. Another instance occurs when f(x) is of the form
f(x) = g(x)p− g(x) for some polynomial g(x) ∈ K[x]. Then for each a ∈ K
we have tr g(a)p = tr g(a), hence tr f(a) = 0, χf(a) = 1. Thus Sf = q.

In both these instances the degree d of f(x) is divisible by p. Now we
claim:

Theorem 1 Suppose that the degree d of f(x) is not divisible by p. Then
the exponential sum (2) admits the estimate

|Sf | ≤ (d− 1)
√

q . (4)

Of course, this is a proper improvement against (3) only if d ≤ √
q. The

essential point of Theorem 1 is that for large q this estimate, involving only
the square root, is of much smaller order of magnitude than the trivial
estimate q. This is of great importance in various applications, not only in
coding theory but also in number theory. It can be shown that the exponent
1
2 , which occurs in the square root, is best possible for this problem in its
order of magnitude.

Remark. If f(x) is of the form

f(x) = f1(x) + g(x)p − g(x) (5)

then tr f(a) = tr f1(a) and hence Sf = Sf1 . Now, it is easily verified 2) that
every polynomial f(x) ∈ K[x] can be written in the form (5) such that

deg f1(x) ≤ deg f(x)

and that the following alternatives hold:

either deg f1(x) 6≡ 0 mod p

or deg f1(x) = 0 .

2) See e.g., [S] p.114. (Letters in brackets refer to the bibliography at the end of these
notes.)
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In the first case we see that the estimate (4) of Theorem 1 for f1(x) implies
the same for f(x). In the second case f1(x) = c ∈ K. Thus the only
exceptions to (4) are the polynomials of the form

f(x) = c + g(x)p − g(x)

and for these we have seen that |Sf | = q.
In the following we shall assume throughout that the degree of f(x) is

d 6≡ 0 mod p .

We leave it to the reader to find out which part of our statements remain
valid for arbitrary polynomials.

2

The case of degree d = 1 is easily dealt with. Namely, we then have
f(x) = c0 + c1x with c1 6= 0. If a ranges over the elements in K then
c0 + c1a ranges also over all the elements in K; hence

Sf =
∑
a∈K

χ(c0 + c1a) =
∑
a∈K

χ(a) = 0

because χ is a nontrivial character of the additive group of K.
In the next sections we shall prepare the way which will enable us to

deal with arbitrary degree d 6≡ 0 mod p. Our presentation here follows
essentially that given by Hasse [H]. We shall have to use several facts on
algebraic function fields; these can all be found in Stichtenoth’s book [S].

2 The divisor character χf and its L-series

We work in the rational function field F = K(x). From [S] Chap. I we recall
the notions of place and divisor of F . There are q + 1 places of degree 1 of
F , and they correspond 1 − 1 to the q elements a ∈ K and to ∞. We use
the notations Pa and P∞ respectively. If a ∈ K then Pa is the zero of the
polynomial x− a. And P∞ is the pole of x, which equals the zero of x−1.

The places P 6= P∞ of F correspond 1 − 1 to the irreducible monic
polynomials h(x) ∈ K[x], such that P is the zero divisor of h(x). We use
the notation hP (x) to indicate that this polynomial corresponds to P . The
residue field of P is FP = K(α) where α is a root of hP (x). The degree of
P equals the polynomial degree of hP (x). If a ∈ K then hPa(x) = x− a.

We consider divisors D of F which do not contain P∞ in their support.
Every such divisor is of the form

D =
∑

P 6=P∞

nP · P (6)

3



where the multiplicities nP are integers, only finitely many of which are 6= 0.
These divisors form a group Df , a subgroup of the group D of all divisors of
F . The notation Df indicates that the pole of f , namely P∞, is excluded.

First assume that D is positive; this means that nP ≥ 0 for all multi-
plicities nP of D. We write D ≥ 0. We put

hD(x) =
∏

P 6=P∞

hP (x)nP ;

this is a monic polynomial in K[x], called the characteristic polynomial of
D. Its degree is

n =
∑

P 6=P∞

nP deg P = deg D .

We decompose hD(x) into linear factors:

hD(x) =
∏

1≤i≤n

(x− αi) . (7)

The roots αi
3) are contained in some algebraic extension of K. For any αi,

all its conjugates over K are also roots of hD(x), with the same multiplicity
as αi itself. Hence the following definition yields an element ∂f (D) ∈ K:

∂f (D) =
∑

1≤i≤n

f(αi) . (8)

If D1, D2 ≥ 0 are two positive divisors then hD1+D2 = hD1hD2 and hence

∂f (D1 + D2) = ∂f (D1) + ∂f (D2) .

If D ∈ Df is an arbitrary divisor, not necessarily positive, then we write
D = D1 −D2 as the difference of two positive divisors and define

∂f (D) = ∂f (D1)− ∂f (D2) .

Indeed this is well defined. We thus obtain an additive homomorphism

∂f : Df → K

from the divisor group Df to the additive group of K. The notation ∂f has
been chosen in order to indicate that, as we shall see later, this homomor-
phism can also be defined by suitable differentiation in the field F .

3) From now on we shall use the letter i as a running index. We shall not have occasion
any more to interpret i =

√
−1 as in section 1.
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Combined with the canonical character χ we obtain a character D 7→
χ∂f (D) from Df to the multiplicative group Wp of p-th roots of unity. This
character is denoted by

χf : Df → Wp .

If D = Pa with a ∈ K then by definition,

∂f (Pa) = f(a) (9)

and hence
χf (Pa) = χf(a) . (10)

Now let t be a complex variable and consider the power series

L(t |χf ) =
∑
D≥0

χf (D) · tdeg D = 1 +
∑
n≥1

 ∑
deg D=n

D≥0

χf (D)

 · tn . (11)

where D ranges over the positive divisors in Df . The coefficient of the
first power t1 can be described as follows: The positive divisors D ∈ Df

of degree 1 are precisely the places Pa of degree 1, corresponding to the
elements a ∈ K. For those we have (10) and hence the coefficient of t1 in
(11) equals

∑
a∈K χf(a). This is precisely the exponential sum Sf from (2)

which we wish to estimate. Thus,

L(t |χf ) = 1 + Sf · t + · · · (12)

where the dots indicate terms of higher degree in t. This fact, namely that
Sf appears as the coefficient of the first term of L(t |χf ) , will explain the
appearance of this L-series for the proof of Theorem 1.

The following two theorems govern the behavior of L(t |χf ).

Theorem 2 Assume d 6≡ 0 mod p . Then the L-series L(t |χf ) is in
fact a polynomial in the complex variable t, of degree d− 1.

Accordingly, let us decompose L(t |χf ) into linear factors:

L(t |χf ) =
∏

1≤i≤d−1

(1− ωit)

where the ωi are certain complex numbers, the inverse roots of L(t |χf ). We
see that the coefficient of t1 is the negative sum of these ωi. Comparing with
(12) we conclude:

Sf = −
∑

1≤i≤d−1

ωi . (13)

Now we have, in addition to Theorem 2:
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Theorem 3 Each root ρi of the polynomial L(t |χf ) is of absolute value
|ρi| =

√
q−1. Consequently the inverse roots ωi = ρ−1

i are of absolute value
|ωi| =

√
q.

Therefore from (13) it follows:

|Sf | ≤ (d− 1)
√

q

which is the content of Theorem 1. Note that by Theorem 2 the sum in (13)
has at most d−1 terms ωi ; if d 6≡ 0 mod p then the number of terms in (13)
is precisely d− 1 .

We have seen that Theorem 1 is an immediate consequence of Theorem
2 and Theorem 3. In the following, we shall first discuss the proof Theorem
2, then turn to Theorem 3.

3 The conductor of χf

By definition, χf is obtained by first applying the divisor homomorphism ∂f :
Df → K, then applying the canonical character χ : K → Wp. Accordingly
we first discuss the properties of the divisor homomorphism ∂f . Thereafter
we shall draw the consequences for χf .

Consider the valuation ring O∞ of P∞; it consists of all h ∈ F with
v∞(h) ≥ 0. Recall that, by definition, the valuation v∞ is the negative
degree function. Two elements h, h′ ∈ O∞ are said to be congruent modulo
(d + 1)P∞ if

v∞(h− h′) ≥ d + 1 .

If this is the case then we write

h ≡ h′ mod (d + 1)P∞ .

These congruence classes form a ring, the residue class ring of O∞ modulo
the (d + 1)-th power of its maximal ideal.

The group of units of O∞ is denoted by O×∞; it consists of those h ∈ F
for which v∞(h) = 0. This means that the principal divisor (h) does not
contain P∞ in its support, i.e., (h) ∈ Df .

Two divisors D,D′ ∈ Df are said to be equivalent modulo (d + 1)P∞ if

D −D′ = (h) (14)

is the principal divisor of an element h ∈ O∞ which satisfies

h ≡ 1 mod (d + 1)P∞ . (15)
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(This implies h ∈ O×∞.) If this is the case then we write

D ∼ D′ mod (d + 1)P∞ .

The corresponding divisor classes are called ray classes modulo (d + 1)P∞.
Our first aim is to prove that ∂f (D) depends only on the ray class of

D modulo (d + 1)P∞. That is, we have to show that ∂f (D) = 0 if D ∼
0 mod (d + 1)P∞. To this end we will give another description of how to
compute ∂f (D) .

The differential 4)
dh

h
is called the logarithmic differential of h, and it is

denoted by dlog h. We note the homomorphic property:

dlog (h1h2) = dlogh1 + dlog h2 . (16)

If D is any divisor in Df , say of degree n, then D − nP∞ is of degree 0
and hence a principal divisor:

D − nP∞ = (h)

for some 0 6= h ∈ F which is uniquely determined up to a constant factor.
We write this relation in the form

D = (h)f (17)

which says that the principal divisor of h represents D except at the pole of
f (which is P∞).

Lemma 4 Let D ∈ Df be represented by h ∈ F in the sense (17) as
explained above. Then

∂f (D) = −res∞(f · dlog h) (18)

where res∞ denotes the residue at P∞ .

Proof :
(i) If D is represented by h and by h′ then h′ = c · h with c ∈ K×. We

note that dlog (c · h) = dlog h; thus the right hand side of (18) does not
change if we replace h by c · h. In other words: It is clear from the start
that the right hand side of (18) depends on D only and not on the choice of
the function h which represents D.

4) As for the notion and properties of differentials and their residues we refer to [S]
Ch. IV.
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(ii) Every divisor D is a linear combination, with integer coefficients, of
prime divisors. Because of the homomorphic property (16) we conclude: it
is sufficient to prove (18) in the case when D = P is a prime divisor. For
simplicity, let us first discuss the case when P = Pa is of degree 1, hence
h can be taken to be the linear polynomial h = x − a. By (9) we have
∂f (Pa) = f(a).

For the computation of the residue at P∞ we have to expand all functions
involved into Laurent series with respect to a prime element at P∞. We take
u = x−1 as prime element and compute

dlog (x− a) =
dx

x− a
=

x−1dx

1− ax−1
=
−u−1du

1− au

= −
∑

0≤ν<∞
aνuνdlog u .

We write
f(x) =

∑
0≤j≤d

cjx
j =

∑
0≤j≤d

cju
−j

and obtain

−f · dlog (x− a) =
∑

0≤j≤d

∑
0≤ν<∞

cja
νuν−jdlog u .

By definition, dlog u = u−1du has a pole of order 1 at P∞, with residue
= 1. Hence we see that the residue of the left hand side is obtained as
the coefficient of u0 in the above expansion, i.e., the sum of the terms with
ν = j:

− res∞f · dlog (x− a) =
∑

j

cja
j = f(a) . (19)

(iii) Now, if D = P is a prime divisor of degree n > 1 then we decompose
its characteristic polynomial hP (x) into linear factors as in (7). The roots
αi are contained in an algebraic extension of K, and ∂f (P ) is given by (8):

hP (x) =
∏

1≤i≤n

(x− αi) , ∂f (P ) =
∑

1≤i≤n

f(αi) .

Accordingly, using the result of the computation (19) for each factor:

−res∞f · dlog hD(x) = −
∑

1≤i≤n

res∞f · dlog (x− αi)

=
∑

1≤i≤n

f(αi) = ∂f (P ) .

2
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Proposition 5 If D ∼ 0 mod (d + 1)P∞ then ∂f (D) = 0 . Hence the
homomorphism ∂f : Df → K depends only on the ray classes of Df modulo
(d + 1)P∞. If d 6≡ 0 mod p then the number d + 1 is minimal with the
above property. In fact, ∂f induces a surjection from the group of divisors
D ∼ 0 mod dP∞ onto K.

Proof :
Suppose that D ∼ 0 mod dP∞. Then D = (h) with h ≡ 1 mod dP∞.

As above, we use u = x−1 as a prime element at P∞; the corresponding
expansion of h is of the form

h = 1 + aud + · · · (at P∞) (20)

with a ∈ K. The dots indicate terms of higher order. Differentiation yields

dh = daud−1du + · · ·

Multiplying with h−1 ≡ 1 mod dP∞:

dlog h = daud−1du + · · · = dauddlog u + . . .

Hence

f · dlog h =
(
cdu

−d + cd−1u
−d+1 + . . . + c0

)
·
(
daud dlog u + · · ·

)
= cddadlog u + · · · .

Here, the dots represent differentials of order ≥ 0, without residue. We
obtain in view of Lemma 4

∂f (D) = −cd · d · a . (21)

This holds for every divisor D ∼ 0 mod dP∞.
If D ∼ 0 mod (d + 1)P∞ then a = 0 and hence ∂f (D) = 0.
Now, if d 6≡ 0 mod p then cd 6= 0 . Consequently, ∂f (D) = 0 only if

a = 0 which means D ∼ 0 mod (d + 1)P∞. Moreover, every element a ∈ K
belongs to some divisor D ∼ 0 mod dP∞, in the sense of (20). For instance
we can take D to be the principal divisor of the function

h = 1 + aud =
xd + a

xd
.

If a ranges over K then, by (21), we see that ∂f (D) ranges over K too.
2

Next we consider the character χf = χ ◦ ∂f . Since χ is nontrivial on K
we obtain from Proposition 5 the following proposition which will turn out
to be the key to Theorem 2.
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Proposition 6 As above, d denotes the degree of the polynomial f(x).
The character χf : D → Wp is a ray character modulo (d + 1)P∞, which
means that χf (D) depends only on the ray class of D modulo (d + 1)P∞.
Moreover, d+1 is the minimal integer with this property. In fact, χf induces
a surjection from the group of divisors D ∼ 0 mod dP∞ onto Wp .

Because of the minimality property mentioned, the divisor (d + 1)P∞ is
called the conductor of the character χf . This terminology is borrowed from
number theory where it is used in similar situations for divisor characters.

4 The L-series as a polynomial

If two divisors D,D′ ∈ Df are equivalent modulo (d + 1)P∞ then they have
the same degree: This follows from the definition in section 3 since D −D′

is a principal divisor, hence of degree 0. Consequently we can speak of “ray
classes modulo (d + 1)P∞ of a given degree”.

Lemma 7 For each n there are qd ray classes modulo (d + 1)P∞ of
degree n. If n ≥ d then every such ray class contains a positive divisor and
the number of positive divisors in each ray class is qn−d.

Proof :
(i) Let D ∈ Df be of degree n, and let D = (h)f . As in the foregoing

section we consider the expansion of h at P∞ with respect to the prime
element u = x−1. We have v∞(h) = −deg h = −deg D = −n, hence this
expansion is of the form h = cu−n+· · · with 0 6= c ∈ K. After multiplication
of h with c−1 we may assume that c = 1. We write the expansion of h in
the form

h = u−n(1 + a1u + a2u
2 + · · ·) (at P∞) . (22)

Let D′ be a second divisor of degree n, with representing function h′ and
expansion

h′ = u−n(1 + a′1u + a′2u
2 + · · ·) (at P∞) .

According to the definition, we have D ∼ D′ mod (d + 1)P∞ if and only if
h

h′
≡ 1 mod (d + 1)P∞, which is to say that

1 + a1u + a2u
2 + · · · ≡ 1 + a′1u + a′2u

2 + · · · mod (d + 1)P∞ .
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This in turn means
ai = a′i (1 ≤ i ≤ d) .

Now, every vector (a1, . . . ad) over K belongs to a ray class of degree n in
the above sense, namely to the ray class of the divisor D which is represented
by

h = u−n(1 + a1u + · · ·+ adu
d) = xn + a1x

n−1 + · · ·+ adx
n−d . (23)

Thus there is a 1 − 1 correspondence between the ray classes modulo (d +
1)P∞ of degree n, and the vectors in the d-dimensional vector space Kd.

Since K has order q there are precisely qd vectors in Kd. We conclude
that there are qd ray classes modulo (d + 1)P∞ of given degree n, as con-
tended.

(ii) If n ≥ d then the function h in (23) is a monic polynomial in K[x],
hence h is the characteristic polynomial of a positive divisor, hence D ≥ 0.

(iii) Let n ≥ d. The positive divisors D of degree n correspond 1 − 1
to their characteristic polynomials hD(x), which are monic polynomials of
degree n:

hD(x) = xn + a1x
n−1 + · · ·+ an

We have seen in (i) that the ray class of D modulo (d + 1)P∞ is uniquely
characterized by the vector (a1, . . . , ad) of the first d coefficients. If we fix
this vector then there are precisely qn−d vectors of the form (ad+1, . . . , an)
each of which belongs to a positive divisor of the same ray class.

2

Now we are able to show:

Proposition 8 If n ≥ d then
∑

deg D=n
D≥0

χf (D) = 0 . Consequently, the

L-series L(t |χf ) as defined in (11) is a polynomial in t of degree ≤ d− 1.

(Later it will turn out that the degree is precisely d− 1.)
Proof :

By Proposition 6 the character value χf (D) depends only on the ray class
of D modulo (d + 1)P∞. Let n ≥ d. By Lemma 7 each ray class of degree
n contains qn−d positive divisors. We choose a set Rn of representatives of
the ray classes modulo (d + 1)P∞ of degree n. Then∑

deg D=n
D≥0

χf (D) = qn−d
∑

D∈Rn

χf (D) .

11



Let A ∈ Df be a fixed, auxiliary divisor of degree n. We subtract A from
each divisor D ∈ Rn and obtain a system of representatives R0 = Rn − A
of the ray classes modulo (d + 1)P∞ of degree 0. We put D − A = D0, so
that χf (D) = χf (A)χf (D0), and we compute∑

D∈Rn

χf (D) = χf (A)
∑

D0∈R0

χf (D0) .

According to Lemma 7 the ray classes modulo (d + 1)P∞ of degree 0 form
a finite group, of order qd. By Proposition 6 the character χf induces a
nontrivial character on that group. Consequently,∑

D0∈R0

χf (D0) = 0

which proves our contention.
2

Since d 6≡ 0 mod p it will turn out that the degree of the polynomial
L(t |χf ) is precisely d− 1, in accordance with the contention of Theorem 2 .

5 Artin-Schreier extension of K(x)

Let P be a prime divisor of F = K(x), and assume P 6= P∞. Let FP denote
the residue field. We have FP = K(α) where α is a root of the characteristic
polynomial hP (x) . In this situation we claim:

Proposition 9 χf (P ) = 1 if and only if there exists β ∈ FP such that
βp − β = f(α).

Proof :
By definition (1), the canonical character χ is composed of the trace

map trK :K → Z /p 5) and of the isomorphism Z /p ≈ Wp given by the
exponential function. Hence

χf (P ) = χ∂f (P ) = 1 ⇐⇒ trK ∂f (P ) = 0 .

Accordingly we will show that trK ∂f (P ) = 0 if and only if the condition as
given in Proposition 9 is satisfied.

5) We write trK if we wish to indicate the field K on which this trace is defined.
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The characteristic polynomial hP (x) is irreducible over K and hence its
roots are precisely the conjugates αqi

over K. Here, i ranges from 0 to n−1
where n = deg P = [FP : K]. It follows

∂f (P ) =
∑

0≤i≤n−1

f(αqi
) =

∑
0≤i≤n−1

f(α)qi
= trP f(α)

where trP : FP → K denotes the relative trace map from the residue field
FP . The so-called “transitivity rule” for the trace says that trK ◦trP = trFP

,
and so we conclude

trK ∂f (P ) = trFP
f(α) .

Now our contention is evident from the following well known statement on
the trace function of finite fields:

Let L be any finite field and z ∈ L. Then we have trL(z) = 0 if and only
if there exists β ∈ L such that βp − β = z.

Indeed, since the trace map trL : L → Z /p is surjective there exists
u ∈ K such that trL(u) = 1. Suppose that trL(z) = 0. Then it is straight-
forwardly verified that the following element β satisfies βp − β = z:

β = −
∑

0≤i≤n−1

(z + · · ·+ zpi
)upi

where n = [L : Z /p]. – The converse is trivial.
2

In view of Proposition 9 it appears natural to consider the function field

E = K(x, y) , yp − y = f(x) . (24)

This is called an Artin-Schreier extension of F = K(x) . For the following
facts we refer to [S], p.115 ff. and p.200 ff. where Artin-Schreier extensions
are discussed.

Since f(x) is of degree d 6≡ 0 mod p, the field E is a proper extension of
F , of degree

[E : F ] = p ,

and K is the field of constants of E. Moreover E|F is a Galois extension, the
automorphisms being given by the substitutions y 7→ y + j with j ∈ Z /p.

We are considering the prime divisors, or places, of E ; they are denoted
by Q. Each such Q induces a prime divisor P in F ; we write Q|P to express
this situation and say that Q lies over P , or that Q extends P . According
to [S] p.115 ff. there are three types of extensions of places in E|F , namely
the following.
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(1.) Ramification. If P ramifies in E then there is only one prime Q of
E lying over P , and its ramification degree over P equals p. The residue
field is EQ = FP , i.e., deg Q = deg P .

The prime P = P∞, being the only pole of f(x), is the only prime of F
which ramifies in E .

We write Q∞ for the unique extension of P∞ in E.
(2.) Splitting. If P splits in E then there are precisely p primes Q1, . . . , Qp

of E which are lying over P . Each of these primes is unramified over P , and
the residue field is EQi = FP , hence deg Qi = deg P (1 ≤ i ≤ p) . Let hP (x)
be the characteristic function of P and α ∈ FP a root of hP (x). Splitting
occurs precisely for those primes P 6= P∞ for which there exists β ∈ FP such
that βp − β = f(α).

Hence, Proposition 9 shows that splitting occurs precisely at those primes
P of F for which χf (P ) = 1 .

(3.) Inertia. If P is inert in E then there is only one prime Q of E which
lies above P and this is unramified. The residue degree is [EQ : FP ] = p ,
and hence deg Q = p · deg(P ). Inertia occurs precisely for those primes
P 6= P∞ for which the equation yp − y = f(α) does not have a root in FP .

Hence, Proposition 9 shows that inertia occurs precisely at those primes
P of F for which χf (P ) 6= 1 . In this case χf (P ) is a primitive p-th root of
unity.

These facts will allow us to connect our L-series with the zeta function
of the field E. Before stating the corresponding theorem let us point out
that the L-series can be defined not only as an additive series as in (11) but
also as a product:

L(t |χf ) =
∏

P 6=P∞

1
1− χf (P )tdeg P

=
∑
D≥0

D∈Df

χf (D)tdeg D , (25)

The fact that product and sum coincide follows from: (i) that every positive
divisor D ∈ Df is uniquely representable as a sum of primes 6= P∞:

D = P1 + · · ·+ Pr

and (ii) that χf is a multiplicative character:

χf (D) = χf (P1) · · ·χf (Pr) .

Formally, we can include the prime P∞ in the product and in the sum in
(25) by putting χf (P∞) = 0 .
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All what we have said about the L-series L(t |χf ) belonging to the canon-
ical character χ of K, remains valid mutatis mutandis if we replace χ by
a non-trivial power χj (1 ≤ j ≤ p − 1) . For, χj is obtained from χ by an
automorphism of the field of p-th roots of unity over Q . In particular we
see that L(t |χj

f ) is a polynomial in t of degree ≤ d− 1 .
Now we introduce the zeta function 6)

ZE(t) =
∏
Q

1
1− tdeg Q

=
∑
N≥0

tdeg N

where Q ranges over all primes of E (including Q∞), and N ranges over all
positive divisors of E (including those whose support contains Q∞). The
symbol t denotes a complex variable. Again, the fact that product and
sum coincide is due to the fact that each positive divisor N is uniquely
representable as a sum of prime divisors Q.

Besides ZE(t) we have to consider the zeta function of the rational field
F = K(x), defined as

ZF (t) =
∏
P

1
1− tdeg P

=
∑
D≥0

tdeg D

where P ranges over all primes of F (this time including P∞) and D over all
positive divisors of F (including those which contain P∞ in their support).

For any given n > 0 there are
qn+1 − 1

q − 1
positive divisors of degree n . This

yields

ZF (t) =
∑
n≥0

qn+1 − 1
q − 1

· tn =
1

(1− t)(1− qt)
.

This being said, we now can state:

Theorem 10 The zeta function ZE(t) satisfies

ZE(t) = ZF (t)
∏

1≤j≤p−1

L(t |χj
f ) =

∏
1≤j≤p−1

L(t |χj
f )

(1− t)(1− qt)

Proof :

6) For the general theory of the zeta functions of function fields we refer to [S] pp.158ff.
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We work with the product representations of the functions involved. For
each prime P of F we show that the product of the terms belonging to P ,
on the left hand side and on the right hand side, are equal. That is:∏

Q|P

(1− tdeg Q) = (1− tdeg P )
∏

1≤j≤p−1

(1− χj
f (P )tdeg P ) . (26)

We distinguish the three types:
(1.) Ramification. In this case P = P∞, Q = Q∞, deg Q∞ = deg P∞ =

1 and χf (P∞) = 0. Thus on both sides of (26) we have 1− t.
(2.) Splitting. Let us put tdeg P = T . There are p primes Qi|P , and

deg Qi = deg P for each of them. Thus the left hand side of (26) is

(1− T )p .

In the split case we have χf (P ) = 1 and therefore also χj
f (P ) = 1 for

1 ≤ j ≤ p− 1 . Hence on the right hand side of (26) we have again

(1− T )
∏

1≤j≤p−1

(1− T ) = (1− T )p .

(3.) Inertia. Again let tdeg P = T . There is only one prime Q|P and
deg Q = p deg P . Thus the left hand side of (26) is

1− T p .

In the inert case we know that χf (P ) = ξ 6= 1, and ξ is a primitive p-th root
of unity. Hence on the right hand side of (26) we have again

(1− T )
∏

1≤j≤p−1

(1− ξjT ) = 1− T p .

2

At this point we invoke the general theory of the zeta function of a
function field. See [S] p.166 for the following

Theorem 11 The zeta function ZE(t) is of the form

ZE(t) =
LE(t)

(1− t)(1− qt)

where LE(t) ∈ Z[t] is a polynomial with integer coefficients, of degree 2g.
Here, g denotes the genus of the function field E.
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Since E is an Artin-Schreier extension of F of the form (24), its genus g
is computed to be

g =
(p− 1)(d− 1)

2
;

see [S] p.115. (Here we use again the fact that d 6≡ 0 mod p .) In particular
we see that 2g, the degree of LE(t), is given by

2g = (p− 1)(d− 1) . (27)

Now we compare Theorem 11 with Theorem 10 and obtain

LE(t) =
∏

1≤j≤p−1

L(t |χj
f ) . (28)

As said above, the left hand side is a polynomial of degree (p − 1)(d − 1).
Each factor on the right hand side is a polynomial of degree ≤ d − 1 by
Proposition 8. Comparing degrees, we conclude that each L(t |χj

f ) is of
exact degree d− 1, as claimed in Theorem 2.

In order to deduce Theorem 3 we use the Hasse-Weil Theorem; see [S]
p.169:

Theorem 12 Each root ρ1, . . . , ρ2g of LE(t) has absolute value

|ρi| =
√

q−1 (1 ≤ i ≤ 2g) .

In view of (28) the roots of L(t |χf ) are among the 2g roots of LE(t) and so
we obtain Theorem 3.

6 Generalization to rational functions

In many applications, it is of importance to deal also with exponential sums
where f(x) is a non-constant rational function, rather than a polynomial.
For instance, in the case of

f(x) = x +
1
x

the corresponding exponential sum is known under the name of “Kloost-
erman sum”. Let us discuss the changes which are necessary in the above
treatment if we wish to include rational functions too. These changes are
mostly straightforward and of a technical nature; the main ideas are the
same as for polynomials.
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(6.1) Statement of main theorem
If f(x) is a rational function then in the definition (2) of the exponential

sum Sf the summation has to be restricted to those elements a for which
f(a) is defined, which is to say that a is not a pole of f(x). On the other
hand, a = ∞ is permitted if ∞ is not a pole of f(x), i.e., if deg(f) ≤ 0.
Accordingly we write

Sf =
∑

a∈K∪∞

′χf(a) . (29)

where the prime indicates the range of a as explained above. Of course it
may happen that f(a) is not defined for any a ∈ K ∪ ∞. In this case the
above sum is empty and Sf = 0. It is easily seen that this does not occur if
the order q of K is sufficiently large.

In the case when f(x) is a polynomial, Theorem 1 was formulated under
the hypothesis that the degree of f is not divisible by p. If f(x) is a rational
function then this hypothesis is to be formulated as follows: Every pole order
of f should not be divisble by p.

Let Pf denote the set of prime divisors of F = K(x) which are poles of
f . For each P ∈ Pf we put

dP = −vP (f) .

dP > 0 is the pole order of f at P . If f is a polynomial then we have only
one pole P∞ and dP∞ is the degree d of f(x) which appears in the estimate
of Theorem 1.

Now in our general case Theorem 1 has to be formulated as follows:

Theorem 13 Let f(x) be a non-constant rational function. Suppose
that all the pole orders dP of f(x) are not divisible by p, and define d by the
formula

d + 1 =
∑

P∈Pf

(dP + 1) deg P . (30)

Then the exponential sum (29) admits the estimate

|Sf | ≤ (d− 1)
√

q . (31)

Remark: It can be shown, similarly as for polynomials, that each ra-
tional function f(x) ∈ K(x) can be written in the form

f(x) = f1(x) + g(x)p − g(x)

where f1, g are rational functions and the pole orders of f1 are not divisible
by p. Moreover the poles of f1 (if there are any) are among the poles of f
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and and the pole orders of f1 are not greater than the corresponding pole
orders of f . 7) From this one deduces that |Sf | ≤ |Sf1 |+ c where c denotes
the number of poles of f which are not poles of f1. Consequently, if f1 is not
constant then the estimate (31) for f1 implies the same estimate for f . Thus
again, the only exceptions to (31) are the rational functions of the form

f(x) = c + g(x)p − g(x) .

(6.2) The divisor character χf

This time we define Df to be the group of those divisors of F = K(x)
which do not contain any pole P ∈ Pf in their support. Again the char-
acter χf : Df → Wp will be defined as the composite of a certain divisor
homomorphism ∂f : Df → K with the canonical character χ : K → Wp.

In order to define ∂f (D) for D ∈ Df , it suffices to do it when D = P is
a prime divisor of Df . Let f(P ) denote the residue class of f with respect
to P 8); this is an element in the residue field FP . (Observe that P is not
a pole of f and hence f(P ) 6= ∞.) Recall that trP : FP → K denotes the
trace map from FP to K. Then we define

∂f (P ) = trP f(P ) . (32)

If P = Pa is a prime divisor of degree 1 belonging to some element a ∈
K ∪∞ then ∂f (Pa) = f(a), as in the case of polynomials. For any divisor
D =

∑
i niPi in Df we have

∂f (D) =
∑

i

ni∂f (Pi) .

Based on this definition, the divisor character χf and its L-series L(t |χf )
are defined in the same way as in section 2, and formula (12) holds. It
remains to discuss how Theorems 2 and 3 are to be proved in the case of a
rational function.

(6.3) The conductor of χf

We define the positive divisor M to be

M =
∑

P∈Pf

(dP + 1)P . (33)

7) In order to prove this, the rational function f(x) is to be decomposed into its
“principal parts” which correspond to the poles of f . To each principal part one has to
apply the same arguments as for polynomials (which are the principal parts at P∞).

8) For this notation see [S] p.6.
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It is called the enlarged pole divisor of f . (The word “enlarged” indicates
that its multiplicities are dP + 1 and not dP as in the case of the ordinary
pole divisor.) This divisor plays the same role as the divisor (d + 1)P∞ in
the case of a polynomial. We have by (30)

d + 1 = deg M .

Two divisors D,D′ ∈ Df are said to belong to the same ray class modulo
M if, firstly, D−D′ = (h) is a principal divisor of some element h ∈ F such
that, secondly,

h ≡ 1 mod (dP + 1)P (for each P ∈ Pf ) .

These simultaneous congruences, for each P ∈ Pf , are usually abbreviated
in the form

h ≡ 1 mod M . (34)

If this is the case then we write

D ∼ D′ mod M .

The next step is to verify the analogue of formula (18) in Lemma 4, i.e.,
that ∂f (D) can also be computed by residues of differentials.

At this point, perhaps some words should be said about the notion of
“residue of a differential at P ” in the case when P is a prime divisor of
degree > 1. In [S] the residue of a differential is defined for primes of degree
1 only: in that case, one has to choose a prime element u for P and expand
the differential in question, say ω, into a Laurent series with respect to this
prime element:

ω =
∑

−∞<<ν

cνu
νdu . (35)

The coefficients cν are contained in K; the symbol −∞ << ν as a summation
condition should indicate that the summation starts from some index ν0

(which may be negative). In this setting, the residue of ω at P is defined to
be the coefficient c−1. It is proved that this does not depend on the choice
of the prime element u.

Now, if deg P = n > 1 then the expansion (35) into Laurent series with
respect to a prime element u is still possible – but this time the coefficients
of such expansions are contained in the residue field FP , not necessarily in
K. More precisely: The completion F̂P of F with respect to the P -adic
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valuation is K-isomorphic to the field of formal power series in u over the
residue field FP . 9) It is customary to define the residue of ω at P as

resP (ω) = trP (c−1) (36)

where, as above, trP : FP → K denotes the trace function. In the following
formulas the residue resP of a differential is to be understood in this way.
If deg P= 1 then the trace trP is the identity map and hence we obtain the
former definition described above.

We have:

Lemma 14 Let D ∈ Df be a divisor of degree 0. Then D = (h) is a
principal divisor of some function h ∈ F and we have

∂f (D) = −
∑

P∈Pf

resP (f · dlog h) (37)

Proof :
(i) Since we work in a rational function field F = K(x), every divisor of

degree 0 is a principal divisor.
(ii) First we consider a prime P /∈ Pf ; let nP denote the multiplicity of

P in D. Choose a prime element u at P . Since D = (h) we have vP (h) = nP

and hence
h = unP z

where z is a unit at P , i.e., vP (z) = 0. 10) Thus

dlog h = nP · dlog u + dlog z

resP (f · dlog h) = nP resP (f · dlog u) + resP (f · dlog z) .

Since P is not a pole of f the P -adic expansion of f is of the form

f = c0 + c1u + c2u
2 + · · ·

with coefficients cν ∈ FP and c0 = f(P ). We compute

f · dlog u = c0 · dlog u + · · · = f(P ) · du

u
+ · · ·

9) The standard reference for this is the book Hasse, Zahlentheorie, which has also
been translated into English. See in particular chapter II of that book.

10) The functions u and z depend on the choice of P and, hence, should be denoted by
uP , zP . But since P is fixed for the moment we prefer the simpler notation u, z.
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where the dots · · · indicate differentials which are holomorphic at P , hence
have no residue. The differential

f · dlog z = f · dz

z

is also holomorphic at P since z is a unit at P . Using the definition (36) we
conclude

resP (f · dlog h) = nP · resP (f(P )
du

u
) = nP · trP f(P ) = nP · ∂f (P ) ,

according to (32). Since D =
∑

P /∈Pf
nP P we see that∑

P /∈Pf

resP (f · dlog h) = ∂f (D).

(iii) Now we apply the well known residue theorem for differentials, which
says that the sum of all residues of a differential is zero:∑

P /∈Pf

resP (f · dlog h) +
∑

P∈Pf

resP (f · dlog h) = 0 ,

We obtain (37).
2

Remark: When we compare Lemma 14 with Lemma 4 then we observe
that Lemma 4 is formulated in more generality, namely for a divisor D of
arbitrary degree, not necessary of degree 0. The reason for this is that in
our more general situation here it is not always true that there exists h ∈ F
with D = (h)f , i.e., such that the principal divisor of h represents D except
at the poles of f . It is easily verified that such h exists if and only if the
degree deg D is a multiple of the greatest common divisor of the degrees
deg P for P ∈ Pf . If this condition is satisfied then the relation D = (h)f

implies the validity of formula (37): in fact we can use exactly the same
proof as above. – In the following we shall use (37) in the case of divisors
of degree 0 only.

Now, the analogue of Proposition 5 in our more general situation reads
as follows:

Proposition 15 If D ∼ 0 mod M then ∂f (D) = 0. Hence the homo-
morphism ∂f : Df → K depends only on the ray classes of Df modulo M .
Moreover, when all the pole orders of f are not divisible by p then M is
the smallest modulus with this property. More precisely: If M ′ is another
divisor such that 0 ≤ M ′ < M then ∂f induces a surjection from the group
of divisors D ∼ 0 mod M ′ onto K.
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Proof :
(i) Suppose that D ∼ 0 mod M . Then D = (h) with h ≡ 1 mod M . Let

P ∈ Pf . We choose a prime element u for P . Since h ≡ 1 mod (dP + 1)P ,
we see that its P -adic expansion is of the form

h = 1 + audP +1 + · · ·

with a ∈ FP , where the dots indicate terms of higher order. We differentiate:

dh = (dP + 1)audP du + · · ·

and multiply with h−1 ≡ 1 mod (dP + 1)P :

dlog h = (dP + 1)audP du + · · · .

Here, the dots indicate terms of order ≥ dP +1. We see that vP (dlog h) ≥ dP

(and = dP if (dP + 1)a 6= 0). On the other hand, the function f has a pole
at P of order dP , which is to say that vP (f) = −dP . We conclude that

vP (f · dlog h) ≥ 0 ,

i.e., the differential f · dlog h is holomorphic at P and hence has no residue.
This holds for every P ∈ Pf . From (37) we infer that ∂f (D) = 0.
(ii) Now let 0 ≤ M ′ < M be a smaller modulus. There exists at least

one prime divisor P ∈ Pf whose multiplicity in M ′ is strictly smaller than
its multiplicity in D (which is dP + 1). Hence we have M ′ ≤ M − P , and
it suffices to prove the assertion of Proposition 15 for M −P instead of M ′.
We have

M − P = dP P +
∑

Q∈Pf

Q6=P

(dQ + 1)Q .

Let D ∈ Df be such that D ∼ 0 mod M − P . Then D = (h) with
h ≡ 1 mod M − P . If Q ∈ Pf , Q 6= P then h ≡ 1 mod (dQ + 1)Q, and the
same argument as in (i) shows that resQ(f · dlog h) = 0. Therefore, in order
to compute ∂f (D) we only have to compute the residue resP (f · dlog h) at
the one single prime divisor P .

We have h ≡ 1 mod dP P , and hence the P -adic expansion of h is of the
form

h = 1 + budP + · · · (38)

with b ∈ FP . From this we deduce similarly as above that

dlog h = dP budP−1du + · · · = dP budP
du

u
+ · · · .
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The function f has a pole of order dP and so its expansion at P is of the
form

f = cu−dP + · · ·
with c 6= 0. Thus

f · dlog h = dP bc · du

u
+ · · ·

resP (f · dlog h) = dP · trP (bc)
∂f (D) = −dP · trP (bc) .

The trace map trP : FP → K is surjective. If the pole order dP 6≡ 0 mod p
we conclude that the map b 7→ −dP · trP (bc) is also surjective to K. (Note
that have c 6= 0 as said above already.)

It remains to verify that to every b ∈ FP there exists a divisor D ∈ Df

of degree 0 such that, firstly, D ∼ 0 mod M − P , and secondly this given b
appears in the expansion (38).

Indeed, this is an immediate consequence of the so-called weak approxi-
mation theorem for valuations. 11) Accordingly, given b ∈ FP and a prime
element u for P there exists h ∈ F such that

h ≡ 1 + budP mod (dP + 1)P
h ≡ 1 mod (dQ + 1)Q if Q ∈ Pf , Q 6= P .

Then the principal divisor D = (h) satisfies our requirements.
2

From Proposition 15 we obtain the following result for χf , which is the
generalization of Proposition 6 in section 3 and is obtained in the same way
as there.

Proposition 16 As above, M denotes the extended pole divisor of f(x).
The character χf : Df → Wp is a ray character modulo M , which means
that χf (D) depends only on the ray class of D modulo M . Moreover, if all
pole orders of f are dP 6≡ 0 mod p then M is the smallest modulus with this
property, in fact: for 0 ≤ M ′ < M the map χf induces a surjection from
the group of divisors D ∼ 0 mod M ′ onto Wp .

Accordingly M is then called the conductor of the divisor character χf .

(6.4) The L-series as a polynomial
In the general case of a rational function f(x) we have to reformulate

Lemma 7 as follows.

11) See [S] page 11.
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Lemma 17 For each n ∈ Z there exists a divisor D ∈ Df of degree n.
The number of ray classes modulo M of degree n is finite and it does not
depend on n. If n ≥ d then every ray class modulo M of degree n contains
a positive divisor, and the number of positive divisors in each such ray class
is qn−d.

Proof :
(i) For every integer n > 0 there exist irreducible polynomials in K[x] of

degree n. (This is so because there exists a field extension of K of degree n.)
We choose one such irreducible polynomial and let Pn be the corresponding
prime divisor of F = K(x). If n is different from the finitely many degrees
deg P for P ∈ Pf then Pn /∈ Pf and hence Pn is contained in Df . Otherwise,
we choose two auxiliary integers n1, n2 > 0 which are different from the
finitely many degrees deg P for P ∈ Pf , and such that they are relatively
prime to each other. Then every integer n ∈ Z can be written in the form
n = λ1n1 + λ2n2 with λ1, λ2 ∈ Z . The divisor D = λ1Pn1 + λ2Pm2 is
contained in Df and is of degree n.

(ii) Let n ∈ Z . We fix a divisor A ∈ Df of degree n. Let D range over
all divisors of degree n in Df . Then the map D 7→ D−A establishes a 1− 1
correspondence between the ray classes modulo M of degree n and the ray
classes modulo M of degree 0. Hence the number of ray classes of given
degree n equals the number of ray classes of degree 0.

Now let n = 0. If D ∈ Df is of degree 0 then D = (h) is a principal
divisor. h has no pole or zero in Pf . We denote by OPf

the ring of all
functions which have no pole in Pf . Hence h is a unit in this ring.

By definition of ray classes, the congruence class of h modulo M deter-
mines the ray class of D modulo M . From this we infer that there are only
finitely many ray classes of degree 0, because there are only finitely many
congruence classes in OPf

modulo M . In fact, the following arguments show
that there are precisely qd+1 such congruence classes:

(iii) For each P ∈ Pf we choose a prime element uP for P . Every
function h ∈ OPf

admits a P -adic expansion of the form

h = cP,0 + cP,1uP + cP,2u
2
P + · · · (at P ) (39)

with coefficients cP,ν ∈ FP . If we deal with congruences in OPf
modulo

M then, by definition (34), this means simultaneous congruences modulo
(dP + 1)P for all P ∈ Pf . This in turn means that only the first dP + 1
coefficients cP,0, cP.1, . . . , cP,dP

in the expansion (39) are relevant. In other
words:
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Two functions h, h′ ∈ OPf
are congruent modulo M if and only if for

each P ∈ Pf , the first dP + 1 coefficients of their expansions coincide:
cP,ν = c′P,ν for 0 ≤ ν ≤ dP .

Again from the “weak approximation theorem” we infer: given for each
P ∈ Pf arbitrary coefficients cP,ν (0 ≤ ν ≤ dP ) then there exists h ∈ OPf

such that

h ≡ cP,0 + cP,1uP + · · ·+ cP,νu
dP
P mod (dP + 1)P (P ∈ Pf ) .

In other words: the residue classe in OPf
modulo M are uniquely described

by the vectors of coefficients (cP,0, . . . , cP,dP
) which may range freely over FP

(for P ∈ Pf ). Since FP has qdeg P elements we conclude: there are precisely∏
P∈Pf

qdeg P (dP +1) = qd+1

residue classes in OPf
modulo M . (Recall the definition (30) of the integer

d.)
(iv) Now suppose that n ≥ d, and let A ∈ Df be a fixed divisor of degree

n. We are going to show that there exists a positive divisor D ≥ 0 of degree
n in Df such that D ∼ A mod M . This means that D−A = (h) should be
the principal divisor of an element h ≡ 1 mod M .

Let L(A) denote the K-vector space consisting of those functions h ∈ F
for which (h) ≥ −A (together with 0). 12) This means (h) = D − A with
D ≥ 0. We have to show that among these functions h ∈ L(A) there is at
least one for which h ≡ 1 mod M .

For any function 0 6= h ∈ L(A), the poles of h are among the prime
divisors appearing in A, hence are not in Pf . Thus h ∈ OPf

. If we deal
with congruence classes modulo M then we work in the factor ring OPf

/M .
Consider the map

% : L(A) → OPf
/M

which is obtained by mapping each h ∈ L(A) onto its congruence class
modulo M . We have to show that among the functions h ∈ L(A) there is
one for which %(h) = 1. To this end we shall show that % is surjective.

We regard % as a K-linear map of vector spaces. The surjectivity of %
will follow from the computation of the K-dimensions of the vector spaces
in question.

First, since deg A = n ≥ 0 we have that

dimL(A) = 1 + deg A . (40)

12) For this notation see [S] page 16.

26



In fact, this is a special case of the Riemann-Roch theorem 13) when we
observe that the rational function field F = K(x) has genus g = 0. On the
other hand, the above formula can also be proved directly, by elementary
means, as follows: Consider the infinite prime P∞ which is of degree 1. The
divisor A − nP∞ is of degree 0, hence a principal divisor: A − nP∞ = (z)
with z ∈ F . Thus A ∼ nP∞ and hence dimL(A) = dimL(nP∞). On the
other hand, L(nP∞) is the K-vector space of all polynomials of degree ≤ n
and therefor dimL(nP∞) = 1 + n. 14)

By the way, the relation (40) for divisors A holds not only if deg A ≥
0 but also if deg A = −1. For, in this case we have L(A) = 0 and so
dimL(A) = 0 = 1 + (−1). We shall use this remark below.

The kernel of the map % consists of those functions h ∈ L(A) for which
h ≡ 0 mod M , which is to say that (h) ≥ M (or h = 0). On the other
hand, we have (h) ≥ −A. Since A and M have disjoint support, this implies
(h) ≥ M −A, i.e., h ∈ L(A−M). Thus the kernel of % is L(A−M).

Using our assumption that n ≥ d, we see that deg(A−M) = n−(d+1) ≥
−1 . By what was said above this implies

dimL(A−M) = 1 + deg(A−M) = (1 + deg A)− deg M (41)

and so
dimL(A)− dimL(A−M) = deg M = d + 1 .

It follows that the image of % is a K-vector space of dimension d + 1.
Hence, in order to prove the surjectivity of % : L(A) → OPf

/M we have
to verify that OPf

/M is also of dimension d + 1.
Indeed: we have shown in (iii) above that OPf

/M has precisely qd+1

elements, hence dimOPf
/M = d + 1.

(v) We have seen in (iv) that there exists h ∈ L(A) such that h ≡
1 mod M . Also, we have seen that there exists a 1 − 1 correspondence
between such elements h and the positive divisors D ≥ 0 in Df with D ∼ A;
this correspondence is given by the relation

D −A = (h) .

In order to count those positive divisors D we have to count the correspond-
ing elements h ∈ L(A).

Let us fix some h0 ∈ L(A) with h0 ≡ 1 mod M . Any other such element
h has the form h = h0 + z where z ≡ 0 mod M , hence z ∈ L(A −M). We

13) See [S] page 29, Theorem I.5.17.
14) See [S] page 22, I.4.18.
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have seen in (iv) that L(A −M) has dimension (1 + n) − (d + 1) = n − d.
Hence there are qn−d elements z ∈ L(A −M), and they correspond to as
many h ∈ L(A) with h ≡ 1 mod M .

2

Remark. It is possible to compute the number of ray classes modulo
M of degree 0 explicitly. To this end, we first have to count the number of
units h of OPf

modulo M . Secondly we have to divide this number by q−1
because if D = (h) then also D = (c · h) for the q − 1 elements 0 6= c ∈ K.
The computation gives the number

1
q − 1

∏
P∈Pf

(qdeg P − 1)qdP deg P .

We leave the details to the reader.
2

Having established Lemma 17, which is the generalization of Lemma 7,
it is now possible to prove Proposition 8 also in the general case of rational
functions, with precisely the same proof as in section 4.

(6.5) Artin-Schreier extensions of K(x)
As to the Artin-Schreier extension

E = K(x, y), yp − y = f(x)

the only essential difference to the discussion in section 5 is that now, there is
not only one ramified prime but every pole P ∈ Pf ramifies in E. Otherwise
the same arguments as in the proof of Theorem 10 work also in our general
case.

In the course of that discussion it is necessary to verify that the genus g
of E now is given by the same formula (27) as stated in section 5. See [S]
p.115.
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