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Abstract

The origin of this note was the attempt to answer a question of Moshe
Jarden who had asked me:

“Hat jeder Zahlkörper K ein endliches Einbettungsproblem für
Gal(K), das lokal lösbar aber global nicht lösbar ist?”

As a first reaction I referred him to an old paper of Hoechsmann [1]
on the embedding problem. But after a second reading of Hoechsmann’s
paper I found that the answer to Moshe’s question – which is affirmative –
is not explicitly stated there. Although the answer can be readily derived
using Hoechsmann’s ideas, it is perhaps not without interest to do this
explicitly. This is what I propose in this note.

1 Statement of the result

Let K be a global field and GK its absolute Galois group. Let A be a finite
GK-module. The action of GK on A factors through a finite factor group. Let
G be such a factor group, i.e. G = GK/U where U is an open normal subgroup
of GK which acts trivially on A. We consider embedding problems of the form
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(1)

where ϕ is the natural projection, and where E is a group extension of A with
G. Such group extensions correspond to the cohomology classes ε ∈ H2(G,A).
We are looking for solutions Φ of the embedding problem. We do not require
that Φ be surjective. But note that for a global field, it is well known that the
existence of any solution, surjective or not, implies the existence of a surjective
solution. (A proof can be found in Hoechsmann’s paper.)
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If p is a prime of K then Kp denotes its completion. The absolute Galois
group GKp is considered as a subgroup of GK , viz. the decomposition group
of an extension of p to the algebraic closure (unique up to conjugation). Let
Gp = ϕ(GKp) denote the decomposition group of p in G.

Given an embedding problem (1) its localization at p is
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(2)

where Ep is the inverse image of Gp under the map E → G. The factor system
of this localization is the restriction resGp(ε) of the factor system ε of (1).

The solvability of (1) implies the solvability of (2) for each p. The “Local-
Global-Principle” LGP(A,K) asserts that conversely, if an embedding problem
(1) is locally solvable for each p then it is globally solvable. For a given GK-
module A the Local-Global-Principle may hold or may not hold. Our result in
this note is

Theorem 1 For every global field K of characteristic 6= 2 and any given
m ≥ 3 there exists a GK-module A of order 2m such that the Local-Global-
Principle LGP(A,K) does not hold.

Remark: The modules A to be constructed will be cyclic groups of order
2m with the action of GK defined suitably. If 2 is replaced by a prime number
p > 2 then the situation is completely different. For, if GK acts on a cyclic group
A of order pm with p > 2 then the Local-Global-Principle LGP(A,K) does hold
(irrespective of the characteristic of the field K). This is a consequence of
Gudrun Beyer’s theorem. (See Corollary 6 below.) The exceptional role of the
prime 2 in this context is a consequence of the difference in the structure of the
automorphism group of cyclic groups of p-power order pm. If p > 2 then the
automorphism group is cyclic whereas if p = 2 this is not the case for m ≥ 3. In
this respect the situation here is similar to the situation of the Grunwald-Wang
theorem. (See [2].)

Concerning the characteristic hypothesis in Theorem 1, this is necessary
if one wishes to construct counter examples to the Local-Global-Principle by
means of cyclic groups A, as we do in this paper. If K is of characteristic 2 and
A is a cyclic group of 2-power order with any action of GK then the LGP(A,K)
holds. This is a consequence of Witt’s theorem that for a global field K of
characteristic 2 the maximal pro-2-factor group of GK is free in characteristic 2
(and similarly for any non-zero characteristic). I do not know whether non-cyclic
groups A can serve as counter examples to the Local-Global-Principle.
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2 The setting

Let me first recall some of the results in Hoechsmann’s paper.

The solvable embedding problems (1) form a subgroup of H2(G,A), and this
is precisely the kernel of the inflation map

inf : H2(G, A) → H2(GK , A) . (3)

(Note that the inflation map is well defined since the kernel of GK → G acts
trivially on A.) This holds for any base field K, hence also for the localizations.
Now, every element in H2(GK , A) is the inflation of some element in H2(G,A)
for a suitable finite factor group G. We conclude:

Proposition 2 The Local-Global-Principle LGP(A,K) holds if and only if
the map

H2(GK , A) h //
∏

p H2(GKp , A) (4)

is injective.

At this point Hoechsmann cites the duality theorem of Tate-Poitou for global
fields. That duality theorem holds if the order of A is relatively prime to the
characteristic of K (including the case of characteristic 0) which we assume
henceforth. Let Â denote the dual GK-module of A. It consists of the charac-
ters χ of A, i.e., the homomorphisms of A into the multiplicative group of the
algebraic closure of K. The action of GK on Â is given by

χσ(a) =
(
χ(aσ−1

)
)σ

(a ∈ A , σ ∈ GK) . (5)

Note that in this formula σ acts twofold: First σ−1 acts on A since A is a GK-
module. Secondly, σ acts on the character values since σ is an automorphism
of the algebraic closure of K. In Hasse’s terminology, this is a “crossed action”
of GK on Â.

Now, the Tate-Poitou duality theorem asserts that for a global field K, the
map h in (4) is dual to the following map:

H1(GK , Â)
j // ∏

p H1(GKp , Â) (6)

In particular, h is injective if and only if j is injective. We obtain:

Corollary 3 The Local-Global-Principle LGP(A, K) holds if and only if the
map j in (6) is injective.

By this result, the problem is transferred from cohomological dimension 2
to dimension 1. This is the starting point of Hoechsmann. First he reduces the
problem to a finite factor group of GK .
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Proposition 4 Let G be the action group of the GK-module Â, i.e., the
factor group of GK modulo the normal subgroup which fixes Â elementwise.
Then LGP(A,K) holds if and only if the map

H1(G, Â)
jG // ∏

p H1(Gp, Â) (7)

is injective. 1

Here, Gp denotes the decomposition group of p in G , i.e., the image of GKp

in G.

Proof :

(i) First we consider the case when G = 1, i.e. GK acts trivially on Â . In
this case it is asserted that the LGP(A,K) holds, i.e., that the map j in (6)
is injective. Now, in case of trivial action we have H1(GK , Â) = Hom(GK , Â).
Every homomorphism f : GK → Â factors through a finite, abelian factor group
G of GK . Let σ ∈ G. Using Chebotarev’s density theorem we conclude that
there exists a prime p of K whose decomposition group contains σ. Hence, if f
vanishes on all decomposition groups then f(σ) = 0. Since this holds for all σ
we conclude f = 0.

(ii) Now consider the general case. Let L be the finite Galois extension of
K corresponding to G, so that G is the Galois group of L|K. Consider the
commutative diagram:

0 // H1(G, Â)
inf //

jG

²²

H1(GK , Â)
res //

j

²²

H1(GL, Â)

jL

²²
0 // ∏

p H1(Gp, Â) // ∏
p H1(Gp, Â) res // ∏

p H1(GL,p, Â)

(8)

with self-explaining notations. The rows are exact. The vertical arrow jL on
the right hand side is injective by (i), for GL acts trivially on Â. Consequently,
if the arrow jG on the left hand side is injective then j in the middle is injective
too, and conversely.

Corollary 5 As in Proposition 4 let G denote the action group of GK on Â.
If the group indices [G : Gp] of the decomposition groups have greatest common
divisor 1 then LG(A,K) holds.

For, let c ∈ H1(G, Â). If c vanishes at p, i.e., if resGp(c) = 0 then it follows
[G : Gp] · c = 0. If this holds for all p then c = 0, provided the indices [G : Gp]
have greatest common divisor 1.

Corollary 6 If the action group G of GK on Â is cyclic then LGP(A,K)
holds.

1This proposition and the following corollaries remain valid for any finite factor group G
of GK modulo a normal subgroup which acts trivially on bA.
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For, if G is cyclic then by Chebotarev’s density theorem there exists p with
Gp = G .

Corollary 6 is the theorem of Gudrun Beyer. It is remarkable that the
validity of LGP(A,K) depends on the action of GK on the dual Â, not on A
itself. This has been discovered by Gudrun Beyer. For corollary 5 Hoechsmann
cites Demuškin and Šafarevič.

3 Hoechsmann’s theorem

From now on we assume that A is a cyclic group. After decomposing A into
its Sylow components we may assume that the order of A is a prime power,
|A| = pm. Its dual Â is also a cyclic group and |Â| = pm too. If p > 2 then
the automorphism group of Â is cyclic and it follows that G is cyclic, hence
LGP(A,K) holds by Gudrun Beyer’s theorem (Corollary 6).

Consequently, in looking for a counter example to LGP(A,K) we have to
take p = 2. (This implies that K is of characteristic 6= 2 since the order of A
is supposed to be relatively prime to the characteristic of K.) The GK-module
A should be a cyclic group such that the action group G on Â is non-cyclic. In
particular m ≥ 3. If there exists a prime p of K with Gp = G then by corollary 5
we have that LGP(A, K) holds. We conclude:

Let A be a GK-module which is a cyclic group of prime power order pm. If
the Local-Global-Principle LG(A,K) does not hold then the following conditions
are satisfied:

1. p = 2.
2. The action group G of GK on Â is non-cyclic, hence m ≥ 3.
3. For every prime p of K, the decomposition group Gp is a proper subgroup

of G.

Now we can formulate Hoechsmann’s theorem:

Theorem 7 The conditions 1–3 above are not only necessary but also suf-
ficient for A to be a counter example to LGP(A,K).

In view of Proposition 4 this is an immediate consequence of the following
group theoretical observation. For simplicity we write X instead of Â.

Lemma 8 Let X be a cyclic group of order 2m (m ≥ 3) and G a non-cyclic
group of automorphisms of X. Then there exists 0 6= c ∈ H1(G,X) such that
its restriction resH(c) vanishes for every maximal subgroup H $ G .

Proof : We identify X = Z/2m (additively) and G with a group of units in
(Z/2m)×. The action of G on X is given by multiplication. Any element in
H1(G,X) can be represented by a crossed homomorphism f : G → X. The
functional equation of a crossed homomorphism is

f(στ) = τf(σ) + f(τ) for σ, τ ∈ G . (9)
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In particular, for σ = τ we note that

f(σ2) = (σ + 1)f(σ) . (10)

We shall prove the lemma by explicitly exhibiting a crossed homomorphism f
representing c.

The non-cyclic group G is a direct product

G = 〈−1〉 × 〈u〉

where u 6= 1 is a certain unit of X which can be assumed to be u ≡ 1 mod 4.
(If this should not be the case then we replace u by −u .) Let k be the exact
exponent by which 2 appears in u− 1, so that

u− 1 = 2 kλ

where λ is not divisible by 2, hence a unit in X. We have

2 ≤ k ≤ m− 1 .

(If k would be ≥ m then u ≡ 1 mod 2m, contradicting the fact that u 6= 1 as
operator on X.) The group theoretical meaning of k is the following:

The group 2m−kX consists precisely of those elements of X which are fixed
by u.

For, the relation ux ≡ x mod 2m is equivalent to (u−1)x ≡ 0 mod 2m which,
by definition of k, means x ≡ 0 mod 2m−k.

Every crossed homomorphism f : G → X is already determined by its
values on the generators −1 and u of G. We claim that there is a crossed
homomorphism f with the values

f(−1) = 2m−k , f(u) = 0 (11)

and that its class c ∈ H2(G,X) satisfies the requirements of the lemma.

First we consider the subgroup 〈−1〉 of G of order two. Consider the function
f0 : 〈−1〉 → X given by the values f0(−1) = 2m−k , f0(1) = 0. This is a crossed
homomorphism. To verify this one has to check the validity of (10) for σ = −1
only. Indeed, we have

f0((−1)2) = (−1 + 1)2m−k = 0 = f0(1) .

We have the exact sequence

1 → 〈u〉 −→ G −→ 〈−1〉 → 1 .

As observed above, the value f0(−1) = 2m−k is fixed by u. Hence we may
extend f0 : 〈−1〉 → X by inflation to a crossed homomorphism f : G → X such
that its values f(σ) depend on the residue class of σ modulo 〈u〉 only. This
crossed homomorphism satisfies (11).

Let c ∈ H1(G,X) denote the class of f . We claim that the restriction of c
to every maximal subgroup of G vanishes. There are three maximal subgroups
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of G, namely the two cyclic groups 〈u〉 and 〈−u〉, and the group 〈−1, u2〉 which
in general is not cyclic except if u2 = 1 (which means k = m− 1).

The restriction of c to 〈u〉 vanishes since f(u) = 0 by (11).

As to the restriction of c to 〈−u〉 we first note that f(−u) = f(−1) = 2m−k

does not vanish. But consider a crossed homomorphism g : G → X belonging
to the same class c as f , which means that

g(σ) = f(σ) + (σ − 1)x (σ ∈ G) (12)

for some x ∈ X. Can we choose x ∈ X such that g(−u) = 0 ? This means

f(−u) = 2m−k = −(−u− 1)x = (u + 1)x .

Since u ≡ 1 mod 4 we have u + 1 ≡ 2 mod 4 hence u + 1 = 2µ with µ a unit in
X. Hence by choosing x = µ−12m−k−1 we indeed have g(−u) = 0.

Can we choose x such that g vanishes on the third maximal group 〈−1, u2〉 ?
This means, firstly, g(−1) = 0 and thus

f(−1) = 2m−k = −(−1− 1)x = 2x (13)

and so we take x = 2m−k−1. Secondly, the condition g(u2) = 0 requires that

f(u2) = 0 = −(u2 − 1)x = −(u− 1)(u + 1)x = −λµ · 2k+1 · x .

The same x = 2m−k−1 as above satisfies this condition since 2mx = 0 .

We have now shown that c vanishes if restricted to any of the three maximal
subgroups of G. It remains to verify that c 6= 0 in H1(G,X). In other words: It
is not possible to choose x ∈ X such that g(−1) = g(u) = 0. Now the condition
g(−1) = 0 implies by (13) that x is precisely divisible by 2m−k−1 (and not by a
higher power of 2). On the other hand, the condition g(u) = 0 requires that

f(u) = 0 = −(u− 1)x = −λ · 2k · x
and hence x should be divisible by 2m−k. Both these conditions are not com-
patible, and so c 6= 0.

4 Construction of counter examples

In the following we let A be a cyclic group of order 2m with m ≥ 3. We try
to define a non-cyclic action of GK on A such that condition 3 of Theorem 7
is satisfied. This will give a counter example to LGP(A,K). The main tool for
this is the following

Lemma 9 For any global field K there exists an abelian extension L|K of
prescribed 2-power degree 2r+1 whose Galois group G = Gal(L|K) has the struc-
ture

G ≈ Z/2× Z/2r ,

and such that for every prime p of K its decomposition group Gp is a proper
subgroup of G.
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There are many possibilities to construct such a field extension. First assume
that K is a number field. Consider the field K(2) of 2-power roots of unity over
K. Its Galois group is either a free cyclic pro-2-group (for instance if

√−1 ∈ K)
or else it is the direct product of such a group with a group of order 2 . In any
case the Galois group of K(2)|K contains finite cyclic factor groups of arbitrary
large 2-power order. Accordingly let L0|K be a cyclic extension of degree 2r

which is contained in K(2). We observe that the only primes p of K which are
ramified in L0 (if there are any) are divisors of 2. This follows from the fact
that 2 is the only prime number in Q which is ramified in Q(2).

Now we take a rational prime number p > 2 such that

p ≡ 1 mod 2N (14)

for sufficiently large N and put

L = L0(
√

p) .

If N and hence p is sufficiently large then p is unramified in K, i.e., every prime
divisor p|p appears in p with the exponent 1. We conclude that

√
p /∈ K, and

that p is ramified in the quadratic extension K(
√

p). Therefore K(
√

p) is not
contained in L0 , and K(

√
p) is linearly disjoint to L0 over K. The Galois group

G of L|K is the direct product of Gal(L0|K) (which is cyclic of order 2r), with
Gal(K(

√
p)|K) (which is of order 2).

Let p be a prime of K and Gp its decomposition group in G. If p is unramified
in L (including the case when p is an infinite prime) then its decomposition group
is cyclic and hence Gp is a proper subgroup of G. If p is ramified in L then
either p|2 or p|p. In the first case, p|2, if N ≥ 3 then (14) implies

√
p ∈ Q

2
,

hence
√

p ∈ L0,p, thus Lp = L0,p is of degree ≤ [L0 : K] = 2r over Kp. Hence
its Galois group Gp is of order ≤ 2r and thus a proper subgroup of G. In the
second case, p|p , let N be large enough such that L0 is contained in the field of
2N -th roots of unity over K. The condition (14) implies that Qp contains the
2N -th roots of unity, thus L0 ⊂ Qp ⊂ Kp and consequently Lp = Kp(

√
p) is of

degree ≤ 2 .

Now assume that K is a function field of characteristic 6= 0. Let k be its field
of constants, and consider the unique extension k0 of degree 2r over k. We put
L0 = Kk0 ; this is the constant field extension of K of degree 2r . It is cyclic and
unramified over K. Now let t ∈ K be a separating variable. Consider a prime
polynomial p(t) ∈ k[t] with the condition that its residue field contains k0. This
condition is the analogue to condition (14) in the number field case. Since there
are infinitely such polynomials we may assume that p(t) is not ramified in K.

If the characteristic of K is 6= 2 then we put again

L = L0(
√

p(t) ) .

Quite analogous to the number field case it is seen that L satisfies the require-
ments of the lemma. The situation here is even easier since L0|K is unramified,
hence it is not necessary here to discuss the prime divisors which are ramified
in L0, as we had to do in the number field case. The only primes p of K which
are ramified in L are the prime divisors of p(t). For any such p its residue field
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contains k0 and hence its completion Kp too contains k0. It follows that Kp

contains Kk0 = L0 and therefore Lp = Kp(
√

p(t)) is of degree ≤ 2.

If the characteristic of K is 2 then K(
√

p(t)) is inseparabel and useless for our
construction. Instead of a square root we have to use a root of the appropriate
Artin-Schreier equation:

L = L0(α) , α2 − α =
1

p(t)

Again, the only primes of K which are ramified in L are the prime divisors of
p(t) and the discussion now proceeds as in the case of characteristic 6= 2.

Lemma 9 is proved. In that lemma we have not excluded the case of char-
acteristic 2 because it is not necessary. However, in the following proof we have
to assume that char(K) 6= 2 in order to be able to apply Hoechsmann’s theorem
which is based on the Tate-Poitou duality theorem.

Proof of Theorem 1:

Let us put X = Z/2m. The automorphism group Aut(X) consists of the
units in Z/2m which act by multiplication. Aut(X) is non-cyclic and has the
structure

Aut(X) ≈ Z/2m−2 × Z/2 .

We see that Aut(X) is isomorphic to the Galois group G = Gal(L|K) of the
field extension of Lemma 9 if in that Lemma we take r = m− 2.

Let is fix an isomorphism G ≈ Aut(X). In this way X becomes a G-module.
X appears as a GK-module via the projection GK → G. The action group of
GK on X is G .

Now we take A = X̂. Then A is a GK-module of the same order 2m as X.
We have Â = ̂̂

X = X. Thus the action group of GK on Â is G. The conditions
1–3 of Theorem 7 are satisfied in view of Lemma 9. We conclude that A is a
counter example to LGP(A,K) .

Problem: Prove Hoechsmann’s theorem directly, without reference to the
Tate-Poitou duality theorem. It seems that the reciprocity law for global fields
will be sufficient.
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