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Hasse–Albert vollständig (soweit photokopiert)

Für PDFLaTeX/hyperref und LaTeX2e/hyperref



Inhaltsverzeichnis

1 Korrespondenz Hasse–Albert 3
1.1 06.02.1931, Albert an Hasse . . . . . . . . . . . . . . . . . . . 4

Albert stellt sich vor.
1.2 23.03.1931, Albert an Hasse . . . . . . . . . . . . . . . . . . . 5

The existence of non-cyclic division algebras seems to be a
number theoretic question. Direct product of a normal divisi-
on algebra with itself.

1.3 27.03.1931, Albert an Hasse . . . . . . . . . . . . . . . . . . . 7
Correction: Direct product of a division algebra with its reci-
procal algebra splits.

1.4 11.05.1931, Albert an Hasse . . . . . . . . . . . . . . . . . . . 9
1.5 30.06.1931, Albert an Hasse . . . . . . . . . . . . . . . . . . . 12
1.6 06.11.1931, Albert an Hasse . . . . . . . . . . . . . . . . . . . 14
1.7 26.11.1931, Albert an Hasse . . . . . . . . . . . . . . . . . . . 17
1.8 09.12.1931, Albert an Hasse . . . . . . . . . . . . . . . . . . . 21
1.9 25.01.1932, Albert an Hasse . . . . . . . . . . . . . . . . . . . 23
1.10 01.04.1932, Albert an Hasse . . . . . . . . . . . . . . . . . . . 27
1.11 22.06.1932, Albert an Hasse . . . . . . . . . . . . . . . . . . . 32
1.12 09.02.1933, Albert an Hasse . . . . . . . . . . . . . . . . . . . 36
1.13 08.08.1933, Albert an Hasse . . . . . . . . . . . . . . . . . . . 41
1.14 10.09.1933, Hasse an Albert . . . . . . . . . . . . . . . . . . . 43
1.15 o.D.,1934, Albert an Hasse . . . . . . . . . . . . . . . . . . . . 46
1.16 06.02.1934, Albert an Hasse . . . . . . . . . . . . . . . . . . . 52
1.17 02.02.1935, Hasse an Albert . . . . . . . . . . . . . . . . . . . 57
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Verschiedenes zu Hasse–Albert 82
2.1 Referat, On direct products, 1930 . . . . . . . . . . . . . . . . 83
2.2 Referat, On direct products, 1931 . . . . . . . . . . . . . . . . 85

1



2.3 Referat, On normal division algebras, 1931 . . . . . . . . . . 88
2.4 Referat, On direct products, 1931 . . . . . . . . . . . . . . . . 89
2.5 Referat, Algebras of degree ..., 1932 . . . . . . . . . . . . . . . 92
2.6 Referat, Normal division algebras ..., 1932 . . . . . . . . . . 93
2.7 Referat, On normal simple algebras, 1932 . . . . . . . . . . . . 94
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Namenverzeichnis 96

4 Stichwortverzeichnis 98

2



Kapitel 1

Korrespondenz Hasse–Albert

3



1.1 06.02.1931, Albert an Hasse

Columbia University

in the City of New York

DEPARTMENT OF MATHEMATICS

45 Thayer Street,
New York, N.Y., U.S.A.
February 6, 1931.

Dear Professor Hasse:

I was very interested to receive your letter from Professor
Dickson describing your work. I am very pleased at your interest in my work
and am sending you a set of my reprints under separate cover. I have also
five new papers being published soon and shall send you the reprints as soon
as I obtain them.

I live at the above Thayer St. address and shall be there until
August 15, 1931. After that my address will be:

Department of Mathematics, University of
Chicago, Chicago, Illinois, U.S.A.

I have been appointed assistant professor of mathematics at the University of
Chicago beginning next Autumn and shall give a course in the Galois Theory
of Equations and one in Linear Associative Algebras there next year.

With my best regards to you and to Professor Archibald whom
you may see, I am

Very sincerely yours,

A. Adrian Albert
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1.2 23.03.1931, Albert an Hasse

Columbia University

in the City of New York

DEPARTMENT OF MATHEMATICS

45 Thayer Street,
New York, N.Y.,
March 23, 1931.

Dear Professor Hasse:

I received your letter a short while ago but waited until I
completed some new results before answering you. My new paper ,,On direct
products, cyclic division algebras, and pure Riemann matrices” has appeared
in the January Transactions and I will send you a reprint when I get them.
I am sure you will be interested in the results I obtained there.

I considered your question on the existence of non–cyclic divi-
sion algebras of order sixteen in my April 1930 Transactions paper of which
you have a copy. The question seems to be a number–theoretic one and I see
no way to get an algebraic hold on it. It seems to be a hopeless problem to
me after more than a year’s work on it.

The other question is much easier to answer in the light of the
work I have just completed. I have shown that the direct product A× A is
a total (vollständige) matrix algebra if A is

(a) any cyclic algebra over F .
(b) any normal division algebra of order n2 over F where n has no

square factor.

Here F is any non–modular field. So in particular since there exist cyclic di-
vision algebras of order 16 over algebraic number fields of finite degree which
are not the direct product of two generalized quaternion algebras (shown to
exist over the field R of all rational numbers in my April 1930 Transaction
paper) the direct product of such an algebra with itself is a total matric
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algebra.
I have recently obtained a new result which will interest you,

I believe. Using the definition of algebras of type R2 in thirty–six units
of my American Journal paper, I have extended the work of that paper and
have proved that every normal division algebra of type R2 in thirty–six units
over any non–modular field F is a cyclic algebra. This mild assumption of
type R2 is the same as saying that for some quantity x in the algebra, the
minimum equation of x has degree 2 or 3 instead of 6.

The above results are very new and will probably not appear
until next year.

With my best regards, I am
Very sincerely yours,

A. Adrian Albert
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1.3 27.03.1931, Albert an Hasse

Columbia University

in the City of New York

DEPARTMENT OF MATHEMATICS

45 Thayer St.,
New York, N.Y.,
March 27, 1931.

Dear Professor Hasse:

I have at last received reprints of my four latest papers and
will send them shortly to you.

I am writing to you principally to correct the statements of my
last letter. Recent work of mine yielded the result that if A is any normal
division algebra of order sixteen over a non–modular field F , and if A is
not the direct product of two generalized quaternion algebras, then the direct
product A × A is expressible as the direct product of an eight–rowed total
matric algebra and a generalized quaternion division algebra. Also the direct
product A × B where B is the algebra reciprocal to A is a total matric
algebra.

This leads to a contradiction of the results I communicated
to you in my last letter. I studied the proofs and have found my error. I
believe, however, that the theorems on direct products are correct if you
replace A× A by A×B where B is reciprocal to A .

I am not quite sure of these results, but am certain that the
theorems on direct products A × A are false. In particular my theorem on
the direct product with itself of a cyclic algebra of order p2 , p a prime,
(published in the new Trans. paper) is false but is correct when we replace
A× A by A×B where B is reciprocal to A .

I shall have to wait a while before feeling certain that the
revised theorems and proofs are correct, as this work is very complicated and
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tricky, and one is likely to make mistakes. I think the results I have given
here are now correct, in fact I have a feeling that it should be the reciprocal
algebra which is associated with an algebra A in the relation A × B is a
total matric algebra, instead of A itself. Of course any algebra which is a
direct product of generalized quaternion algebras is self–reciprocal.

If you are interested in knowing of the correctness of my results
after I have had an opportunity for them to become settled, I shall be glad
to communicate them to you.

With my best regards, I am
Very sincerely yours,

A. Adrian Albert
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1.4 11.05.1931, Albert an Hasse

Columbia University

in the City of New York

DEPARTMENT OF MATHEMATICS

45 Thayer St.,
New York, N.Y.,
May 11, 1931.

Dear Professor Hasse:

I received your most interesting letter and have read it with a great deal
of pleasure. I too have felt that the problems of the theory of normal division
algebras are in a great measure number–theoretic as well as algebraic.

Some time ago I completed a paper for the Transactions in which I ob-
tained independently most of Brauer’s results by means of certain new simple
considerations which in themselves are rather powerful new tools for research
in division algebras. I was fortunate, however, to discover Brauer’s paper be-
fore it was too late, and have revised my paper so as to give Brauer priority
for the theorems first secured by him. But my own proof uses none of the
theory of “factorsystems”, is self contained, and is rather short. Brauer’s
work, on the other hand, depends on two previous memoirs, and two papers
of I. Schur. Professor Wedderburn thinks my method a great advance and
so I am publishing my new proof. It will probably appear about November.

Your work on quadratic forms is not new to me. In fact I have been
reading your Crelle and Jahresbericht work ever since your first letter to me.
In this period I have also been able to apply your most fundamental result
on quadratic forms in n ≥ 5 variables, together with my above mentioned
new methods to prove the following results on algebras over a field F (al-
ways F is here an algebraic field of finite degree over the field of all rational
numbers):

1. A direct product A×B of two generalized quaternion algebras is never
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a division algebra. (in fact A×B of any orders 22e, 22f )

2. Every normal division algebra of order 16 over such an F is a cylic
(Dickson) algebra.

3. Every normal division algebra of order 64 over F contains a maximal
sub–field F (x) which is a direct product of a quadratic field and a
cyclic quartic field (and hence is generated by a (4, 2) group.)

4. Every normal division algebra of order 22m has exponent 2m.

In fact 4) implies a more powerful result. We say that an equation with
coefficients in F belongs to a normal division algebra A over F if A
contains a quantity x which has the given equation as its minimum
equation (Hauptgleichung). Then we have

5. Let A be a normal division algebra of order 22m over an algebraic field
F and let 0 ≤ t < m, σ = 2m−t. Then

Aσ = Mσ × Aσ

where Mσ is a total matric algebra over F and Aσ is a normal division
algebra of order 22t over F such that every equation of degree 2r ≤ 2t

which belongs to Aσ belongs to A , and conversely.

This last result is probably true when we replace 2 by any prime p . In
fact I can prove it if and only if the theorem analogous to 1) is true, namely

“A direct product of two cyclic algebras of the same order p2 (p
a prime) is never a division algebra.”

By your Annalen paper (letter to L.E.Dickson) the above theorem is
true over every p–adic extension of F . Hence the form N(x) , the norm
or determinant of the general quantity of the direct product, is a null form
over any p–adic extension of F . Also certainly over F (p∞) . By the general
principle which you proved for quadratic forms this ought to imply that the
form N(x) is a null form in F and hence my general result. Have you been
able to prove this result in your newly completed work ?

In my work on normal disivion algebras over any non–modular field F
(no more just an algebraic field) I in fact proved that, with the notation of
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my April 1930 Transactions paper, if A is a normal division algebra of order
sixteen over F then A2 = M ×Q where M is an eight rowed total matric
algebra and

Q = (1, u, y, uy) , yu = −uy , u2 = ρ , y2 = γ2
3 − γ2

4σ

(ρ, σ, γ1, . . . , γ6 of my paper such that

γ2
5 − γ2

6σρ = (γ2
1 − γ2

2ρ)(γ2
3 − γ2

4σ)

the associativity condition

A necessary and sufficient condition that Q be a division algebra is that

γ2
3 − γ2

4σ 6= ξ2
1 − ξ2

2ρ

for any ξ1 and ξ2 of F . It follows immediately that a necessary and sufficient
condition that A be not a direct product of two generalized quaternion
algebras is that Q is a division algebra, that is that A have exponent 4.
I believe this answers your question.

I am very interested in your new results and will be very anxious to know
the details. Will all the results be in the Transactions paper, or just what
you communicated in your first letter to me ? If the latter, where will your
new work appear ?

The work of the German mathematicians on algebras is very interesting
to me and should like to know all of it if possible. In particular I have been
unable to obtain Artin’s Hamburg papers. Can you tell me in a few words
what subjects he studied in these papers on linear algebras, and whether or
not he has published anything in more accessible journals ? I certainly do
not wish to repeat known results, even if they are unknown in America, and
am very pleased and thankful for the opportunity to communicate with you
and know of your results.

With my very best regards, I am
Very sincerely yours,

A. Adrian Albert
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1.5 30.06.1931, Albert an Hasse

Columbia University

in the City of New York

DEPARTMENT OF MATHEMATICS

45 Thayer St.,
New York, N.Y.,
June 30, 1931.

Dear Professor Hasse:

I am very sorry that I gave you the impression that I had completed a
proof that the exponent of any normal division algebra of degree n over an
algebraic field has exponent n . I still have to prove the fundamental result
that a normal division algebra A which is a crossed product of degree p2, p
a prime, has exponent p2 when it is not a direct product of two algebras of
degree p . I have proved that Ap ∼ B where B is a cyclic algebra of degree
p whose constants are readily expressible in terms of those of A . (This is
the ease of an abelian (p, q) group.)
For p = 2 the work of my April 1930 Transactions paper proved that when B
was not a division algebra algebra A is the direct product of two generalized
quaternion algebras; but I cannot seem to obtain the analogous result for
p an odd prime. I want to remark that in this connection I have proved
that your results imply that the direct product of any two normal division
algebras is a division algebra if and only if the degrees of the two algebras
are relatively prime (for an algebraic reference field.)

I want to thank you for your very kind letter and for the reprints you
sent me. My theorem on normal division algebras of degree four will be
offered to the Transactions for publication in a few days. I have already
published a report of this work in the June Proceedings of the National
Academy of Sciences. I should be pleased to have you refer to my result in
your Transactions paper.
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I hope to hear from you again, and I shall also write to you at the end of
this summer when I may perhaps have more things of interest to you. I have
some new results now but wish to wait until they are more complete before
making any communication of them to you.

With very best regards, I am
Very sincerely yours,

A. A. Albert

P.S. Your English is very clear and understandable. I only wish I could write
German half so well ! I hope that in perhaps two years I may visit Germany
and there see you and discuss our beautiful subject, linear algebras.
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1.6 06.11.1931, Albert an Hasse

The University of Chicago

Department of Mathematics November 6, 1931.

Dear Professor Hasse:
I received your very interesting communication this morning

and was very glad to read of such an important result. I consider it as
certainly the most important theorem yet obtained for the problem of de-
termining all normal division algebras over an algebraic number field Ω . In
particular it furnishes a new proof that all normal division algebras of degree
four over Ω are cyclic.

The results I had partially obtained at the time I wrote my
last letter were not really theorems but a new method of proving my above
theorem on algebras of degree four. It seemed that this would generalize
to algebras of degree 2e but I needed some sort of a result which I hoped
would come out of your work on p–adic adjunctions. But now your result
just communicated gives me almost immediately the following theorems.

I. All normal division algebras of degree 2e are cyclic alge-
bras. For just as I was able to prove that every n.d.a. of degree 8 had an
abelian (2, 4) generation and hence now cyclic, so it follows, by an induc-
tion on e, that every n.d. algebra of degree 2e has an abelian (2, 2e−1)
generation, where the cyclic sub–field of order 2e−1 is a splitting field of A2.

It is easily shown that if A is a n.d.alg. of degree p2, p a prime then it
is possible to extend the centrum so that A′, the algebra over the extended
field, has a abelian (p, p) generation and is still a normal division algebra over
the extended field Ω′ (whose order with respect to Ω is relatively prime to
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the prime p .) But A′ is then cyclic by your theorem, hence has exponent
p2. Hence A has exponent p2. From this it is easy to prove

II. The exponent of any normal division algebra of degree n
over an algebraic number field Ω is n .

but also then it follows that we have
III. Let A be a normal division algebra of degree pe, p a

prime, over an algebraic number field Ω . Then there exists an algebraic field
Ω′ over Ω (of degree r prime to p over Ω ), such that A′ = A × Ω′ is a
cyclic normal division algebra of degree pe over Ω′.

This above result says that while we don’t know if A is cyclic
we at least have this property extensionally obtainable while A′ remains a
division algebra. This may prove sufficient for some purposes.

Finally I obtained several months ago some new results on
cyclic algebras. These results will be published in the American Journal of
Math. I am sending you a copy of my proof sheets together with a reprint of
my paper in which I give a new proof of Brauer’s theorems.

You asked for references to my own and Dickson’s papers. In
addition to the references you gave in your paper on cyclic algebras there
is Dickson’s recent “Construction of division algebras” Trans. of the Amer.
Math. Soc. vol.32 (1930), pp.319–334. Here Dickson gives a better proof of
the material of his Chapter III which you quote in your letter. As for his
other papers there are none which give material not in his “Algebren” except
the paper “New Division Algebras” (Bull. of the A.M.S.) which you quote.

In my paper “Normal division algebras in 4p2 units, p an
odd prime”, (Annals of Math., vol.30(1929), pp.583–590) I proved that
the algebras considered in the above Dickson paper were actually crossed
products and hence not “new”. If you gave Dickson’s paper as a reference I
think you should certainly give my proof that his algebras are not new.

I have sent you all of my reprints except the most recent ones.
I shall make up a separate list of all my papers on algebras (including the
ones to be published soon) with a brief summary of results and shall send
this to you in a few days.

I would have written to you sooner but I was waiting to get
the proof sheets of your Trans. paper to see whether I could complete the
new theorems I,II,III which are now complete in view of your new theorem.
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When and where do you intend to publish your new result ? Of course my
own theorem is not proved unless I can refer to your paper ? Can we not
perhaps make some arrangement to publish in the same place (or even in
the same paper ! ) ? Of course it may even be that by the time you wish
to publish your new results that you can prove all normal division algebras
cyclic and hence make my I,II,III of no value.
Please tell me what you think of these results and also about publishing
them.

Professor Dickson was much interested in your new work. He
sends you his kindest regards.

I have been accustomed to communicate all my work and what
you have written to me to Professor Wedderburn (whom I worked with when
I was in Princeton). Unfortunately he is very ill now and is in a hospital in
Baltimore. We all hope here that he recovers from his illness very soon. The
doctor who takes care of him says that his trouble should yield to proper
treatment and that he will be well in a short time.

I was fortunate to be able to read your paper for the editor’s
of the Transactions. I have not, as yet, received the proof sheets, however.

With my best regards, and hoping to hear from you soon, I
am

Very sincerely yours,

A. Adrian Albert

A. Adrian Albert.
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1.7 26.11.1931, Albert an Hasse

The University of Chicago

Department of Mathematics Eckhart Hall,
November 26, 1931.

Dear Professor Hasse:

I received your most welcome letter yesterday and I heartily congratulate
you on the remarkable theorem you have proved.

Your proof of the main theorem is very interesting to me. Of
greatest interest is your reduction to Theorem I. I cannot even yet see how
this reduction is an immediate consequence of your Satz 2 but perhaps the
existence of a cyclic field such that A splits everywhere will be made clear
when you publish your proof.

In all my work on division algebras the principal difficulty has been to
somehow find a cyclic splitting field. This your p–adic method accomplishes.

The part of the proof of Theorem I which you attribute to
Brauer and Noether is however already in print. Your Theorem I has the
following almost trivial proof. We require to prove the equivalent

I. Let D be a normal division algebra of degree m over its
centrum F , an algebraic number field. Then if D splits everywhere m = 1 .

For let m > 1 . By the Brauer structure theorem it is obvi-
ously sufficient to consider the case where m = pe, p a prime, so that e > 0 .
By Theorems 13,10,9 of my Bulletin paper there exists an algebraic field K
over F such that D′ = D×K = M ×B where M is a total matric algebra
and B is a cyclic normal division algebra of prime degree p over its centrum
K . But D splits everywhere so also D′ and hence B split everywhere.
By your 3.13 algebra B is not a division algebra, a contradiction. Hence
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m = 1 .
The above quoted Theorems 9,10,13 are from my paper in

the Bulletin of the American Mathematical Society, vol.37, October 1931,
pp.777–784. I have not as yet received reprints but will send you a reprint
when they arrive. The theorems are about a normal division algebra D of
degree m over any non–modular field F . They read

Theorem 9. Let y in D have grade s for F so that
m = st . Then if η is any scalar root of the minimum equation of y for
F

D × F (η) = M ×B ,

where M is a total matric algebra of degree s and B is a normal division
algebra of degree t over its centrum F (η) .

Theorem 10. The algebra B of Theorem 9 is simply iso-
morphic with the algebra of all quantities of D commutative with y , under
a correspondence where y corresponds to η . Hence this latter algebra is a
normal division algebra of degree t over its centrum F (y) .

I also used Theorem 2? of my Trans. paper “On direct prod-
ucts” which I stated as

Theorem 12. Let m = pe, p a prime, and let x in D have
grade m for F . Then there exists an algebraic field Z of order n over F
such that n is prime to p , D × Z is a normal division algebra of degree m
over its centrum Z , and Z(x) is a cyclic field of order p over a sub–field
Z(y) of order pe−1 over Z .

I then had, without further proof,

Theorem 13. Let D′ = D×Z and x be as in Theorem 12.
Then the algebra B0 of all quantities of D′ commutative with y is a cyclic
algebra of degree p over its centrum Z(y) .

This Theorem 13 combined with the two supplementary The-
orems 9 and 10 are precisely what I used on page 1 of this letter. As my
theorems have already been printed I believe that I may perhaps deserve
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some priority on that part of your proof. I may say, however, that the re-
markable part of your proof for me is the obtaining of the cyclic field C . I
of course knew of your 3.13.

In your letter of November 11 you said that the results of my
paper “On direct products” were almost all not new. From my examina-
tion of both the Brauer–Noether paper and of your Transactions paper I
cannot see where any of you have considered what I believe to be the new
point of my paper. Neither you, Brauer, nor Noether considered anything
but splitting fields. I on the other hand, in my section 3, considered all
types of algebraic field extensions of the field F . I believe my Theorems
14,15 etc. of section 3 to be all new results, of which N’s are special cases.
Also my Theorem 23 is precisely what E.Noether is using in her reduction
of II (where already I reduces to II either by the Brauer structure theorem,
or, as I have stated your I, by my Theorem 21) instead of the better The-
orem 22 as in my statement above. Note also that my paper was received
by the editors of the Transactions on April 17, 1931, yours presented April 2?.

It is possible that Emmy Noether did make the above con-
siderations as you suggest. It is of course impossible for people working in
the same field not to frequently obtain overlapping results. I have the high-
est respect for Fr.Noether and certainly appreciate her great mathematical
powers. Please carry to her my most sincere best wishes and appreciation
for her accomplishments in our beloved field of ALGEBRA.

I cannot quite see what you mean about the theory of
crossed products. Did not Dickson really first consider them ? As to the
general associativity conditions I obtained them in 1929 from my matrix
representation of any “normal division algebra of type R” in my paper “The
structure of pure Riemann matrices with non–commutative multiplication
algebras”. The matrix representation (of any crossed product) is on page 31
(section 7) of the Rendiconti del Circolo Matematico di Palermo (vol.55,1931)
reprint which I sent you. I never published the associativity conditions but
they are immediate consequences of the matrix representations. I showed
them to Professor Dickson in July 1929 when the above paper was completed
but he did not think them important enough to be published.

As to Brauer’s “obscure” conception of factorsystems, I do
not believe them so obscure. In my paper “The structure of matrices with any
normal division algebra of multiplications”, Annals of Math. vol.32(1931)
pp.131–148 I obtained a sort of a generalization of some of I.Schur’s work
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which led both for Brauer (very early) and myself later and independently to
the theory of factor systems. I still believe this important. Suppose that x
is any quantity of a normal simple algebra. It is desirable to find a multipli-
cation table of the algebra relative to the quantity x . I have shown that the
algebra has a basis xiyxj (i, j = 0, 1, . . . , n − 1) where n is the degree of
the algebra, and that from the factorsystem (which I had no idea had been
considered before) we can get immediately the multiplication table of the
algebra. It is desirable to know this even for an algebra known to be cyclic. I
never published this but still think it worth while. What do you think of this
material ? It was all communicated to Wedderburn at the time I obtained
the results and he still has my letters to verify this. He was quite interested
at the time.

Professor Dickson sends you his sincere regards. I have not
heard from Archibald for some time. I thought you knew that he did not
come from Chicago but is at Columbia University in New York.

I hope you will pardon a slight criticism of your envelopes.
You have addressed your letters recently to THE UNIVERSITY,CHICAGO.
There are, of course, more than one university in Chicago. It is only by
guesswork that the postal authorities delivered them here. The correct ad-
dress is THE UNIVERSITY OF CHICAGO, Chicago, Illinois.

Let me express my thanks for communicating your wonderful
theorem to me. I deeply appreciate it. With best regards, I am

Very sincerely yours,

A.Adrian Albert

P.S. I am very glad that you are interested in the possibility of my visit-
ing you. I hope that I will be able to leave Chicago on Sept. 1,1933 to return
here not later than Dec. 31,1933. I do not believe I can make the trip before
that time.

A.A.Albert
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1.8 09.12.1931, Albert an Hasse

The University of Chicago

Department of Mathematics Eckhart Hall,
December 9, 1931

Dear Professor Hasse:

I am writing to you in great haste as I must attend a
meeting in a short time (in fact 20 minutes ! )

I was very glad to get your letter as well as the proof sheets
of your new result. I have read them and am returning them to you in the
present letter. (I shall mail it now ! ).

You will have received my last letter at the time I am
writing this. I feel even more strongly now than before that in E.Noether’s
and R.Brauer’s part of your paper there was a good deal of unnecessary
complication due to the fact that the following reduction was not made. You
all tried to prove that if a normal simple algebra A over F splits every
where then A ∼ F . But this is merely to prove that the index of A is
one and reduces to the theorem that if A is a normal division algebra of
degree m and splits everywhere then m = 1 . As in the proof I gave you this
avoids the induction of your paper which is really completely non–essential.
Also I think it better to use Brauer’s structure theorem than the additional
adjunction to reduce to the case m = pe.

I have not had time to write out the resume I promised
you. This will be accomplished later. Also I am certain that the delay in
publishing your paper is due to its length. The editors of the Transactions
generally make up their numbers according to the long papers, filling in the
extra space with short papers even though they (the short papers) may have
been presented much later than some long papers.
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I hope to have more time to write to you later
With the best regards, I am very sincerely

Yours

A.A.Albert
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1.9 25.01.1932, Albert an Hasse

The University of Chicago

Department of Mathematics

January 25, 1932.

Dear Professor Hasse:

I have finally found time to write up the article by both of us “A Deter-
mination of all Normal Division Algebras over an Algebraic Number Field”
for the Transactions. I gave a historical sketch of the proof, my short proof,
and a slight revision (to make it more suitable for American readers) of your
proof. I believe the presentation will be approved by you and with a footnote
to the effect that I undertook the writing of the article at your suggestion,
I have presented the paper to the American Mathematical Society and will
send it soon to the editors of the Trans.

I have recently been able to throw more light on the meaning
of the so–called index reduction factor in the direct product D × Z of a
normal division algebra D over F and an algebraic field Z of finite degree
r over F . In fact I have defined

Definition. Let Q be a total matric algebra of degree q , D
a normal division algebra of degree (index) m , and Z be an algebraic field
of degree r over F . Then the quotient index

q ≡ q(Z,D)

of Z with respect to D is defined to be the least integer q such that Q×D
has a sub–field equivalent to Z .

I have then proved the following
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Theorem. The quotient index q(Z, D) is a divisor of the
degree r of Z , r = qs . Every normal simple algebra A of degree n and
which is similar to D has complementary index n

m
divisible by q if and

only if A has a sub–field Z0 equivalent to Z . In this case A = H ×Q×D
where Z0 is in Q + + + Z , and H is a total matric algebra. If Z ′ is
equivalent to Z the index of D × Z ′ ∼ D′, a normal division algebra over
Z ′ is m′ = m

s
so that s = r

q
is the index reduction factor of D with respect

to Z . Moreover the algebra D0 of all the quantities of Q×D commutative
with all the quantities of Z0 is a normal division algebra over Z0 equivalent
to D′ as over Z ′.

In the above I have defined the complementary index of a
normal simple algebra to be the quotient of its degree and its index. Moreover
I call the algebra Q×D a least normal simple representation of Z by D . As
you see above I have shown that any normal simple representation of Z by
D is the direct product of a total matric algebra and a least representation.
Moreover a normal simple algebra A gives a least representation of Z if and
only if the algebra of all quantities of A commutative with Z0

∼= Z is a
division algebra.
In particular we notice that m = sm′ , n = qm for a least representation,
so that, since r = sq , we have n = (qs)m′ = rm′. Hence the index of A is
divisible by n

r
.
The above criterion has enabled me to give a very simple proof

of a conjecture by L.E.Dickson as to criteria that a normal simple algebra
be a division algebra. For the case p = 3 you may see this in his Algebren
pg.66, otherwise in his Transactions paper vol.28, 1926, pp.207–234, p.227.
Dickson considered a normal simple algebra of order t2p2, p a prime which
contained a normal division algebra B over a cyclic p–ic field Z . Algebra A
has a B–Basis 1, j, j2, . . . , jp−1 where jb = b′j for every b in B . That
is there is a self correspondence in B which is preserved under addition,
multiplication, and scalar multiplication such that if S is the generator of
the Galois group of Z then uS = u′ for every u in Z . The algebra B is
evidently the algebra of all quantities of A commutative with Z . Since B
is a division algebra it follows from my theory that either the index of A is t
or is n = pt . In fact a necessary and sufficient condition that A have index
n is that there exist no X in B such that

jp = X(p−1)X(p−2) · · ·X ′′X ′X
(
X(r) =

(
(X)(r−1)

)′)
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This was the Dickson conjecture. He proved this true for p = 2, 3 by com-
putation. I have gone much deeper. By the way the conditions above apply,
of course to the case of crossed product with solvable group but also to the
algebras of degree pe (not crossed products) of my “On direct products”
Theorem 23. There seems to be a slight difficulty in the present crossed
product theory. Suppose that D is a normal division algebra of degree pe ,
p a prime. If we consider the crossed product A similar to D then the
subalgebra B of A , whose degree is the same as that of D and which is
in fact D × Z , where Z is a field, is in general not a division algebra. On

the other hand if we extend F by a field whose

{
degree
order

}
is prime to

p the new algebra is a division algebra but is not a crossed product. I have
tried to prove the existence of the latter type of extension and in fact have
tried to prove

Let D be a normal division algebra of degree pe over F .
Then there exists an extension Z of F of degree prime to p such that
D′ = D × Z over Z is a crossed product with abelian (p, p, . . . , p) group,
that is D′ contains a sub–field of degree pe which is a direct product of e
cyclic p–ic fields.

However I have been unable to prove this theorem except for
e = 2 (and of course e = 1 ). The case e = 2 is very much like the case
p = e = 2 in my Transactions paper of vol.32 (1930) pg.184.

In your recent letter you had the attitude of reducing prob-
lems on normal simple algebras to problems on sub–fields of splitting fields.
In my above considerations on q(Z, D) I have tried to bring out the converse
point of view. That is I have tried to bring out the properties of extensions
of F in terms of sub–fields of normal simple algebras. Both points of view
are, I believe, well taken, and both must be used if we are to have a complete
theory. I also think that it has now been brought out that there is more to
the theory of normal simple algebras than just the theory of normal division
algebras.

I wish to accept your kind offer to send me a copy of your
little 2 volume book “Hohere Algebra”. I have been using it (library copy)
in my course on Group Theory as a supplement to the chapters in Dicksons
Modern Algebraic Theories, and I will be very pleased if you send me a copy.

You seem to have twisted my theorem on the norms in cyclic
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fields. I proved that if a power of α is the norm in a cyclic field then α is
the norm in a sub–field. Perhaps your statement that interchanged sub–field
with larger field was due to haste not to an error in thought.

Some time ago it was arranged, through Professor C.C. Mac-
Duffee, that I was to write a tract on Algebras for the Zentralblatt. Now
Dr. Neugebauer has discovered that he had arranged with Dr. A. Deuring to
write on “Hypercomplex Systems” and just now discovers that the subjects
are the same. Who is Deuring and what has he done that he should be the
person to write on Algebras. I have, of course, dropped the whole matter
now as I have intention of writing merely on the relation between algebras
and matrices (Dr.Neugebauer’s present desire). This latter will probably be
done by MacDuffee.

I now come to a list of people who would like reprints of your
Transactions paper. This will be on the enclosed sheet.

With my best regards to Brauer, Noether and yourself, I am

Very sincerely yours,
A. Adrian Albert

P.S. It seemed rather silly for Dr.Neugebauer to make the
discovery after several months and made me rather angry.

Permit me to say I did not believe it possible for mere cor-
respondence to arouse such deep feelings of friendship and comradeship as I
now feel for you. I hope that you reciprocate

With best wishes.

A. A. Albert

P.S. again ! Your criticism of my F (η) is well founded. Blame
my training ! The Galois Theory of “Equations” is Dickson’s. Wedderburn
has written a paper (of an expository nature) on the Galois Theory of
Fields. He would have sent it to me but for his illness. I shall correct my
fault in future papers. I thank you.

A. A. A.
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1.10 01.04.1932, Albert an Hasse

The University of Chicago

Department of Mathematics

April 1, 1932.

Dear Professor Hasse:

I have at last found time to answer your very interesting and enjoyable
letter of March 6. We too have had an end of our term here but that meant a
great deal of work as our new term (or rather quarter) began a week later.
We have the four quarter system here of which all students and professors
attend some certain three. The quarters are between 11 and 12 weeks each
and, as a result, we teach only 2 courses at one time instead of the three in
other universities although the number of hours of teaching is the same as
elsewhere.

I went to answer your letter in the order in which it was writ-
ten so we first go to your

1) I did not have, in the manuscript of our joint paper, the
errors you wrote to me about except the serious one which I corrected very
briefly by an application of lemma 1. 1 We don’t have to worry about the or-
der of the splitting field for the algebra of degree pe. Just take a new splitting
field by applying lemma 1, and then make a new extension of the reference
field such that the splitting field has as galois group a p–group. That is, we
repeat the process of your original proof with the algebra of degree pe which
you applied only to the algebra of degree m . This required only a change of
two lines.

1 Handschriftliche Bemerkung auf dem Rand des Blattes, offenbar von H. Hasse: “I
should like to have a look at the proofs before their going to print”
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2) My paper on normal simple algebras is already in the
possession of the editors of the Transactions. I agree with you that I should
publish it. For I obtained the results independently and by other meth-
ods than those used by Emmy Noether, her results have not been published
(except for the van der Waerden book in which they are very obscurely pre-
sented), the introduction of ideal theory is certainly extraneous for proofs
in the pure linear algebra theory of normal simple algebras, 2 and, finally,
my proof is such a very simple consequence of Th. 14, 18 of my paper “On
direct products”. Th. 14 is the lemma at the basis of our joint paper and
both it and Th. 18 come almost immediately from the uniqueness in the
Wedderburn structure theorem on simple algebras.

3) I cannot understand why you still insist on working with
cyclic algebras of degree n instead of degree pe, p a prime. 3 You must cer-
tainly lose in simplicity of your theorems, and can gain nothing in generality
in view of section 4, Th.5 of the American Journal paper I sent you. In view
of that theorem I cannot see how your result (of your letter) is at all a gen-
eralization of my theorem 4. 4 Also your Transactions result that an algebra
is cyclic if and only if it is cyclically representable could have been reduced,
by the Brauer theorem, to the case of algebras of degree pe, and then your
theorem would read more precisely that A of degree pe is cyclic if and only
if A is similar to a cyclic algebra of degree pf . For if A is similar to B of
degree pfq , and B is cyclic then B = C × D where C has degree pf , is
similar to A , and is cyclic.

I really believe that your whole Transactions paper could be
simplified considerably if this reduction had been made to begin with. 5 Of
course this is a matter of personal taste and you may not even yet agree. 6

Now comes a more serious criticism. Your letter states that

2 Handschriftliche Bemerkung auf dem Rand des Blattes, offenbar von H. Hasse: “no !
invariant sub–algebras are ideals”

3 Handschriftliche Anmerkung auf dem Rand des Blattes, augenscheinlich von H. Hasse:
“for example class–field theory is as simple +++ now !”

4 Handschriftliche Bemerkung auf dem Rand des Blattes, augenscheinlich von H. Hasse:
“Only formally, not essentially”

5 Handschriftliche Anmerkung auf dem Rand des Blattes, offenbar von H. Hasse: “no !
class field theory !”

6 Handschriftliche Bemerkung auf dem Rand des Blattes, augenscheinlich von H. Hasse:
“yes !”
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if Z is a cyclic field of degree n , Z(r) a cyclic field containing Z and of
relative degree r over Z then (really by my theorem 4)

(
αr, Z(r), S(r)

)
= (α, Z, S)r .

You then conclude that immediately every algebra similar to a cyclic division
algebra is cyclic. 7 But how do you know that if A is a cyclic algebra of degree
n that any cyclic sub–field Z of A is contained in a Z(r) ? This is in fact
false. For if (−1, Z, S) is the algebra of ordinary quaternions no sub–field of
this algebra is contained in a cyclic quartic field. In fact

(−1, Z, S)2 = (β, Z, S)

where evidently β 6= α2 = 1 .
I do not believe that your theorem is even true, not merely

that it does not follow from the above result. Of course it is true (since
every normal simple algebra is then cyclic) when the reference field is an
algebraic number field of finite degree. But not by any such argument as
you gave in your letter to me. Also I think I have an example of an algebra
over a function field which is similar to a cyclic algebra and is not cyclic, but
I have not yet been able to complete the proof that the algebra is not cyclic.

4) I thank you for your photograph and books. I was very
pleased to receive them both and will try to send you at least a snapshot of
myself as soon as the weather is nice enough so one can be taken.

5) I am very pleased to have been asked to write a report on
linear algebras for the Jahresbericht. I shall certainly accept this kind propo-
sition. As to the translation into German I shall be compelled to accept your
very good offer. I still hope to go to Germany at some not too distant time
but have no idea as to whether or not this will be possible. I shall study your
report and try to understand better precisely what type of report you wish
me to write.

6) The report by MacDuffee is in the Bulletin of the Math-
ematical Society, December 1931, pg. 841. MacDuffee seems completely

7 Handschriftliche Anmerkung auf dem Rand des Blattes, offenbar von H. Hasse: “yes !
error of me !”
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ignorant of the work of Artin and Brandt, and in fact of all development
of ideal theory in Germany. He doesn’t even know, apparently of Emmy
Noether’s papers on the abstract theory of ideals. Speiser’s paper isn’t given
perhaps as much space as it deserves but he shouldn’t worry about that as
so much else is completely omitted. By the way, MacDuffee’s report for the
Zentralblatt ought to be looked at by Dr. Deuring before publication. Please
don’t let this spread but neither Wedderburn nor myself think very much of
MacDuffee’s work. I have never met him personally but Wedderburn has
met him and, in fact MacDuffee was at Princeton one year.

7) Now as to some new results. I have written a paper and it
is now being considered by a referee for the Bulletin on algebras A = B×C
where B and C are generalized quaternion algebras over a field K = F (u, v)
with u and v independent indeterminates, F any real field. These algebras
were first considered by R. Brauer (Math. Zeits. vol. 31, 1929, pp. 733–747)
and Brauer took

B = (1, i, j, ij), ji = −ij, i2 = u, j2 = b in K ,

C = (1, x, y, xy), yx = −xy, x2 = v, y2 = a in K .

Brauer stated that if the fields K(
√

a) , K(
√

b) are distinct quadratic fields
that A = B × C is a division algebra and he gave a false proof. The
theorem is not true since we can take a = −v, b = −u and have (i + j)2 =
u + ij + ji− u = 0 .
On page 747 he made a serious error. He took

ξ1 = x1 + x2

√
a + x3

√
b + x4

√
a
√

b (xi in K) ,

etc. and put v = 0 obtaining

(ξ1ξ2 − uη1η2)(ξ3ξ4 − uη3η4) = 0

He said that it followed that one ξν and hence all the ξν are divisible by
u. ∗ But this is false since we can have ξ1 = u +

√−u , ξ2 = u−√−u and
yet ξ1ξ2 = u2 + u div. by u , not by u2.

Brauer did not notice that he had irrationalities in the ξν and that the

∗ Of course in the sense that x1, x2, x3, x4 all divisible by u as otherwise this would
not have meaning.
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behaviour of these irrationalities had not been restricted. † His proof is false
and his work at that place valuable only in that he began the study of this
interesting type of algebras. Brauer in fact actually was trying to prove a
certain quartic form in sixteen variables (in K ) was not a null form. I have
shown that necessary and sufficient conditions that the algebras of Brauer
be division algebras in that the quadratic form

uλ2
1 + bλ2

2 − ubλ2
3 − (vλ2

4 + aλ2
5 − vaλ2

6)

in six variables λ1, . . . , λ6 in K be not a null form.
I have used this theorem to now prove, for the first time in the literature,
that there exist non–cyclic normal division algebras (of order 16 and the
Brauer type). I now have reason to believe that I may soon be able to show
that there exist non–cyclic algebras of exponent 4 (the present algebras have
exponent 2). However this latter result has not yet been obtained. But we
now know that non–cyclic algebras exist, that the theory of algebras over any
non–modular field F is not as simple as the theory when F is an algebraic
number field.

I think the above result is a very significant one for further
research in division algebras, in spite of the fact that the algebras are rather
simple. By the way I merely needed to take b of even degree in v , a of odd
degree in v , such that each of these two polynomials in v has leading coef-
ficient a polynomial in u of odd degree and with positive leading coefficient.

Hoping to hear from you soon, I am
Very sincerely yours,

A. Adrian Albert

P.S. I have introduced the notation A ' B (A is associated with B )
to mean that A is the direct product by a total matric algebra. This is more
precise than merely A ∼ B . A.A.Albert

† i.e. we might have a = b = 0 at v = 0 and know nothing about the coeff of
√

a ,√
b .
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1.11 22.06.1932, Albert an Hasse

The University of Chicago

Department of Mathematics

June 22, 1932

Dear Professor Hasse:

I have been very well pleased at receiving your several letters. You are,
may I say it, a very pleasing friend to write to me so often without receiving
any answer. However I shall make this present letter long enough to answer
all your communications.

I am very interested in your generalizations of my theorem on
the square of an algebra of degree four. However, as you have stated, there
does not appear to be any immediate application of your results. What
would be to my mind the finest application is a proof of what I suspect is
a true theorem. It is really a burning question with me as to whether the
theorem is true. If it is true I suspect that many important results on normal
division algebras over a general field will follow. We may state my conjecture
as follows.

Let A be a normal division algebra. Then we say that A
is prime if A is not expressible as a direct product of two normal division
algebras no one of degree unity. It follows from the Brauer theorem that
every normal division algebra of degree a prime is a prime algebra, no normal
division algebra of degree de , (d, e) = 1 , d and e not unity, is prime.
Also there exist normal division algebras of not–prime degree which are prime
algebras. The conjecture is then as to the necessity of the theorem: A
necessary and sufficient condition that a normal division algebra of prime
power degree pe be a prime algebra is that it have equal degree and exponent
pe.
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I proved the above result for p = e = 2 in my most recent
Transactions paper but have been unable to extend my proof even to the
case p = 3, e = 2 .

Your proof sheets of our joint Transactions paper reached me
and I was very pleased with essentially all of your revisions. However I took
the liberty of making one small change. First of all the theorem “there exist
splitting fields of finite degree for any normal division algebra” is so well
known as to be a text–book theorem (cf. Dickson, Algebren p.137) and
needs no other reference. Secondly, in view of the great number of necessary
changes in the proof, I think it desirable to omit as far as possible any
insertions. So I omitted the statement you made as to what had been my
previous deeper lying theorem (that is, every normal division algebra of
degree n has a splitting field of degree n). Since you have found the much
smoother, better proof without this more complicated theorem I think the
older proof best forgotten. I certainly think your new argument the simplest
possible. I sent your proof sheets to Dr. Seeley in New York long ago and,
since she has not replied to my letter regarding the changes, I believe that
they will be made without question.

Now as to a new result. I have finally proved that there exist
non–cyclic normal division algebras of degree and exponent four and have,
of course, constructed such algebras. These algebras (over a function field
F (x, y, z) where F is any real field) have an essentially different structure
from cyclic algebras. The older non–cyclic algebras which I constructed were,
after all, direct products of cyclic algebras of degree two and hence not so very
different from the cyclic type. But the new algebras are not so expressible and
are then essentially non–cyclic. Moreover I have shown now the complicated
associativity condition

(1) (γ2
1 − γ2

2ρ)(γ2
3 − γ2

4σ) = (γ2
5 − γ2

6ρσ)

may be satisfied. Here we are dealing of course with a quartic field K(u, v),
u2 = ρ, v2 = σ in K = F (x, y, z) , and a transformer j1 such that j1 is
commutative with u , transforms v into −v , j2 commutative with v and
transforms u into −u , j3 = j1j2, j2

1 = γ1+γ2u, j2
2 = γ3+γ4v, j2

3 = γ5+γ6uv .
Then the only essential associativity condition is (1) above. In my work I
merely use this equation to determine ρ which occurs linearly therein. In
all previous work the field K(u, v) was given as defining the algebra, thus
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ρ and σ were given and the problem was then to determine the γi so as
to satisfy the associativity condition (1). This is, of course, a much more
complicated problem as (1) is a quadratic equation in the γi .

It is interesting to note that if A is any normal division alge-
bra of degree and exponent four then A2 = C2 where C is a cyclic normal
division algebra. Also C may be easily determined by my Theorem 7 (Nor-
mal division algebras of degree four over an algebraic field) which holds for
any non–modular field as reference field.

I am very sorry that your name was ommitted from the list
“Hasse, Brauer, and Noether succeeded in completing a proof.” I assure you
that this ommission was not made in my original manuscript, but only in a
revised copy by a very regrettable oversight. I most humbly apologize.

I have been very busy here but hope to begin work this week
on my preparations for the writing of a report on linear algebras. I am of
course correct in assuming that you only want the modern theory so I shall
not have to refer to papers written before 1900 unless they have direct influ-
ence on modern work (as for example the remarkable work of Frobenius on
matrices). I don’t even want to have to mention work like that of Hawkes
and Pierce which was absolutely worthless, to my mind.

Have you seen a report on normal division algebras by O.L.
Davies in the Proceedings of the London Mathematical Society vol.33 (April
1932), p.537. It is very silly. He first states that it has been proved that
all normal division algebras of order less than or equal to sixteen are cyclic,
quoting Wedderburn’s paper on order nine. They are not all cyclic as I have
shown. Secondly he considers algebras of degree m , a product of distinct
primes. He states that since all normal division algebras of type R ∗) (i.e.
containing a maximal sub–field of degree equal to the degree of the algebra)
and order p2 (i.e. degree a prime) are necessarily cyclic, every normal divi-
sion algebra of degree m (as above) and type R is cyclic. This does not
at all follow from just theorems already known. For if A has degree m and
type R it does not at all follow that the direct factors of A also have type
R just as it does not follow that every regular group of degree a product of
distinct primes is a direct product of cyclic groups of prime order. His paper
is perfectly silly.

∗) Called of type R by me very early. They are the algebras of Dickson the crossed
products of E.Noether.
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I forgot to mention that now my proofs of the existence of
non–cyclic algebras of degree four have shown that my determination of all
normal division algebras of order sixteen over a non–modular field in the
1929 Transactions gave the best possible result. It was not, however, the
best possible proof. I have prepared a much shorter and smoother proof and
hope to publish it in the Bulletin of the American Mathematical Society.

My American Journal paper, a copy of which is on its way to
you now, appeared in vol.54 (January 1932). I am also sending you other
reprints, those you already have mentioned in a recent letter.

I was interested to know that you had had conversation with
someone who had met me. I do not remember Professor Maier. I am sur-
prised that he remembers me as our meeting must have been a brief one. I
met very many people in the East, unfortunately rememember but few.

I have no photograph to send you but am sending you a Ko-
dak picture of my son Alan and myself.

With my very best regards, I am
Very sincerely yours,

A. Adrian Albert
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1.12 09.02.1933, Albert an Hasse

The University of Chicago

Department of Mathematics

February 9, 1933.

Dear Professor Hasse:

I was very pleased to receive your letter today and most interested in its
contents. I am also pleased to be able to give you what I hope is the best
possible answer to the question you have asked of me.

A necessary and sufficient condition that (c, d) × (e, f) ∼
(a, b) , that is, a direct product of two normal simple algebras of degree two
shall have exponent not more than two, is that the two algebras shall have
a quadratic sub–field in common. Hence your assumption A is equivalent
to the condition that there shall always exist (for every non–zero c, d, e, f )
quantities x1, . . . , x6 not all zero and in F such that

(1) [cx2
1 + dx2

2 − cdx2
3]− [ex2

3 + fx2
4 − efx2

5] = 0 .

Suppose that then x1, . . . , x6 is any one such solution.
(Up to now my proof is not rational. But neither is your condition A. The
following is rational, however.)

I have proved (p.537 of my Bulletin A.M.S. paper “on the
equivalence of g.q.alg.”) that then (c, d) = (a, g) (e, f) = (a, h) so that
(c, d)(e, f) = (a, b) with b = gh , where

a = cx2
1 + dx2

2 − cdx2
3 = ex2

4 + fx2
5 − efx2

6

and
g = −cd(x2

2 − cx2
3) , h = −ef(x2

5 − ex2
6)
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if not both of x2 and x3 are zero and not both of x5 and x6 are zero.
If x2 = x3 = 0 then we may take a = c, g = d in the above. In case
x5 = x6 = 0 we take e = a, h = f .

It is of course obvious that a completely rational solution of
your problem would require the finding of a general solution of the equation
(1) which we know has a solution for all values of c, d, e, f in F . I don’t
believe such a solution can be found (or at least has been found.)

Now for my own work. I have written a rational classification
of all cyclic fields of degree eight over any non–modular field F . I have
given just as explicit formulae for the construction of all such fields as are
well known for cyclic cubics and quartics. My formulae are even better than
those of F.Mertens even for his case where F is the field of rational numbers.
He used ideal theory and certainly did not obtain rational results.

Next I call a normal division algebra primary if it is not ex-
pressible as a direct product of two normal division algebras neither of degree
unity. The problem I wrote to you about last June is then the following. A
sufficient condition that A of degree pe, p a prime, be primary is that A
have exponent=degree. Is this condition necessary ? I have now proved,
using the above construction of cyclic fields of degree eight, that there exist
cyclic primary normal division algebras of degree eight and exponent four.
For I have proved the existence of cyclic algebras of degree eight over the
function field R(z) of all rational functions with rational coefficients of z ,
such that A2 has index four but exponent two. If A were not primary then
A2 would have index two. Also A has exponent four if A2 has exponent
two. Hence A is primary of exponent< degree.

Suppose also that we could prove the existence of a cyclic al-
gebra A of degree eight over R(z) such that A2 is similar to Q of degree
two such that Q is not similar to the square of any cyclic division algebra
of degree four. It seems almost certain that such algebras A exist. Then A
would be primary and again of exponent four (but of a new type). For if
A were not primary so that A = C × D where C has degree two and D
has degree four then obviously A2 ∼ D2. But I have proved that D2 ∼ E2

where E is cyclic. I have not completed the proof of the existence of such
algebras A as yet, but hope to do so in the near future.

The above first case is also the first proof of the theorem that
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the field R(z) of a single indeterminate z does not have your property A.
Brauer proved the same theorem for R(y, z) where y and z are indepen-
dent indeterminates and I have proved the same theorem for fields F (y, z)
where F is any real number field. But I can also easily prove that the field
F (z) does not satisfy property A for any real number field F (of course of
characteristic zero.)

I have recently written a brief note on the conditions for the
equivalence of any two generalized quaternion algebras over a general field
F . In fact for any normal simple algebras (a, b), ab 6= 0 we have

Theorem. A necessary condition that (a, b) and (c, d) be
equivalent is that there exist ξ1, ξ2, ξ3 in F for which

(2) c = ξ2
1a + ξ2

2b− ξ2
3ab .

For any ξ1, ξ2, ξ3 satisfying (2) algebras (a, b) and (c, d) are equivalent if
and only if

(3) d = (ξ2
4 − ξ2

5c)b0

for ξ4 , ξ5 in F where

b0 = b , or b0 = −ab(ξ2
2 − ξ2

3a)

according as ξ2 and ξ3 are or are not both zero.

I have also done some work on the problem of obtaining ex-
plicit conditions (algebraic conditions for the case of a general F ) for the
equivalence of any crossed products. In view of R. Brauer’s recent “Uber
die algebraische Struktur von Schiefkorpern” I have delayed publishing my
results until I compare with his. In this same paper of Brauer (presented
Nov.11, 1931) in his footnote on page 243 Brauer gives a result which we (he
and I) probably obtained about the same time but which was given in my
paper “On algebras of degree 2e and pure Riemann matrices” of the Annals
of Mathematics April 1932 which was received by the editors in October 24,
1931 and is a paper a summary of which was given in May 1931 by me a
published in the Proceedings of the National Academy of Sciences of June,
1931. The particular theorem did not appear in this earlier paper (P.N.A.
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paper) because of the character of the paper (just a report) and because the
theorem is not very important. However I don’t think Brauer ought to claim
it as his, especially in view of the fact that he gives no proof. The result of
Brauer is of course equivalent to my theorem that if A is a normal division
algebra of degree pe, p a prime, so that Ap ∼ Ap , a normal division algebra
of index (degree) tp , then tp divides pe−1.

I have been doing a great deal of research lately on the inte-
gers represented by sets of positive ternary (classical) forms. In particular
I say that a is represented by a set S of a finite number of forms (in the
sense of equivalence) if some form of S represents a . Let then S(d) be
the set of all positive ternaries of determinant d . Write d = e2f where f
has no square factor. Then an integer a = b2c , c with no square factor is
represented by S(d) if and only if a has not the form

a = b2c , c = fg , g ≡ 7 (mod. 8)

such that g is prime to d and, for every odd prime divisor p of d, (p|g) = 1 .
(this, of course, the Jacobi symbol).

The above result is certainly an elegant one. I have also proved
that if S(n, d) is the set of all positive n–aries of determinant d , n ≥ 4 , then
S(n, d) represents all positive integers. However every S(3, d) represents
no integers f(8nd− 1) and hence no positive ternary represents all positive
integers.

What then is to be a theory of universal ternaries ? I be-
lieve this will be a theory of chains of forms S = (f1, . . . , fr) such that
S represents all positive integers but S − fi does not have this property,
i = 1, . . . , r . I have been unable to solve the problems suggested by this,
as yet, and hope to be able to use your p–adic number theory. But I have
investigated the theory of chains of sets of forms S(d) and have shown that
for such chains r = 2 . Moreover I have determined all such chains. (Such
a chain is a set S(d1, . . . , dn) of all the positive ternaries of determinants
d1, . . . , dn such that the omission of one di makes the universal set S not
universal.)

I believe the above problems very beautiful and hope they are
worthy of work by other mathematicians besides myself.

Now finally as to my future plans. My trip to Germany is now
indefinitely postponed as next year I have a leave of absence here and go to
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the Institute of Advanced Study in Princeton, on a one year appointment. I
don’t have any plans for the period after that.

With best regards, I am
Very sincerely yours,

A.Adrian Albert
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1.13 08.08.1933, Albert an Hasse

The University of Chicago

Department of Mathematics

August 8, 1933.

Dear Professor Hasse:

I am very sorry not to have been able to write the letter you requested
but many things prevented it. We have been terribly busy all summer with
the Fair, the Society meeting, a very large group of National Research Fel-
lows, and a large number of students trying to finish their theses. Professor
Dickson has been out of town all summer so I have not been able to ask him
to write also. I don’t know just where he is or when he will return. My most
humble apologies for the delay.

After a very long period during which I hoped to learn enough
of your existence theorems to be able to answer a very important question,
I have decided to ask your help. Consider a division algebra D over the
field R of all rational numbers. Let the order of D be 2tn2 such that the
centrum K of D is an algebraic field of order 2t over R . Let S be a
correspondence of the quantities of D such that rational numbers are self
corresponding (a+b)S = aS +bS, (ab)S = bSaS. Then D is self–reciprocal.
But the quantities of its centrum are not self–corresponding. In fact the as-
sumption is that K = R(s, q) , where qS = −q, q2 is in R(s) , sS = s .
The quantities of R(s) are self–corresponding and are called symmetric, the
quantity q is skew–symmetric.

It is known that D contains tn2 linearly independent sym-
metric quantities, tn2 linearly independent skew–symmetric quantities. The
question I wish to raise is whether D contains a maximal sub–field over K
which is in fact cyclic over R(s) not merely over K . For the question I am
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studying (the theory of the multiplication algebras of pure Riemann matri-
ces of the second kind) it is of no use to know that D is cyclic as long as it
is not known that the cyclic field is composed of symmetric quantities ∗

It is well known that the property that a field be composed of symmetric
quantities is that it be equivalent to a total real field. A skew–symmetric
quantity, on the other hand, generates a field which is equivalent to a pure
imaginary field over a total real field.

Thanking you for any answer you may be able to give me, I am with best
regards,

Very sincerely yours,
A.Adrian Albert

∗ I thus wish that it be shown that D = (Z, S, γ) where Y is cyclic of degree n over
R(s) , Z = YK , K = R(s, q) , γ is in K .
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1.14 10.09.1933, Hasse an Albert

10.9.33

Brief an Albert in Antwort auf Brief vom 8.8.33

I.) Widerspruch in Alberts Forderungen.
1.Forderung. Max. Teilkp. Z über K , zyklisch über R(s)
2.Forderung. Z aus symm. Größen bestehend

Wie ist das möglich, wenn Z doch den unsymm. Teilkörper K hat ?
In Fußnote 2.Ford. anders interpretiert: Z = YK , wo Y zykl. über R(s) .
Auch das scheint unmöglich, wenn z.B. der gegeb. Grad n eine Potenz von
2 ist, denn dann ist Z = YK sicher nicht zyklisch vom Grad 2n über R(s) .

II.) Behandlung der 1.Forderung.
Ergänzung zu Grunwalds Existenztheorem I (Crelle 169) unter der
Einschränkung: G zykl. von Primzahlpotenzgrad `s.
Behauptung: Man kann dann zu Grunwalds Bedingungen 1.–4. die weitere
Bedingung hinzufügen, daß K einen gegebenen zykl. Körper K0 über k mit
Gruppe G0 = G/U enthalte, wenn nur

(a) unter den gegeb. pk jeder Teiler des Führers f0 von K0/k vorkommt.

(b) die gegeb. Char. χk(α) eine Fortsetzung der N.R.S.
(

α,K0

pk

)
bilden, d.h.

χk(α) ≡
(

α, K0

pk

)
mod U .

Beweis. Wahl von Hilfsprimideal q . Anstatt (1) hier

Nq ≡ 1 mod `u, wo `u Ordnung von U .
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(2) ungeändert. χq homom.Abb. der pr.Restklfn. mod q auf U . Definition
von f wie l.c. dann etwas allgemeiner:

χ(a) =
∏

j

S
aj

j ·
∏

k

χk(α) · χq(α) , wenn a ∼`

∏
j

r
aj

j α ,

die rj wie l.c., (2’) unverändert, die Sj Elemente aus G , die Fortsetzungen
der Artin–Symbole

(
K0

rj

)
sind, d.h.

Sj ≡
(

K0

rj

)
mod. U .

Dann

χ(a) ≡
∏

j

(
K0

rj

)aj ∏

k

(
α, K0

pk

)
mod. U .

Wenn a prim zu den pk ,

∏

k

(
α, K0

pk

)
=

∏

p6=pk

(
α,K0

p

)−1

=

(
K0

α

)
.

Daher

χ(a) ≡
∏

j

(
K0

rj

)aj

·
(

K0

α

)
=

(
K0

a

)
mod U .

Somit enthält Klassenkörper K zu Idealgr. H definiert durch χ(a) = 1 den
Körper K0.

q hier analog zu (3.) l.c. so zu wählen, daß χ(a) = 1 wirklich Idealgr. H
definiert, also so, daß (1.) χ(a) Ideal funktion ist:

∏

k

χk(εi) · χq(εi) = 1 für Grundeinheiten εi von k ,

und (2.) χ(a) nicht von Normierung der Expon. aj in ihren Restkl. mod. `hj

abhängt:

S`hj

j ·
∏

k

χk(ζj) · χq(ζj) = 1 , wenn r`hj

j ζj = 1 .

Schließlich analog zu (4.) l.c.
∏

j

S
pfj

j · χf (πk) ·
∏

k′ 6=k

χk′(πk) · χq(πk) = 1 .
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In allen drei Bedingungsserien gehört Aggregat der Faktoren von χq zu U .
Daher q nach Schluß aus Grundwald’s Dissertation so wählbar, daß alle
Bedingungen erfüllt.

Klassenkörper K zu H leistet das Verlangte.

III.) Alberts Frage. (K0/k vom Grad 2, in Alberts Bezeichnung K/R(s) ).
Triviale Reduktion auf Fall n = 2u durch Abspaltung des Körpers von

ungeradem Grade, der direkt durch Grunwald’s Existenztheorem III über k
garantiert wird.

Notwendige Bedingung für Existenz zyklischen Körpers K vom Grad 2u

über K0 , der zyklisch (vom Grad 2u+1) über k ist:
1.) Zu 2 prime Führerteiler p von K0/k müssen in K voll verzweigt

sein, also Np ≡ 1 mod. 2u+1.
2.) In 2 aufgehende Führerteiler p von K0/k : Die Gruppe

(
α,K0

p

)
= 1

darf nicht durch Basiselemente endlicher 2–Potenz Ordnung < 2u erzeugt
sein. Es gibt nur ein Basiselement endlicher 2–Potenz Ordnung, die höchste
in kp enthaltene 2ν–te Einheitswurzel. K0 darf nicht an der Stelle p mit
dem lokalen Klassenkörper identisch sein, der diesem Basiselement entspricht,
wenn ν ≤ u ist. Speziell für k = R folgt, daß quadratfreie Zahl a mit
K0 = R(

√
a) nicht ≡ −1 mod. 83 sein darf.

3) Reell unendliche Führerteiler p von K0/k dürfen nicht existieren.

Sind diese Bedingungen erfüllt, so gestattet
(

α0,K
p

)
wirklich stets Fortsetzung

χk(α) in G , d.h. obige Bedingungen (a),(b) sind realisierbar (für die Nicht-
Führerteiler trivialerweise), und zwar auch so, daß die Pk–Grade von K (für
die Primteiler Pk der pk in K0 ) gleich 2u (bzw., bei unendl. pk , gleich 2)
werden, also Zerfällungskörperbedingung garantiert ist.
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1.15 o.D.,1934, Albert an Hasse

Fine Hall,
Princeton University,
Princeton, N.J.

Dear Professor Hasse:

I have spent the last week studying your letter and connected
published work but have been unable as yet to get my desired theorem. How-
ever I still believe the result is correct and hope you can help me finish the
theorem.

Consider a total real algebraic number field Ω of finite de-
gree, a number µ < 0 in Ω and with all its conjugates also negative, the
relative quadratic field K0 = Ω(u) , u2 = µ . Then I believe it is clear that if
P is any infinite prime spot of K0 the field K0P is the field of all complex
numbers ? If this is true then in the considerations of algebras over K0 we
need not consider the infinite prime spots.

Consider now a normal division algebra D of degree n over
K0 . Then D has order 2n2 over Ω and I assume that D is self recipro-
cal under a correspondence carrying u into −u . In fact I assume a star
operation in D such that

u∗ = −u , (ab)∗ = b∗a∗, λ∗ = λ , (a∗)∗ = a

for every a and b of D and λ of Ω . Then D has a basis

v1, . . . , vm , v0 = 1 , m = n2

of quantities vi = v∗i . But

vivj =
∑

γijkvk , vjvj =
∑

γ∗ijkvk ,
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with γijk in K0 not in Ω . In particular it is evident that the minimum
equation of any quantity a = a∗ has actually coefficients in Ω . What I
really want is to prove the existence of an a in D such that a∗ = a , the
field Ω(a) has the cyclic group with respect to Ω and degree n . It will
then follow immediately that, since K0 is not equivalent to any sub–field of
Ω(a) , the field K0(a) is cyclic of degree n over K0 . Moreover K0(a) is a
maximal sub–field of D .

It is evident that D cannot have a splitting field which is cyclic
of degree 2n over K0 as you discussed in your letter. For my purposes it is
sufficient to prove the

Conjectural Theorem There exists a field K cyclic of
degree n over Ω such that the composite Z = (K,K0) is a splitting field
of D .

I have, however, only been able to prove

Theorem There exists a field K , cyclic of degree 2n over
Ω such that Z = (K, K0) splits D (when n is even).

In fact let n = n2e where n is odd. Then let Pk range over the prime spots
of K0 for which D has Pk–index 6= 1 and pk the corresponding prime spots
(Pk/pk) of Ω . By Grünwalds Theorem 3 with ek = 1 there exists a cyclic
field K of degree n over Ω with pk as an invariant ideal (that is with the
group of K as decomposition group). Since K has degree n prime to 2 the
ideal Pk is also an invariant ideal of Z = K × K0 = KK0 a cyclic field of
degree n over K0 and Z has Pk–index n . Thus Z is a splitting field for
D(1) where D = D(1) ×D(2), D(1) of degree n , D(2) of degree 2e.

The conjectural theorem has then been proved for n odd.
But now I tried to obtain the same result for degree 2e. Again

we chose K of degree 2e over Ω and cyclic over Ω and I wish to make
Z = (K,K0) a splitting field of D(2) of degree 2e over K0 . I can again
make the pk invariant ideals of K but then if pk = Πµ

k , Πk an invariant
prime ideal of K and µ = 2e it will not necessarily follow that Pk is an
invariant ideal of Z .

For if pk = Pk then it is true that Pk is invariant. If pk = P 2
k ,

that is pk is a Führer divisor of K0 , then also PK is invariant. But if
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pk = PkP k then it may happen that Πk = ℘k℘k where ℘S
k = ℘k , ℘S2

k = ℘k

so that ℘k has 1
2
n as the order of its decomposition group. Thus Z does

not split D(2). But if we take K and hence Z of degree 2n then Z splits
D(2).

It seems to me that something like the proof you outlined
ought to give my desired result, that is a cyclic field K of degree n over Ω
such that not K but (K, K0)

1 splits the algebra D . One ought to be able
to use Grunwalds Theorem 1 with group the direct product of a cyclic group
of order 2e and one of order 2 and with a given K0 as having the group of
order 2.

I should be very glad if you could provide me with a detailed
proof for joint publication in a paper by both of us. The result is certainly
of the greatest importance in several parts of algebraic geometry.

As you see from the address I have given you I am now in
Princeton. I am with the Institute for advanced study and have been doing
a large amount of research.

1) I have written a paper on algebras over modular (infinite)
fields and have proved that if D is a normal division algebra of degree n over
a perfect (vollkommen) field F of charakteristik p then n is not divisible
by p . As the only reason for assuming that F is perfect is in case n is
divisible by p the assumption that F is perfect (made by you and Brauer
repeatedly) is too strong.
I have also given a brief discussion of the validity of the principal results on
normal division algebras for the case where F is not perfect. In particular
E.Noether and G. Koethe have given proofs that D has maximal sub–fields
of the first kind and with non–zero trace (Spur). But my proof for the non–
modular case (short Bulletin note) holds with no change.

I finally give the (trivial) determination of all normal division
algebras of degree 2 over F of characteristic 2 and algebras of degree 3 over
F of characteristic 3. Several changes in Wedderburn’s proof had to be made.
(TRANSACTIONS 1934).

1 Fußnote auf dem unteren Rand des Blattes: “This is the case that seemed to you to
be the difficult one. That is why I hope you can finish this proof without much difficulty.”
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2) I have used Artin–Schreiers paper on cyclic fields of degree
p2 over F of characteristic p and have studied all the types of fields

F (x) > F (u) > F

where F (x) is not cyclic over F but F (x) is cyclic of degree p over F (u)
which is cyclic of degree p over F

(Annals of Math. 1934)

3) I have determined all normal division algebras D of degree
4 over F of characteristic 2. Many results are different from the case of
characteristic p 6= 2 . In particular D is cyclic if and only if D has a
quadratic subfield of the second kind (i.e. inseparable). In particular every
D which is a direct product of two algebras of degree 2 is cyclic.

(American Journal 1934)

4) In the Bulletin 1933 pp 146–149 I have proved that every
normal division algebra of degree n over any algebraic field F (of infinite
degree) is cyclic and has exponent n . But normal simple algebras need not
be cyclic (for there need not be any algebraic extensions of a given degree
of F ). In fact I have the following

Theorem Let D be a normal division algebra over an infinite
field F with P as prime sub–field.
Then there exists a sub–field Λ = P (λ1, . . . , λr) of F obtained by finite
algebraic and transcendental extension of P and a normal division algebra
B over Λ such that

D = BF .

In the particular case where F is an algebraic number field the field Λ
is algebraic of finite degree, B is cyclic and D = BF is cyclic.
Moreover the above theorem is trivial for we may take

u1, . . . , um as a basis of D ,
uiuj =

∑
γijkuk ,

Λ = P (γ111, . . . , γmmm) , B = (u1, . . . , um) over Λ .

5) I have proved for p an odd prime
Theorem Let the minimum equation of a primitive pth root
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of unity ε with respect to a non–modular field F have the roots

εk = εtk , tk ≡ tk−1 (mod p) , 0 < tk < p (k = 1, 2, . . . , n)

and let g = g(ε) range over all the quantities of F (ε) such that

a =
n∏

k=1

g(εk)
rk , rk ≡ tp−k+1 ≡ tp−k (mod p)

is not the pth power of any quantity of F (ε) . Then if

zp = a

the field F (z) is cyclic of degree np over F and

F (z) = F (x)× F (ε)

where F (x) is cyclic of degree p over F . Conversely every cylic field Z of
degree p over F is generated as the uniquely determined sub–field F (x) of
such an F (z) .

I have thus given a formal construction of all cyclic fields of
odd prime degree over any non–modular field F . I hope to be able to use
this in proving the existence of non–cyclic algebras of degree 5. I have also
proved for p a prime, F non–modular,

Theorem A normal division algebra D of degree p over F
is cyclic if and only if D contains a sub–field F (y) , yp = γ in F .

(Annals 1934 or Am. Journal ! )

6) I have been studying certain commutative non–associative
algebras of quantum mechanics. They were discussed by P. Jordan in the
Göttinger Nachrichten. More recently Jordan, Neumann and Wigner have
proved that all algebras satisfying

1) Commutative

2) Distributive

3) (xy)x2 = x(yx2)
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4) Finite basis over field of real numbers

5) Artin real, ie. x2
1 + . . . + x2

n = 0 implies xi = 0 ;

which are irreducible, are obtained by quasimultiplication

ab =
1

2
(a · b + b · a) (a · b ordinary matrix product)

of either real matrices or all 3–rowed Hermitian matrices with elements in
the real Cayley algebra of order 8. I have completed this work by proving
that the last algebra M8

3 is not equivalent to one of the former.
(Annals Jan 1934).

As you can see I have been quite busy. I hope you will pardon
my delay in answering your letter and also my writing it instead of typewrit-
ing.

I have seen R.Brauer and E.Noether. They passed through
here and stayed a short while.

I hope you can answer my letter soon and that you obtain the
desired result.

Anxiously awaiting your reply, and with best regards,

I am
Very sincerely yours

A. Adrian Albert.
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1.16 06.02.1934, Albert an Hasse

Fine Hall,
Feb.6, 1934.

Dear Professor Hasse:

I am happy to be able to write to you of my success in generalizing the
Artin–Schreier results. Let F be a field of characteristic p . Then it is easy
to prove

Lemma 1 Every cyclic field of degree pn over F is generated by a
quantity xn such that

(1) xp
i = xi + ai , ai in Zi−1 = F (xi−1) , x0 = 1 (i = 1, 2, . . . , n) ,

and xp
1 = x1 + a1 irreducible in F . If S is the generating automorphism of

Zn then

(2) xS
i = xi + bi , TZi|F (bi+1) = hi (hi = 1, 2, . . . , p− 1 ; i = 1, . . . , n)

(3) aS
i − ai = bp

i − bi

Conversely if xp
1 = x1+a1 is irreducible in F then the field F (xn) defined

by (1),(2),(3) is cyclic of degree pn over F with generating automorphism
S given by (2).

Here I mean TZi|F (bi+1) to represent the trace (spur) of bi+1 in Zi . We
may write

ci =
∑

jk=1,...,p−1

λj1...ji
xj1

1 · · · xji

i

for any ci of Zi . We call ci non–maximal if the first coefficient λp−1,...,p−1 =
0 . Then I have proved
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Lemma 2 If bi = (x1x2 · · ·xi−1)
p−1 the polynomials

(4) ci−1 = bp
i − bi =

[
(x1 + a1) · · · (xi−1 + ai−1)

]p−1

− bi (i = 2, . . . , n)

are non–maximal. Then (3) have solutions ai (unique up to an additive
constant) and define cyclic fields Zn of degree pn over F . In fact if ci is
any non–maximal quantity of Zi there exist solutions di in Zi of

(5) dS
i − di = ci

A simple application of the above finally gives

Theorem Every cyclic field Z1 of degree p over F of characteristic p
is a subfield of cyclic overfields Zn of degree pn. If Z1 = F (x1) where

(6) xp
1 = x1 + a1

is irreducible in F then all such fields Zn are given by

(7) Zi = F (xi) , xp
i = xi + ai (ai in Zi−1 , i = 2, . . . , n)

where ai is determined uniquely up to an arbitrary additive constant in F
as a solution of





ai(x1 + b1, . . . , xi−1 + bi−1)− ai(x1, . . . , xi−1) =

=
[
(x1 + a1) · · · (xi−1 + ai−1)

]p−1 − bi

bi = (x1x2 . . . xi−1)
p−1





Conversely every Zn defined above for irreducible xp
1 = x1 + a1 is cyclic

of degree pn over F with generating automorphism S given by

xS
i = xi + (x0x1 · · · xi−1)

p−1, x0 = 1 , (i = 1, . . . , n) .
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This is a complete solution of the question and I am sending the resulting
paper to the Bulletin of the American Mathematical Society.

I have also proved the conjecture I discussed with you recently is a true
one. In fact I have shown that the following theorem is true.

Let R be the field of all rational numbers, F a total real algebraic ex-
tension of R , K a total pure imaginary quadratic extension of F . Let Z
be cyclic of degree n over F and total real so that W = (Z,K) is cyclic
of degree n over K . Let the generating automorphism of Z be given by
Z = F (x) ,

x ←→ xS

and define a cyclic algebra D by

yix = xSi

yi , yn = γ in K

such that γ = γ1 + γ2q , K = F (q) , q2 = µ in F , γ1 , γ2 in F ,

γ2
1 − γ2

2µ = NZ|F (d) ,

where d is a total positive quantity of Z .
Then there exist Riemann matrices with D as multiplication algebra.

Conversely let D be the multiplication algebra of a pure Riemann matrix
and with K as centrum. Then D is a cyclic algebra of the above type (and
a division algebra).

The special conditions imposed on D are

1) D is self reciprocal but moreover such that d∗∗ = d for every d of D .

2) If F (x) is any total real sub–field of D then there exists a self–
reciprocal correspondence of D with x self corresponding.

3) Any algebra similar to D has the above two properties.

I was unable to prove the above theorem on the structure of D without
using the existence part. It is easy to prove the theorem when D has odd
degree. Hence let D have degree 2ν .
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Then A = D × M2 (M2 total matric of degree 2 ) is cyclic of the above
type and I can prove that γ2

1 − γ2
2µ = N(d) , d total positive. But then

A2ν−1 ∼ Q where M2×Q is also cyclic as above and hence is the algebra of
a Riemann matrix. Moreover we use (3) to show that (1) holds for algebra
Q . It is then easy to show that (1) holds for algebra Q . It is then easy to
show that Q = Q1 ×K where Q1 has degree 2 over F .

Now D2ν−1 ∼ (Q1 ×K) and if we use Grunwalds theorem to obtain the
existence of a field Z of degree n whose quadratic sub–field Z2 splits Q1

then Z will split D .
I hope the above outline of my proof is clear. I will publish the paper in

the Annals of Mathematics.

I knew about your work and that of Hilbert on Kummer fields. But isn’t
my formula as given in the following theorems new ?

Theorem 1 Let F (x) have degree p over F and F (x, ε) ≡ Z be
normal over F . Then Z has group

(8) SiT j (i = 0, 1, . . . , p− 1; j = 0, 1, . . . , ??)

such that Sp = T n = I , the identity automorphism,

(9) TS = SeT (0 < e < p)

moreover Z = F (y, ε) where yp = µ in F (ε) ,

(10) εT = εt, y(T ) = λyr, ε(S) = ε , y(S) = εy ,

µT =(p) µr

and r ≡ et (mod p ).

The above is the Hilbert result generalized to F (ε) of degree n over F ,
ε a primitive pth root of unity, T the generating automorphism of F (ε)
given by ε ↔ εt. Now my result is

Theorem 2 Let λ range over all quantities of F (ε) such that

(11) yp = µ = Π λ(εk)
ρk 6= 1
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Then F (y, ε) is a normal field of Theorem 1.
Conversely every normal field of Theorem 1 is generated by a µ defined as
above.

Here ρr ≡ 1 (mod p ) , ρk ≡ ρk−1 (mod p ) , 1 ≤ ρk < ρ .

I have not found any such formula as (8) in the literature although it
probably exists in the arithmetic work on Kummer fields.

I have borrowed your work on Klassenkörpertheorie from the University
of Chicago library. It is certainly a beautiful piece of exposition and I should
like to buy a copy but they are out of print.

Is it true that an English translation is being made and when will it appear ?
My Institute position is neither a promotion nor permanent. The Institute

for Advanced Study has only 5 members on its permanent faculty (Weyl,
Einstein, Neumann, Veblen and Alexander). All the other appointments are
for one year and merely to give young men an opportunity to do research
unhampered by teaching duties. I have been giving a seminar on Algebra all
year however.

I leave Princeton to return to Chicago on May 1st. My address will again
be the University of Chicago.

I hope you will excuse my handwriting. I have been very ill (have had a
bad cold and dizziness ever since) and do not want to go to work to typewrite
this.

Hoping you are well and with best regards I am

Very sincerely yours,

A Adrian Albert.

P.S. Fr. E.N. speaks here tomorrow on Hypercomplex numbers and Number
Theory.

56



1.17 02.02.1935, Hasse an Albert

Mathematisches Institut
der Universität

G ö t t i n g e n , den 22. 1. – 2. 2. 19 35
Bunsenstraße 3/5

Dear Prof. Albert,

I suppose it will interest you to hear about some improvements and new
results recently found by our best man here, Dr. E. Witt, in Linear Algebras
and other subjects.

I. Witt has found independently of you the construction of all cyclic∗)

fields of degree ph over a field R of characteristic p . When I showed him your
letter about this subject, he stated that his theory was materially identical
with yours. There are however some formal improvements in his method,
which are in a way characteristic for Witt’s outstanding ability in dealing
with a formal algebraic subject. Also his method leads up to some very

∗) P.T. O.
“Cylic” here and subsequently means “separable cyclic”, i.e., the order of the cyclic Galois
group is equal to (no proper divisor of) the degree of the normal field in question.
Similarly later on “normal” means “separable normal”. For an inseparable normal field
K/k there exists an uniquely determined maximal separable subfield K0/k such that K/K0

may be generated by adjunction of pth roots of elements of K0 , and the Galois group of
K/k is the same as of K0/k , because K/K0 has no automorphisms different from unity.
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interesting generalisations.

Let R be an arbitrary field of characteristic p
R0 its Primkörper, consisting of 0, 1, . . . , p− 1

(elements small Greek letters)
k a cyclic field of degree q = ph−1 (h ≥ 2) over R

( q q Latin letters)
K a cyclic field of degree qp = ph (h ≥ 2) over R

( q capital q q )
σ a generating automorphism of K/R

hence σ also a generating automorphism of K/R
when applied to k only

and σq also a generating automorphism of K/k

We have to consider the following operators:

σ − 1
σq − 1

Sp = σq−1
σ−1

(Spur for k/R)

sp = σqp−1
σq−1

(Spur for K/k)

Sp sp = σqp−1
σ−1

(Spur for K/R)

π defined by πX = Xp −X .

All these operators are linear and commutative with each other. The solu-
tions of πX = 0 are the elements of R0 .

Theorem 1. K/k may be generated by an irreducible Artin–Schreier equa-
tion

(1.) πW = a , a 6= πx for any x in k
as

K = k(W ) .

For each such generation one has simultaneously:
(2.) (σq − 1)W = ζ 6= 0 (in R0 )
(3.) (σ − 1)W = e (in k )
(4.) Sp e = ζ
(5.) (σ − 1)a = πe .

Proof. I need not reproduce the proof for the existence of a generation (1.)
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for K/k . For each such generation one has (2.) with a certain ζ 6= 0 , as is
also well–known. By applying σ − 1 to (2.) one gets:

(σq − 1)(σ − 1)W = 0 ,

hence (3.) with a certain e . By applying Sp to (3.) one gets (4.) , and by
applying σ − 1 to (1.) one gets (5.).

Corollary. All generations of the type (1.) arise from one of them by the
substitutions

W ′ = νW + x , ν 6= 0 (in R0) , x (in k) arbitrary.

(1.)–(5.) transform into

(1′.) πW ′ = a′ with a′ = νa + πx
(2′.) (σq − 1)W ′ = ζ ′ q ζ ′ = νζ
(3′.) (σ − 1)W ′ = e′ q e′ = νe
(4′.) Sp e′ = ζ ′

(5′.) (σ − 1)a′ = πe′.

Proof. This is also well–known, and (1’.) – (5’.) are easily deduced from
(1.) – (5.) by the elementary properties of the operators. —

Now let R, k be given as before. For the moment σ signifies only a
generating automorphism of k/R .

Theorem 2. To every solution e, a of (4.),(5.) in k (with a given ζ 6= 0
in R0) equation (1.) defines a field K = k(W ) , which is cyclic over R
of degree qp = ph, and has properties (2.),(3.) for a certain generating
automorphism σ of K/R which continues the given σ of k/K .

Proof. (i) The element a generates k/R :

k = R(a) .

It suffices to prove

(σr − 1)a 6= 0 where r = ph−2 =
q

p
.
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Suppose
(σr − 1)a = 0 ,

then by (5.)

π
σr − 1

σ − 1
e = 0 ,

hence
σr − 1

σ − 1
e = µ (in R0)

Sp e =
σq − 1

σr − 1

σr − 1

σ − 1
e =

σq − 1

σr − 1
µ = 0 ,

which is a contradiction to (4.).

(ii) The element a is not of the form πx .
Suppose

a = πx ,

then by (5.)
πe = π(σ − 1)x ,

hence
e = (σ − 1)x + µ (µ in R0)

Sp e = (σq − 1)x + Sp µ = 0 + 0 = 0 ,

which is again a contradiction to (4.).

(iii) K = R(W ) , where W is defined as a root of (1.), contains k and has
degree qp = ph over R .
Since πW = a , K = R(W ) contains k = R(a) (according to (i) ).
K is of degree p over k , according to (ii).

(iv) σW = W + e defines an automorphism σ of K/R .
We consider the polynomial

f(x) =
∏

i mod. q

(πx− σia) .

f(x) has coefficients in R , because f(x) is invariant under σ . f(W ) = 0
from the factor with i = 0 .
Since f(x) has degree qp = ph equal to the degree of K/R , f(x) is the
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irreducible polynomial in R with root W .
f(W + e) = 0 from the factor with i = 1 . For π(W + e) = πW + πe =
a + (σ − 1)a = a , according to (1.),(5.). Hence σ is an automorphism of
K/R .

(v) σ continues σ ; hence we may write σ = σ without misunderstanding.
From the definition of σ follows:

(σ − 1)W = e ,

any by applying π :

(σ − 1)a = πe = (σ − 1)a ,

hence
σa = σa .

Since a generates k/R , σ continues σ .

(vi) (2.) and (3.) hold for the automorphism σ of K/R as defined in (v).
(3.) is the definition of σ ; (2.) follows from (3.) by applying σq−1

σ−1
.

(vii) The automorphism σ of K/R has order qp = ph.
σqp = 1 , whereas σq 6= 1 , for K/R , both by (2.).

(viii) K/R is cyclic.
The powers of σ give qp different automorphisms of K/R . Since K/R has
degree qp , K/R is Galoisien, and cyclic. —

Theorem 3. For each solution e (4.) in k (with a given ζ 6= 0 in R0 )
equation (5.) is soluble by an element a∗ in k . The general solution a of
(5.) arises from a fixed solution a∗ in the form

a = a∗ + r , r in R arbitrary .

Proof. The second part is immediately obvious. In order to prove the first
part, notice that

Sp πe = πζ = 0 for a solution e of (4.).
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Hence the proof follows immediately from the following general

Lemma. Let K by a cyclic field of degree n over an arbitrary field k , σ
a generating automorphism of K/k and Sp the Spur for K/k .
An element A of K has Sp A = 0 if and only if it is expressible as A =
(σ − 1)B with B in K .

Proof. We consider the following four Mengen of elements of K :

(σ − 1)A , where A runs through K
Sp A , q q q q q
Aσ−1 , all elements with (σ − 1)Aσ−1 = 0
ASp , q q q Sp ASp = 0 .

σ−1 and Sp are linear operations in the n–dimensional space K/k represented
by the coordinates a1, . . . , an of the general element

A = a1E1 + · · ·+ anEn

of K (E1, . . . , En a basis for K/k ). The above four Mengen are linear
sub–spaces of K/k . By a well–known theorem about linear equations the
sub–spaces

(σ − 1)A and Aσ−1

Sp A and ASp

are complementary, i.e., their dimensions have sum n .
Now Aσ−1 = k by the fundamental theorem of Galois theory. Hence

dim Aσ−1 = 1 . Therefore dim(σ − 1)A = n− 1 .

Further Sp A = k . For Sp A ≤ k ; and since the discriminant |Sp(Ei Ek)|
6= 0 (Dedekind !), Sp A 6= 0 . As a linear sub–space therefore necessarily
Sp A = k . Hence dim Sp A = 1 . Therefore dim ASp = n− 1 .

dim(σ − 1)A = n− 1 dim Aσ−1 = 1

dim ASp = n− 1 dim Sp A = 1
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Now obviously
(σ − 1)A ≤ ASp ,

since Sp = 1+σ+ · · ·+σn−1 = σn−1
σ−1

and σn−1 = 0 . As linear spaces
with the same dimension therefore necessarily

(σ − 1)A = ASp .

Note. The Lemma is the additive analogue to Hilbert, Zahlbericht, Satz 90.
I find Witt’s arrangement of the proof very nice, indeed. Another more
formal proof runs thus: Let C be an element of K with Sp C 6= 0 . Then

B = − 1

Sp C

n−1∑
ν=0

σν − 1

σ − 1
A · σνC

satisfies (σ − 1)B = A . —

Theorem 4. Equation (4.) (with a given ζ 6= 0 in R0 ) is soluble by an
element e∗ of k . The general solution e of (4.) arises from a fixed solution
e∗ in the form

e = e∗ + (σ − 1)x , x in k arbitrary .

Proof. The solubility follows immediately from the statement Sp A = k in
the proof of the Lemma. That e is the general solution, follows immediately
from the Lemma itself. —

Consequences from Theorem 1 – 4 for the construction of all
cyclic fields K/R of degree ph .

1.) Construction of the fields K to a given sub–field k of degree q = ph−1.

According to Theorems 1 – 4, one has to take all solutions ζ 6= 0 , e , a
of (4.),(5.) and apply Theorem 2. According to the substitutions allowed by
the Corollary of Theorem 1, one may restrict oneself to a fixed ζ 6= 0 (say
1) and a fixed solution e of (4.), and consider only all solutions

a = a∗ + r , r in R arbitrary
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of (5.). To each such a corresponds a field K of the type in question, and
every such field K is obtained by this process.

Two elements r, r′ in R lead to the same field K if and only if

r′ = r + πx , x in k .

Let k1 be the uniquely determined sub–field of degree p over R and

k1 = R(w1) with πw1 = a0 (a0 in R, not of the form πr0

with r0 in R) .

Then necessarily x in k1 and

x = νw1 + r0 with

{
ν in R0

r0 in R

}
,

hence
πx = νa0 + πr0 ,

and

r′ = r + νa0 + πr0 with

{
ν in R0

r0 in R

}
.

Conversely, every such r′ leads to the same field K as r .
There are the following two possibilities for R :
(i) R as an additive group is of finite order with respect to the sub–

group πR (of all πr0 , r0 in R ). Then the factor–group R/πR has a finite
basis, say c1, . . . , cn , such that every r in R is uniquely expressable in the
form

r = ν1c1 + · · ·+ νncn + πr0

{
νi in R0

r0 in R

}
.

Hence the order of R/πR is the p–power pn. Since one of those ci may be
taken as a0 above, the number of essentially different elements r is pn−1.
Hence:

The number of different fields K of the type in question, containing a
fixed field k , is pn−1, where n is dependent on R only.

(ii) R/πR is of infinite order. Then the number in question is infinite.
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2.) Construction of all fields K cyclic of degree ph over R .
One has to apply the above construction in h single steps of relative degree
p :

R = K0 < K1 < · · · < Kh = K

Let the lower index i always indicate elements of Ki , further sp the relative
Spur for the single steps Ki/Ki−1 . Then one has the following scheme:

πw1 = a0, (σ − 1)w1 = e0, e0 = 1
πw2 = a1, (σ − 1)w2 = e1, sp e1 = e0, (σ − 1)a1 = πe1

... ... ... ... ... ... ... ... ... ... ...
πwh = ah−1, (σ − 1)wh = eh−1, sp eh−1 = eh−2, (σ − 1)ah−1 = πeh−1 .

σ denotes a generating automorphism of K/R , which may be considered also
as a generating automorphism of each Ki/R when applied to the elements of
Ki only. e0 = 1, e1, . . . , eh−1 denote a fixed set of solutions of the equations
in the third column. a0 is arbitrary; a1, . . . , ah−1 run through all solutions
of the equations in the fourth column; such ai−1 that lead to the same field
Ki may be left out.

For the first step K1/R the number in question is pn−1
p−1

, according to the

allowed substitutions a′0 = νa0 + πr0

{
ν 6= 0 in R0

r0 in R

}
. Together with

the above statements, it follows:

(i) If R/πR is of finite order pn, the number of all fields K in question is

pn − 1

p− 1
p(n−1)(h−1).

(ii) If R/πR is of infinite order, the number in question is infinite.

In particular:
If there is only one cyclic field K1 of degree p over R , there is also only

one cyclic field Kh of degree ph over R for each h .
The latter is the case in one of my Crelle papers (Crelle 172, p. 77), for
instance.

II. The whole theory as represented in I has its multiplicative analogue.
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Let R be a field which contains the pth roots of unity and whose character-
istic is not p , such that the pth roots of unity are different from each other.
Replace (1.) – (5.) above by

(1.) wp = a , a 6= xp

(2.) wσq−1 = ζ 6= 1 (pth root of unity)
(3.) wσ−1 = e (in k)
(4.) Ne = ζ
(5.) a1−σ = ep

and (1’.) – (5’.) by

(1′.) W ′p = a′ with a′ = aνxp

(2′.) W ′σq−1 = ζ ′ q ζ ′ = ζν

(3′.) W ′σ−1 = e′ q e′ = eν

(4′.) Ne′ = ζ ′

(5′.) a′1−σ = e′p

Then Theorems 1, 2 hold again, with formally the same proofs. Also Theo-
rem 3 holds again, with the Lemma replaced by its multiplicative analogue
(Hilbert, Zahlbericht, Satz 90; the proof there is valid for a general cyclic
field K/k of degree n ).

The only difference arises concerning Theorem 4. Equation (4.) is not
always soluble in k , for instance not when R is the rational field, p = 2 ,
and k = R(

√
d) with d no sum of two squares in R . One has therefore a

genuine condition for the existence of fields K of the requested type over a
given field k , namely the expressibility (4.) of a primitive pth root of unity
as a norm from k .

Nevertheless, the analogue indicated gives the full determination of all
cyclic fields of degree ph over any field R which is not of characteristic p and
contains the pth roots of unity. Even the latter condition may be removed
by an easy consideration, on account of the fact that the degree of the field
of the pth roots of unity over any R (of characteristic 6= p ) is a divisor of
p− 1 , hence prime to p .

III. A further generalisation gives the analogous complete determination
of all fields K over R of the following type:

Given a normal field k/R , group g , elements σ, τ, . . .
K/k cyclic of degree p , group Z , elements z
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K/R normal, group G with G/Z ∼= g and such that:
(i.) Z lies in the centre of G , but
(ii.) Z is no direct factor of G .

G may be considered as a crossed product arising from the cyclic sub–group
Z by a certain given factor set zσ,τ (in Z ) corresponding to all pairs σ, τ
of elements of g , i.e., G is generated by the elements z of Z and elements
uσ with the relations:

uσz = zuσ zσ = z according to (i.)

uσuτ = zσ,τuστ

According to (ii.), the factor set zσ,τ does not split, i.e., is not of the form
zσzτ

zστ
with elements zσ in Z .

R is supposed to be either of characteristic p (additive theory), or not of
characteristic p and then containing the pth roots of unity (multiplicative
theory). It may suffice to point out the generalisation in the case of charac-
teristic p (additive theory).

Here one has simply to replace (1.) – (5.) in Theorem 1 by

(1.) πW = a , a 6= πx for any x in k
(2.) (z − 1)W = ζ 6= 0 (in R0 )
(3.) (σ − 1)W = eσ (in k )
(4.) eσ + σeτ − eστ = ζσ,τ

(5.) (σ − 1)a = πeσ .

(1.) is unaltered. (2.) defines a fixed isomorphism between the abstract
cyclic group Z of p elements and R0 as an additive group. In (3.) eσ is a
vector of elements eσ in k corresponding to the elements σ of g . In (4.)
the original Spur of e is replaced by what E.Noether calls the Transfor-
mationsgrössen arising from the vector eσ ; ζσ,τ denotes the elements in R0

corresponding to the elements zσ,τ in Z by the isomorphism (2.)
(5.) is of course again a set of conditions, one for each component of the
vector eσ .

With this generalisation Theorem 1 holds. Also the Corollary and Theo-
rem 2 hold with the obvious generalisations after the lines indicated. I need
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not give the new form of (1’.) – (5’.) and Theorem 2 here, nor give the de-
tailed proof of the generalised Theorem 2. Once one has got the knack of the
generalisation, there is no difficulty in carrying through all details.

Theorem 3 also generalises. The new Lemma is
Let K/k be normal with group g , elements σ . A vector Aσ in K has

(additive) Transformationsgrössen O , i.e.,

Aσ + σAτ − Aστ = O

if and only if it is expressible as

Aσ = (σ − 1)B

with B in K .

Proof. Let C be an element of K with Sp C 6= 0 . Then

B =
1

Sp C

∑
τ

Aτ · τC

satisfies the condition.

In the multiplicative case (Aσ 6= 0 , AσAσ
τ

Aστ
= 1 , Aσ = B1−σ ) the

Lemma is due to E.Noether who gave the following very simple proof of this
so–called “Hauptgeschlechtsatz im Minimalen”:

Consider the crossed product of K with its Galois group and factor set
1:

A = (1, K) = K(uσ)

with

uσA = Aσuσ , A in K

uσuτ = uστ .

Then
A −→ A , uσ −→ Aσuσ

is an automorphism of A which leaves the elements of K invariant, and is
therefore generated by transformation with an element B 6= 0 in K

Aσuσ = B−1uσB = Bσ−1uσ ,
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hence
Aσ = Bσ−1.

Again Theorem 4 generalises for the additive case:
Every “additive factor set” ζσ,τ — i.e., satisfying the additive associativ-

ity conditions
ζσ,τν + σζτ,ν − ζστ,ν = ζσ,τ — ,

splits in k :
ζσ,τ = eσ + σeτ − eστ .

Proof. The vector

eσ =
1

Sp c

∑
τ

ζσ,τ · στc

where c is an element of k with Sp c 6= 0 , satisfies the condition. —
For the multiplicative case the splitting of ζσ,τ in k is again a genuine

condition for the existence of fields K of the type in question.

IV. Witt considered cyclic algebras H of degree p over the field

K = k(P)

of all power series

A =
∞∑

ν=n

aνP
ν

with coefficients aν in an arbitrary vollkommen field k of characteristic p .
Let

H = (A,B)

denote the cyclic Algebra over K defined by

H = K(u, v)

with the relations

πu = A , vp = B , v−1uv = u + 1 ,

where A is arbitrary and B 6= 0 in K .
Let ρ(XdY ) denote the residuum of the differential XdY of K , i.e.,

the coefficient of P−1 in the power series X dY
dP

.
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Theorem 1. (A,B) = (ρ
(
AdB

B

)
, P) .

This gives explicitly the analogue to what I called “arithmetisch ausge-
zeichnete zyklische Erzeugung” in my ℘–adic paper (Annalen 104) and in
my Transactions paper.
For, the field (or semi–simple algebra) K(u0) with

πu0 = ρ(A
dB

B
)

is unverzweigt over K , because ρ(AdB
B

) belongs to k (is “constant”).
The proof of Theorem 1 depends on the following easily provable proper-

ties of the symbol (A,B) :

(1.) (A1 + A2, B) ∼ (A1, B)× (A2, B)
(2.) (A,B1B2) ∼ (A,B1)× (A,B2)
(3.) (A,B) ∼ K if and only if B is a norm from K(u) .

In particular,

(A, 1) ∼ K , (A,A) ∼ K

(0, B) ∼ K .

The method is decomposing A additively and B multiplicatively in sim-
ple components:

A = am

Pm + · · ·+ a1

P
+ a0 + A0 , A0 an entire power series

B = PnbB1 , B1 an unit power series.

I will not give the details here.

Theorem 1 may be applied to the study of the law of reciprocity (in
Hilbert’s product form) for the exponent p in algebraic function fields
K of one indeterminate with a finite field k of characteristic p as Konstan-
tenkörper. The latter means that k itself is already the whole of all elements
of K algebraic over k .
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Let p be any prime divisor of K and P a corresponding prime element
(element of order 1 in p ). Then the p–adic extension Kp of K is of type

Kp = kp(P)

where kp is uniquely determined as the whole of all elements of Kp algebraic
over k . kp is a finite extension of k , whose degree fp is usually called the
degree of p ; kp is what I call the Konstantenkörper for p .

Now let the norm residue symbol
(

A,B
p

)
for elements A,B in K be

defined analogously to my Annalen 107 paper by means of the p–invariant
νp

p
mod. 1 of H = (A,B) :

(
A,B

p

)
= e(νp) , e(ν) = e

2πiν
p .

Then Theorem 1 gives easily the explicit formula

(*)

(
A,B

p

)
= e

(
Sp ρp

(
A

dB

B

) )
,

where ρp indicates the residuum in Kp = kp(P) and Sp denotes the Spur
in kp with respect to the Primkörper (the absolute Spur).
For, according to Theorem 1,

(A, B)p = (ρp

(
A

dB

B

)
, P) ,

and the algebra on the right hand side has νp = Sp ρp

(
AdB

B

)
, as is easily

seen.

From the explicit formula (*) the law of reciprocity in Hilbert’s prod-
uct form or – what is essentially the same – the Summenformel for the p–
invariants of H = (A,B) , appears as an immediate consequence of the
Residuensatz:

(**)
∑

p

sp ρp

(
A

dB

B

)
= 0 ,

where p runs through all prime divisors of K , and sp denotes the Spur
in kp with respect to k . I proved this Residuensatz in one of my recent
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Crelle papers (Crelle 172, Theorie der Differentiale in algebraischen Funk-
tionenkörpern), following entirely the analogy to the proof of the Residuen-
satz in the classical theory of algebraic functions (k the field of all complex
numbers).

The Residuensatz (**) gives indeed the law of reciprocity

∏
p

(
A,B

p

)
= 1

as an immediate consequence of (*).

(*) was discovered before Witt’s Theorem 1 by a pupil of mine, Hermann
Schmid, in his Marburg Dissertation (will appear in the Math. Zeitschr.).
Witt found the more general fact about linear algebras, lying at the bottom
of (*), as expressed in Theorem 1.

I value all this as a welcome insight into the nature of the law of reci-
procity: we have a case here where the law of reciprocity appears as essen-
tially identical with the Residuensatz.
Hence we may consider the law of reciprocity in algebraic number fields as
an equivalent of the Residuensatz in the theory of algebraic functions.

After this digression I take up the line of Witt’s investigations.
For the case where K contains the nth roots of unity and has character-

istic 0 or p with p - n , and where

H = (A,B) = K(u, v)

with
un = A 6= 0 , vn = B 6= 0 , v−1uv = ζu ,

ζ primitive nth root of unity in k

the so–called Vertauschungssatz holds:

(A, B)(B,A) ∼ K .
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What analogue to this Vertauschungssatz holds in the above case (“semi–
additive case”)

K = k(P) , k vollkommen of characteristic p

H = (A,B) = K(u, v)

with
πu = A , vp = B 6= 0 , v−1uv = u + 1 ?

Witt found that there is a partial analogue, namely an analogue to the fact

B is norm from K(u) if and only if A is norm from K(v) ,

which follows from (A,B)(B, A) ∼ K in the other case (“multiplicative
case”) by means of the analogue to (3.). Witt found, indeed, that in the
semi–additive case there is an property analogous to (3.):

(4.) (A,B) ∼ K if and only if A is a generalised “Spur” from
K(v) .

Here the generalised “Spur” of an element

y = Y0 + Y1v + · · ·+ Yp−1v
p−1, Yν in K

of K(v) is defined as follows:

Sp y = yp − Y0 = (Y p
0 − Y0) + Y p

1 B + · · ·+ Y p
p−1B

p−1.

The proof of (4.) depends on the following identity:

(†) π(u + y) = πu + Sp y for any y in K(v) ,

which may be proved by a simple purely calculating argument. As (3.) fol-
lows immediately from the corresponding identity

(vx)p = vpN(x) for any x in K(u) ,

(4.) follows immediately from the first identity.
(3.) and (4.) together give at once the following partial analogue to the

Vertauschungssatz:
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Theorem 2. B is a norm from K(u) with πu = A if and only if A
is a generalised “Spur” from K(v) with vp = B .

More than this partial analogue to the full Vertauschungssatz (A,B)
(B, A) ∼ K in the multiplicative case cannot be expected in the semi–
additive case because of the different character of both sides u, v of the
symbol (A, B) . –

Finally Witt proved a third analogue to Hilbert’s Zahlbericht, Satz 90,
namely the analogue to the fact:

N(x) = 1 ←→ x = xS−1
0 for x in K(u) and S =

(u → ζu) ; x0 in K(u)

in the multiplicative case. This analogue is again formally different because
of the different character of both sides in the semi–additive case:

Theorem 3. The generalised “Spur” of an element y in K(v) is 0 :

Sp y = 0

if and only if y is of the form:

y = v
y′0
y0

where y′0 =
dy0

dv
; y0 in K(v) .

The proof follows the same lines as E.Noether’s proof for the Hauptge-
schlechtssatz im Minimalen. If Sp y = 0 ,

u → u + y
v → v

is an automorphism of H = K(u, v) , on account of identity (†) . This
automorphism must be generated by transformation with a regular element
y0 of H , and y0 must belong to K(v) , since v is unaltered. Hence

u + y = y−1
0 uy0 .

Let
y0 = Y0 + Y1v + Y2v

2 + · · ·+ Yp−1v
p−1 .
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Then
uy0 = Y0u + Y1uv + Y2uv2 + · · ·+ Yp−1uvp−1 .

Since uvν = vνu + νvν , this becomes

uy0 = Y0 + Y1vu + Y2v
2u + · · ·+ Yp−1v

p−1u

+Y1v + 2Y2v
2 + · · ·+ (p− 1)Yp−1v

p−1

= y0u + vy′0.

Hence

u + y = y−1
0 uy0 = u + v

y′0
y0

,

y = v
y′0
y0

.

Notice that the common Spur in the inseparable field K(v) with vp = B
is identically 0, because all conjugates to y equal y . I find it interesting that
the logarithmic derivatives 1

B
dB
dP

and 1
y0

dy0

dv
play a role in this theory. This

throws a new light on Kummer’s logarithmic differential coefficients in his
treatment of the norm–residue symbol in the cyclotomic field of exponent p
for the prime divisor p of p .

V. You will remember my writing you about a certain connexion between
general quadratic forms and linear algebras. Two years ago Artin proved that
for a quadratic form

f(x) = a1x
2
1 + · · ·+ anx

2
n , ai 6= 0

with coefficients ai in an arbitrary field k (not of characteristic 2) the

normal simple algebra of exponent 2 and order 4
n(n+1)

2 over k :

H =
∏

i≤k

(ai, ak)

is an invariant. Here (a, b) denotes the generalised quaternion algebra over
k generated by

u2 = a , v2 = b , vu = −uv .

Artin’s proof depends on certain identities between minors of a general sym-
metric matrix A = (aik) . Witt found a very much nicer and simpler proof,
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that shows moreover explicitly the close connexion between the form f(x)
and the algebra H .

Let k be an arbitrary field, not of characteristic 2. We consider quadratic
forms

f(x) =
n∑

i,k=1

aikxixk = x′Ax ,

where A = (aik) is a non–singular n–rowed symmetric matrix over k and x

denotes the vector of the n variables xi as a one–columned matrix.
We are looking for invariants of f(x) under rational transformations:

x = Py , P a non–singular n–rowed matrix over k

f(x) = f(Py) = g(y) = y′P′APy = y′By , where B = P′AP .

One invariant is the class of the discriminant

d = |A|
with respect to the equivalence

a ∼ b when
a

b
= c2 (c in k)

for elements a 6= 0 , b 6= 0 in k .
In order to construct another invariant, we define a linear algebra U0

over k as following:
U0 = k(u1, . . . , un)

where the ui are associative and satisfy all relations arising from the identity

f(x) =
( n∑

i=1

uixi

)2

= (ux)2,

where u denotes the one–lined matrix of the n elements ui . The relations
implied by this identity are explicitly:

f(x) =
∑

i

aiix
2
i +

∑

i<k

2aikxixk =
∑

i

u2
i x

2
i +

∑

i<k

(uiuk + ukui)xixk ,

hence
u2

i = aii , uiuk + ukui = 2aik (i 6= k) .
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As one sees from these formulas, U0 is indeed of finite order over k ,
namely of order 2n with basis

1; u1, . . . , un; u1u2, u1u3, . . . , un−1un; . . . . . . ; u1u2 . . . un

of

1 +

(
n

1

)
+

(
n

2

)
+ · · · · · · · · · +

(
n

n

)
= 2n

elements.

A transformation x = Py is connected with the contragredient transfor-
mation u = vP−1. Since this obviously leads to a linear transformation of
the above basis of U0 , and since f(x) = (ux)2 = (vy)2, U0 is indeed an
invariant of f(x) .

Now by a well–known theorem f(x) is equivalent to a pure form (with
a diagonal matrix). Hence there is no restriction in supposing from the
beginning

f(x) = a1x
2
1 + · · ·+ anx

2
n , ai 6= 0 in k

A =




a1

.
.

.
.

an




d ∼ a1 · · · an

For reasons of simplicity we replace the above invariant U0 by the corre-
sponding invariant U of

f ∗(x∗) = a1x
2
1 + · · ·+ anx

2
n − x2

n+1 − · · · − x2
2n,

which is, of course, also an invariant of f(x) . Call

U0 = (a1, . . . , an) ,

then
U = (a1, . . . , an ;−1, . . . ,−1) .
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Theorem 1.
U ∼

∏

i≤k

(ai, ak) .

Proof. Since the ui are regular elements of U , the elements

u1, . . . , un−1 ; un+1, . . . , u2n−1 ‖ u1 . . . unun+1 . . . u2n−1 , unu2n

also generate U :

U = k(u1, . . . , un, un+1, . . . u2n)

= k(u1, . . . , un−1; un+1, . . . , u2n−1 ‖ u1 . . . unun+1 . . . u2n−1 , unu2n) .

We show that the two vertical bars indicate a direct composition of U . This
follows immediately from the relations

u2
1 = a1, . . . , u

2
n = an, u2

n+1 = −1, . . . , u2
2n = −1, uiuk = −ukui (i 6= k)

For these relations imply that the elements before the bars are commutative
with the elements behind the bars. The first direct factor is (a1, . . . , an−1;
−1, . . . ,−1) in the other notation. The second direct factor is (a1 . . .
an, an) , for with u, v for the two elements behind the bars, the above rela-
tions imply

v u = −v u, u2 = a1 . . . an , v2 = an .

Hence

U = (a1, . . . , an ; −1, . . . ,−1) (n times − 1 )

= (a1, . . . , an−1 ; −1, . . . ,−1)× (a1 . . . an , an) (n− 1 times − 1 )

Since
(a1, −1) = (a1, a1) ,

the assertion follows by complete induction.

Witt further proved

Theorem 2. For n = 1, 2, 3 the invariants d, U are a complete system of
invariants, i.e., two forms are equivalent if and only if they have the same
invariants d, U (d in the sense of the above equivalence ∼ , U in the sense
of similarity ∼ ).
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The same holds for any n ≥ 4 if k has the property: every quadratic
form of 5 variables allows a non–identical representation of zero.

One may express the necessary and sufficient condition for non–identical
representability of zero and for representability of an element a 6= 0 by f(x)
in terms of the invariants d, U :

a.) Representability of 0 .

n = 1 impossible
n = 2 d ∼ −1
n = 3 U ∼ (−1,−1)

n = 4 U ∼ (−1,−1) in k(
√

d)
(n ≥ 5 always possible under assumption in Theorem 2)

b.) Representability of a 6= 0 .

n = 1 a ∼ d
n = 2 (−a,−d) ∼ U × (−1,−1)

n = 3 U ∼ (−1,−1) in k(
√−ad)

(n ≥ 4 always possible under the assumption in Theorem 2).

The assumption in Theorem 2 is fulfilled for the p–adic extensions kp of an
algebraic number field k when p is finite. For the real infinite primes p of
k one has a further invariant, Sylvester’s Trägheitsindex j for p . Theorem
2 holds again in these cases when one adjoins j to the invariants d, U , and
in the above conditions a.), b.) one has to write:

a.) n ≥ 5 j 6= 0, n

b.) n ≥ 4

{
a > 0 for j = 0
a < 0 for j = n

}
.

It is not difficult to prove my fundamental theorem about quadratic forms
over an algebraic number field k on this basis. The proof depends on a simple
application of the general theorem about arithmetic progressions in k . The
theorem states:

Theorem 3. For the equivalence of two forms in k the equivalence in all
kp is necessary and sufficient.
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For the representability by a form in k the representability in all kp is
necessary and sufficient.

The proof depends moreover on the facts:

d ∼ 1 in k ←→ d ∼ 1 in all kp

U ∼ k ←→ Up ∼ kp for all p (fundamental theorem

on normal simple algebras)

Witt finally remarked that for n ≥ 4 there are fields k where the invari-
ants d, U do not suffice. His example is

f1 = t1x
2
1+t2x

2
2+t3x

2
3+t4x

2
4 ; f2 = −(t2t3t4x

2
1+t1t3t4x

2
2+t1t2t4x

2
3+t1t2t3x

2
4)

over an arbitrary field k or rather the field k(t1, t2, t3, t4) of 4 algebraically
independent variables t1, . . . , t4 . Those two forms have the same invariants
d, U , as one easily sees. But one can show that they are not equivalent,
since t1 is not representable by f2 . This cannot be due to a Trägheitsindex,
for one can chose k as the field of all complex numbers, so that k(t1, . . . , t4)
has no order in the sense of Artin–Schreier, hence no possibility for defining
a Trägheitsindex.

We do not know what sort of further invariants is required for a complete
system of invariants of a quadratic form over an arbitrary field k .

I hope I have told you something of interest for you. I should be glad
to hear from you about your own work. I have read your recent papers on
Riemann matrices with greatest interest, also Weyl’s new paper on this. We
are studying the matter in my Seminar.

I have just read your paper on normal Kummer fields. The last result
there (Theorem 5) seems to me of a particular interest. It allows to eliminate
Grunwald’s complicated existence theorem in the proof that every normal
division algebra D of prime degree p over an algebraic number field k is
cyclic.
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Let p1, . . . , pr those prime spots of k for which D has p–index mpi
6= 1 ,

hence mpi
= p . By the fundamental theorem a field K/k splits D if (and

only if) the Pi–degrees nPi
of K are multiples of the mpi

for the prime
divisors Pi in K of the pi . Let now α be an element of k such that

α contains the exact power p1
i of each finite pi

α < 0 for each real infinite pi (effective for p = 2 only)

The existence of such an α in k follows quite elementarily. Then K =
k( p
√

α) has Pi–degree p for each pi . Hence K splits D , and therefore K
occurs as a maximal commutative sub–field of D . By your Theorem 5, D
is cyclic.

We are trying to generalise your Theorem 5 to prime power degree. This
would eliminate Grunwald’s existence theorem also for the proof that every
normal division algebra D over k of arbitrary degree is cyclic. –

Another remark will interest you in this connexion: In my paper in
Math.Annalen 107 I derived theorem (6.43) (exponent ` = index m ) from
Grunwald’s existence theorem. In point of fact this deep existence theorem
is not necessary for proving ` = m . For one can carry through the proof
with any sort of splitting field K instead of a cyclic K .

By the fundamental theorem the exponent ` is the lowest common mul-
tiple of the pi–indices mpi

. Now let K be any algebraic extension of degree
` over k with Pi-degree nPi

≡ 0 mod. mpi
. The existence of such a field

K follows elementarily by pi–adic approximation; see my first existence the-
orem in Math.Annalen 95. Then K is splitting field, hence its degree ` is a
multiple of the index m . On the other hand ` divides m . Hence ` = m .

With kindest regards,
sincerely Yours,

H. Hasse

P.S. Witt has just generalised his theorems about cyclic extensions K/k ,
which are normal with a given group G with G/Z ∼= g , to the case where
Z is not necessarily in the centre of G . The other restriction, that G is no
direct factor of G , remains as essential for his results.
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Kapitel 2

Verschiedenes zu Hasse–Albert
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2.1 Referat, On direct products, 1930

Zentralblatt MATH 1931 – 2004
c© European Mathematical Society, FIZ Karlsruhe & Springer-Verlag Berlin–Heidelberg

Zbl. Math. 56.0869.01

Albert, A. A.
On direct products, cyclic division algebras, and pure Riemann
matrices.
(English)
Proceedings USA Academy 16, 313-315. (1930)

Verf. gibt in dieser kurzen Note zunächst Sätze über direkte Produkte von
Divisionsalgebren über einem nicht–modularen Körper F : Ein direktes Pro-
dukt A = B × C von Divisionsalgebren B und C ist dann und nur dann
Divisionsalgebra, wenn für jedes Paar b aus B , c aus C auch F (b)× F (c)
Divisionsalgebra ist. A = B × C ist Divisionsalgebra, wenn die Ordnungen
von B und C teilerfremd sind.
Weitere Sätze machen Aussagen über Matrixdarstellungen von Divisionsalge-
bren: Zu jeder normalen Divisionsalgebra (als Matrixalgebra) von der Ord-
nung n2 über F kann man eine normale Divisionsalgebra B1 der gleichen
Ordnung über F angeben, so daß A = B × B1 eine vollständige Matrixal-
gebra über F ist; umgekehrt sind bei einer Zerlegung M = B × C einer
vollständigen Matrixalgebra über F in normale Divisionsalgebren B und
C diese von gleicher Ordnung. Eine Matrixdarstellung in m–reihigen Matri-
zen existiert für eine normale Divisionsalgebra von der Ordnung n2 über F
dann und nur dann, wenn m durch n2 teilbar ist.
Über zyklische (Dicksonsche) Divisionsalgebren lassen sich hieraus eine Rei-
he von Strukturaussagen machen, die hier aufzuführen unmöglich ist. Aus
allen diesen kann man Resultate für die Theorie Riemannscher Matrizen
entnehmen (vgl. A. A. Albert, Proceedings USA Academy 16, 308-312; F. d.
M. 56I , 329) :
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(1) Der Multiplikationsindex h einer reinen Riemannschen Matrix vom Ge-
schlechte p ist Teiler von 2p .
(2) ω sei eine reine Riemannsche Matrix über einem reellen Körper F ; ihre
Multiplikationsalgebra sei eine normale Divisionsalgebra von der Ordnung
F . Diese enthalte eine Größe a vom Grade n in bezug auf F , derart, daß
n verschiedene polynomiale Ausdrücke in a die Minimalgleichung ϕ(ξ) = 0
von a in bezug auf F erfüllen. ϕ(ξ) habe eine reelle Wurzel oder nur ima-
ginäre Wurzeln, so daß die Substitution, die jede komplexe Wurzel in ihre
konjugiert komplexe überführt, vertauschbar ist mit der Galoisgruppe von
ϕ(ξ) = 0 . Dann ist n eine Potenz von 2.
Alle diese Aussagen werden ohne Beweis angegeben. (Data of JFM: JFM
56.0869.01; Copyright 2004 Jahrbuch Database used with permission)

Specht, W.; Dr. (Königsberg i. Pr.)
Published: 1930
Document Type: J
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2.2 Referat, On direct products, 1931

Zentralblatt MATH

scanned image, vol. 1,p. 116

116

Albert, A. Adrian: On direct products, cyclic division alge-
bras, and pure Riemann matrices. Trans. amer. math. Soc. 33, 219–234
(1931).

Es werden hyperkomplexe Systeme o über einem kommutativen Körper
K der Charakteristik Null betrachtet, der ohne wesentliche Einschränkung
als Unterring von o angenommen werden kann. o heißt normal bez. K ,
wenn K das Zentrum von o ist. Über diese normalen hyperkomplexen Sy-
steme wird bewiesen: 1. Stellt man ein einfaches normales hyperkomplexes
System o nach M a c l a g a n – W e d d e r b u r n dar als vollständigen
Matrizenring in einem (nicht notwendig kommutativen) Körper P , so

wird P normal bez. K . Umgekehrt ist ein vollständiger Matrizenring in
einem bez. K normalen Körper endlichen Grades ein normales hyperkom-
plexes System. 2. Das direkte Produkt zweier einfacher bez. K normaler
hyperkomplexer Systeme ist wieder einfach und normal bez. K . Und umge-
kehrt: Wird das einfache bez. K normale hyperkomplexe System o direktes
Produkt o = o1 × o2 zweier hyperkomplexer Systeme o1 und o2 , so sind
o1 und o2 einfache normale hyperkomplexe Systeme. 3. Ist das einfache
normale hyperkomplexe System o direktes Produkt o = o1 × o2 und sind
o und o1 vollständige Matrizenringe, so auch o2 . 4. Zu einem norma-
len (nicht notwendig kommutativen) Körper k1 vom Grade n2 über K
existiert immer ein normaler Körper k2 desselben Grades, so daß das direk-
te Produkt o = k1 × k2 vollständiger Matrizenring in K wird. 5. Ist der
vollständige Matrizenring o direktes Produkt der beiden normalen Körper
k1 und k2 , so haben beide denselben Grad bez. K . Für die spätere Anwen-
dung auf Riemannsche Matrizen ist vor allem von Bedeutung: 6. Dann und
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nur dann ist der normale Körper k des Grades n2 als ein Unterring des
Ringes aller m–reihigen quadratischen Matrizen in K darstellbar, wenn m
durch n2 teilbar wird. Es gilt noch: 7. Das direkte Produkt zweier normaler
Körper von den zueinander teilerfremden Graden m2 und n2 ist wieder nor-
mal. Alle bisher genauer untersuchten normalen Körper von endlichem Grade
über K sind zyklisch. Unter einem zyklischen hyperkomplexen System o

versteht man ein solches vom Grade n2 über K mit den Basiselementen
αrβs (r, s = 0, 1, . . . , n−1) , wo α und β den folgenden Bedingungen unter-
worfen sind: a) βn = κ 6= 0, κ aus K . b) α ist Nullstelle eines Galoisschen
Polynoms f(x) = (x − α)(x − αs) . . . (x − αsn−1

) mit zyklischer Gruppe,
deren erzeugende Substitution S ist. c) βαβ−1 = αs. Für die allgemeinen
zyklischen Körper vom Grade n2 wird die Untersuchung ihrer

117

Struktur zurückgeführt auf solche von Primzahlpotenzgrad p2e mittels 8.
Ist n = pe1

1 . . . pet
t die Zerlegung von n in paarweise teilerfremde Primzahl-

potenzen und k ein zyklischer Körper vom Grade n2 über K , so wird k das
direkte Produkt von t zyklischen Körpern ki vom Grade p2ei

i . Umgekehrt
sind alle solchen direkten Produkte wieder zyklische Körper. W e d d e r b u
r n bewies: Das zyklische hyperkomplexe System o ist Körper, wenn keine
Potenz κr (r < n) Norm (=Produkt der konjugierten) eines Elementes aus
K[α] ist; für n = 2 oder n = 3 genügt es sogar schon, daß κ selbst nicht
Norm eines Elementes aus K[α] wird. Hiervon gilt folgende Ausdehnung
und Umkehrung: 9. Ist p Primzahl und o ein zyklisches hyperkomplexes
System vom Grade p2 über K , so ist o dann und nur dann Körper, wenn
κ niemals Norm eines Elementes aus K[α] ist. Ist k zyklischer Körper vom
Grade n2 mit n = pe1

1 . . . pet
t und κs Norm eines Elementes aus K[α] , so

wird s teilbar durch p1 . . . pt . Diese Resultate erlauben, 4. zu verschärfen
in einem Spezialfall: Sei k1 ein zyklischer Körper vom Grade p2 , k2 ein
normaler Körper desselben Grades (p Primzahl). Dann und nur dann ist
das direkte Produkt o = k1 × k2 vollständiger Matrizenring, wenn k2 zu k1

isomorph ist. Die vorstehenden Ergebnisse werden angewandt auf die Theo-
rie der reinen Riemannschen Matrizen, (s. K r a z e r – W i r t i n g e r ,
Abelsche Funkt. u. allg. Thetafunkt.; Enzyklop. d. math. Wiss. II B 7, 114;
ferner G . S c o r z a , intorno alla teoria gen. delle matrici di Riemann
e ad alc. sue applic.; Rendiconti Palermo 41 [1916], 263–380). Es wird vor
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allem gezeigt: 10. Der Multiplikabilitätsindex h einer reinen Riemannschen
Matrix vom Geschlecht p in einem reellen Körper ist ein Teiler von 2 p .
Zuletzt werden noch normale Körper vom Typus Rn betrachtet. Man ver-
steht darunter einen normalen Körper k vom Grade n2, der ein Element α
enthält, das Nullstelle eines Galoisschen Polynoms f(x) mit Koeffizienten
aus K vom Minimalgrade n ist. Bedeuten S, T, . . . die n Automorphismen
der Galois–Gruppe von K(α) bez. K , so zeigt man, daß k eine Basis der
Form αj−1βs hat (j = 1, . . . , n) , wo die βs, βr, . . . gerade n den Automor-
phismen entsprechende Elemente aus k sind, für die gilt: a) βE = 1 (E die
Gruppeneinheit), b) βsαβ−1

s = αs, c) βrβs = gr,sβsr mit Elementen gs,r aus
K[α] . Hierüber wird schließlich gezeigt: 11. Eine reine Riemannsche Matrix
über einem reellen Körper K habe als zugehöriges Multiplikationssystem
einen normalen Körper k vom Typus Rn ; die Nullstellen αs, αr, . . . , . . . des
durch das ausgezeichnete Element α bestimmten Polynoms f(x) aus K
vom Grade n seien entweder alle reell oder alle imaginär. Dann wird n eine
Potenz von 2. Grell (Jena).
Copyright(c) 1931-2001 European Mathematical Society, FIZ Karlsruhe & Springer Verlag
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2.3 Referat, On normal division algebras,

1931

Zentralblatt MATH

scanned image, vol. 1,p. 117

117

Albert, A. Adrian: On normal division algebras of type R in
thirty–six units. Trans. amer. math. Soc. 33, 235–243 (1931).

Von den im vorangehenden Referat zuletzt besprochenen normalen Kör-
pern vom Typus R = Rn sind die einfachsten diejenigen, bei denen die
Galois–Gruppe von K(α) bez. K zyklisch wird. Man kennt bislang noch
keine Körper vom Typus Rn von nichtzyklischer Struktur. In der vorliegen-
den Arbeit wird gezeigt, daß für n = 6 alle diese Systeme zyklisch sind.

Grell (Jena).
Copyright(c) 1931-2001 European Mathematical Society, FIZ Karlsruhe & Springer Verlag
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2.4 Referat, On direct products, 1931

Zentralblatt MATH

scanned image, vol. 2,p. 246

246

Albert, A. Adrian: On direct products. Trans. amer. math. Soc.
33, 690–711 (1931).

Ausgangspunkt der Untersuchungen bildet eine Divisionsalgebra A , die
über dem Körper K der Charakteristik Null normal und vom Range n2 ist;
sofern nicht ausdrücklich anders bemerkt, liegen die Koeffizienten der im fol-
genden auftretenden Polynome sowie die Elemente der Matrizen der vorkom-
menden Matrizenringe immer in K , und auf K als Grundbereich beziehen
sich auch die Begriffe Rang, Grad, Normalität, hyperkomplexes System. Es
wird das direkte Produkt A′ = A × K(η) aus A und einer einfachen alge-
braischen Erweiterung K(η) betrachtet. Aus einer Reihe an sich interessanter
Ergebnisse sei hier nur der Hauptsatz genannt: 1. Hat η den Grad r , so
wird A′ = A × K(η) = H ×B , wo H ein vollständiger Ring aus Matrizen
vom Grade s , B eine Divisionsalgebra vom Range rt2 und n = st, r = se
mit ganzzahligem e ist. B ist normal vom Range t2 über K(η) . Als eine
der Folgerungen von 1. sei erwähnt: 2. Ist K(η) von Primzahlgrad, so ist
A × K(η) dann und nur dann Divisionsalgebra, wenn kein Element aus A

Nullstelle des zu η gehörigen irreduziblen Polynoms ist. Durch Verbindung
dieser Resultate mit der Galoisschen Theorie folgt: 3. Hat A insbesondere
den Rang p2 (p =Primzahl), so gibt es eine einfache algebraische Erwei-
terung K(η) vom Grade r mit (p − 1)! ≡ 0 (mod. r), so daß A × K(η)
zyklische normale Divisionsalgebra vom Range p2 bezüglich K(η) wird.
Ferner: 4. Ist n = peq mit e > 0, q > 1 und (p, q) = 1 , so gibt es eine
einfache algebraische Erweiterung K(η) vom Grade r mit (p, r) = 1 , so daß
A×K(η) = H×B , wo H der vollständige Matrizenring vom Range q2 und
B eine Divisionsalgebra ist, die bezüglich ihres Zentrums K(η) normal und
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vom Range p2e wird. Außerdem besteht noch der Struktursatz 5. Hat A den
Rang p2e (p =Primzahl) und das Element α den Grad pe, so existiert eine
einfache algebraische Erweiterung L = K(η) vom Grade r mit (p, r) = 1 ,
so daß A×L normale Divisionsalgebra über L ist, L(α) über L den Grad
pe besitzt und in L(α) Elemente α = αe, αe−1, . . . , α1 existieren, so daß bei
L0 = L , Li = L(αi) (i = 1, . . . , e) der Körper Li zyklisch von der Ord-
nung p über Li−1 und vom Grade pi bezüglich K ist. — Ein allgemeines
Dicksonsches hyperkomplexes System D ist gegeben durch seine Basis αaβb

(a, b = 0, 1, . . . , n−1) mit folgenden Relationen: a) α ist Nullstelle eines zy-
klischen Polynoms n ten Grades Φ(ω) = (ω−αS)(ω−αS2

) . . . (ω−αSn
) , wo

S der erzeugende Automorphismus der Galoisschen Gruppe, also Sn = E
ist; b) βn = γ mit γ aus K ; c) für ein beliebiges Element f(α) aus K(α)
ist βbf(α) = f(αSb

)βb. D = K[Φ, S, γ] heißt überdies zyklisch, wenn D

einfach und normal bezüglich K ist. Man hat 6. Dann und nur dann ist ein
Dicksonsches System zyklisch, wenn γ 6= 0 , sowie 7. Sind D1 = K[Φ, S, γ1]
und D2 = K[Φ, S, γ2] zyklisch vom Range n2, so wird D1 ×D2 = M × C ,
wo C = K[Φ, S, γ1γ2] und M der volle Matrizenring vom Range n2 ist. —
Für ein einfaches normales hyperkomplexes

247

System S definiert man das direkte Produkt S2 mittels eines zu S iso-
morphen und von S bis auf K verschiedenen S∗ durch S2 = S × S∗

und entsprechend die direkte Potenz Sν = Sν−1×S∗. Gibt es eine Zahl σ ,
für die Sσ vollständiger Matrizenring wird, so heißt die kleinste derartige
Zahl % der Exponent von S . Es gilt 8. Die normale Divisionsalgebra A

vom Range n2 hat einen Exponenten % , der Teiler von n und Vielfaches
jeder in n aufgehenden Primzahl ist. Zu A gibt es eine Reihe untereinander
nichtisomorpher normaler Divisionsalgebren A0 = K , A1 = A,A2, . . . , A%−1

mit den Rangzahlen t2k und ein System voller Matrizenringe Hk vom Ran-
ge s2

k mit n = tk × sk , so daß bei α ≥ 2 und α = λ% + k mit λ ≥ 0 ,
0 ≤ k < % die direkte Potenz Aα isomorph wird zu Mα−1 × Hk × Ak (M
der volle Matrizenring n ten Grades). Ist i+j ≡ k (mod. %) , so wird Ai×Aj

isomorph zu Ak × Hij , wo Hij ein voller Matrizenring ist. Schließlich wird
noch ein Beweis gegeben für den folgenden R. Brauerschen, unabhängig aber
vom Verfasser aufgestellten Satz 9. Ist n = pe1

1 . . . pem
m die Primzahlzerlegung

von n , so wird jede normale Divisionsalgebra A vom Range n2 bis auf
Isomorphie eindeutig direktes Produkt A = B1 × · · · ×Bm normaler Divi-
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sionsalgebren Bi vom Range p2ei
i . Während R. B r a u e r Hilfsmittel der

Darstellungstheorie heranzieht (vgl. seine auch sonst noch mit der referier-
ten sich berührende Arbeit: Über Systeme hyperkomplexer Zahlen, Math.
Z. 30, 79–107), beruht der hier geführte Beweis auf reinen Struktursätzen.

Grell (Jena).
Copyright(c) 1931-2001 European Mathematical Society, FIZ Karlsruhe & Springer Verlag
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2.5 Referat, Algebras of degree ..., 1932

Zentralblatt MATH

scanned image, vol. 4,p. 100

100

Albert, A. Adrian: Algebras of degree 2e and pure Riemann
matrices. Ann. of Math., II. s. 33, 311–318 (1932).

Für eine normale Divisionsalgebra A vom Grade n ist der Exponent
die kleinste natürliche Zahl % , für die das direkte Produkt A% voller Ma-
trizenring wird. Bei der Niederschrift der Arbeit lag das Resultat von H.
H a s s e vor, daß der Exponent jeder zyklischen Algebra über einem alge-
braischen Zahlkörper gleich ihrem Grad sei. Da inzwischen durch R. B r a
u e r , H. H a s s e und E. N o e t h e r jede normale Divisionsalgebra
über einem Zahlkörper als zyklisch erkannt ist, gilt also diese Aussage über
den Exponenten für beliebige normale Divisionsalgebren; das vom Verfas-
ser für solche Algebren des Grades 2k in dieser Richtung erzielte Resultat
ist damit überholt. Von Bedeutung aber ist das mit diesen Untersuchungen
in Zusammenhang stehende Ergebnis, daß die einzigen selbstreziproken nor-
malen Divisionsalgebren über einem algebraischen Zahlkörper entweder den
Grad eins oder zwei haben. Es ergibt sich daraus nämlich, daß die Multipli-
kationsalgebren erster Art einer reinen Riemannschen Matrix (vgl. A. A l b
e r t , The Structure of pure Riemann matrices ...; Rend. Circ. mat. Palermo
55, 57–115 (1931); dies. Zbl. 1, 266) entweder vom Typus eines algebraischen
Zahlkörpers oder vom Typus einer verallgemeinerten Quaternionenalgebra
über einem solchen Zahlkörper sind. Grell (Jena).
Copyright(c) 1931-2001 European Mathematical Society, FIZ Karlsruhe & Springer Verlag
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2.6 Referat, Normal division algebras ...,

1932

Zentralblatt MATH

scanned image, vol. 4,p. 100

100

Albert, A. Adrian: Normal division algebras of degree four over
an algebraic field. Trans. Amer. Math. Soc. 34, 363–372 (1932).

Enthält als wesentlichstes Resultat für den Spezialfall n = 4 den Beweis
des einige Zeit nach Fertigstellung dieser Arbeit von R. B r a u e r , H.
H a s s e und E. N o e t h e r in ihrer gemeinsamen Arbeit ,,Beweis
eines Hauptsatzes in der Theorie der Algebren” (vgl. dies. Zbl. 3, 244) für
allgemeines n bewiesenen Satzes, daß jede normale Divisionsalgebra über
einem endlichen algebraischen Zahlkörper zyklisch ist.

Grell (Jena).
Copyright(c) 1931-2001 European Mathematical Society, FIZ Karlsruhe & Springer Verlag
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2.7 Referat, On normal simple algebras, 1932

Zentralblatt MATH

scanned image, vol. 5,p. 50

50

Albert, A. Adrian: On normal simple algebras. Trans. Amer.
Math. Soc. 34, 620 bis 625 (1932).

Eine Algebra A über einem (kommutativen) Körper F der Charakteri-
stik Null heißt assoziiert mit einer ebensolchen B, A ∼= B , wenn A direktes
Produkt A = M × B von B und einem vollen Matrizenring M über F
wird. Insbesondere ist nach W e d d e r b u r n eine normale einfache
Algebra A assoziiert mit einer normalen Divisionsalgebra D , A = M×D ;
hat diese die Ordnung m2 (Grad m), so heißt m der Index und der Grad
des zugehörigen M der Koindex von A . Sei die normale einfache Algebra A

assoziiert mit der normalen Divisionsalgebra D ; Z bedeute eine algebrai-
sche Erweiterung vom Range r über F . Dann heißt A eine Darstellung von
Z durch D , wenn A einen zu Z isomorphen Unterkörper enthält. Zu vorge-
gebenem Z und D gibt es immer Darstellungen, insbesondere existiert eine
bis auf Isomorphie eindeutig bestimmte kleinste Darstellung B = H × D ,
deren Koindex der Quotientenindex q = q(D, Z) von Z und D heißt. Das
Hauptresultat der Arbeit besteht nun in folgendem Satz: Jede Darstellung
A von Z durch D ist assoziiert mit einer kleinsten Darstellung B , d.h.
A = H×B = H× (E×D) = M×D ; dabei sind M = H×E , H und E volle
Matrizenringe über F . Der Quotientenindex q ist ein Teiler von r , r = sq ,
und D′ = Z ×D ist eine Divisionsalgebra vom Grade m′ = m/s über Z .
Ist Z0 aus A ein mit Z isomorphes Teilsystem, so ist die Algebra aller mit
Z0 vertauschbaren Elemente von A eine normale einfache Algebra H ×D0

über Z0 , wobei D0 zu D′ unter Erhaltung des Isomorphismus Z ↔ Z0

isomorph ist. — Mit Hilfe dieses Resultates wird eine von L.E. D i c k s o n
aufgestellte Vermutung über eine gewisse Klasse normaler einfacher Algebren
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E allgemein bestätigt: die notwendige und hinreichende Bedingung dafür,
daß ein solches E Divisionsalgebra ist, besteht darin, daß ein bestimmtes
Element einer in E enthaltenen gewissen Divisionsalgebra D nicht Norm
eines Elementes aus D sein darf. Grell (Jena).
Copyright(c) 1931-2001 European Mathematical Society, FIZ Karlsruhe & Springer Verlag
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