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On convergent power series

We consider the following situation:

K a field equipped with a non-archimedean absolute value | · | which
is assumed to be complete

K[[T ]] the ring of formal power series in one variable T over K
K((T )) the field of quotients of K[[T ]]
K[[T ]]r for r > 0, the subring of those power series which are convergent

in the disc |t| ≤ r 1)
K[[T ]]0 =

⋃
r>0 K[[T ]]r the “ring of convergent power series” over K

K((T ))0 its field of quotients

Our aim is to present a proof of the following

Theorem 1 K((T ))0 is algebraically closed in K((T )). Moreover, K((T ))
is a regular field extension of K((T ))0 and, hence, K((T ))0 is existentially
closed in K((T )).

Remark: In an earlier version of this manuscript dated 13 May 1996,
the second part of the above theorem, concerning the separability of K((T ))
over K((T ))0, had been proved only under the additional hypothesis that K
is of finite degree of inseparability. The general proof as given here is due to
F.V. Kuhlmann.

We denote by ord(z) the initial degree of the power series z ∈ K[[T ]].
This defines a discrete, additively written valuation of K((T )) over K for
which K((T )) is complete, hence henselian. We shall see below that

K[[T ]] ∩K((T ))0 = K[[T ]]0 (1)

which means that K[[T ]]0 is the valuation ring in K((T ))0 belonging to the
initial degree valuation. First we are going to show:

Proposition 2 K((T ))0 is Henselian with respect to the initial degree
valuation. Consequently K((T ))0 is separably algebraically closed within K((T )).

1) Here and in the following, r > 0 will always denote a real number in the value group
of K.
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Proof : We consider a polynomial

f(Y ) = a0 + a1Y + · · ·+ akY
k (2)

with coefficients ai ∈ K[[T ]]0. We assume that

f(0)(0) = 0 and f ′(0)(0) 6= 0 (3)

and have to show that there exists y ∈ K[[T ]]0 such that

f(y) = 0 and y(0) = 0 . (4)

Observe that f(0) = a0 and f ′(0) = a1 are convergent power series; thus
f(0)(0) = a0(0) and f ′(0)(0) = a1(0) denote the constant coefficients of
those power series.

The usual procedure to construct such zero y of f(Y ) is by means of
Newton’s iteration method: Starting with y0 = 0 as initial value we
define successively

yn+1 = yn − f ′(yn)−1f(yn) (n = 0, 1, 2, . . .) (5)

It is shown that y = limn→∞ yn exists and f ′(y) 6= 0; then it is seen from the
definition (5) that y is a zero of f(Y ). Moreover, it is seen that y(0) = 0.

If in the above, the notion of “limit” is understood in the sense of the
initial degree valuation ord( · ) then one can only deduce that the limit is
contained in the ord-completion of K[[T ]]0, but this is K[[T ]] and hence this
argument does not lead to any information about the limit belonging to
K[[T ]]0. Therefore, we have to regard the yn as a convergent sequence with
respect some other suitable valuation, as follows.

By definition, K[[T ]]0 is the union of the rings K[[T ]]r for r → 0. A power
series

z = c0 + c1T + c2T
2 + · · · ∈ K[[T ]]0 (6)

is convergent in the disc |t| ≤ r if and only if

lim
ν→∞

|cν |rν = 0 .

If this is the case then
‖z‖r = max

ν
|cν |rν (7)

does exist. If the residue class field of K is infinite then it is well known that
‖z‖r is the norm of uniform convergence in the disc, i.e.,

‖z‖r = max
|t|≤r

|z(t)| .

In any case, whether the residue field of K is infinite or not, ‖ · ‖r is an ab-
solute value of K[[T ]]r, and K[[T ]]r is complete with respect to this absolute
value. ‖ · ‖r is briefly called the functional norm on the r-disc.

This shows that Proposition 2 is an immediate consequence of:
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Proposition 3 If r is sufficiently small then all the yn of Newton’s se-
quence (5) are contained in K[[T ]]r and the sequence yn converges with re-
spect to the functional r-norm ‖ · ‖r. Hence its r-norm limit y = limn→∞ yn

is contained in K[[T ]]r. Moreover, we have y(0) = 0 .

This proposition is well known from elementary analysis under the name
of “Theorem of implicit functions”.2) Nevertheless let us present a proof here.

Before starting with the proof proper let us note:

Lemma 4 Let z ∈ K[[T ]]r and suppose ‖z−1‖r < 1. Then z−1 ∈ K[[T ]]r
and ‖z‖r = ‖z−1‖r = 1.

Proof : We put z = 1− u, then ‖u‖r < 1 and hence the geometric series

(1− u)−1 =
∑

0≤ν<∞
uν

converges with respect to ‖ · ‖r; we conclude that z−1 = (1−u)−1 ∈ K[[T ]]r.
The relations ‖z‖r = 1 and ‖z−1‖r = 1 are implied by the non-archimedean
property of the valuation ‖ · ‖r. 2

Corollary 5 If z ∈ K[[T ]]0 and z(0) 6= 0 then z−1 ∈ K[[T ]]0 .

Proof : We put z = z(0) ·z∗ and see that the invertibility of z is equivalent
to the invertibility of z∗. Writing again z instead of z∗ we may assume from
the start that z(0) = 1:

z = 1 + c1T + c2T
2 + · · · = 1− u .

z and hence u are convergent in some disc |t| ≤ r0. For r ≤ r0 we have

‖u‖r = max
ν≥1

|cν |rν ≤ r

r0

·max
ν≥1

|cν |rν
0 ≤

r

r0

· ‖z‖r0 .

Hence from Lemma 4 we conclude:

r <
r0

‖z‖r0

⇒ ‖u‖r < 1 ⇒ z−1 ∈ K[[T ]]r .

In other words: if r is sufficiently small then z−1 belongs to K[[T ]]r and hence
to K[[T ]]0. 2

2) In elementary analysis the underlying absolute value is archimedean and hence the
ordinary proof differs from ours in those places where we use the non-archimedean property
of the valuation. But of course, the idea of proof is the same in both cases, archimedean
and non-archimedean, and it is possible to give a unified proof.
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Corollary 5 shows that every z ∈ K[[T ]]0 can be uniquely written as

z = T kz0

where k = ord(z) and z0 is a unit in K[[T ]]0. This implies the relation (1)
already stated above.

Proof of Proposition 3: For simplicity we may assume that

f ′(0)(0) = 1 . (8)

If this should not be the case then multiplication of the coefficients of f(Y )
with the constant c = f(0)(0)−1 will achieve this.

There exists r0 > 0 such that all the coefficients a0, a1, . . . , ak of f(Y ) are
convergent in the disc |t| ≤ r0. Let us put

M = max
0≤i≤k

‖ai‖r0 .

It follows from (8) that ‖a1‖r0 = ‖f ′(0)‖r0 ≥ 1; hence M ≥ 1.

In the following proof we choose a radius r < r0 which is “sufficiently
small”; the precise condition for r will be seen in the course of our arguments.
We fix such r and put

Ir =
{

y ∈ K[[T ]]r : ‖y‖r < M−1
}

.

This is an ideal in the ring Or = { y ∈ K[[T ]]r : ‖y‖r ≤ 1 } . Observe that
Ir is closed with respect to the valuation ‖ · ‖r, hence complete.

The proof of Proposition 3 will now be presented as a succession of obser-
vations (i)–(iii) with the conclusion (iv).

Observation (i) If y ∈ Ir then f(y) ∈ Ir. Thus f maps the ideal Ir into
itself.

To see this we write

f(y) = a0 + a1y + a2y
2 + · · ·+ aky

k . (9)

According to (3) the power series function a0 = a0(t) = f(0)(t) vanishes
for t = 0; hence by continuity we have |a0(t)| → 0 if t → 0. Thus if r is
sufficiently small we have

‖a0‖r < M−1. 3)

3) Explicitly: write a0(T ) =
∑

ν≥1 a0,νT ν and use the estimate |a0,ν |rν ≤ Mr−ν
0 · rν ≤

Mr−1
0 r for ν ≥ 1 to see that the condition r < r0M

−2 does suffice.
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As to the other terms in (9) we compute for i ≥ 2

‖aiy
i‖r ≤ ‖ai‖r‖y‖i

r ≤ ‖ai‖r0‖y‖i
r ≤ M ·M−i ≤ M−1 .

For i = 1 we have a1 = f ′(0) and the same estimate holds because, due to the
next observation, we have ‖f ′(0)‖r = 1. Hence the estimate ‖ai‖r‖y‖i

r ≤ M−1

holds for all i = 0, 1, 2, . . . , k and so

‖f(y)‖r < M−1

as contended. 2

Observation (ii) If y ∈ Ir then f ′(y)−1 ∈ K[[T ]]r and ‖f ′(y)−1‖r = 1.

To see this we write

f ′(y)− 1 = (a1 − 1) + 2a2y + · · ·+ kaky
k−1 . (10)

According to (8) the power series function a1(t) − 1 = f ′(0)(t) − 1 vanishes
for t = 0; hence again by continuity, we have

‖a1 − 1‖r < 1

if r is sufficiently small.4) For the remaining terms in (10) we have

‖iaiy
i−1‖r ≤ ‖ai‖r‖y‖i−1

r ≤ ‖ai‖r0‖y‖i−1
r ≤ M ·M−(i−1) < 1

since i ≥ 2. It follows
‖f ′(y)− 1‖r < 1

and we apply Lemma 4.2

Next we introduce the Newton operator

N (y) = y − f ′(y)−1f(y) . (11)

From observations (i) and (ii) we see that N maps the ideal Ir into itself.

Observation (iii) If y ∈ Ir then ‖f(N y)‖r ≤ M · ‖f(y)‖2
r .

To obtain this estimate we use Taylor’s formula which we write in the
form

f(Y + Z) = f(Y ) + f ′(Y )Z + f (2)(Y )Z2 + · · ·+ f (k)(Y )Zk (12)

where Y, Z are independent variables. The polynomials f (ν)(Y ) are the mod-
ified higher derivatives of f(Y ) in the sense of Hasse and F.K.Schmidt; they
are defined by the formula

f (ν)(Y ) =
∑

ν≤i≤k

(
i

ν

)
aiY

i−ν . (13)

4) Similar explicit verification as in (i). This time the condition r < r0M
−1 will suffice.
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For the coefficients we have the estimate∥∥∥∥
(

i

ν

)
ai

∥∥∥∥
r

≤ ‖ai‖r ≤ ‖ai‖r0 ≤ M

and hence for y ∈ Ir (since ‖y‖r < M−1 < 1)

‖f (ν)(y)‖r ≤ M . (14)

Now, in Taylor’s formula we substitute Y 7→ y and Z 7→ −f ′(y)−1f(y) and
observe that, due to the definition of the Newton operator, the first two terms
cancel and Taylor’s formula starts with the quadratic term:

f(N y) = f (2)(y)
(
f ′(y)−1f(y)

)2
+ · · ·+ f (k)(y)

(
f ′(y)−1f(y)

)k
.

For each term on the right hand side, we deduce using (14) and observation
(ii): ∥∥f (ν)(y)

(
f ′(y)−1f(y)

)ν∥∥
r
≤ M · ‖f(y)‖ν

r ≤ M · ‖f(y)‖2
r

the last inequality because ν ≥ 2 and ‖f(y)‖r < 1 by (i). 2

Conclusion (iv):

Consider the Newton sequence yn defined inductively by

yn+1 = N (yn)

as in (5), with the initial term y0 = 0. From observation (iii) we obtain by
induction

‖f(yn)‖r ≤ M2n−1‖f(y0)‖2n

r (n = 1, 2, 3, . . .)

Moreover the definition (5) of the Newton sequence shows that

‖yn+1 − yn‖r = ‖f ′(yn)−1f(yn)‖r ≤ ‖f(yn)‖r ≤ M2n−1‖f(y0)‖2n

r

where we have used observation (ii). Since M‖f(y0)‖r < 1 by observation
(i), these formulas show us, firstly, that the Newton sequence yn is a Cauchy
sequence with respect to the r-norm ‖ · ‖r ; hence the limit y = limn→∞ yn

exists in Ir. Secondly, we see that f(yn) converges to 0; hence f(y) = 0.

Since y0 = 0 we see that f(y0)(0) = f(0)(0) = 0 due to the hypothesis
(3). From (5) we conclude y1(0) = 0. By induction one verifies that

f(yn)(0) = f(0)(0) = 0 and yn+1(0) = 0 (n = 1, 2, 3, . . .)

Hence for the limit y = limn→∞ yn we also have y(0) = 0 .

Proposition 3 is proved. 2

Accordingly, we now know that K((T ))0 is henselian. Since it is dense
in K((T )), it is well known that the regularity of K((T )) over K((T ))0 is
necessary and sufficient for K((T ))0 to be existentially closed in K((T )). See
e.g., F.V. Kuhlmann’s thesis [K]. It remains to prove:
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Proposition 6 Let p = char(K) > 0. The field K((T )) is a separa-
ble extension of K((T ))0. This means that K((T )) is linearly disjoint to

(K((T ))0)
1/p over K((T ))0.

Let us remark that

(K[[T ]])1/p = K1/p[[T 1/p]] .

If a power series z ∈ K[[T ]] converges in a disc with radius r > 0 then its
p-th root z1/p ∈ K1/p[[T 1/p]], as a power series in the variable T 1/p, converges
in the disc with radius r1/p. And conversely. Thus

(K[[T ]]r)
1/p = K1/p[[T 1/p]]r1/p .

For r → 0 we obtain

(K[[T ]]0)
1/p = K1/p[[T 1/p]]0 .

The same relation holds for the respective quotient fields, i.e., we may replace
the double square brackets by double ordinary brackets.

Now consider the following diagram:

K1/p((T 1/p))
ÃÃÃÃÃÃÃÃÃÃÃÃ

K((T 1/p))K((T 1/p))
||||||

K((T 1/p))0K((T 1/p))0

ÃÃÃÃÃÃÃ
ÃÃÃÃÃ

K1/p((T 1/p))0K1/p((T 1/p))0

||
||
||

K1/p((T 1/p))

K((T 1/p))
ÃÃÃÃÃÃÃÃÃÃÃÃÃ

K((T ))K((T ))
||||||

K((T ))0K((T ))0
ÃÃÃÃÃÃÃ

ÃÃÃÃÃÃ
K((T 1/p))0

The next lemma shows that linear disjointness holds in the left lower
portion of the diagram:

Lemma 7 K((T )) and K((T 1/p))0 are linearly disjoint over K((T ))0 .
In fact, the p elements T j/p, 0 ≤ j ≤ p − 1, form a basis of K((T 1/p)) over
K((T )), and also a basis of K((T 1/p))0 over K((T ))0.

Proof : According to the euclidean algorithm each integer n has a unique
representation of the form

n = j + pm with 0 ≤ j ≤ p− 1 (15)
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and m integer. Hence T n/p = T j/pTm and we obtain the direct sum decom-
position

K[[T 1/p]] =
∑

0≤j≤p−1

T j/pK[[T ]] ,

which shows that the T j/p form a basis of K[[T 1/p]] over K[[T ]], and hence
also for the respective quotient fields. Explicitly, if

z =
∑

n

bnT
n/p

is a power series in T 1/p with coefficients bn ∈ K, and if we express each
exponent n as in (15) then

z =
∑

0≤j≤p−1

T j/pzj

where
zj =

∑
m

cj,mTm with cj,m = bpm+j .

If z ∈ K[[T 1/p]]r then limn→∞ |bn|rn/p = 0. For each fixed j, the subsequence
|bpm+j|rm+(j/p) also tends to 0; multiplication by r−j/p shows limm→∞ |cj,m|rm =
0, hence zj converges in the disc |t| ≤ r, which is to say that zj ∈ K[[T ]]r.
The arguments can be reversed, and therefore

K[[T 1/p]]r =
∑

0≤j≤p−1

T j/pK[[T ]]r .

For r → 0 we conclude

K[[T 1/p]]0 =
∑

0≤j≤p−1

T j/pK[[T ]]0 .

Thus 1, T 1/p, . . . , T (p−1)/p is a basis of K[[T 1/p]]0 over K[[T ]]0, and the same
holds for the respective quotient fields. 2

It remains to show linear disjointness for the right upper portion of the
above diagram. That portion refers to T 1/p as indeterminate. For the purpose
of the following proof, let us write T again instead of T 1/p in order to comply
with the notations used elsewhere in this manuscript. Thus we have to
consider the following diagram:

K1/p((T ))
ÃÃÃÃÃÃÃÃÃÃÃÃÃ

K((T ))K((T ))
||||||

K((T ))0K((T ))0
ÃÃÃÃÃÃÃ

ÃÃÃÃÃÃ
K1/p((T ))0K1/p((T ))0

||
||
||

K1/p((T ))
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In this situation we claim:

Lemma 8 The fields K((T )) and K1/p((T ))0 are linearly disjoint over
K((T ))0. In fact: Let F ⊂ K1/p((T ))0 be a subextension of finite degree
over K((T ))0; let u1, . . . , um be a K-basis of the residue field L of F and
ũ1, . . . , ũm be foreimages of the ui in F . Then the ũi form a basis of F over
K((T ))0 which at the same time is a basis of K((T )) · F over K((T )).

K1/p((T ))
ÃÃÃÃÃÃÃÃÃÃÃÃÃ

K((T )) · FK((T )) · F
||||||
FF ÃÃÃÃÃÃÃ

ÃÃÃÃÃÃÃ
ÃÃÃ

K1/p((T ))0K1/p((T ))0

||
||
||

K1/p((T ))

K((T )) · F
ÃÃÃÃÃÃÃÃÃÃÃÃÃ

K((T ))K((T ))
||||||

K((T ))0K((T ))0
ÃÃÃÃÃÃÃ

ÃÃÃÃÃÃÃ
ÃÃÃ F

Remark: In the above lemma the notion of “residue field” refers, of
course, to the initial degree valuation of the power series field. The residue
field of K((T )) is K, and K is also the residue field of K((T ))0.

If K is of finite inseparability degree then [K1/p : K] is finite, hence in
the above Lemma we can take F = K1/p((T )) and L = K1/p. Moreover, we
can take ũi = ui. In this case the following proof is identical with the proof
given in our earlier version of this manuscript. It has been Kuhlmann’s idea
how to modify that proof in order to deal also with fields of infinite degree
of inseparability.

Proof of Lemma 8: Since the residues ui of the ũi are linearly independent
over K by construction, it follows that the ũi are linearly independent over
K((T )). In fact, for every linear combination

z =
∑

1≤i≤m

ziũi

with zi ∈ K((T )) we have

ord(z) = min
1≤i≤m

ord(zi) (16)
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and this implies the linear independency of the ũi over K((T )). Hence it
remains to show that the ũi form a basis of F over K((T ))0

5) which is to
say that

[F : K((T ))0] = [L : K] .

In general, the residue field extension is of degree ≤ than the degree of the
original field extension, and equality implies that the field extension has no
defect.

Thus we have to show that the valued field F , as an extension of K((T ))0,
has no defect. 6)

We proceed by induction with respect to the field degree [F : K((T ))0].
If the degree is 1 then there is nothing to prove. Now we assume that F is
already known to be defectless over K((T )), and we consider a proper simple
extension F ′ = F (z) ⊂ K1/p((T ))0. We can assume that z ∈ K1/p[[T ]]0, i.e.,
that z is a convergent power series with coefficients in K1/p.

The p-th power zp is in K[[T ]]0 and hence in F . Thus [F ′ : F ] = p. For
the residue fields we have [L′ : L] ≤ p. Since L′|L is purely inseparable we
conclude that [L′ : L] = p or = 1. In the first case F ′ is defectless over F .
By induction assumption F is defectless over K((T ))0 and it follows that F ′

is defectless over K((T ))0.

In the second case F ′ has the same residue field as F , hence F ′ is an
immediate extension of F . We have to show that this case does not occur.

As an immediate extension, F ′ is contained in the maximal immediate
extension of F , i.e., in the completion F̂ of F . 7) This completion contains
K((T )) which is the completion of K((T ))0. Thus

F̂ ⊃ K((T )) · F =
∑

1≤i≤m

K((T ))ũi

(where we have used the induction assumption). Now the right hand side,
being a finite dimensional vector space over the complete field K((T )), is also
complete and therefore

F̂ =
∑

1≤i≤m

K((T ))ũi .

Consequently, since z ∈ F ′ ⊂ F̂ we conclude that there is a linear represen-

5) In the terminology of [K] the ũi form a valuation basis of F over K((T ))0.
6) It seems that by slight modification of our arguments it would be possible to show

that any finite extension F of K((T ))0 is defectless, i.e., that K((T ))0 is a defectless field.
7) Observe that the valuation of F is discrete, being induced by the initial degree

valuation of K1/p((T )).
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tation of the form
z =

∑
1≤i≤m

aiũi (17)

with coefficients ai ∈ K((T )). From (16) we infer that ai ∈ K[[T ]].

Since z is convergent this implies, we claim, that the coefficients ai are
also convergent, hence they are contained in K[[T ]]0 and therefore z ∈ F , a
contradiction.

Thus we have to prove the following lemma which, actually, is the heart
of Kuhlmann’s proof of Proposition 6. For clarity, let us review the situation
of the lemma.

K a complete valued field of characteristic p
K ′ a valued algebraic field extension of K 8)
ui for 1 ≤ i ≤ m, finitely many elements in K ′ which are linearly

independent over K
ũi = ũi(T ) power series in K ′[[T ]] such that ũi(0) = ui

z = z(T ) a power series in K ′[[T ]] which can be written as a linear
combination of the form (17) with coefficients ai ∈ K[[T ]]

In this situation we have:

Lemma 9 If the power series z(T ) and the ũi(T ) are convergent, then
the coefficients ai(T ) are convergent too.

Proof : (i) The proof will based on the following fact concerning the vector
space

L =
∑

1≤i≤m

Kui

spanned by the ui. For any x ∈ L we write x = x1u1 + · · · + xmum with
xi ∈ K and put

µ(x) = max(|x1|, . . . , |xm|) .

The function x → µ(x) is a vector space norm of L over K, i.e., it satisfies
the relations

µ(x + x′) ≤ max(µ(x), µ(x′))

µ(cx) = |c| · µ(x) for c ∈ K

µ(x) = 0 ⇔ µ = 0

The valuation x → |x| is also a vector space norm of L. Now since K is
complete, it is well known that any two vector space norms on L define the

8) For the following lemma it is not necessary that K ′ is purely inseparable over K.
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same topology . Explicitly, there is a constant M > 0 (depending on the given
basis ui of L) such that

µ(x) ≤ M · |x| . (18)

See e.g. our old paper [R].

(ii) This being said, we now start with the proof of Lemma 9. After
replacing z by z− z(0) we may assume that z(0) = 0. Since the power series
z(T ) converges in some neighborhood of zero in K ′ we conclude by continuity
that limr→0 ‖z‖r = 0. Hence for r sufficiently small we have that

‖z‖r ≤ M−1. (19)

For each i we write
ũi = ui + zi(T )

where zi(0) = 0. Again, since zi(T ) converges we have

‖zi‖r ≤ M−1 (1 ≤ i ≤ m) (20)

if r is sufficiently small.

With r chosen this way, we claim that each ‖ai‖r exists and ‖ai‖r ≤ 1.
To see this, let us write

z(T ) =
∑
n>0

cnT n

zi(T ) =
∑
n>0

ci,nT
n

ai(T ) =
∑
n≥0

ai,nT
n.

with coefficients cn, ci,n ∈ K ′ and ai,n ∈ K.

Observe that ai,0 = ai(0) = 0; this follows from

0 = z(0) =
∑

1≤i≤m

ai(0)ui

and the linear independency of the ui over K. Our contention is that

|ai,n|rn ≤ 1 (1 ≤ i ≤ m) (21)

if r is sufficiently small in the sense of (19), (20). This can be seen by
induction. For n = 0 we have ai,n = 0 and there is nothing to prove. Now
suppose n > 0. Comparing the coefficients of T n in (17) we obtain

cn =
∑

1≤i≤m

ai,nui +
∑

1≤i≤m

∑
0≤ν<n

ai,νci,n−ν .
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In the second sum on the right hand side only those coefficients ai,ν do appear
for which the induction assumption applies. We conclude

∣∣∣∣∣
∑

1≤i≤m

ai,nui

∣∣∣∣∣ rn ≤ max

(
|cn|rn, max

1≤i≤m
max
0≤ν<n

(|ai,ν |rν |ci,n−ν |rn−ν)

)

≤ max

(
‖z‖r, max

1≤i≤m
(1 · ‖zi|r)

)

≤ M−1

where we have used (19) and (20), besides of the induction assumption. On
the other hand, in view of (18) we have for each i:

|ai,n| ≤ M ·
∣∣∣∣∣

∑
1≤i≤m

ai,nui

∣∣∣∣∣

and multiplication with rn yields (21) for the exponent n.

We have seen that for sufficiently small radius r > 0 we have

‖ai‖r = max
n≥0

|ai,n|rn ≤ 1 (1 ≤ i ≤ m) .

We choose one such radius, say r0. Then for r < r0 (and r in the value group
of K) we compute as usual

|ai,n|rn ≤ ‖ai‖r0 ·
(

r

r0

)n

≤
(

r

r0

)n

and this converges to 0 for n →∞. In other words: If r < r0 then the power
series ai(T ) converges in the disc |t| ≤ r.

Lemma 9 is proved, and so is Theorem 1.
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