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An introduction to Deuring’s theory of constant reductions

Barry Green and Peter Roquette

Abstract. This note presents a brief introduction to Deuring’s theory of re-
duction of function fields. We assume that the reader is familiar with the
elementary theory of function fields (or curves) and their divisors, up to the
Theorem of Riemann-Roch. One of the new features here is the definition
and use of the notion of “inert” extensions of valued fields, which works for
extensions of arbitrary degree of transcendency. We study the behavior of the
genus of a function field under reduction (section 4). In the case of “good”
reduction, where the genus does not change, we obtain Deuring’s reduction
map for divisors (section 5). Any function field admits good reduction with
respect to almost all valuations of the base field (section 6). In a follow-up
paper it will be shown that the valuation for good reduction, if it exists, is
unique.

Introduction

In this note, a “function field” is a finitely generated field extension F |K of
transcendence degree 1. Thus there exists an element x ∈ F which is transcendent
over K, and F appears as a finite algebraic extension of the field K(x) of rational
functions. We assume that the reader is familiar with the elementary theory of
function fields and their divisors, up to the Theorem of Riemann-Roch.

A “valued function field” is a function field equipped with a valuation v and
the property that the residue field F is transcendental over the residue field K of
K. Thus there exists an element x ∈ F such that its residue x is transcendental
over K. We shall see in section 1 that this condition uniquely characterizes the
valuation on the rational subfield K(x) ⊂ F , with residue field K(x). The residue
field F of F is a finite extension of K(x) and so F |K is also a function field. It is
called the “reduction” of F |K modulo the given valuation v.

In general we have [F : K(x)] ≤ [F : K(x)]. The reduction is called “regular”
if there exists x ∈ F such that

[F : K(x)] = [F : K(x)] .

The main object of this note is to study regular reduction of function fields. In
particular we will be interested in the corresponding reduction of divisors, as well
as the behavior of the genus under reduction. The theory of reduction of function
fields has been developed by Deuring in the year 1942, but for discrete valuations
only; see [1].
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Notation. v is to be a (non-trivial) valuation in the sense of Krull; there is
no restriction concerning its value group or its residue field. Given the valuation v
of F we denote by OF its valuation ring, and similarly OK its valuation ring in K.
Thus we have OK = K ∩OF . Similarly let MF ,MK be the maximal ideals of OF

and OK respectively, so that MK = K ∩ MF . For the residue fields we use the
notations already explained above: F = OF /MF and K = OK/MK . If x ∈ OF

then x is its residue in F . If x ∈ F and x /∈ OF then, as usual, we write x = ∞.
For any 0 �= x ∈ F we denote by (x) its principal divisor. (x)∞ is the pole divisor
of x and (x)0 its zero divisor, so that (x) = (x)0 − (x)∞.

1. The Gauss valuation

Let K be a field equipped with a valuation v. Consider the rational function
field F = K(x) over K. There are many ways to extend the valuation v from K to
F . Some of them, called “Gauss valuations”, are particularly easy to describe.

Theorem 1 (Gauss Theorem). Let x be a generator of the rational function
field F = K(x). There is one and only one extension of v to F for which x is
transcendental over K. The value v(f) of a polynomial

f = ao + a1x+ · · ·+ anx
n ∈ K[x]

is given by

(1) v(f) = min
0≤i≤n

v(ai) .

The value group and residue field are:

v(F ) = v(K) and F = K(x) .

Proof. If such an extension of v to F exists then its valuation ring OF contains
the polynomial ring OK [x], and its reduction map OF → F induces a homomor-
phism

(2) OK [x] → K[x]

of the respective polynomial rings. The homomorphism is obtained coefficientwise,
i.e. the image of a polynomial

(3) f = f(x) = ao + a1x+ · · ·+ anx
n ∈ OK [x]

is given by

(4) f = f(x) = ao + a1x+ · · ·+ anx
n ∈ K[x].

This homomorphism extends naturally and uniquely to its ring of quotients, which
consists of all quotients fg−1 with f, g ∈ OK [x] and g �= 0. We shall see below that
this ring of quotients equals OF . This gives uniqueness.

As to the existence, consider the rational function field of one variable over K
and one of its generators; denote this generator by x. Define the homomorphism
(2) coefficient wise by (4). Extend that homomorphism to its ring of quotients as
above. We claim that this ring of quotients is a valuation ring. Let us denote this
ring of quotients already by OF , so that we have a homomorphism

(5) OF → K(x) .
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We are now going to show that, indeed, OF is a valuation ring of F . To this end
we will verify the characteristic property of a valuation ring: for h ∈ F we have to
show:

(6) h /∈ OF =⇒ h−1 ∈ OF .

We write h = fg−1 with f, g ∈ K[x]. We define the function f 
→ v(f) on K[x]
by formula (1). It will turn out that this function is a valuation but for the moment
we just have to know that it is a function defined on K[x] with values in the value
group v(K).

Let a ∈ K× be an element whose value v(a) = v(f). For instance, a may be
a coefficient ai of f in (3) for which the minimum on the right hand side of (1) is
assumed. We write

(7) f = a · fo with v(fo) = 0 .

The polynomial fo with v(fo) = 0 is called primitive. Thus every polynomial can
be normalized by a factor from K to become primitive. The condition v(fo) = 0 is
equivalent to fo �= 0.

Similarly we write g(x) = b · go(x) with b ∈ K and go primitive. Thus

(8) h = fg−1 = c · fog−1
o with c = ab−1 ∈ K× .

Now, if v(c) ≥ 0 then c ∈ OK and thus c ·fo ∈ OK [x]; hence h is contained in the
ring of quotients OF as defined above. Consequently, if h /∈ OF then v(c) < 0 ; this
implies c−1 ∈ OK and therefore

h−1 = c−1 · gof−1
o ∈ OF .

This establishes our contention (6) and so, indeed, OF is a valuation ring.
By construction, K ∩ OF = OK . Thus the valuation of F belonging to OF is

an extension of the valuation v in K. Next we show that this valuation of F is
given by (1).

First we claim that the function on K[x] defined by (1) is multiplicative:

(9) v(fg) = v(f) + v(g) for f, g ∈ K[x] .

(This statement is usually called Gauss’ Lemma.) To see this, write f = a · fo as
in (7), and similarly g = b · go, so that

fg = ab · fogo .

Here fo �= 0 and go �= 0 and thus fogo = fogo �= 0 (because the polynomial ring
K[x] has no zero divisors). Consequently v(fogo) = 0 and thus

v(fg) = v(ab) = v(a) + v(b) = v(f) + v(g)

as contended.
The formula (1) defines the function v on the polynomial ring K[x]. We now

extend this function to the whole field F by multiplicativity: If h = fg−1 ∈ F with
f, g ∈ K[x] we put v(h) = v(f) − v(g). Because of (9) this is well defined, and it
gives a multiplicative function from F× to v(K).

We have seen above that any h ∈ F may be written in the form (8), and so
v(h) = v(c). We have also seen that v(c) ≥ 0 if and only if h ∈ OF . We conclude:

v(h) ≥ 0 ⇐⇒ h ∈ OF .
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This implies by multiplicativity the triangle inequality:

(10) v(f + g) ≥ min (v(f), v(g)) .

To see this, assume v(g) ≤ v(f) and write

f + g = (h+ 1)g with h = fg−1 .

By assumption v(h) ≥ 0, hence h ∈ OF and therefore h+1 ∈ OF . Hence v(h+1) ≥
0 and v(f + g) ≥ v(g) .

We have shown that the function v on F is a valuation and that OF is its
valuation ring. The statements in Theorem 1 concerning value group and residue
field are immediate from (1) and (5). �

By construction, the Gauss valuation depends on the choice of the generator x
of F . If we wish to indicate this then we speak of the x-Gauss valuation of K(x),
and we write vx. If y is another generator, then the question arises under which
condition vy = vx.

Now, if K(y) = K(x) then

(11) y =
ax+ b

cx+ d
with a, b, c, d ∈ K and ad− bc �= 0

Note that the coefficients a, b, c, d ∈ K are not uniquely determined by y. They are
determined up to a common factor in K×.

Proposition 2. We have vy = vx if and only if the coefficients a, b, c, d in
(11) are in OK and vx(ad − bc) = 0 – after division by a suitable common factor
in K× if necessary.

Proof. Let the y denote the residue of y with respect to the valuation vx. If
vy = vx then

(12) y �= 0,∞ and K(y) = K(x).

The first condition implies 0 = vx(y) = vx(ax + b) − vx(cx + d). We take u ∈ K
such that vx(u) = vx(ax + b) = vx(cx + d); after dividing a, b, c, d by u we may
assume that vx(ax+ b) = 0 = vx(cx+ d). We then have

y =
ax+ b

c x+ d
.

The second condition in (12) implies a d− b c �= 0 which is to say that vx(ad− bc) =
0. �

Remark 3. Theorem 1 and the above proof remain valid without change for
rational function fields F = K(x) in several variables x = (x1, x2, . . .). In this
general situation the condition that “x is transcendental overK ” has to be replaced
by: “x is algebraically free over K ”.

When we try to treat power series fields K((x)) in the same way then there
arises the problem that in formula (1) there are infinitely many coefficients ai
involved and hence the minimum on the right hand side may not exist. Hence one
has to restrict the discussion to the case of the field K((x))o of “convergent” power
series, i.e.,

f(x) =
∑

0≤i<∞
aix

i with lim
i→∞

ai = 0



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

AN INTRODUCTION TO DEURING’S THEORY 75

where the limit is meant in the sense of the v-adic valuation of K; this means
v(ai) → ∞. In this situation Theorem 1 and its proof remain valid.

2. Regular reduction

Now let F |K, v be an arbitrary valued function field, not necessarily rational.
By definition, there exists x ∈ F such that x is transcendental over K. From
Theorem 1 we see that the valuation in the subfield K(x) ⊂ F coincides with the
Gauss valuation with respect to x. Thus, in order to investigate valued function
fields, we have to study the extensions of the Gauss valuation of K(x) to the finite
extension F .

General valuation theory tells us that there are only finitely many such exten-
sions. If these are v1, . . . , vr with ramification degrees ei and residue degrees fi
then

(13)
∑

1≤i≤r

eifi ≤ [F : K(x)].

If, say, v1 = v is the given valuation of F |K then f1 = [F : K(x)] and we conclude

[F : K(x)] ≤ [F : K(x)] .

As said in the introduction, here we are mainly interested in the case when

(14) [F : K(x)] = [F : K(x)] .

In this case F |K is said to be a regular reduction of F |K, and x is called a
regular element. From (13) we conclude that in the regular case, v is the only
valuation of F which extends the Gauss valuation vx of K(x). And v is unramified
overK(x). Since the Gauss valuation vx ofK(x) is unramified overK (compare (1))
we conclude that F |K is an unramified field extension, provided we have regular
reduction.

Suppose for example that F = K(x, y) and there is an irreducible equation of
the form

(15) Φ(x, y) = 0

where

(16) Φ(X,Y ) = Y n + fn−1(X)Y n−1 + · · ·+ fo(X) ∈ K[X,Y ]

with fi(X) ∈ OK [X]. (This implies n = [F : K(x)].) Then y is integral over OK [x]
and hence y �= ∞. The equation

(17) Φ(x, y) = 0

is obtained by reducing the coefficients of Φ(X,Y ) modulo v, where

(18) Φ(X,Y ) = Y n + fn−1(X)Y n−1 + · · ·+ fo(X) ∈ K[X,Y ]

Now, if Φ(X,Y ) is an irreducible polynomial over K then we have

n = [K(x, y) : K(x)] ≤ [F : K(x)] ≤ [F : K(x)] = n

and we see that (14) holds, i.e., F |K has regular reduction. Thus, the irreducibility
of the reduced polynomial Φ(X,Y ) implies regularity.

However, this sufficient criterion is not necessary. If Φ(X,Y ) is reducible there
may be other generators of F over K whose defining equation stays irreducible after
reduction.
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But if we start from an arbitrary function field E|K over the residue field of
K, then it is possible to construct a “regular lift”, i.e., a function field F |K with a
valuation extending the given valuation v on K, such that the residue field F = E,
and that F admits a regular element.

Indeed: for example we assume E = K(x, y) with a defining irreducible equa-
tion (17) of the form (18). For each non-zero coefficient of Φ(X,Y ) we choose a
foreimage in K and and obtain a polynomial Φ[X,Y ] ∈ K[X,Y ], of the same degree
in Y , which is irreducible since its reduction Φ(X,Y ) ∈ K[X,Y ] is irreducible. Now
let F = K(x, y) be the function field over K defined by the irreducible equation
Φ(x, y) = 0. By construction, the substitution (x, y) 
→ (x, y) defines a homo-
morphism K[x, y] → K[x, y] extending the residue map K → K modulo v. That
homomorphism can be extended to a place of F = K(x, y), i.e., to the residue map
of a valuation of F , again denoted by v, extending the given valuation v of K. In
this way F |K becomes a valued function field and, we claim, it has regular reduc-
tion, the residue field being the given field E. Indeed: On the one hand, since x is
mapped onto x which is transcendental over K it follows that in K(x) the valuation
v is the Gauss valuation vx. (See Theorem 1.) The residue field of vx is K(x). Now
by construction, [F : K(x)] = n and the residue field of F contains F (x, y) = E
which is of degree n over K(x). In view of (13) we conclude that, indeed, F = E,
and that x is a regular element in F .

In the situation discussed above it is said that F |K arises by lifting the given
function field E|K. Note that the lifting process as described above is not unique.
There are several liftings, in fact infinitely many, of any given function field E|K.

3. The inertia theorem

The notion of an “inert” extension of valued fields had been introduced by
Hilbert. But he considered extensions L|K of finite degree only. 1 According to
Hilbert, L|K is called “inert” if [L : K] = [L : K]. Hence the definition of “regular
element” in (14) can be phrased by saying that F is inert over K(x), with respect
to the Gauss valuation of K(x).

Hilbert’s definition, however, does not make sense for valued field extensions
F |K of infinite degree. In that case we have to consider finite dimensional K-
submodules M ⊂ F . We denote by M the reduction of M . More precisely, if OF

denotes the valuation ring of F then M is the image of OF ∩M under the residue
map. M is a K-module and we note:

Lemma 4. For any finite K-module M ⊂ F we have dimK M ≤ dimK M .
More generally, if N ⊂ M are K-submodules of F and if dimK M/N is finite then
dimK M/N ≤ dimK M/N .

Proof. Let u1, . . . , ur ∈ M be K-linearly independent modulo N , and let the
ui ∈ M be foreimages of the ui. We claim that the ui are K-linearly independent
modulo N . For, assume that there would be a nontrivial linear relation

(19) a1u1 + · · ·+ arur ≡ 0 mod N

1In Hilbert’s situation L|K was an extension of finite number fields, and the valuation be-
longed to a prime ideal of the ring of integers.
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with ai ∈ K. Let a ∈ K such that v(a) = mini v(ai). After dividing the above
relation by a and changing notation we may assume

min
1≤i≤r

v(ai) = 0 .

In other words, not all ai = 0. Applying the residue homomorphism to (19) we
obtain a nontrivial linear relation

a1 u1 + · · ·+ ar ur ≡ 0 mod N

contradicting the K-linear independence of the ui modulo N . �

Corollary 5. Suppose M ⊂ F is finite dimensional over K. If dimM =
dimM then for every K-submodule N ⊂ M we also have dimN = dimN .2

Proof. Let m,n,m, n be the dimensions of M,N,M,N . By assumption we
have m = m. By Lemma 4 we have m− n ≤ m− n and so

n ≤ m− (m− n) = n ≤ n

hence n = n. �

Corollary 5 permits to generalize Hilbert’s notion of “inert” field extensions to
valued field extensions F |K of infinite degree and, more generally, forK-submodules
M ⊂ F . As follows:

Definition 1. Let F |K be an extension of valued fields and M ⊂ F any
K-module, of finite or infinite dimension. M is said to be inert if for every finite-
dimensional K-module N ⊂ M we have dimN = dimN .

We are now able to formulate the Inertia Theorem which is announced in the
title of this section. It will be the basis of all that follows.

Theorem 6 (Inertia Theorem). Let F |K be a valued function field with regular
reduction F |K. Then F |K is inert in the sense as defined above.

Remark 7. The definition of “regular” reduction as given in the foregoing
section says that F |K(x) is inert (in the sense of Hilbert). The above Theorem
now asserts that this implies the whole function field F |K to be inert.

The proof of the inertia Theorem rests on certain general properties of the
notion of inertia. Let us state these properties in two Lemmas. In these Lemmas
F |K may be an arbitrary extension of valued fields.

If M ⊂ F is a K-module of finite dimension and dimM = dimM then the
proof of Lemma 4 (for N = 0) shows that there exists a K-basis u1, . . . , um of M
such that their residues u1, . . . , um form a K-basis of M . If z ∈ M is represented
as a linear combination

z =
∑

1≤i≤m

aiui with ai ∈ K

then

(20) v(z) = min
1≤i≤m

v(ai) .

2Here and in the following, to simplify notation we shall write dimM and dimM , thus
omitting the reference to K and K respectively, whenever it is clear from the context which base
field is referred to.
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Such a basis is called a valuation basis of M . Hence dimM = dimM if and only
if M admits a valuation basis over K.

The notion of “valuation basis” can also be defined for infinite dimensional
modules M , as a K-basis ui such that the ui form a K-basis of M (where i ranges
over a suitable index set I). We do not claim that every infinite inert K-module
M ⊂ F admits a valuation basis. However:

Lemma 8. Let M be any K-submodule of F , of finite or infinite dimension. If
M admits a valuation basis ui (i ∈ I) then M is inert.

Proof. Every finite dimensional submodule N ⊂ M is contained in a finite
dimensional submodule of the form M1 =

∑
i∈I1

Kui with a suitable finite index
set I1 ⊂ I. Since M1 is inert (because it admits a valuation basis) we may apply
Corollary 5 to conclude that N is inert. �

Lemma 9. Suppose R ⊂ F is a K-algebra and F is the field of quotients of R.
If R is inert over K then so is F .

Proof. Let M ⊂ F be a finite dimensional K-submodule. We choose a K-
basis of M . Every basis element is a quotient of two elements from R. We can
choose a common denominator z ∈ R for these finitely many quotients (because R
is an algebra, hence closed with respect to products). Hence zM ⊂ R, and therefore
zM is inert. Since v(z) ∈ v(K) we may assume v(z) = 0, after dividing z by a
suitable element a ∈ K. It follows zM = zM and therefore

dimM = dim zM = dim zM = dim zM = dimM .

This being the case for every finite-dimensional module M ⊂ F , it follows that F
is inert. �

Corollary 10. Let F = K(x) be a rational function field, equipped with the
Gauss valuation with respect to x. Then F is inert over K.

For, F is the field of quotients of the polynomial ring R = K[x] and this admits
the powers xi (i = 0, 1, 2, . . .) as a valuation basis in view of (1).

Remark 11. The corollary holds also for function fields of several variables
and for the field of convergent power series; see Remark 3 at the end of section 1.

Now consider again an arbitrary valued field extension F |K.

Lemma 12. Let K ⊂ Fo ⊂ F . If Fo|K is inert and F |Fo is inert then F |K is
inert.

Proof. Let M ⊂ F be a finite dimensional K-module. Then FoM is a finite
dimensional Fo-module. By the hypothesis of the Theorem, FoM is inert over Fo.
Hence there exists a valuation-Fo-basis ui of FoM .

Every element of a K-basis of M can be written as a linear combination of the
ui with coefficients in Fo. Let Mo ⊂ Fo denote the K-module generated by those
finitely many coefficients. Mo is inert over K and so there exists a valuation-K-
basis wj of Mo. By construction, M is contained in the K-module M∗ generated by

the wjui. These elements form a valuation basis of M∗. For, the ui are F o-linearly

independent and the wj ∈ F o are K-linearly independent. Hence M∗ is inert over
K and so is M as a K-submodule of M∗. �
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Proof of the Inertia Theorem. Let x ∈ F be a regular element. Then
the subfield K(x) ⊂ F is valued by the Gauss valuation and, hence, it is inert over
K by corollary 10. Since [F : K(x)] = [F : K(x)] we see that F is inert over K(x).
Hence F |K is inert by Lemma 12. �

4. Reduction of genus

In dealing with the genus of a function field F |K it is usually assumed that
K is relatively algebraically closed in F . Sometimes this is expressed by saying
that K is the “exact field of constants” of F . Then the genus g can be defined as
the number occurring in the Riemann-Roch Theorem, as follows: Every divisor A
of F |K defines a K-module consisting of all elements y ∈ F× whose pole divisor
divides A. This module is denoted by L(A). Its K-dimension is finite and denoted
by dimA. The Riemann-Roch Theorem implies that dimA is related to the
degree of A by the formula

(21) dimA ≥ degA+ (1− g) .

More precisely, we have

(22) dimA = degA+ (1− g) + dim(W −A)

where W is a canonical divisor of the function field F |K. Here we do not need to
go into the details of definition of canonical divisor. The only fact which we have
to know is that

dimW = g and degW = 2g − 2 ,

which is immediate from (22). Since divisors of negative degree have vanishing
dimension we conclude

(23) degA > 2g − 2 =⇒ dimA = degA+ (1− g)

Since dimA ≤ 1 + degA (proof by induction on degA) we also have

(24) dimA > 2g − 1 =⇒ dimA = degA+ (1− g)

The number χ = 1 − g which appears in these formulas is called the arithmetic
genus of the function field. Sometimes g is then called the “geometric genus” of
F |K.

The above formulas hold if K is relatively algebraically closed in F . But we
do not wish to make this assumption, simply because it is not necessary for the
general theory. So let K ′ denote the algebraic closure of K in F and d = [K ′ : K]
its degree. K ′ is called the “field of constants” of F and d the “degree of constants”.
For a divisor A of F |K its degree over K is d times the degree over K ′, and same
for dimA. Hence, if the arithmetic genus χ of F |K is now defined to be d(1 − g)
then the Riemann-Roch Theorem (22) for F |K appears in the form

(25) dimA = degA+ χ+ dim(W −A)

without the assumption that K is relatively algebraically closed in F . If in (25) we
set A = 0 and then A = W we obtain 3

(26) dimW = −χ+ d and degW = −2χ .

Note that χ < 0 except if g = 1 when χ = 0, or when g = 0 in which case χ = d > 0.

3Observe that for the zero divisor A = 0 we have deg(0) = 0 and dim(0) = d.
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The formulas (23) and (24) now appear in the form:

degA > −2χ =⇒ dimA = degA+ χ(27)

dimA > −2χ+ d =⇒ dimA = degA+ χ .(28)

In order to simplify our formulas we shall write A � 0 if A > 0 and degA and
dimA are sufficiently large, so that we have in particular

(29) A � 0 =⇒ dimA = degA+ χ .

If A > 0 then for a sufficiently large integer t > 0 we have tA � 0.
Now we consider a valued function field F |K with regular reduction F |K. Then

we have the same formulas as above for divisors A of F |K, where degA and dimA
are to be understood over K: 4

(30) A � 0 =⇒ dimA = degA+ χ .

Here, χ denotes the arithmetic genus of F |K, and the condition A � 0 refers to
the bounds given by F |K .

In general, if we consider at the same time both F |K and its reduction F |K
then the condition A � 0 refers to the above degree conditions for both F |K and
F |K.

Our aim is to compare the arithmetic genus χ of F |K with the arithmetic genus
χ of the reduced field F |K.

Theorem 13 (Genus Reduction Theorem). Let F |K be a valued function field
with regular reduction F |K. Let χ be the arithmetic genus of F |K and χ the
arithmetic genus of F |K. Then χ ≤ χ. Specifically, let x ∈ F be a regular element
and let Rx denote the integral closure of K[x] in F . Similarly Rx denotes the
integral closure of K[x] in F . Then

(31) χ− χ = dimRx/Rx.

Note that since dimRx/Rx is finite it follows that Rx is the integral closure of
Rx in F . In particular, we have χ = χ if and only if Rx is integrally closed.

Remark 14. By definition we have χ = d(1−g) where g is the geometric genus
of F |K and d is the degree of constants. Similarly χ = d(1 − g). In general we
have d ≥ d. If the reduction preserves the degree of constants, i.e., if d = d then
the statement χ ≤ χ means g ≥ g.

Proof of Theorem 13. For a divisor A � 0 of F |K define the divisor A of
F |K by

(32) A := {sup(y)∞ | 0 �= y ∈ L(A) }.
Let us call A the divisor “associated to A”.5 By definition we have

(33) L(A) ⊂ L(A) hence dimA ≤ dimA

where we have used the Inertia Theorem. In particular it follows A � 0.

4More precisely we should have written degF |K(A) and dimF |K(A) . But for simplicity of

notation we skip the index F |K if it is clear from the context which function field is referred to.

Similarly we write L(A) instead of LF |K(A) etc.
5Until further notice A is defined for A � 0 only. But see Theorem 17 below.
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If there exists y ∈ L(A) with (y)∞ = A let y ∈ L(A) be a foreimage. We
compute:

(34) degA = deg(y)∞ = [F : K(y)] ≤ [F : K(y)] = deg(y)∞ ≤ degA ,

the last relation since y ∈ L(A) and hence (y)∞ ≤ A.

If the base field K of F is infinite then indeed there exists such y ∈ L(A). (See
Lemma 15 below.) If K is finite we have to use some other argument conclude that

(35) degA ≤ degA .

(See Lemma 16 below.) From (29) it follows in view of (33) and (35)

χ− χ = (dimA− degA)− (dimA− degA)

= (dimA− dimA) + (degA− degA) ≥ 0 .(36)

Now let A = (x)∞ be the pole divisor of a regular element x of F |K. Af-
ter replacing x by xt with sufficiently large t we may assume A � 0 . We have
deg(x)∞ = degA. Since x ∈ L(A) it follows degA ≤ degA, hence in view of (35)

(37) degA = degA

and therefore by (36)

(38) χ− χ = dimA− dimA = dimL(A)/L(A) .

If we replace x by xt with t > 0 then A has to be replaced by tA and we obtain in
the same way

(39) χ− χ = dimL(tA)/L(tA) .

Here we have tA = tA. This can be seen as follows: We have

L(A)t ⊂ L(tA) ,

L(A)
t ⊂ L(tA) ,

tA ≤ tA by definition (32) ,

tA = tA ,

the last relation holds since both sides have the same degree by (37) when applied
to tA. Note that xt is also regular, and it has pole divisor tA.

Now, Rx consists of all elements y whose pole divisor (y)∞ is composed by
prime divisors contained in A. Thus

Rx =
⋃
t>0

L(tA) hence Rx =
⋃
t>0

L(tA) .

Similarly

Rx =
⋃
t>0

L(tA) ,

We conclude from (39) for t → ∞ that χ − χ = dimRx/Rx as announced in the
Genus Theorem.

We now turn to the two lemmas which we have used in the foregoing proof.

Lemma 15. Let F |K be a function field and M �= 0 a finitely generated K-
module in F . Define the divisor

(40) M∞ := {sup(y)∞ | 0 �= y ∈ M }.
If K is infinite then there exists y ∈ M such that (y)∞ = M∞.
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Proof. The assertion is trivial if M∞ = 0. Otherwise, decompose M∞ into
prime divisors:

M∞ =
∑
i

aiPi

with coefficients ai ≥ 1. For each i there exists yi ∈ M with vPi
(yi) = −ai,

according to the definition (40). (vPi
denotes the valuation of F |K belonging to

Pi.) Let Ni ⊂ M be the submodule consisting of those y ∈ M with vPi
(y) > −ai.

Then yi /∈ Ni, hence Ni is a proper submodule of M . Now, if K is infinite there
exists y ∈ M which is not contained in any of these finitely many proper submodules
Ni. (Proof by induction on the dimension of M .) �

We apply Lemma 15 to the function field F |K and the K-module L(A). We

obtain an element y ∈ L(A) with (y)∞ = A, as we have used in the computation
(34) – provided the base field K is infinite.

If K is finite we have to argue by means of base field extensions. Again, as in
Lemma 15 we formulate the next Lemma for any function field F |K, but then we
will have to apply it for F |K in order to obtain (35).

In the situation of Lemma 15 let K ′ = K(z) be a rational function field with
a new variable z. Consider the base field extension F ′ = FK ′, i.e., the field of
quotients of the integral domain F ⊗K K ′. The divisor group of F |K embeds
naturally into the divisor group of F ′|K ′:

(41) Div(F |K) ⊂ Div(F ′|K ′).

Under this embedding the degree of divisors is stable, i.e., for A ∈ Div(F |K) we
have degF |K(A) = degF ′|K′(A).

Lemma 16. Let 0 �= M be a finite dimensional submodule of F |K and M ′ =
M⊗KK ′. Then M∞ = M ′

∞ according to the embedding (41). Hence degF |K M∞ =

degF ′|K′ M ′
∞ .

Proof. Since M ⊂ M ′ we have M∞ ≤ M ′
∞. On the other hand, M ′ consists

of the elements y′ of the form y′ =
∑

j cjyj with cj ∈ K ′ and yj ∈ M . It follows

(y′)∞ ≤ supj(yj)∞ ≤ M∞, hence M ′
∞ ≤ M∞. �

We apply this Lemma in the proof of Theorem 13 as follows: We consider the
function field F ′ = F (z) over K ′ = K(z). We extend the given valuation of F to F ′

by means of the Gauss valuation with respect to z. Then F ′|K ′ becomes a valued
function field with reduction F ′ = F (z) over K ′ = K(z). For any divisor A we
have

LF ′|K′(A) = LF |K(A)⊗K K ′ .

(This is well known from the general theory of base field extensions.) It follows

LF ′|K′(A) = LF |K(A)⊗K K ′ .

We apply Lemma 16 to F |K and the module LF |K(A) and conclude that the divisor

A = LF |K(A)
∞

of F |K (defined by (32)) coincides with the divisor which is defined

similarly for F ′|K ′. Since K ′ is infinite we obtain

degF |K(A) = degF ′|K′(A) ≤ degF ′|K′(A) = degF |K(A)

as required for (35). �
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5. Good reduction

F |K denotes a valued function field with regular reduction F |K, arithmetic
genus χ and reduced arithmetic genus χ.

Definition 2. F |K is said to have good reduction if: χ = χ.

Formula(36) shows that in the case of good reduction we have for any divisor A � 0:

(42) degA = degA and dimA = dimA .

This implies

(43) L(A) = L(A)

in view of (33). Here A is the divisor which we have defined in (32) for A � 0, and
which we had called there “associated to A”. The following Theorem shows that
this definition can be extended to all divisors of F |K, leading to a homomorphism
of the divisor groups.

Theorem 17 (Divisor Reduction Theorem). Suppose the valued function field
F |K admits good reduction. Then there exists one and only one homomorphism
Div(F |K) → Div(F |K) of the divisor groups which preserves the degree, the order
relation and principal divisors.

More precisely, the homomorphism Div(F |K) → Div(F |K) has the following
properties, where A denotes the image of A ∈ Div(F |K) :

degA = degA(44)

A ≤ B =⇒ A ≤ B(45)

(x) = (x) (if x �= 0,∞) .(46)

Proof. For any divisor A � 0 of F |K we define A as in (32). If B � 0 is
another divisor then we conclude successively:

L(A) · L(B) ⊂ L(A+B)

L(A) · L(B) ⊂ L(A+B)

A+B ≤ A+B by definition (32)

A+B = A+B ,(47)

the last conclusion holds since both sides have the same degree in view of (42).
This holds for A,B � 0. Now, if A is an arbitrary divisor of F |K then we write

(48) A = B − C with B,C � 0

and define:

(49) A := B − C .

Because of (47) this is well defined, i.e., does not depend on the choice of B,C � 0,
and it leads to a homomorphism of the divisor groups.. By (42) the degree formula
(44) holds if A � 0, hence it remains true for arbitrary A because of (49).

If A > 0 then tA � 0 for sufficiently large t, hence tA = tA � 0 and therefore
A > 0, i.e. the map A 
→ A preserves the order relation for divisors.
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If x �= 0,∞ then we write (x) = B −A with A,B � 0 and have

(x) +A = B

x · L(A) = L(B)

x · L(A) = L(B)

x · L(A) = L(B)

(x) +A = B

(x) = B −A = B −A = (x) .

This proves the existence of the divisor reduction map. To see that it is unique,
assume that there is another such map A 
→ A∗. It suffices to show that A∗ = A
for A � 0.

If 0 �= x ∈ L(A)) then (x) ≥ −A. From (45) and (46) (applied to A∗) it follows
(x) ≥ −A∗, i.e., (x)∞ ≤ A∗. In view of (32) it follows A ≤ A∗, hence A = A∗ since
both have the same degree by (44). �

Corollary 18. Suppose F |K admits good reduction. If W is a canonical
divisor of F |K then its image W is a canonical divisor of F |K.

Proof. Until now we have used the Riemann-Roch Theorem in the short ver-
sion (29) only, which applies to divisors A � 0. But now, since W �� 0 we have to
go back to its original version (25). For a canonical divisor W we have seen in (26)
that

(50) dimW = −χ+ d and degW = −2χ .

Canonical divisors are characterized by these values of dim(·) and deg(·). For, if A
is any divisor with degA = −2χ then by the Riemann-Roch Theorem:

dim(A) = −2χ+ χ+ dim(W −A)

The divisor W −A is of degree 0. A divisor of degree 0 has dimension 0 except if it
is a principal divisor in which case its dimension is d. Now, if W −A is a principal
divisor then A belongs to the same divisor class as W , i.e., A is in the canonical
class. We conclude:

degA = −2χ =⇒ dim(A) =

{
−χ+ d if A is a canonical divisor

−χ if A is not canonical.

Now, for the reduced function field F |K we have the same situation, with d
to be replaced by d, the degree of the relative algebraic closure of K in F . From
(44) we know that degW = degW = −2χ = −2χ. Thus, if W would not be
canonical then dimW = −χ = −χ . But this is not the case, as can be seen as
follows: L(W ) consists of those x ∈ F for which (x) ≥ −W . Hence for x ∈ L(W )

we have (x) ≥ −W by (45) and (46). It follows L(W ) ⊂ L(W ). Using the Inertia
Theorem it follows dimW = −χ+ d ≤ dim(W ), hence dim(W ) > −χ. �

Remark 19. If the reduction preserves the degree of constants, i.e., if d = d,
then from (50), applied to W and W , we see that dimW = dimW . Hence L(W ) =
L(W ) in this case.
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Proposition 20 (Regular elements). Let F |K be a valued function field with
good reduction. For every divisor A > 0 and sufficiently large t > 0 the divisor tA
is the pole divisor of a regular element.

Proof. First let us choose t such that tA � 0. Changing notation, we write
again A instead of tA. In view of (43) we have L(A) = L(A). If K is infinite

then we have seen in the proof of the Genus Theorem that there exists y ∈ L(A)
with (y)∞ = A. (See Lemma 15.) Let y ∈ L(A) be a foreimage. We apply the
computation (34) and conclude since degA = degA:

[F : K(y)] = [F : K(y)] .

Hence y is regular and (y)∞ = A. If K is finite then we apply the following Lemma
to F |K.

Lemma 21. Let F |K be a function field and A � 0 a divisor. For every t ≥ 2
there exists y ∈ L(tA) with denominator (y)∞ = tA.

Proof. Decompose A into prime divisors:

A =
∑

1≤i≤r

aiPi

with multiplicities ai ≥ 1. We define Bi := A + (tai − 1)Pi ≥ A. Then Bi � 0.
Put Ci := Bi + Pi = A+ taiPi. Then also Ci � 0 and therefore

dim(Ci)− dim(Bi) = deg(Ci)− deg(Bi) = degPi > 0 .

Therefore there exists yi ∈ L(Ci) , yi /∈ L(Bi) (1 ≤ i ≤ r). We have

vPi
(yi) = −tai and vPj

(yi) ≥ −aj > −taj for j �= i .

(vPi
, vPj

are the valuations belonging to the prime divisors Pi, Pj respectively.) The
sum y =

∑
1≤i≤r yi has vPi

(y) = −tai for 1 ≤ i ≤ r, hence (y)∞ = tA. �

Corollary 22. Suppose F |K has good reduction. Let R ⊂ F be any subring
containing K and with quotient field F . If R is integrally closed then R is integrally
closed.

Proof. Let x ∈ R be a transcendental element and A = (x)∞. Since R is
integrally closed it contains Rx , the integral closure of K[x]. The latter consists
of all elements y ∈ F whose denominator (y)∞ contains those primes only which
are contained in A. Let t be sufficiently large so that tA, by Proposition 20,
is the denominator of a regular element, say z. Then Rz = Rx ⊂ R. By the
Genus Theorem the reduction Rz is integrally closed, hence a Dedekind ring. Every
overring of a Dedekind ring in its quotient field is again a Dedekind ring. Hence R
is integrally closed in F . �

6. Almost all reductions

Consider a function field F |K. This time we assume that the base field K is
algebraically closed. Our aim is the following

Theorem 23. For almost all valuations v of K there exists an extension of v
to F such that F |K has good reduction with respect to v.
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Here, the expression “almost all” means that there are finitely many non-zero
elements c1, . . . , cr ∈ K (depending on F ) such that the contention holds for those
valuations v of K for which ci �= ∞ for i = 1, . . . , r.

Proof. Let x ∈ F be transcendental over K and n = [F : K(x)]. Let F =
K(x, y) and

(51) Φ(x, y) = yn + fn−1(x)y
n−1 + · · ·+ f0(x) = 0

the corresponding irreducible equation; we may assume that the coefficients fi(x) ∈
K[x]. Thus [F : K(x)] = n.

Let v be any valuation of K. We use the so-called

Theorem 24 (Theorem of Bertini-Noether). Let Φ[X,Y ] ∈ K[X,Y ] be any
irreducible polynomial. Then for almost all valuations v of K the reduced polynomial
Φ(X,Y ) ∈ K[X,Y ] is defined and is irreducible.

A proof of the Bertini-Noether Theorem can be found in the book “Field Arith-
metic” by Jarden and Fried, third edition (2008), page 184; see [3]. Recall that here
we assume the base field K to be algebraically closed. Without this assumption
the Bertini-Noether Theorem is valid for absolutely irreducible polynomials, i.e.,
polynomials which stay irreducible over the algebraic closure of K.

When we say that “Φ(X,Y ) is defined” then this means that for all coefficients
c �= 0 appearing in Φ[X,Y ] we have c �= ∞.

We apply this to the polynomial (51) and obtain for almost all v an irreducible
polynomial equation

Φ(x, y) = yn + fn−1(x)y
n−1 + · · ·+ f0(x) = 0

which defines a function field F |K with [F : K(x)] = n. For those v the map
x, y 
→ x, y defines a valuation of F |K extending the given valuation v of K, having
x as a regular element. F |K is inert with respect to v. In particular we have χ ≥ χ
for the genera of F |K and F |K. Let V denote the set of those valuations v. Our
claim is that for almost all v ∈ V we have χ = χ.

Using Theorem 13 we have to show that Rx is integrally closed for almost all
v ∈ V . It is well known that Rx is a finite K[x, y]-module. In fact, there exists one
element z �= 0 such that Rx = K[x, y, z]. For almost all v we have z �= 0,∞. For,
writing

z =
∑

0≤i≤r−1

fi(x)

gi(x)
yi

with polynomials fi(x), gi(x) ∈ K[x] then for almost all v, every nonzero coefficient
c of these polynomials has c �= 0,∞, so that

z =
∑

0≤i≤r−1

f i(x)

gi(x)
yi .

Consider the affine curve Γ over K with generic point (x, y, z). The fact that Rx

is integrally closed can be expressed in geometric terms by saying that every K-
rational point (a, b, c) of Γ is simple. From algebraic geometry we will use the
following well known necessary and sufficient criterion for a point (a, b, c) on Γ to
be simple.

Let ϕi(X,Y, Z) be a defining set of polynomials for Γ, i.e., the ϕi generate the
ideal in the polynomial ring K[X,Y, Z] which is the kernel of the homomorphism



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

AN INTRODUCTION TO DEURING’S THEORY 87

given by (X,Y, Z) 
→ (x, y, z). The index i ranges over a finite index set, say
1 ≤ i ≤ r.

Consider the matrix of partial derivatives

Δ(X,Y, Z) :=

⎛
⎝∂Xϕi(X,Y, Z)
∂Y ϕi(X, y, Z)
∂Zϕi(X,Y, Z)

⎞
⎠ (i = 1, . . . r)

which determines the tangent space. It has 3 rows and r columns. A point (a, b, c)
of Γ is simple if and only if the matrix Δ(a, b, c) has rank 2, i.e., there is at least
one 2× 2 non-vanishing subdeterminant. If this is to hold for all K-rational points
(a, b, c) of Γ then the ideal generated by all 2 × 2 subdeterminants dν(x, y, z) of
Δ(x, y, z) is not contained in any maximal ideal of K[x, y, z] = Rx, i.e., there exists
a relation of the form

1 =
∑
ν

gν(x, y, z) dν(x, y, z)

with polynomials gν(X,Y, Z) ∈ K[X,Y, Z]. (The index ν ranges over a suitable
finite index set.) Now, for almost all v every nonzero coefficient c appearing in
these polynomials has c �= 0,∞. Hence

1 =
∑
ν

gν(x, y, z) dν(x, y, z)

for these v. This implies that each K-rational point a, b, c of the reduced curve
Γ is simple. The reduced curve Γ is defined by the generic point (x, y, z). Since
K[x, y, z] = Rx we conclude that Rx is integrally closed. �

Corollary 25. The statement of the theorem holds also if the base field K is
arbitrary infinite, provided the function field F |K is conservative, i.e., the genus of
F |K coincides with the genus of every constant field extension.

Proof. Take K ′ to be the algebraic closure of K and let F ′ = FK ′ the
corresponding constant field extension. By Theorem 23 almost all valuations vK′

of K ′ can be extended to a valuation vF ′ such as to give good reduction of F ′|K ′,
i.e., χF ′ = χF ′ . On the other hand, vF ′ induces in F a valuation vF and in K a
valuation vK . In this way F |K becomes a valued function with regular reduction,
and from the Genus Reduction Theorem 13 we see that χF ≤ χF . Since F |K is
conservative we have χF = χF ′ . Together we conclude χF ≥ χF ′ . Since F ′ = FK ′

we have F ′ = F K ′, i.e., F ′|K ′ is a constant field extension of F |K. From the
general theory it is well known that the arithmetic genus χ can only increase after
constant field extensions. (The geometric genus g can only decrease.) It follows
χF = χF ′ = χF . Hence vF defines good reduction on F |K.

This holds “for almost all valuations vK′”. By definition this means that there is
finite set SK′ ⊂ K ′ such that the contention holds for those vK′ for which vK′(c) �=
∞ for all c ∈ SK′ . For every such c let fc(X) denote its irreducible polynomial over
K. Let SK ⊂ K denote the set of coefficients of all those polynomials fc(X). If
for every a ∈ SK we have vK(a) �= ∞ then vK′(c) �= ∞ for every c ∈ K ′ and every
extension vK′ of vK to K ′. Hence, as shown above, vK admits an extension vF to
F |K with good reduction. �

Remark 26. A sufficient criterium for conservativity of a function field F |K
is that the base field K is perfect and is relatively algebraically closed in F . As
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a reference we mention Deuring’s Lectures on the theory of algebraic functions,
published 1973; see[2].

References

[1] Max Deuring, Reduktion algebraischer Funktionenkörper nach Primdivisoren des Konstan-
tenkörpers (German), Math. Z. 47 (1942), 643–654, DOI 10.1007/BF01180977. MR15055

[2] Max Deuring, Lectures on the theory of algebraic functions of one variable, Lecture Notes in
Mathematics, Vol. 314, Springer-Verlag, Berlin-New York, 1973. MR0344231

[3] Michael D. Fried and Moshe Jarden, Field arithmetic, 3rd ed., Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in
Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics],
vol. 11, Springer-Verlag, Berlin, 2008. Revised by Jarden. MR2445111

African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg,

Cape Town 7945, South Africa

Email address: bwg@aims.ac.za

Mathematisches Institut, Universitaet Heidelberg, Heidelberg, Germany

Email address: roquette@uni-hd.de

https://www.ams.org/mathscinet-getitem?mr=15055
https://www.ams.org/mathscinet-getitem?mr=0344231
https://www.ams.org/mathscinet-getitem?mr=2445111

	An introduction to Deuring’s theory of constant reductions
	Introduction
	1. The Gauss valuation
	2. Regular reduction
	3. The inertia theorem
	4. Reduction of genus
	5. Good reduction
	6. Almost all reductions
	References


