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1 Introduction: Statement of Results

1.1 Algebraic Diophantine Equations

One of the remarkable discoveries in Number Theory in the past decade is
Rumely’s Local-Global Principle for algebraic diophantine equations. The aim of the
present paper is to provide a direct and short access to this important theorem, at
the same time generalizing it in two ways: first by admitting archimedean primes,
and secondly including rationality conditions at a finite set of primes.!)

Let K be an algebraic number field of finite degree. Consider finitely many
polynomial equations

1) fixy, e, %) =0 a<jgr)

with coefficients in K. We are looking for a solution a=(ay,...,a,) whose
coordinates a; are algebraic integers, not necessarily contained in K. We speak of
“algebraic diophantine equations”. A necessary condition for solvability is the local
solvability: For each prime divisor p of K there should be a solution of (1) whose
coordinates are p-adic algebraic integers over the completion K.

The Local-Global Principles states this condition is also sufficient, provided
the ideal generated by the polynomials f; in the polynomial ring K[ X1, ..., X,] over

1) This subject was presented at the Oberwolfach Model Theory meeting, 20. 1.-27. 1. 1990, as
part of an organized programme devoted to the elementary theory of the ring of algebraic integers. At
that meeting interest was expressed in a published account of the lectures. The present paper is a worked
out version of the material we presented there and also contains some unpublished results on the field of
totally &-adic numbers from the manuscript [P].
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the algebraic closure K , the field of all algebraic numbers, is prime. Equivalently
this condition asserts that the affine variety defined by the equations (1) is
geometrically integral. We would like to mention that this condition is of
elementary nature, i.e., it can be expressed as a formula in the elementary language
of fields, with the coefficients of the polynomials f; as parameters.

The Local-Global Principle for Algebraic Diophantine Equations. Suppose
that the affine variety defined by the equations (1) is geometrically integral. Then the
above necessary condition is also sufficient in the following sense: If for each prime
divisor p of K there exists a solution a, in p-adic algebraic integers over K, then there
exists a solution a in algebraic integers.

This result derives its importance from the fact that the solvability of
diophantine algebraic equations over each K, is decidable. This follows from the
work of Abraham Robinson [Rob] who has proved that the theory of an
algebraically closed valued field is decidable. Applying this to the algebraic closure
K, of K, and its canonical valuation, we see that there exists an effective algorithm
which enables one to decide whether (1) has solutions in algebraic integers over K.
This holds for each prime divisor p. In fact it is only necessary to check this for
finitely many primes p; these finitely many “critical” primes are effectively
computable from the coefficients of the equations (1). The testing of these finitely
many critical primes then leads to an effective algorithm to decide whether (1) has
solutions in algebraic integers — provided the variety defined by (1) is geometrically
integral. The solvability of general algebraic diophantine equations, whose variety
is not necessarily geometrically integral, can be effectively reduced to the
geometrically integral case (over a suitable finite extension of K'). This yields:

The solvability of arbitrary algebraic diophantine equations is decidable. So
the 10" problem of Hilbert over the ring Z of algebraic integers has a positive answer.

This is in contrast to the situation over Z where it is known that the 10*
problem has a negative answer.

A detailed exposition of the above line of arguments, together with
historical remarks and precise references, can be found in Rumely’s paper [Rul].
We have mentioned this here only in order to emphasize the importance of the
Local-Global Principle within the framework of diophantine geometry. We would
also like to draw the reader’s attention to the papers by van den Dries [vdD] and
by Prestel-Schmidt [Pr-S]. There, the Local-Global Principle is the main
ingredient in generalizing the above decidability theorem of Rumely. Namely, it is
shown that the whole theory of Z, in the language of rings, is decidable. This is a
genuine and non-trivial extension of Rumely’s result; there are many statements in
the language of rings which cannot be reduced to solving diophantine equations.

We shall now give a reformulation of the Local-Global Principle in terms of
“Skolem Problems”, at the same time generalizing it in two ways by admitting
archimedean primes, and including rationality conditions at finitely many primes. In
this connection we also wish to draw the reader’s attention to the papers by
Moret-Bailly, [M-B], where Skolem Problems are treated from a more geometric
point of view. There, a proof of the Local-Global Principle admitting archimedean
primes and including rationality conditions is also given.
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1.2 The General Setting

Let K be a global field. A “prime” of K is understood to be an equivalence
class of non-trivial absolute values, archimedean or non-archimedean.

Let B be a given set of primes p of K, with the sole condition that B does not
contain all primes of K. This hypothesis guarantees the validity of the Strong
Approximation Theorem with respect to B, i.e., every approximation problem of
the form

|Z—ap|p<8p (PEQS)

can be solved by an element z € K. Here the a, are arbitrarily given elements in the
respective completion K, with the only provision that |a,|, < 1for almost all pe B
and the approximation bounds &, are positive real numbers with ¢, =1 for almost
all peB.

As a matter of notation, we use |*|, to denote a multiplicative absolute
value belonging to the prime p. Sometimes we shall also use the additive notation
vy(*)=—log |*|,. If p is non-archimedean then it is customary to normalize v, such
that the value group v,(K’) = Z. In most of what we shall say, however, it does not
*| or v, are normalized among the equivalent valuations.

For a prime p € B we denote by O, the “unit ball” in K, consisting of those
ze K, which satisfy |z|, < 1. Thus if p is non- -archimedean then 0, is the canonical
valuatlon ring of K. The algebraic closure of K, will be denoted by K p-and (9, isthe
unit ball in K. In the non-archimedean case (9, is the integral closure of 0, in K

Globally in K, we denote by Oy the set of those elements ae K wh1ch are
contained in O, for all p € B.2) Denoting the set of non-archimedean primes in B by
DB,, it follows that the ring of integers O, at By is a Dedekind ring, with K as its field
of quotients. If L is an algebraic extension of K then let W denote the set of all
extensions of primes p e B to L. We define O — L with respect to 9B in exactly the
same way as we have defined Oy c K with respect to B. If B consists of non-
archimedean primes only then Oq is the integral closure of Og in L.

To simplify the language we shall generally speak of O as the integral closure
of Oy in L, even in the presence of archimedean primes.

The algebraic closure of K is denoted by K. The integral closure of Oy in Kis
denoted by 0.

1.3 Skolem Problems

Let V' be a geometrically integral variety defined over K. For any overfield L
of K we denote by V(L) the set of L-rational points of V. Let A c L be a subset of L
and x=(x,..., x,) a finite family of rational functions on ¥ defined over K. We say
thata point P e V(L) is A-rational with respect to x if x,(P) e A(1 <k <n). (Here the
condition that each x; (P) is defined is implicitly assumed). We denote the set of all

2y Thus in our notation, if B = {p} consists of one prime only, then 0, does not coincide with
0,in general. Oy, is the unit ball (valuation ring) of p in the field K, whereas 0, is the completion of @, in
K,. This is, we admit, not a very good notation but for our present purpose we believe it cannot lead to
confusion. We shall have no occasion to explicitly study the situation B ={p}.
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such 4-rational points by V,(4,L). If L is generated by 4 (as will be the case in our
setting below) then we shall simplify the notation and write V,(4).

The problem of whether V,(4)+@ is called the Skolem problem for V
over A, with data x. Any point PeV,(4) is called a solution of that Skolem
problem. B

Our aim is to investigate Skolem problems over 0y — K.

The relationship between this geometric context of Skolem problems and
the solvability of algebraic diophantine equations is transparent: If ¥ is a
geometrically integral affine variety defined over an algebraic number field K by
equations as in (1), and x=(xy,..., x,) is a generic point of ¥ over X, i.e., x can be
regarded as a generating system of the function field K (V) = K (x), then the set of all
solutions of (1) in Z coincides with V,(Z). Thus the problem of solvability of
algebraic diophantine equations can be regarded as a Skolem problem.

In the following we prefer to talk about Skolem problems rather than about
solvability of algebraic diophantine equations. The above discussion shows that
both viewpoints are essentially equivalent.

By what we have said the following theorem is a generalization of the
Local-Global Principle for algebraic diophantine equations.

The Local-Global Principle for Skolem Problems. Let K be a global field,
equipped with a set B of primes not containing all primes of K. Let V be a
geometrically integral variety defined over K, and x=(x,, ...,x,) a finite family of
rational functions on V, defined over K.

Suppose that locally, for each prime p € B, the p-adic Skolem problem for V
over 0 with data x has a solution, i.e., that V. ((9 )+ 8. The globally, the problem for V
over (095 with data x has a solution, i.e., V. (@q;) #0.

This theorem is not yet in the final form which we will prove in this paper.
Namely, we can extend its statement by adding “rationality conditions” at finitely
many primes. The situation is as follows.

1.4 Totally &-adic Field Extensions

Given pe B, an element a €K is called totally p-adic over K, if for all K-
embeddings 1: K~ K,, the image 1(a) lies in K. This is equivalent to saying that the
prime p splits completely in K(a).

Let & c B be a finite subset of B. We say that a eKis totally &-adic over K
if a is totally p-adic for all p € &. The set of all totally &-adic elements is a Galois
extension K’ of K; it can be characterized as the maximal extension in which all
primes p € & split completely. If & is empty then by definition K’ is the separable
closure, K¢, of K.

If we wish to indicate the defining set & then we write K© instead of X’.
However in most cases it will be clear from the context which set & we are referring
to; thus we prefer to write K’ in order to simplify the notation.

The integral closure of Oy in K’ will be denoted by ¢’. If we wish to indicate
the defining set B, we write O instead of ¢’.

We are now able to state the Main Theorem as proved in this paper.
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Main Theorem: The Local-Global Principle for Skolem Problems with
Rationality Conditions. Let K be a global field, equipped with a set B of primes not
containing all primes of K. In addition, let a finite subset & c B be given. Let V be a
geometrically integral variety defined over K, and x=(xi,...,X,) a finite family of
rational functions on V, defined over K.

Suppose that locally, V.(0,) contains a non-singular point for each prime
pe S, and that V,(@,) is non-empty for pe B\ &. Then globally, V.(0’) is non-
empty and moreover contains non-singular points of V.

Remarks. 1) For Skolem problems with rationality conditions the require-
ment that V,(0,) contains points which are non-singular cannot be dropped. For the
proof we need the fact that for pe &, V,(0,) is Zariski dense. In particular this
means it contains non-singular points. On the other hand if ¥,(0,) contains a non-
singular point then the density follows by Hensel’s Lemma. By Hensel’s Lemma it
follows that P, is not isolated in V,(0,); in fact, in any p-adically open
neighborhood of P, there exist infinitely many non-singular points which are
rational in K, (Appendix, 9.2). As we shall see this will be crucial in our proof.
However no non-singularity condition appears at the places pe B\ &. This can be
explained by the fact that V,(@p) is Zariski dense by the result of Robinson
mentioned earlier.

2) The proof of the Main Theorem we give holds under slightly more
general hypotheses which could be used to give an axiomatisation of fields
endowed with families of places having the Local-Global Principle.

To prove the Local-Global Principle with rationality conditions we first
consider the case where Vis a normal projective curve over K. This is the part of the
proof that requires the most work. After that, a Bertini type induction procedure
with respect to the dimension of ¥ and considerations of birational nature, lead to
the general case. The proof we give for curves rests essentially on the following
results:

1) The Local Existence Theorem for functions on curves whose zeros are
situated near prescribed points on the curve. Using this result we show that if Sisa
finite set of places of K, and for every p e & the set V,(0,) contains non-singular
points, then for every positive divisor D of the function field of ¥ over K there exist
(many) functions fe K(V) whose pole divisor is a multiple of D and all zeros are
distinct and lie in V,(0g).

2) The Unit Approximation Lemma for Polynomials over K from Cantor-
Roquette [C-R]. For a given polynomial p(x) this lemma guarantees the existence
of an element ¢ € K’ which approximates given a, € K arbitrarily closely for pe &
and satisfies the condition that p(c) is a unit at each pe B\ &. Using this result
together with certain facts from the reduction theory of curves we are able to
replace f by another function whose zeros are not only integral points of ¥ with
data x semi-locally as in 1), but also globally over B.

Concerning the structure of the paper we have divided it into two parts. The
first part consists of the main body of the paper where the proofs of 1) and the Main
Theorem are given. In the course of these proofs certain results from the theory of
algebraic varieties and constant reductions are used. For some of these results we
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were unable to find suitable adequate references in the literature, and so we have
included these in a short appendix in the form we need and with notation that is
consistent with the main part of the paper.

2 The Local Existence Theorem

The Existence Theorem refers to a local field K, for a fixed prime p. In order
to simplify our notation we write K instead of K, p- Hence in this section, K will denote
a locally compact base field and p its canonical prime.

We consider a separably generated function field F| K of one variable with
K as its field of constants. The projective normal model, say ¥, of F|K is a
geometrically integral curve over K. There is a natural bijection of V(K ) with the set
of K-rational places of F| K. We shall identify both sets, i.e., we shall not distinguish
between K-rational places of F| K and K-rational points on V. We assume that V(K)
is not empty. V(K) carries naturally a topology, induced by the p-adic topology of
the base field X (see the Appendix, section 6). We speak of the p-adic topology of
V(K).

In this situation we have the following

Theorem 2.1 (Local Existence Theorem.) Given a p-adically open set
U < V(K) which is non-empty, there exists a function feF all of whose zeros are
distinct’), K-rational and contained in U. Moreover, f can be constructed such that its
pole divisor is a multiple mD of any prescribed positive divisor D of F|K, with m
arbitrarily large.

Over the complex field, this is one of the classical theorems of analytic
function theory, due to Jacobi. For the algebraic closure of a non-archimedean
local-field this result was first stated and proved by Rumely. Here we shall show
that the theorem indeed remains valid rationally over the field X itself; it is not
necessary to extend the field of constants. The following proof includes the
archimedean case in which K=R or K=C.

If the function field has genus zero then the theorem is trivial: Choose
arbitrary distinct points Q, ..., Q,€ % (r=mdegD); then the divisor Y, O has the
same degree as mD and hence there is a function fe F with zero divisor ). Q;and
pole divisor mD.

In the following proof we shall assume that F|K is of genus g>0.

If the characteristic of K is 0 then the curve V, being geometrically integral
and normal over K, is known to be smooth. In characteristic p > 0 this is not always
the case; the function field F| K is not necessarily conservative. Thus we have to face
the situation that ¥ may have singularities. In any case, however, every K-rational
point of Vis non-singular. In particular the given subset  — V(K) consists of non-
singular points only; this will be used in the proof of Theorem 2.1.

Since ¥V is not necessarily smooth, we cannot work with the ordinary
jacobian variety but we have to use the generalized jacobian variety £, in the sense

3} As usual, this means that /f has no multiple zeros.
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of Rosenlicht, which is defined for curves V with singularities. £ is a group variety
defined over K whose dimension equals the genus g of F|K. Let us briefly state its
relevant properties which we are going to use.%)

(J1) For any extension field L of K, the group of L-rational points £ (L) is
naturally isomorphic to the “generalized divisor class group of degree 0 of ¥ over
L”. In the present context, it will not be necessary to explain in detail the notion of
generalized divisor classes with respect to a possibly singular curve. It will be
sufficient to note that for L=K, as V is normal over K, the generalized divisor class
group is naturally isomorphic with the ordinary divisor class group €/ (F|K) of the
function field F|K.%) Thus we have a natural isomorphism

@ Fv(K)=o(F|IK)

where the index 0 means divisor classes of degree 0. We shall identify both groups
whenever convenient and possible.

(J2) Consider the g-fold product V¢=Vx---X ¥V and the corresponding
symmetric product V(&) = V'¢/S,, where S, is the symmetric group of degree g acting
naturally on V8. The variety V(&) parametrizes the positive divisors of degree gon V.
Namely, if A= P, ++**+ P, is such a divisor then its corresponding point in V'® is
the image of (P, ..., P;) under the projection 7 : V¢ — V(). In this way, the positive
divisors 4 of degree g of F|K correspond to the K-rational points in V(®(K).
Whenever possible and convenient, we identify such a divisor A4 with its
corresponding point on V& (K).

The generalized jacobian %y is birationally equivalent to V® over K. More
precisely, the situation is as follows. Let P, be a fixed K-rational point of V. There
exists an affine Zariski-open X of ¥® and a smooth morphism ¢ : X — ., defined
over K, which establishes a birational equivalence between V® and .#, and which
has the following property:

If A is a positive divisor of degree g of F| K which, when considered as a point of
V@&(K), is contained in X(K) then @ A is the divisor class of A — gP,, considered as a
point of #y(K).

We may express this by the formula

pA~A—-gPy if AeX(K),

where ~ means divisor equivalence (modulo principal divisors).

By construction, X and ¢ depend on the choice of Py. In the following we
assume that P is chosen once for all, if nothing is said to the contrary.

Any non-empty Zariski open subset of X enjoys the same properties as we
have announced above for X itself. For technical reasons, it will be convenient to
replace X by a suitable Zariski-open subset, as follows. The projection 7 : V& — V(@

4) As a general reference for generalized jacobian varieties we suggest chapter 9 of [B-L-R].
Alternatively, the reader may refer to the treatment in Serre’s book [S] but he should be aware that
rationality questions, over a fixed field K, are not treated there in the generality which we need here.

5) Using the now standard terminology from algebraic geometry the divisors of the function
field F| K correspond to the Weil divisors of V.
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is of finite degree and separable. Hence there exists a Zariski-open ¥ < V(® such
that 7 is smooth over Y, which is to say that if ¥’ < V¢ denotes the foreimage of Y
then 7 induces a smooth map ¥’ — Y. Now we replace X by X n ¥ and, hence, we
may assume that the projection is smooth over X.

Let X’ denote the foreimage of X under 7 and ¢’ : X’ 22X £.4, the composite
map. By construction, ¢’: X’ — # is smooth.

(J3) The p-adic topology of K induces, for every variety over K, a topology
in the space of K-rational points of that variety (called the p-adic topology). In
particular J,(K) is a topological group, and ¢: X(K)— #,(K) is a topological
homeomorphism of X(X') onto its image, which is a dense subspace of .#(K). The
map ¢’ : X'(K)— £p(K), being smooth as a geometric map, is a local homeomor-
phism. (This is a consequence of Hensel’s Lemma; see the Appendix 9.2.)

In the proof of the Local Existence Theorem we shall need the following

Lemma2.2 Let ze #y(K). There exists a sequence of multiples n,z, n,z,
niz,... of z which converges to 0 in the p-adic topology of $v(K). In other words:
Given any neighborhood % of 0 in (K there exist infinitely many n e N such that
nzew.

If V is smooth then S is the ordinary jacobian variety, hence an abelian
variety; this implies that S ,(K) is compact in the p-adic topology as K is locally
compact. In this case the lemma is evident: Because of compactness, the sequence
of points z, 2z, 3z,... has an accumulation point in #,(K), say a. Consider a
subsequence m,z, m,z, myz,... which converges to a. Putting n,=m,, — m; we
conclude that n,z converges to 0.

If V is not smooth (hence K of positive characteristic) then the above
argument has to be modified. To this end we need the following additional
properties of the generalized jacobian, concerning base field extensions.

(J4) Let L|K be a finite field extension. We denote by V; =V XxL the
corresponding base change. V; is not necessarily normal over L. Let W be its
normalization. The normalization morphism W — V; gives rise to a morphism of
algebraic groups £y, — £y which is defined over L. Hence we have a canonical
homomorphism

@ Fvl)= Iy L)~ Iwdl).
Combined with the ordinary inclusion #(K) = #,(L) we get a homomorphism
5 oy FuK) = Fw(l).

By means of (2) this may be interpreted as a homomorphism of the respective
divisor class groups of degree 0:

(6)  yi:G(FIK) — 6/0(FLIL).

We have: This homomorphism coincides with the ordinary divisor class map belonging
to FL|L as a constant field extension of F| K. In other words: The homomorphism (6)
is obtained by regarding each divisor D of F|K as a divisor of FL|L and then
factoring by principal divisors.
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As a consequence we can state: The kernel of y, is annihilated by a power p¢
of the characteristic exponent p of K.

This is trivially so if L| K is separable since then ¥; = W is normal over L and
y; coincides with the inclusion £ (K) == # (L), hence its kernel vanishes. Thus we
may assume that L| K is purely inseparable, of degree [L : K]=p® where p > 1 is the
characteristic. We interpret the map (5) as the divisor class map (6). Let D be some
degree 0 divisor of F|K whose class is in the kernel, in other words: D becomes
principal in FL. Let f; e FL be a function such that D=(f;) in FL|L. The p*-th
power f=f7 lies in F and, hence, p°D = (f) is a principal divisor in F|K. Thus the
class of D in €¢,(F|K) is annihilated by p°®.

(J5) Referring to the p-adic topology, the canonical projection map (4) is a
homomorphism of topological groups, and it is an open and closed map. The
inclusion map S£,(K)=> #,(L) is a topological immersion. Consequently, the
combined map (5) is open and closed onto its image.

Now we can give the proof of Lemma 2.2 in the case when V is not smooth:

There exists a purely inseparable finite extension L|K such that the
normalization W of V is a smooth curve. Then . is the usual jacobian variety of
W, hence fy(L) is compact. By the argument given above in the compact case,
there is a sequence of multiples of y;(z) which converges to 0 in #(L). Hence,
given any neighborhood #” of 0 in #,(K) we conclude that there are infinitely
many z € N such that y; (nz) e w; (#"). (Here we have used that y; is open onto its
image.) This implies that

nze ¥ +ker(yyp).
As the kernel is annihilated by some power p¢ of the characteristic, we conclude
penzepw.

Here, p¢#” becomes small if # does. Lemma (2.2) follows.
After these preliminaries we are now able to give the

Proof of the Local Existence Theorem. Consider the given subset  c V(K)
which by hypothesis is p-adically open and non-empty. After shrinking % if
necessary we may suppose that % does not contain the point Py which has been
chosen in (J2) above, in the course of a description of the generalized jacobian .
Moreover, given the positive divisor D as announced in the theorem, we may
suppose that % does not contain any point in the support of D.

Our aim is to find an integer m > 0 and distinct points Qy,..., @, in % such
that

(7 mD~Qi+-+0,

where, as above, ~ means divisor equivalence in F|K. This relation expresses the
fact that there is a function f'e F with mD as its pole divisor and Q; +++* + Q, as its
zero divisor, as required in the theorem.

Let d> 0 be the degree of D. The number r of the points Q; to be found is
necessarily equal to md. Fo technical reasons we let m=ng be a multiple of the
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genus g; then r =ngdis a multiple of g too. Accordingly we use another numbering,
collecting successively g points of the Q’s to form positive divisor of degree g:

A,= Oy + 0 + Qvga

and we write (7) in the form

(8) ngD ~ z Ava

1<vgnd
Equivalently,
(9  n(gD—gdP)~ Y (4, gPy).
1<vgnd
This is a relation in %4y(F|K)= S y(K).
Let us put

0, = (D1, ..., Qvg) € VEK),

so that 4,=7(Q,) is the image of @, under the projection 7 : V¢ — V®, One of the
requirements is that all the Q,; should be contained in %, i.e., Q, € %#. Furthermore
we now require that each Q, should be in X’(X), the space which has been defined
in (J2) above in the course of a description of the generalized jacobian. If
0,e X' (K) then ¢’(Q,) is defined and

¢'(Q)) ~ Ay - gho.

Hence the relation (9) may be expressed in the form

10) nz= 5 ¢'(Q),
1gvgnd
where for brevity we have written z for the class of the divisor gD — gdP,.

Now the situation is as follows: z is a given point in #»(K), and d>0 a
positive number. Our aim is to find a natural number #>0 and nd points
0,e U8 N X'(K) such that (10) holds. In addition, it is required that all the points
Q,:€ % which appear as components of the @, are mutually distinct.

We observe first that #¢ N X' (K ) is not empty: namely, since % is p-adically
open in V(K) and consists of non-singular points only, the same holds for ¥ in
V&(K). It follows from Hensel’s Lemma that #¢ is Zariski dense in V4(KX), hence
indeed %% n X’(K) is open and non-empty.

As explained in (J3) the map ¢": X'(K)— #(K) is a local homeomor-
phism. We now choose a non-empty p-adically open subset

U U X(K)
such that ¢’, restricted to #’, is a homeomorphism. We put

W =o' (U).
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We shall proceed in two steps. In Step 1 we shall show that for suitable n we
can find points x, such that

(11) nz= Z x, with x,e¥.

1<vgnd
Writing x,= ¢’(Q,) with Q, € %’ we see that this satisfies (10). Thereafter in Step 2
we shall show that by modifying the x, slightly within #°, we can also satisfy the
additional requirement that all the points Q,; which appear as components of the
0, are distinct.

Step 1: We choose any point x e #". Then #” —x is a neighborhood of 0 in
Jv(K). Now we apply Lemma 2.2 to the point z—dx e #(K). We find a natural
number z such that n(z — dx) e #~ — x, which is to say that there exists x; € #” such
that nz —ndx=x, —x, or,

nz=1x;+ (nd— x.

Putting x,=x for v=2, ..., nd we see that the relation (11) is satisfied. We also note
that according to Lemma 2.2 we can choose 7 to be arbitrarily large. In particular,
we can and will assume that nd > 3; this means that on the right hand side of (11)
there appear at least three summands. This will be essential in the argument for the
second step.

Step 2: Write x,=¢’(Q,) with 0,=(Q,1,...,Qy,)€¥’. The additional
condition requires that for every pair x4 # v, all the components of

(Q/u Qv) = (Q,ula LEXE) ng’ Qvla (KXY} Qvg) € Vzg(K)

are mutually distinct.

In V2=VE8x V&=V X+ XV we consider the subvariety 4 consisting of
those points (Py, ..., Py,) for which at least two components coincide: P;=P; for
some i #J (the “full generalized diagonal™). 4 is of dimension less than 2g, hence its
complement V2¢\ 4 is non-empty and Zariski open. Our additional requirement
can now be expressed in the form

(0., 0)¢4(K) if p#v.

Now, %' X %’ is p-adically open and non-empty, and it consists of non-singular
points only, hence it is Zariski-dense (by Hensel’s Lemma again). It follows that the
intersection of %’ x %’ with V?¢(K)\ 4(K) s p-adically open and densein %’ X %'.
In other words: if we put

Ay =AK) A (U XU’

then its complement is p-adically open and dense in %’ X %’.

Applying the homeomorphism @’'X @' : %' XU’ —W X#', we obtain a
subset 4,4 of # X # whose complement is p-adically open and dense. Now our
additional requirement can be expressed as follows:

(xy;xv)eAW if HF V.
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This condition can be satisfied, as a consequence of the following group theoretical
lemma which we prefer to state separately.

Lemma2.3 Let G be a topological group whose group operation is written
additively, and let x,, ..., x; be elements in G. For each v, Let #; be a neighborhood of
x, and, for each u+v, let A, be a subset of W, X W, whose complement is open and
dense in W, X W, . Then if k >3, there are elements y, e, such that

A2)  xi+-txe=yr o+,
and moreover

(13) (y;uyv)¢dﬂv if ‘U?ﬁv

In other words: By a small perturbation x, = y, the y,, ..., yx can be made to satisfy the
additional condition (13) without changing the sum (12).

Proof. If (x,, x,) € 4, , then (x,, x,) is called a “failure”, namely a failure to
satisfy condition (13). We assume that xi,..., x; has at least one failure; we are
going construct yy, ..., y, with less failures, but with the same sum (12).

If (x,, x,) is not a failure then we choose neighborhoods %,  #;, of x,, and
U,c ¥, of x, such that

(U, X U) A Ay =0

(this is possible since the complement of 4,, is open). After replacing #;, by %, and
W, by %, we then may suppose that 4,,=§. This guarantees that for arbitrary
choices of y, e #7 , ..., yx € #% no new failures will appear: if (x,, x,)is not a failure
then (y,, y,) is not a failure either.

Let, say, (x3, x3) be a failure and recall that k > 3. We put y,;=x; for i > 3.
Now the equation (12) reads

(14)  xi+x2+x3=y1+ ¥+ 3,

While the x; are to be regarded as fixed, this defines y; as a continuous function of
(¥2, y3) € GX G, say y, = h(y,, y3). After shrinking #5 and #; again if necessary,
we may assume that 2(#3 X #3 ) c #] . Now, since the complement of 4, 3 is dense
there exists

(15)  (y2, y3) e #> X W5, (2, y3) & 433,

Putting y, = h( 2, y3) we see that (14) and hence (12) holds. As said above, among
the y, there appear no new failures. However, from (15) we see that (y,, y3)is not a
failure although (x,, x3) was one.

The Local Existence Theorem is proved.

For a non-discrete group G the complement of the diagonal in GX G is
open and dense. Hence the above lemma yields the following corollary which we
shall use in the next section. In view of the intended application we shall write the
group operation multiplicatively here.
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Corollary 2.4 Let G be a non-discrete topological group, written multiplica-
tively, and let x,,...,x. € G. If k >3 then there are y, € G, arbitrary close to the x,,
such that y,y,*+* yx=X1Xy*** X and, moreover, y,+y, if u+v.%)

Remark 2.5 Concerning the pole divisors mD of the functions f of the
Existence Theorem: In the above proof we have seen that m can be chosen of the
form m=ng >3, where n is some number such that (11) can be satisfied. Now it is
clear that any multiple k7 of n also has this property: We have to repeat the sum on
the right hand side of (11) k times in order to obtain a similar relation for kn. This
yields:

With a suitable choice of m € N the following holds: For every multiple km of
m (k > 1) there exists a function in F with pole divisor kmD, having the properties as
announced in the Existence Theorem above: the zeros of this function are distinct and
contained in U.

Remark 2.6 Suppose that fe€ Fsatisfies the conditions of the theorem, and f
has pole divisor mD. Then

fe Z(mD)

where £ (mD) denotes the linear space of mD in the sense of Riemann-Roch, con-
sisting of all functions in F whose pole divisor is <mD. £ (mD) is a finite dimen-
sional vector space over K and is thus endowed with the natural p-adic vector space
topology. The theorem on the continuity of the roots (Appendix 7.1) now implies:

Any function h e ¥ (mD) which is sufficiently close to f also enjoys the same
properties as announced for f in the Existence Theorem, namely: All the zeros of h are
rational in K and distinct, and are contained in U; moreover, the pole divisor of h is
precisely mD.

More precisely, if z;,...,z, is a K-basis of #(mD) and if f = ¢;z; with
c;e K, then there exists £¢>0 such that the announced properties hold for any
function 4 of the form A=, d,z; with d;e K and max |d; — cilp<e.

We remark that for this conclusion it is necessary that the zeros of f are
distinct. Otherwise, if there would be multiple zeros, we would still have a
statement about continuity of roots, but in general the zeros of 4 will no longer be
rational for the given base field XK.

In the sequel we shall use this continuity argument many times.

3 Semi-local Approximation

In this section K denotes a field which is equipped with a finite set & of primes
p of local type. We say that p is of local type if the completion K|, is locally compact
and K| K is separable. Instead of local compactness it is sufficient to require that
the Local Existence Theorem 2.1 holds for K,.7)

%) For most groups G this statement holds also for k=2; the exceptions are those which
contain arbitrary small open subgroups of exponent two.

7y In[G-M-P]it is shown that for the Local Existence Theorem to hold, it suffices to suppose
that with respect to p, the value group of K has rational rank 1 and the residue field is algebraic over a
finite field.
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Asin the introduction K’ = K ©, the field of totally &-adic elements over K
the prolongation of & to K’ is denoted by &’ and O'g; = K’ is the integral closure of
Ogin K.

We consider the following situation:

FIK a separably generated function field of 1 variable with X as its field of

constants,
vV the normal projective model of F|K, defined over K,
x =(xy,...,X,) a finite family of functions in F,

Ve(Oy) the set of those points Pe V(K,) for which x,(P)e 0,(1 <v<n),
V:(0g) the set of those points Pe V(K') for which x,(P)e O(1<v<n).
We remark that as K”|K is separable these points are all non-singular.

The following theorem states a “semi-local” Local-Global Principle, with respect to
the finite set &.

Theorem 3.1 Suppose that V.(0,) is non-empty for each prime p e &. Then
Vi (0%) is non-empty.

In fact, there exists a non-constant function feF all of whose zeros are
distinct, and contained in V,(0g). Moreover, f can be constructed such that its pole
divisor is a multiple mD of any prescribed K-rational divisor D >0 of F|K, and m can
be taken arbitrarily large.

Proof. Let D >0 be a K-rational divisor of F|K.

For each p e & we consider the constant field extension FK|K,. Note that
V.(0y)is openin V(K,) with respect to the p-adic topology. Hence we can apply the
Local Existence Theorem 2.1 to obtain a function f,e FK, with pole divisor a
multiple of D, such that all zeros of f, are distinct, non-singular and contained in
V(0,).

' Using Remark 2.5 we can assume that all these finitely many functions Sy
have the same pole divisor mD, with m arbitrarily large. Then

Jv € L, (mD),

where Lk (mD) denotes the Ky-vector space of mD in FK,, in the sense of
Riemann-Roch. Since K| X is separable we have

Zx,(mD) = Lx(mD) ® K,

where Lx(mD) is the K-vector space for mD within F. Consider the diagonal
embedding

Zx(mD)~ [[ &k, (mD).
pe
For every pe & we endow L, (mD) with the p-adic vector space topology. Since
the places p are independent it follows that #x(mD) is dense in the product on the
right hand side.
Now we use the theorem of the continuity of the roots (see Remark 2.6). If
fe Zx(mD) approximates f, sufficiently and simultaneously for all pe &, then




On Rumely’s Local-Global Principle 57

firstly, the pole divisor of fis mD, secondly the zeros of fare distinct, K-rational,
non-singular and lie in V,(0,) (since these properties are known for f,).

Let P be any zero of f. Then Pe V(K). We show that Pe V(K"). Consider a
K-embedding o: K — K, and let P’ be the image of P. Then f(P?)=0 (since f'is
defined over K), thus P also is a zero of f. It follows that P? is K-rational. This
holds for every K-embedding o:K — K,; thus P is totally p-adic. Since pe & is
arbitrary, it follows that P is totally &-adic, i.e., Pe V(K").

We now prove that P lies in V,(0g). For any x; and every prime p’ of K’
which is a prolongation of some p e & we have to show that |x;(P)|, < 1. Now, p’
induces naturally a K-embedding of valued fields:

K =K,

Accordingly let us identify K’ c K,; then |xx(P)|y = |xx(P)I,. Since Pe V,(0,) we
have |x,(P)|,< 1, as contended. O

Definition. A non-constant function fe F is called “S-admissible” if all of its
zeros are K'-rational, distinct and contained in V,.(0g).

Thus Theorem 3.1 can be expressed by saying that &-admissible functions
exist, and with an arbitrary high multiple mD as pole divisor - provided the
hypothesis of the theorem is satisfied, i.e., V,(¢,) is non-empty for all pe &.

Remark 3.2 Note that using the theorem on the continuity of the roots (see
Remark 2.6) it follows that if fis &-admissible and g e Lx(mD) approximates f
sufficiently and simultaneously for all pe &, then g is also an &-admissible
function.

Now let us discuss what happens when the finite set & of primes is enlarged.
So let T be a finite set of primes containing &. We need the following lemma.

Lemma3.3 For each pe T\ & let L,|K, be a finite Galois extension. Then
there exists a finite subextension L|K of K'|K such that, for each pe T\ &, L, is
contained in the completion of L with respect to any prolongation py of p.

Proof. Let d, denote the degree of L,|K,. Let d be a common multiple of
these finitely many numbers d,. We choose d/d, non-conjugate primitive-elements
99 of L,|K, and let

LX) =117 (CXRAN )

J

be the product of their monic irreducible polynomials. Thus f,(X) is monic of
degree dand all its irreducible factors f(p’ )(X) generate the same field extension over
K, namely L.

Now consider the primes p € &. We choose d distinct elements a;, ...,a,€ K
and put

L= ] x-a) (pe).

I<igd
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Let f(X) € K[X] be a monic polynomial of degree d which is a close approximation
to f,(X) for each prime p, those in & and thosein T\ &. Let ¥ € K be aroot of f(X)
and put L=K(9).

If the approximation is close enough then by Hensel’s (or Krasner’s)
Lemma f(X) has locally the same factorization behavior as the approximated
polynomials. Thus f(X) splits completely over K, for p e &; this implies that p
splits completely in L and so L cK’. On the other hand, if pe T\ & then f(X)
factors over K|, into d/d, irreducible polynomials all of which generate the same
field L,. Hence for every prolongation p; of p to L it follows that the completion
concides with the given field L,. O

Corollary 3.4 In the same situation as in Theorem 3.1, consider a finite set T
of primes of K, containing &. Suppose that V.(0,) for pe &, and V,(@,,) for
pe T\ & are non-empty. Then V. (0%) is non-empty.

In fact, there exists a finite extension L|K of K within K’ and a non-constant
Sfunction fe FL all of whose zeros are distinct, and contained in V.(0%). Moreover, f
can be constructed such that its pole divisor is a multiple mD of any prescribed K-
rational divisor D >0 of F|K, and m can be taken arbitrarily large.

Proof. Since V(K})is dense in V(K ) forevery pe €, and V,(@,) is nonempty
for pe T\ &, we can choose a point Py e V,(0,) which is K*-rational. Hence there
exists a finite Galois extension L, of K, such that P, is rational in L,. Let L be a
finite extension of K within K’ as in Lemma 3.3. If p; is a prolongation of p to L
then, by construction, P, is rational in the completion L,, .

We see that over L, the hypothesis of Theorem 3.1 holds for the set T;. We
use Theorem 3.1 for L, ¥; instead of K, & and obtain a function fe FL which has
the required properties. O

Remark 3.5 In the proof of Theorem 3.1 we have only dealt with the case
& #0. For &=0, Theorem 3.1 asserts that V,.(K*) +# @ and that for a given positive
K-rational divisor D, there is a function fe FK* with distinct zeros all belonging to
V.(K*), and pole divisor some multiple of D. This can either be proved directly or
deduced using arguments as in 3.4 above.

For normal projective curves, Corollary 3.4 is identical with our Main
Theorem in the case when B is finite. (Take T=3.)

The following sections deal with a refinement of the above approximation
procedures in order to be able to deal with the case of an infinite set B.

4 The Main Theorem for Normal Projective Curves

In this section we are going to prove the Main Theorem for the case of
normal projective curves. We begin by recalling those facts from the theory of
constant reductions which we are going to need.

Let F|K be a separably generated function field of one variable with exact
constant field K. Suppose p is a non-archimedean prime of X and P an extension to
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F. We say that P is a constant reduction of F|K (at p) if the residue fields FP|Kyp
again form a function field of one variable. A function feF is called residually
transcendental at P if /P is not a constant of FP. We remark that fis residually
transcendental if and only if P is an extension of the Gauf} valuation ||, ron K(f)
associated to p and f to F. We say that f is regular at P if it is residually
transcendental and degf=degf9P. Here the degree is always the degree of the
function over the exact constant field. Observe that if f is regular at P then Kp is
the exact constant field of FP and the valuation ||y associated to P is the unique
extension of ||, ~to F.

(R1) Let P be a constant reduction of F|K. Let f, y € F, and assume that f is
regular at P, and that |y |y < 1. If supp (y)e < supp (f)w then we have:

i) supp (yP)= < supp (/P
i) y(Q) is integral at p for every zero Q of f.

Remark: We do not assume that Q is of degree one over K, hence y(Q)
is an algebraic number contained in the algebraic closure K of K. To say that
y(Q) is integral at p means that for every extension p of p to K we have

Y@< 1.

Proof: Consider the irreducible equation for y over K(f), of the form
D(y,f)=y'+ D> a(f)y'=0

with a;(f)eK(f). Since supp(})supp(f)», the a;(f) are polynomials in
K[f]. As |*|,, has a unique extension to F (which is |*|g) and [y|p<1, it
follows that y is integral over the valuation ring 0, ,c K(f); hence |a;(f)|p<1
for each i. This means that the coefficients of the polynomials a;(f) are
integral at p.

Hence, reducing the above equation modulo Y we see that y9 is integral
over Kp[ fP], and from this that supp (yP)e < supp (f P ).

For assertion ii): Q is not a pole of y, hence y(Q)e FQ satisfies the 0,-
integral equation @(y(Q), 0)=0, and so is integral at p.

(R2) In the situation of (R1), if in addition y is P-regular too, and
supp (¥)e=supp (f)w, then the leading coefficient of ay(f) in the irreducible
polynomial of y over K(f) is a unit at p.

Proof: The hypothesis is now symmetric in fand y. Hence, considering the
irreducible polynomial equation for fover K(y):

PAEN=+ D b(»f =0,
J
we conclude similarly as above that the b;(y) e K[ y] are polynomials in y whose

coefficients are integral at p. Now, both polynomials @ and ¥ differ by a constant
factor e K only, so ®=a - ¥. In fact, « is the coefficient of /" in @ and a~! is the
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coefficient of y*in ¥. Thus both @ and a~! are integral at p, hence @ is a unit at p. As
a is the leading coefficient of ay( f) the results follows.?)

(R3) Let f, y e F be P-regular functions such that (f)=mD and (y)w=nD
with (m, n)=1. Then there exists a divisor D of FP|Kyp such that (fP)e=mD and
(yP)-=nD. In particular, D and D have the same degree.®)

Proof: We first prove the assertion when m=n=1. Let p(fY) be a monic
polynomial over K'p such that p(fP) and yP have no common zeros in FY. Let
p(f) be some monic representative of p(fP)in K[ f]and suppose r is its polynomial

p(f )

degree, hence also that of p(f%Y). Set u = and observe that

degu <rdegf=rdegfP <deg p(f;p‘p) = deg u®P.
It follows that u is regular at P and (f'P)eo=(yP)s.

Now suppose that (f)e=mD and (y)o=nD with (m,n)=1. Then
(/"= (¥} = mnD. Hence n(f Pho=(f"P)e = (y"Plo =m(yP)e. As (m, n)=1,
it follows that (fP) =mD and (¥P).=nD for some positive divisor D of FP|Kp.
This completes the proof.

(R4) Given finitely many non-constant functions f,...f,€F one has: For
almost all non-archimedean primes p of K there exists a constant reduction P of F|K
(at p) such that all f; are regular at 9.'%)

Proof: Let x, ye F be non-constant generators for F|K and @(X, Y) the
irreducible polynomial for x, y over K (uniquely determined up to a constant
factor). Then for almost all non-achimedean primes p, reducing coefficientwise
yields an irreducible polynomial @p(X, Y) of the same degrees in X and Y as &. Let
P denote the associated constant reduction of F. It follows that @p is the
irreducible polynomial for x, yP over K. As the degree is preserved it follows that
x, y are P-regular.

%) The identity ag(0) = ab,(0), obtained from the proof of (R2), can be used to show that there
is a unit # at p such that

TTy@)=nT] 72,
v M

where the Q, range over the zeros of f, each counted with its multiplicity and similarly P, ranges over the
zeros of y. In particular one deduces, y(Q,)is a unit at p for all @,, if and only if f(P,)is a unit at p for all
P,. In [R3] this was called the “Reciprocity Lemma”, and the reciprocity factor # was interpreted as a
product of local symbols for the poles of fand g. There however, the hypothesis of good reduction is
made.

%) If F|K admits good reduction at p (or, more generally, potentially good reduction) then this
is immediate from Deuring’s theory of divisor reduction. Our aim here is to prove this without assuming
potentially good reduction.

10y In the case we are concerned with, where K is a global field, “almost all” means “all but
finitely many”. For arbitrary fields “almost all” has to be interpreted as “all primes of a non-empty Zariski
open subset of the space of primes of K”.
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Now consider the f;e F\ K and let (X, Y) be the irreducible polynomial of
x, f; over K. Again, for almost all primes p, @;(X, Y) remains irreducible with the
same degrees in X and ¥ when reduced coefficientwise. We conclude that @;p(X, Y)
is the irreducible polynomial for x 9, f;P over Kp. As the degrees are preserved, we
conclude that the f; are regular at p.

Following the above preparation we can now prove the Main Theorem for
curves.

Theorem4.1 Let K be a global field, equipped with a set B of primes not
containing all primes of K. In addition, let a finite subset & c B be given. Let V be a
normal, projective, geometrically integral curve over K with function field F|K, and
x=(xy,...,X,) a finite family of functions from F.

Suppose that V,(0,) for pe &, and Vx(('ﬁ,) for pe B\ &are non-empty. Then
V. (O3) is non-empty.

In fact, there exists a finite extension L|K of K within K’ and a non-constant
Sfunction fe FL all of whose zeros are distinct, and are contained in V.(0g).

Proof. We begin with the following preliminary remarks:

The First Enlargement Principle: Let L|K be a finite subextension of K’ |K
and consider the extensions of B, & to L. Then the hypotheses of Theorem 4.1 also
hold for L, B;, &, instead of K, B, &, with the function field F|K, replaced by its
constant extension FL|L. Moreover, the field L’ of totally &;-adic elements over L
coincides with K’. Consequently, if Theorem 4.1 is known to hold for L, B, &,
then it also holds for K, B, &. Therefore, in order to prove Theorem 4.1 we may
replace K by any finite extension L within K’ and accordingly B, & by B, &,. We
call this the first enlargement principle and in order to simplify the notation when
applying it we will again write K, & instead of L, &,.

The Second Enlargement Principle: There is another enlargement principle
which allows us to enlarge the set &. Let £ < B be a finite set containing &. The
hypothesis of Theorem 4.1 concerning &, namely that V,(0,)# 0 for pe &, may
not be satisfied for pe . However, Corollary 3.4 shows that there exist points
Pe V. (0%). Choose any such point P and let L be a finite extension of K within K’
such that Pis rational over L. Then the values x;(P)(1 <i<n) are L-rational and, at
the same time, they are p;-integral for every p e ¥,. We conclude that the
hypothesis of Theorem 4.1 holds for L and ;. Now observe that the field of totally
% ;-adic elements over L is contained (by its very definition) in the field K’ of totally
&-adic elements over K. Consequently, if Theorem 4.1 is known to hold for L, B, ,
¥ then it also holds for K, B, &. Therefore, in order to prove Theorem 4.1 we may
replace & by any finite set $ — B containing &, if at the same time K is enlarged
suitably within K'. We call this the second enlargement principle.

The reader should note that if K, & is replaced by L, ¥; then the field
K’ =K® of totally &-adic elements over K has to be replaced by the corresponding
field L¥ of totally ¥;-adic elements. When changing notation and writing again K,
& instead of L, ¥; then, consequently, the abbreviated notation X" also changes its
meaning, referring now to the new field K (which was formerly L) and the new set
& (which was formerly ;).
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The idea of the proof is to enlarge K and &, as allowed by the enlargement
principles, so that the new set & will contain all the primes p which cause
disturbance when going from the semi-local to the global situation.

Applying these principles we observe that from the start we can assume there
exists at least one K-rational point on V. Indeed, by Theorem 3.1 it follows that ¥
contains a K’-rational point. Any such K’-rational point of ¥ is already L-rational
in a finite subextension field L of K’. By the first enlargement principle we may
replace K by L and prove the theorem over L. Changing notation, we again write K
instead of L, and so there exists a K-rational point, say P, on V.

For the point Pit follows from the Riemann-Roch Theorem that the ring of
functions in F having poles only at P is a Dedekind domain with quotient field F.
Therefore we can choose a positive integer n, sufficiently large such that:

1) there exist non-constant functions y, y, € £ (nyP) with

Xp = 25 (I<kgn).
y
2) by the Riemann-Roch Theorem there exists u, ¢ € F with (1) = 1y P and
(D) =(ng+1)P.

Applying the second enlargement principle we suppose, firstly that &
contains all archimedean primes of ®B. Secondly, in view of (R4) we may assume
that for each p e B\ & there is a constant reduction P of F prolonging p such that
all the functions u, ¢, y, yy selected in 1) and 2) (1 < k < n) are regular at P. Note that
this constant reduction is uniquely determined by p and these regularity conditions.
In the following proof, given any pe B\ &, the corresponding symbol P will
always denote this uniquely determined constant reduction, distinguished by the
above conditions.

We remark that by 2) above and (R3) it follows that for each pe B\ & we
have (uP). = ny P, where P is a K p-rational divisor of FP of degree 1.

Now Theorem 3.1 guarantees the existence of a non-constant function fe F
which is @-admissible, i.e., the zeros of fare distinct, K’-rational and contained in
V:(0&). Moreover, fcan be chosen such that

(f)o = mnoP,

a multiple of nyP. Since f has the same pole divisor as u™ there is a non-zero
constant g € K such that f=au™ + h with (h). < (mny— 1) P. After multiplying with
a~! (which does not change the roots of f and hence does not affect &-
admissibility) we may assume a= 1.

We are now going to replace f by a function which is very close to fin the
&-adic topology on # (mn,P), such that all its zeros satisfy the requirements of the
theorem. Recall that the property of being &-admissible is preserved under small
perturbations with respect to the &-topology; see Remark 3.2.

11y Without loss of generality we may assume from the start that the x, are non zero. Then
indeed, the x, can be represented as quotients of non-constant functions as required here, provided ny is
sufficiently large. The condition that the y, y, are non-constant will save us some trivial case distinctions
later.
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We multiply 4 with a suitable factor b€ K, i.e., we replace f=u"+ h by the
function f”=u™ + bh. The factor b is chosen very near to 1 in the &-adic topology,
so that f” is close to f. For pe B\ & we require that

151y < 1A~ s

this choice of b is possible in view of the Strong Approximation Theorem in K.
(Note that |h|g=1 for almost all p, in view of (R4).) Thus we have |bh|y<1 for
pe B\ &. After writing again 4 instead of bk and finstead of f’ we now have

f=um+h with (h)e < (mny— 1)P,
and |hlp<1l if peB\S

This then implies: fis P-regular for pe B\ .
Indeed, examining

fP=u"P+hrP,

it follows by (R1) i) that supp (A%P) < supp (u"P)e= P. As deghp <degh <mny,
and deg u™ P = mn, (since u is regular), we conclude that

deg fP = mng = deg f

and so f'is regular at P.

We have constructed an S-admissible function f with P as its only pole, such
that f is P-regular for all pe B\ &.

For the proof of the theorem we are now going to check whether each zero
0O of fis constained in V,(0%). This means that Q should be K’-rational and the
algebraic numbers x,(Q), (1 <k <n) integral at every p € B. Now, for p e & this is
true since f is &-admissible. Thus we have to check whether the x,(Q) are &-
integral.'?) If not, then we shall try to modify f further such as to achieve this aim.

We begin by reinterpreting our expression for the x;, 1 <k<n, so as to
simplify the argumentation. Recall that as both y and fare regular at each of the P,
by (R1) and (R2) the coefficients of the polynomials a;(f) in the irreducible
equation

S(y, )=y +a()y "+ +a(f)=0

are &-integral and the leading coefficient of ao(f) is an -unit. Setting
z=y* 14a,_;(f)y* %+ +a;(f) and substituting in the expressions for the x; we
obtain

xk:&: JkZ . Zk

vy a(f)  a(f)’

Now x:(Q) = Zak—((%))—, and by (R1) ii) the algebraic numbers z,(Q), a,(0)
0

are G-integral. Therefore it suffices to check whether a¢(0) is an &-unit, for each

(1<k<n).

12y Recall that an algebraic number is said to be &-integral, respectively an &-unit, if it is
integral, respectively a unit, at each prime pe B\ &.
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zero Q of f. If this is the case then the proof is finished. If not, then we replace fby
the function f, = f— c for a suitable constant c. First, ¢ has to be chosen close to 0 in
the &-topology, so that f, remains &-admissible. Secondly, ¢ should be an &-
integer, so that f.=f—c remains P-regular for pe B\ &. Finally, ¢ should be
chosen in such a way that for each zero Q of f,, the algebraic number
a0(f(Q))=ap(c) is an S-unit.

In general it is not possible to find such an algebraic integer c within the field
K. However using the Approximation Lemma 5.2 from [C-R], we know there exists
cek,

® which is arbitrarily close to 0 in the &-topology,

® such that aqy(c) is an S-unit,

® such that every prime pe & splits completely in the extension field L =K (¢);
hence LcK'.

Now ay(c) is a polynomial in ¢ with &-integral coefficients, the leading one an &-
unit. As ay(c) is an &-unit, it follows that ¢ is &-integral. After applying the first
enlargement principle, identifying K with L, it follows by 3.2 that f,=f— cis an &-
admissible function, regular at each of the constant reductions 9 for pe B\ &. We
conclude that if Q is a zero of f. then ay(f(Q))=ay(c) is an S-unit and z,(Q),
1 <k<n, are S-integral; hence x;(Q) is S-integral. As f, is S-admissible the
algebraic numbers x,(Q) are also integral for each pe &.

We have shown that there is a finite extension L of K within K’, and an
element c e L such that the function f,=f— c satisfies all the requirements of the
theorem. That is, the zeros of f. are distinct and contained in V,(0%). O

5 The General Case: Reduction to Curves

Our proof of the general case has two steps. First we observe that in the
statement of the Main Theorem we can suppose that the variety Vis affine, smooth,
and also that x consists of a system of holomorphic functions on V. The second step
involves a Bertini type induction argument on the dimension of the variety which is
assumed to satisfy the hypothesis above.

Step 1: In the context of the Main Theorem let U V be an affine open of V.
Then the assertion of the theorem holds for V if and only if it holds for U.

Proof: Let F=K(V)=K(U) denote the function field of ¥ and U.

Assume the assertion holds for V. Let x be a tuple of K-rational functions on
U and suppose that the Skolem problem for U with data x and & rationality
conditions is locally solvable. We show that it is globally solvable. To do this we
first show that there exists a non-zero function y € F such that its holomorphy
domain D, is contained in U and moreover, setting y =(y, xy, ..., X,), the Skolem
problem for V' with data y and & rationality conditions is locally solvable. Indeed,
let y’ be any non-zero function whose holomorphy domain D, is contained in U. As
V:(0y)is Zariski dense for all p e & (Appendix 9.5), it follows that for every such p
there exist some non-singular Py e V,(0,) which also lies in D/, i.e., Y (Py)#.In
particular, for the finite set & of places p there exists a non-zero constant cye Og
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such that [coy’(Py)l,<1 for pe&. Next let Pye V(K) be arbitrary such that
¥’ (Py)#0. Then y’(Py) is a p-unit for almost all p € B, hence there exists a non-zero
constant ¢ € Op such that |c;y’(Py)|,<1 for all peB. Now setting y=coc1y’ it
follows that the Skolem problem for ¥ with data y and &-rationality conditions is
locally solvable. Then by hypothesis it is solvable globally. Let P be a non-singular
global solution. Then in particular, P belongs to D, and so to U(K"). Hence the
Skolem problem for U with data x and & rationality conditions has the global
solution P.

Conversely, assume the assertion holds for U. Let x be the data for a Skolem
problem with & rationality conditions for ¥ which locally has solutions. Then x
defines the data for a Skolem problem with & rationality conditions for U. The
latter Skolem problem also has local solutions, as the V,(@p) are Zariski dense
(Appendix 9.5), hence they meet U. We are now finished, as every global solution of
the latter Skolem problem also is a global solution of the former one.

Step 2: Reduction to Curves. Suppose that V is affine, smooth, and that x
consists of a system of holomorphic functions on V.

By the Noether Normalisation Theorem there exists a system t=(¢y, ..., ,)
of algebraically independent elements in K[F] such that K[V']is integral over K[f].
We set K[V]=KI[T, Z]/%, where T=(T\,...,T,), Z=(Z,,...,Z,) and P is the
relation ideal which is absolutely irreducible. Before going into the details of the
proof we remark that using model theory it follows that except for finitely many
a; € K one has:

(*) The ideal Q=(%, T\ —a;) generated by P and T; —a, in K[T, Z] is an
absolutely irreducible ideal.

Let W be the affine variety over K defined by K[T, Z]/9Q. Then W is
geometrically integral and setting w=(T,,...T;) mod{& it follows that
K[W]=K|[T, Z]/Q is integral over K[u] and the canonical projection

K[V]=KI[T, Z)/P — KI[T, Z)/Q=K[W]
gives rise to the following commutative diagram:

K[V] = K[W]

| I
K[f] — K[4]

where the bottom row is defined by ¢~ (a,, ).
Correspondingly one has the following diagram of morphisms of affine
varieties defined over K:

Vv e W
I !
Ad « Ad~l

where the top row is a K-embedding of Win ¥ and the bottom row, a K-embedding
of A?"!into A with the constant @, on the first coordinate.
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We now show that for a proper choice of a; the subvariety W satisfies the
hypothesis of the Main Theorem with respect to the restriction y of x to W. As
dim W=d— 1 we can conclude the proof of the Main Theorem by induction.

Let P, =P(x;,t) be the irreducible polynomial of x; over K[¢]. Then P, is
monic in x; and as Og, is Dedekind there exists a finite subset & of B containing &
such that all coefficients of all polynomials P, are &-integral. As in the case
dim V=1 there exists a finite subextension L|K of X’ such that for the prolongation
T, of &, to L one has: the set V. (0,,) contains non-singular points (g, € ¥,). Mutatis
mutandis, we can suppose that L =K and hence, T,=.

By the jacobian criterion it follows that the morphism pr in the diagram
above is smooth on an open subset U, of ¥ which is defined over K. Equivalently,
t,=t—t(b) is a system of local parameters of b e U,. As V,(0,) is Zariski dense in
V(K) it follows that V,(0,) n U/(K,)is a (p-adic open) non empty set. It follows
that each a, in this set has a p-adic neighborhood which is mapped homeomorphi-
cally by pr onto a p-adic neighborhood %, of pr(a,) in A%(K,). We shall denote by
¥, such a neighborhood which is contained in V,(0,).

For every p e &, we consider some a,, ¥}, and %, as above. By the Strong
Approximation Theorem for (K, B) it follows that the set of all points a € AY(K)
which lie in all %, (pe &) and have &-integral coordinates is a Zariski dense
subset in A%(K). In particular we can choose a point a in this set whose first
coordinate a, has the property (*) we asked for above. Let y be the restriction of x to
W (clearly, y is a system of regular functions on W). For such a point @ we note that
for every p € &, there exists b, € ¥, such that pr(b,)=a. Moreover by the choice of
ait follows that b, is a zero of £, hence it is a non singular point of W. In particular,
Wy(0,)#8(peS).

For p¢ &, let b be any point of V with pr(b)=a. Then P(x,(b),a)=0
(1 <k <n). Since Py is monic in x; and has &-integral coefficients and a has &;-
integral coordinates it follows that x, (b) is &-integral. Hence W, (0,.) @ for all p’
not prolonging some p € &;.

Therefore, W satisfies the hypothesis of the Main Theorem with respect to
the restriction y of x to W. This completes the proof. O

Appendix

In the appendix we have included certain basic facts which were used at
several places in the paper. For many of these results we were unable to find
suitable adequate references in the literature and so we decided to include this short
appendix where they are presented in the form we need and with notation that is
consistent with the main part of the paper.

6. Prerequisites concerning Algebraic Varieties

Let V be an absolutely irreducible quasi-projective variety defined over a
field K and 1: ¥ = IP" an embedding in some projective space over K. In the text we
shall use the word “variety” to mean “quasi-projective variety”. A homogeneous
function f; of degree d on V defined over K is the restriction to ¥ via i of some
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homogeneous function of degree d on IP” which is defined over K. A rational
function on V defined over KX is by definition the quotient of two homogeneous
functions of the same degree on ¥ defined over K. The set of all rational functions
on V defined over K is a finitely generated field K(F) over K called the function field
of V. Its transcendence degree over K equals dim V.

If Q| K is a field extension, then an Q-rational point of Vis defined to be a point P of
V such that 1(P) lies in IP"(£2). One shows that for Pe ¥ to be Q-rational does not
depend on the concrete projective embedding 1 used. We shall denote the set of all
Q-rational points by V(Q).

Using the language of schemes over K, an absolutely irreducible variety
over K is a geometrically integral, separated quasi-projective scheme over K of
finite type. For the field extension Q| K, an Q-rational point of ¥ corresponds to a
homomorphism Spec 2 — V of K-schemes, and the function field K(V) is the local
ring of the generic point of V.

With the notations from above let f be a rational function on V defined
over K and P a point of V. We say that f'is defined at P if there exists a projective
embedding 1 and a representation f=f;/g, of frelative to 1 such that g, does not
vanish at P.

The ring of all rational functions on ¥ defined over K which are defined at
PeV(K)is alocal subring of K (V) which we denote by )y, p and call the local ring
of P. Its maximal ideal will be denoted by my, p.

Let 9, denote the set of all points at which f is defined. Then f defines a
map (which we also denote by f)

f:@f—’K

in a natural way. We endow the set V(K) with the Zariski topology, which has a
subbasis the sets 9, for all rational functions fon V defined over K.

In the scheme language this means that fe K (V) lies in the image of the
canonical ring homomorphism

(OI’,P.-_) (QV‘,,=K(V)

where 7 is the generic point of V.

Now suppose that 2 is an algebraically closed overfield of K. We endow
V(£2) with the Zariski topology as above. Then V(K) embedded canonically in
V(£2) and equipped with the subspace topology is homeomorphic to ¥ (K) with the
Zariski topology.

A subset X of V(K) is called Zariski dense if there isn’t any non-zero rational
function of V vanishing on it. This is equivalent to X being dense in V() in the
Zariski topology.

Now suppose that K is endowed with a (non-trivial) valuation v. This
valuation defines a topology on K, the v-topology in a canonical way.

Further, any finite dimensional K-vector space M can be endowed with a
(K, v)-vector space topology in a canonical way. Namely, this is the weakest
topology on M such that all K-linear forms ¢ : M — (K, v) are continuous. This is
called the v-topology on M and it has good properties, for example: Any K-
multilinear mapping between spaces endowed with the v-topology is continuous.
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This topology induces a topology on P"(X) (r arbitrary) in a canonical way which
we call the v-adic topology on IP"(X).

More generally, let V' be an absolutely irreducible variety over K. Leti: V=>1P"be a
projective embedding over K. Then : induces a canonical bijection of V(X) onto
C(VHYK)=1(V)nIP"(K). In this way we can endow V(K) with the sub-space
topology by 1. One shows that this topology does not depend on the projective
embedding : and we call it the v-adic topology on V(K).

It is clear that a rational function fon ¥ defined over K is continuous in the v-adic
topology at all points where it is defined. In fact, the v-adic topology is the weakest
topology on V(K) such that all rational functions fe K(¥) are continuous at the
points where they are defined. A basis of the v-adic topology is given by all subsets
of V(K) of the form

U, ={PeVE)x(P)e0,1<k<n}

where x=(x,,...,x,) runs over all finite systems of rational functions on V. The
v-adic opens of the form %, are called basic v-adic open subsets of V(K).

From this it follows that the v-adic topology on V(K) is finer then the induced
Zariski topology on V(K).

7. Continuity of the Roots of Algebraic Functions

Let (K, v) be an arbitrary valued field and F|K a separably generated
function field in 1 variable with constant field K. Let V denote the unique normal
projective model of F| K. Then the set of all K-rational points V' (K) of Vis identified
in a natural way with the set of all K-rational places of F|K. Directly be the
defintion of the v-adic topology on V(K) it follows that it is actually the weakest
topology on V(K) such that all fe F define continuous functions

[ VK) = PU(K), P~ f(P)

We consider any finite dimensional K-vector subspace M of F as being
endowed with the v-topology. Then F itself can be endowed with the strongest
topology for which all the inclusions M => F are continuous. We call this the v-
topology of F and we remark the following:

® All inclusions M = F are immersions in the v-topology.
® Fendowed with the v-topology is a topological ring.

Now the main result of this section is:

Theorem 7.1 (Continuity of the Roots) Let f € F be a non-zero function. Then
we have:

1) There exists a v-neighborhood U of f in F such that (f)e<(g)= for all ge U. In
particular, if g€ U and deg f=deg g then (f)o=(g)w.

2) Suppose that K is algebraically closed and let Py, ..., P, be the distinct zeros of f
and ny=vp,(f) their multiplicities. Let U, be disjoint v-adic neighborhoods of Py,
(k=1,...,m) in V(K). Then there exists a v-neighborhood U of f in F such that any
ge U has at least n;, zeros in every Uy, if counted with their multiplicities.
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In particular, if ge U and degf=degg then (f)«=(g)- and g has exactly n,
zeros in each U, if counted with their multiplicities, and these are all the zeros of g.

Proof. By the definition of the wv-topology if suffices to find a v-
neighborhood U=Uy of f in every finite dimensional K-vector space M cF
containing f, such that every g € U has the desired properties. Moreover, since any
such M is contained in the linear space of a positive divisor of F|K it suffices to
prove the assertion for such spaces. Precisely:

Let A be a positive divisor of F|K and £ x(A) be its linear space over K. Then
there exists a v-neighborhood U=U, of f in Lx(A) such that any ge U has the
properties 1) and 2) of the theorem.

We first remark that our assertions are elementary assertions in the
language of valued fields with parameters from K. These parameters come from the
definition of V, A, £x(A4), f and the neighborhoods %, (which we can suppose are
basic open sets).

Therefore, to show that our assertions are true, it is sufficient to prove that they are
true in a x-saturated extension (K*, v*) of (K, v) for some cardinality ». Now
suppose that « is big enough. Then there exist coarsenings v, of v* which are trivial
on K. Any such v, can be prolonged to a good reduction of FK *| K * which is trivial
on F. We shall also denote this prolongation by v; and let us set K *v, = K;. Now, any
non-constant function s e F is a regular function for v, and in particular so is f.
Furthermore, since FK* has good reduction at v, it follows that v, defines the
product topology on Zg+«(A4). Therefore,

U=f+{ge Lx(4)lvi(g) >0}

is a v-neighborhood of fin #«(4) and obviously, gv; = fv,=ffor all ge U.
Next we observe that (FK*)v, actually coincides with the constant
extension FK, of F|K. Let

Div (FK*|K*) =Div (FK,|K)

be the canonical divisor reduction map, a degree preserving group homomor-
phism. For the definitions and basic properties of this map, see Deuring[D1]and
Roquette [R3]. Taking into account that for any linear space Zx(D) of any
positive divisor D of F|K we have

Zx(D) = (Lx(D)v; < (Lx+(A))v; = Lk, (Dvy)

and comparing dimensions we get Lk, (Dv,)= Lk, (D). Therefore, we have a
commutative diagram of the form

incl

Div (FIK) S Div (FK*|K*)
id v

incl

Div (F|K) 5 Div (FK, |K})

Claim: Let % =Uj,, ... s, be a basic open subset of V(K ). Then the preimage of
U V(K)c V(K,) by the canonical divisor reduction map

Div (FK *|K*) =Div (FK, |K})
is contained in the basic open subset U * defined by (fy), in V(K*).
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The proof follows from the following general fact about good reduction:
If wis a good reduction of a function field F| L then for every regular function 4 and
any place Q e Div(E|L) it holds: A(Q)w=hw(Qw).
In our situation we have for any 4 € Fand some P* which by reduction goes to some
PeDiv(FIK):

(h(P*) = h(P))vy = hv,(P*vy) — hvy(Poy) = h(P) — h(P) =0,

ie A(P*)— h(P) lies in the valuation ideal of v, and in particular, also that of v*.
Hence, v*(A(P*))=v*(h(P)) and from this remark our claim follows easily.
We can now complete the proof of the theorem:

With U as above take any g e U. Then, by general constant reduction theory and
using gv, =fv, =f we get:

1) (&)t > (g01)ee = (f)eo-
i) (glov1 > (gv1)o = (S

On the other hand, since g lies in #+(4) and A4 is K-rational it follows that
(8)-is K-rational. Hence, by the commutative diagram above we get (g)wt; = (2)w.
Now taking into account i) above the assertion 1) follows. To prove the assertion 2)
we remark that by ii) above and the divisor reduction map, the preimage of any %,
contains at least as many zeros of g as the number of zeros of gv, =fin %, (counted
with their multiplicities, respectively). On the other hand, all these zeros lie in % ¥,
by the claim above. The proof is finished. O

Corollary 7.2 Let K be a henselian field, F|K a function field and A a positive
divisor of F|K. Suppose that there exists a function 0 + f € F such that (f)= A and all
the zeros P, of f are K-rational and distinct. Let U, be given v-adic open disjoint
neighborhood of Py. Then there exists a neighborhood U of fin Lx(A) such that all
ge Lx(A) have the properties:

1) (8)==4

2) g has exactly one zeros in each %, and these are all the zeros of g.

Proof. We can suppose that all %, are basic open subsets. Let Kbe the alge-
braic closure of K and v the unique prolongation of v to K. We denote by 9, the open
basic subset of V(K) which is defined by the same functions as %, . Obviously we can
suppose that %, are pairwise disjoint. By the theorem above we have:Ifge Lx(A)is
sufficiently close to f'then (g)~ > (f)~=4 and g has at least one K-rational zero in
every %,. On the other hand, since g lies in £ (4 )it follows that (g)e =4 = (f)-and
therefore, g has exactly one zeroin every %, Further, we remark that the v-adic basic
open sets @k are defined over K, hence they are Gg-invariant where G denotes the
absolute Galois group of K. Since g is defined over K it follows that the zeros of g are
Gy-invariant. Since they are also distinct it follows that they are K-rational. O

8. The Higher Dimensional Hensel Lemma

In this section we give the sketch of the proof of the higher dimensional Hen-
sel Lemma we shall use later. Let (K, v) be a valued field. Fora=(ay,...,q,)in K=
KXx...xK we set v(a)=minv(a;) (1 <k <) as usual. Now we have the following:
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Theorem 8.1 Let (K, v) be a henselian field. Let f=(f,,..., f,) be a system of
© polynomials in X=(Xi,...,X,) variables with v-integral coefficients. Let J(a)
denote the determinant of the Jacobian matrix (3 f;/3X,(a)) for an arbitrary ac K°.
Suppose that for some a with v-integral coordinates the following holds:

2v(J(a)) < v(f(a)).
Then there exists a unique b e K° with the following properties

1) f(6)=0
2) v(a — b) > v(J(a)).

Proof. We first remark that the assertion of our theorem is true for (K, v) a
local field, see Greenberg [Grb]. Therefore, it is true for the algebraic closure of
each local field. By the model completeness of the theory of the algebraically closed
valued fields, Robinson [Rob], it follows that 8.1 is true for the algebraic closure
(K, v) of any henselian field (K, v). Now let b be the unique element of K satisfying
1) and 2) above, We remark that by property 2) it follows that v (J()) = v(J(a)) and
in particular J(b) # 0. Hence b is separable over K, see for instance Lang’s Algebra
book. Obviously every conjugate of b over K also satisfies 1) and 2). By the
uniqueness of b it follows that it is invariant under conjugation. Hence b lies
in K°. O

9. The Algebraic Implicit Function Theorem

Let V be an absolutely irreducible variety defined over K and ae V(K) a
non-singular point. We denote the local ring of a by 0y, , and by my, , the maximal
ideal. Note that for K-rational points a e V(K) being non-singular is equivalent to
the assertion that @)y, is a regular local ring. The notion of being non-singular is of
Zariski local nature and the following assertions on a point aeV(K) are
equivalent, see for instance [M], pp. 233-236:

1) ais a non-singular point of V.

2) Each minimal system of generators of m, consists of exactly d=dim V elements.
3) Let UcV be an affine neighborhood of a defined by K[U]=K[Xj,...,X,]/P
with P=(f,..., f;) an absolutely irreducible ideal of K[X),...,X,]. Then the
Jacobian criterion holds, i.e., the rank of the matrix (3f;/3X)(a)) equals
o=r—dimV.

The following fact is well known, see for example [M], p. 240:

9.1 Let ae V(K) be a non-singular point of V and t=(t,,...,t,) a system of
local parameters of Oy, ,. Then there exists an affine neighborhood U of a which is a
complete intersection with respect to t, i.e., U is of the form

K[U]=K[T\,....,Ts, Yy,..., Y, 1/P, tr =T, mod P (1 <k<d).
with P generated by exactly o polynomials f=(fi,..., f,)-
We now prove the following:

Theorem 9.2 (Implicit Function Theorem). Let (K, v) be a henselian field and
V an absolutely irreducible variety defined over K. Let ae V(K) be a non-singular
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point and t=(t,,...,t;) a system of local parameters at a. Viewing t=(t,,...,1;) as
system of rational functions on V the following assertion holds:

There exists a v-adic neighborhood of a in V(K ) which is mapped by t homeomorphi-
cally onto a v-adic neighborhood of the origin in A%(K).

In particular, V(K) is Zariski dense.

Proof. We use 9.1 and the notations from there. Over K we identify the
affine neighborhood U of a defined at 9.1 with the affine subvariety of A?* ¢ defined
by f=0. We write (ay, a,) for the current point of A% ¢ (with respect to the
coordinate functions (T1,...,T,, Y}, ..., ¥,) chosen in advance). Making an affine
transformation over K (which obviously defines a v-adic homeomorphism of
A“*e(K) onto itself) we can suppose that by this identification a corresponds to the
origin of A?"¢. Further, after multiplying with properly chosen constants we can
suppose that the defining equations f have v-integral coefficients.

Let J(¢) denote the determinant of the Jacobian matrix (3f; /3 Y,(t)). Now
asa=(04,0,)is a non-singular point of U one has J(0,) # 0. Further, as f(04,0,) =0
it follows by the v-adic continuity of the polynomials that for @, in a small v-adic
neighborhood %, of 0, one has:

20(J(a4)) = 20(J(0a)) < v(fi(@4,0,)) (1 <k <o)

By the higher dimensional Hensel Lemma we then have: There exists a unique a,
with the following properties:

v(@,)>v(J(0,) and  flas, a,) =0,

Hence we get: The neighborhood of a=(0,4, 0,) in U defined by the conditions
a;€ %, and v(a,)>v(J(0,)) is mapped homeomorphically by ¢ onto %,.

Now taking into account that the open immersion Uc V induces a v-adic open
immersion U(K) < V(K) the proof of 9.2 is finished. 0O

As an application we want to describe the v-adic behaviour of a K-
morphism of absolutely irreducible varieties at non-singular points.

First we recall some general facts about smoothness of morphisms. Let V
and W be absolutely irreducible varieties over K and ¢ : ¥ — W a morphism defined
over K. Suppose that ¢ (V) is dense in W, i.e., that ¢ is generically surjective. Let
aeV(K)and b= ¢(a)e W(K) be non-singular points. One says that ¢ is smooth at
a if the induced ring homomorphism ¢*: Oy, — 0y, , is smooth.

9.3 The following assertions concerning the non-singular points a € V(K)
and b= (a)e W(K) are equivalent, see [H], p. 271:
1) ¢ is smooth at a.
2) The induced canonical mapping My, ,/m,, — my,,/m#, is injective.

The second condition can be interpreted as follows:

With the above notations @ is smooth at a if and only if the image ¢* u of any system of
local parameters u at b by ¢" can be completed to a system of local parameters of a.

Further, it is clear from the defintion that any generically surjective morphism
@ :V— W is smooth on a Zariski open subset of V.
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We now come to the promised description of the K-morphisms at smooth
points.

Theorem 9.4 Let (K, v) be a henselian field, V and W absolutely irreducible
varieties defined over K and ¢ : V — W be a generically surjective morphism defined
over K. Suppose that ¢ is smooth at a K-rational point a of V. Then the following holds:

1) There exists a v-adic open neighborhood %, of a in V(K on which ¢ is an open map
in the v-adic topology.

2) If dim V'=dim W then there exists a v-adic open neighborhood U, of a in V(K)
which is mapped homeomorphically onto a v-adic neighborhood %, of b= ¢(a) in
W(K).

Proof. Let ¢ : O, — Oy, be the canonical ring homomorphism. Take u an
arbitrary system of local parameters of b. By 9.3 the image ¢* () of u by ¢ can be
completed to a system of local parameters

t=(p"(u), t)

of a. Let U, and U, be affine neighborhoods of a, respectively b= ¢(a), as at 9.1 such
that ¢ (U,) c U, and tis defined on U,, respectively u is defined on U,. Now we have
a commutative diagram of the form:
Ua 5 Ub
[ o

AdimV 2 Adim W
where ¢, is the projection defined by the ring homomorphism K[¢] = K[U,], ¢, is
correspondingly defined and pr is the projection obtained from K[u]— K[¢]
defined by u~ ¢”(u). Finally, we remark that by 9.2 ¢, and ¢, are locally
homeomorphisms.
To 1) This is clear, because pr is v-adic open and dim V' >dim W.
To 2) This is clear, because pr is a v-adic homeomorphism as dim ¥ =dim W.

The proof of 9.4 is finished. O

Corollary 9.5 Let K be a henselian field.

1) Let V|K be an absolutely irreducible variety and a be a non-singular K-rational
point of V. Then any v-adic neighborhood U, of a is Zariski dense in V.

2) Let V|K and W|K be absolutely irreducible varieties and ¢ :V — W a rational
morphism defined over K which is generically surjective. Suppose that V has a non-
singular K-rational point and dim V =dim W. Then V(K ) and W(K) are Zariski dense
in V, respectively W, and on a Zariski open subset of V(K ) the map ¢ is a v-adic local
homeomorphism.

Proof. To 1) Let a be a non-singular point of ¥ and ¢ a system of local
parameters of a. Replacing ¥ by an open affine containing a, without loss of
generality we can suppose that V is affine and that the projection

pro:V—A? b t(b)

is regular at a. Further apply the above theorem.
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To 2) By 1)it follows that V(K)and W(K) are Zariski dense. Further the map ¢ is
smooth on a Zariski open subset of V. Therefore, ¢ is smooth on a Zariski open
subset of V(K). On the other hand, by the theorem above ¢ is a v-adic local

homeomorphism at every smooth point. O
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