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1. Introduction. Statement of principal results.

The Nullstellensatz in its most direct version, is concerned with the
polynomial ring $K[x_{1}, \cdots , x_{n}]$ over a base field $K$. For brevity we write
$K[x]$ where $x=(x_{1}, \cdots , x_{n})$ denotes an n-tuple of indeterminantes over $K$

Given finitely many polynomials $f_{1}(x),$ $\cdots$ $f_{r}(x)$ in $K[x]$ we consider their
common zeros, $i$ . $e$ . those $n$ -tuples $a=(a_{1}, \cdots , a_{n})\in K^{n}$ which satisfy

$f_{i}(a)=0$ $(1\leqq i\leqq r)$ .

In contrast to the usual procedure in algebraic geometry we insist that the
coordinates $a_{i}$ are contained in the base field $K$ (and not only in some over-
field of $K$). Accordingly we shall speak more precisely of the K-rational
zeros of $f_{1},$ $\cdots$ , $f_{r}$ . The Nullstellensatz is concerned with the following
question: What can be said about those polynomials $g(x)\in K[x]$ which vanish
at all K-rational zeros of $f_{1},$ $\cdots$ , $f_{r}$ ?

If the base field $K$ is algebraically closed then the answer to this question
is given by the classical Nullstellensatz of Hilbert: $g$ is contained in the
nilradical of the $K[x]$ -ideal generated by $f_{1},$ $f_{r}$ . In other words: some
power $g^{N}$ admits a representation of the form

$g^{N}=\lambda_{1}f_{1}+\cdots+\lambda_{r}f_{r}$

with coefficients $\lambda_{i}\in K[x]$ . However, if $K$ is not algebraically closed then
the situation is quite different in general. The case of real closed base fields
is well known.
In the present Paper we Propose to study the case of P-adically closed base fields
of finite ramification.1)

The notion of $\mathfrak{p}$ -adically closed field as defined by Kochen [8] and others,
is in complete analogy to the classical and well known notion of real closed
field. Its definition and main properties will be discussed in section 4 below.
The most important examples of $\mathfrak{p}$ -adically closed fields are the ordinary $\mathfrak{p}-$

1) Our results will include those of Kochen [8] and Ziegler [21] as special cases.
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adic Pelds in the sense of Hensel, $i$ . $e$ . those fields which can be represented
as completion of some Pnite algebraic number field with respect to a non-
archimedean valuation. In fact our investigation started with the Nullstellen-
satz over these fields, and it was only at a later stage that we observed our
results to be valid over an arbitrary $\mathfrak{p}$ -adically closed field of finite ramifi-
cation. In our proof we have to use general results about the model theory
of those fields, namely the model completeness theorem (theorem 4.3). How-
ever, in the case of ordinary $\mathfrak{p}$ -adic fields in the sense of Hensel it is possible
to avoid model theory by using the resuits of [15] which are based on com-
pactness arguments. (See remark 5.3 in section 5.)

In this paper we work over a Pxed $\mathfrak{p}$ -adically closed base field of finite
ramification, and we use the following notation.
$K$ the given field which is $\mathfrak{p}$ -adically closed and of finite ramification
$\mathfrak{p}$ the canonical place of $K$

$q$ the number of elements in the residue field $K\mathfrak{p}$

$0$ the ring of integers of $K$, consisting of those $c\in K$ for which $ c(\mathfrak{p})\neq\infty$

$v$ the canonical valuation of $K$ ; we have $v(0)\geqq 0$

$\pi$ a prime element of $K$ ; we have $v(\pi)=1$

$\gamma$ the ))-adic Kochen operator.

By definition, $\gamma=\gamma(z)$ is a rational function in one variable $z$, namely:

$\gamma(z)=\frac{1}{\pi}\frac{z^{q}-z}{-z)^{2}-1}\overline{(z^{q}}$ .

In the theory of $\mathfrak{p}$ -adic fields, $\gamma$ plays a similar role as does the square operator
in the theory of real fields. In the latter case, we know that squares are
always positive. Correspondingly in the P-adic case, $\gamma(z)$ is always integral,
which is to say that $v(\gamma z)\geqq 0$ for arbitrary $z\in K$ This is easily verified by
means of the definition of $\gamma$ . Conversely, if $c$ is an arbitrary integral element
in $K,$ $i$ . $e$ . if $v(c)\geqq 0$, then there exists $z\in K$ such that $c=\gamma(z)$ ; this is an
immediate consequence of Hensel’s lemma which holds in every $\mathfrak{p}$ -adically
closed field. Thus we see that

$\gamma K=0$ .
This is the $\mathfrak{p}$ -adic analogue of the fact that in a real closed field, the squares
are precisely the positive elements. The Kochen operator enters essentially
into the statement of the $\mathfrak{p}$ -adic Nullstellensatz whose first version can now
be formulated. We consider the following situation:
$K[x]$ the polynomial ring in $n$ indeterminates $x=(x_{1}, \cdots , x_{n})$ over the $\mathfrak{p}-$

adically closed base Peld $K$ of finite ramification
$f_{i},$ $g$ finitely many polynomials in $K[x](1\leqq i\leqq r)$ .
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THEOREM 1.1. The necessary and sufficient condition for $g$ to vanish at all
K-rational zeros of $f_{1},$ $\cdots$ $f_{r}$ is, that some power $g^{N}$ admits a representation

$g^{N}=\lambda_{1}f_{1}+\cdots+\lambda_{r}f_{r}$

where the $\lambda_{i}$ are rational functions in $F=K(x)$ of the form

$\lambda_{i}=\frac{s_{i}}{1-\pi t_{i}}$

with
$s_{i}\in K[x, \gamma F]$ , $t_{i}\in Z[\gamma F]$ .

Here $\gamma F$ denotes the set of those elements in $F$ which are of the form
$\gamma(z)$ with $z\in F$. As usual, we write $Z[\gamma F]$ to denote the subring of $F$ which
is generated by $\gamma F$ over $Z$ ; similarly $K[x, \gamma F]$ is the ring generated by $x$

and $\gamma F$ over $K$.
The condition of theorem 1.1 can be written in a somewhat more manage-

able form after introducing the Kochen ring $R$ of the field $F=K(x)$ , defined
as follows:

(1.1) $R=\{\frac{t^{\prime}}{1-\pi t}$ with $t,$ $t^{\prime}\in Z[\gamma F]\}\cdot 2$ )

In other words: $R$ is the ring of quotients of $Z[\gamma F]$ , with respect to the
multiplicative semigroup of $elements\equiv 1$ mod $\pi$ . The ring $R\cdot K[x]$ , generated
by $R$ and $K[x]$ , consists of all quotients $s/1-\pi t$ of the form as speciPed in
theorem 1.1. Thus the condition of that theorem says that

$\lambda_{i}\in R\cdot K[x]$ $(1\leqq i\leqq r)$ .
In other words: some power $g^{N}$ should be contained in the $R\cdot K[x]$ -ideal
generated by $f_{1},$ $f_{r}$ ; hence $g$ should be in the nilradical of that ideal. In
this way we see that the $P$ -adic Nullstellensatz is of quite similar type as
the ordinary Hilbert Nullstellensatz for algebraically closed base field, the only
difference being that the polynomial ring $K[x]$ is to be replaced by the larger
ring $R\cdot K[x]$ . This raises the question as to the birational interpretation of
the ring $R\cdot K[x]$ , as well as to its ideal theoretic structure. These questions
will be discussed in section 2 below. In the rest of this section we continue
with the description of our principal result, explaining certain generalizations
of theorem 1.1 which are of importance in $\mathfrak{p}$ -adic diophantine analysis.

2) This definition applies also to an arbitrary extension field $F$ of $K$ . Thus we
should write more precisely $R=R(F)$ in order to indicate the functorial dependence of
$R$ on the field $F$. However, since it will be clear from the context which field $F$ we
are referring to, we prefer to write $R$ for brevity.
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The first generalization is obtained if we regard the polynomials $f(x)$

$\in K[x]$ as functions not on the whole affine space $K^{n}$ , but only on some open
subset of $K^{n}$ . We observe that $K^{n}$ carries a natural topology, canonically
defined by the ))-adic valuation $v$ of $K$. For any point $c=(c_{1}, \cdots , c_{n})\in K^{n}$ and
any $0\neq\epsilon\in K$, the $\epsilon$ -neighborhood of $c$ consists of those $a\in K^{n}$ which satisfy
the conditions

$v(a_{i}-c_{i})\geqq v(\epsilon)$ $(1\leqq i\leqq n)$ .
These conditions can be interpreted as saying that the polynomials $u_{i}(x)$

$=\frac{1}{\epsilon}(x_{i}-c_{i})$ should assume integral values at the point $a,$
$i$ . $e$ . $v(u_{i}(a))\geqq 0$ .

More generally, let us consider an arbitrary finite family $u=(u_{1}, \cdots , u_{m})$ of
polynomials $u_{j}\in K[x]$ ; the points $a\in K^{n}$ satisfying the integrality conditions

(1.2) $v(u_{j}(a))\geqq 0$ $(1\leqq j\leqq m)$

form an open and closed subset of $K^{n}$ . The open-closed subsets of $K^{n}$ obtained
in this way constitute a basis for the $\mathfrak{p}$ -adic topology of $K^{n}$ ; therefore these
sets will be called “basic $\mathfrak{p}$ -adic sets” of $K^{n}$ .

Now let $f_{1},$ $\cdots$ , $f_{r}\in K[x]$ . There arises the question: What can be said
about those $g\in K[x]$ which vanish at all K-rational zeros of $f_{1},$ $f_{r}$ contained
in a given basic $\mathfrak{p}$ -adic set ? The answer will be quite similar to theorem
1.1, the only difference being that the Kochen ring $R$ is to be replaced by
the ring

(1.3) $R_{u}=\{\frac{t^{\prime}}{1-\pi t}$ with $t,$ $t^{\prime}\in Z[u, \gamma F]\}$ .

Here, $u=(u_{1}, \cdots , u_{m})$ denotes the family of polynomials $u_{j}$ which define the
basic $\mathfrak{p}$-adic set by the integrality conditions (1.2) as explained above. $R_{u}$ is
called the Kochen ring over $u$ of the field $F$. If $u$ is empty, $i$ . $e$ . if $m=0$ then
$R_{u}$ coincides with the ordinary Kochen ring $R$ of $F$.

A still further generalization is obtained if, in all of the above consider-
ations, the affine space is replaced by some affine variety $V$ defined over $K$

Accordingly $K^{n}$ has to be replaced by the space $V(K)$ of K-rational points on
V. In this context the symbol $x=(x_{1}, \cdots , x_{n})$ denotes a generic point of $V$

over $K$ and $F=K(x)$ is the algebraic function field of the variety $V$. As it
will turn out, all of the above statements hold in this general case, provided
that the variety $V$ is nonsingular. Clearly, this nonsingularity assumption is
satisfied in the case of theorem 1.1 where $V$ is the full affine space. Thus
we see that the following contains theorem 1.1 as a special case.

We consider the following situation:
$V$ an affine variety defined over the tO-adically closed field $K$ of finite

ramification
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$x$ $=(x_{1}, \cdots , x_{n})$ a generic point of $V$ over $K$

$K[x]$ its coordinate ring; the elements in $K[x]$ are regarded as polynomial
functions defined on $V$

$F$ $=K(x)$ the field of rational functions on $V$ over $K$

$u$ $=(u_{1}, \cdots , u_{m})$ a finite family of elements in $K[x]$

$R_{u}$ the corresponding Kochen ring of $F$ as defined above (1.3)
$V(K)$ the space of K-rational points on $V$

$V_{u}(K)$ the basic $\mathfrak{p}$ -adic subset of $V(K)$ defined by $u$ ; it consists of those points
$a\in V(K)$ which satisfy the integrality conditions (1.2) above

$f_{i},$ $g$ finitely many elements in $K[x](1\leqq i\leqq r)$ .
THEOREM 1.2. SuPpose that $V_{u}(K)$ contains at least one point which is

simple on $V$.
If $g$ vanishes at all zeros of $f_{1},$ $\cdots$ , $f_{r}$ in $V_{u}(K)$ then some power $g^{N}$ admits

a representation
$g^{N}=\lambda_{1}f_{1}+\cdots+\lambda_{r}f_{r}$

with
$\lambda_{i}\in R_{u}\cdot K[x]$ $(1\leqq i\leqq r)$ .

Conversely, if this condition is satisfied then $g$ vanishes at all those zeros of
$f_{1},$ $f_{r}$ in $V_{u}(K)$ which are simple on $V$.

Consequently, if the variety $V$ is nonsingular, then the above condition is
necessary and sufficient for $g$ to vanish at all common zeros of $f_{1},$ $f_{r}$ in
$V_{u}(K)$ .

This Nullstellensatz will be complemented by the following criterion for
$V_{u}(K)$ to contain a simple point. It seems remarkable that this criterion is of
birational nature, referring only to the function field $F$ and not to the particular
variety $V$.

DEFINITION. The field $F$ is called formally 1)-adic over $u$ if $\pi$ is not a
unit in $Z[u, \gamma F]$ .

Notice that, in any case, $\pi$ is contained in $Z[u, rF]$ . In fact: we have
seen above already that $0=\gamma K\subset\gamma F$ and therefore

$Z[u, \gamma F]=0[u, \gamma F]$ .
Hence every element in $0$ , and in particular $\pi$ , is contained in $Z[u, \gamma F]$ . If $\pi$

is a non-unit in $Z[u, \gamma F]$ then $\pi$ remains a non-unit in $R_{u}$ ; this is immediate
from the above dePnition of $R_{u}$ as ring of quotients. We see that $F$ is formal-
ly $\mathfrak{p}$ -adic over $u$ if and only if

$\frac{1}{\pi}\not\in R_{u}$ .

If $u$ is empty $(i. e. m=0)$ then we obtain the ordinary notion of formally $\mathfrak{p}-$
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adic field (see section 4).

The following theorem refers to the situation of theorem 1.2.
THEOREM 1.3. The necessary and sufficient condition for $V_{u}(K)$ to contain

a simple point is that the function field $F$ is formally $\mathfrak{p}$ -adic over $u$ .
If the variety $V$ is nonsingular then this yields a necessary and sufficient

condition for $V_{u}(K)$ to be nonempty.

2. Holomorphic functions on the Riemann space: the three main theorems.

In this section we shall reformulate the statements of section 1 in biration-
al manner. More precisely, we shall replace the variety $V$ by the Riemann
space $S$ of the function field $F|K$ and we shall show that and how theorems
1.2 and 1.3 can be deduced from the corresponding theorems 2.2 and 2.3 for
$S$ . Moreover we shall give a birational description of the rings $R_{u}\cdot K[x]$

which appear in the Nullstellensatz: these rings are holomorphy rings of
certain basic subsets of the Riemann space (theorem 2.1). First let us recall
some definitions and facts concerning the Riemann space.

As above $K$ denotes a fixed $\mathfrak{p}$ -adically closed base field of finite ramiPcation
(for definition, see section 4). We consider a finitely generated field extension
$F$ of $K,$ $i$ . $e$ . the function field of some affine variety over $K$. We assume the
reader to be familiar with the basic notions and facts about Places. We con-
sider those places of $F$ which are trivial on $K$. For any such place $P$, its
residue field $FP$ is an extension field of $K$. If $FP=K$ then $P$ is called a K-
rational place of $F|K$ The space of all such K-rational places is called the
Riemann $K$-space of $F|K$ and is denoted by $S_{K}(F|K)$ . In order to simplify the
notation we shall use the symbol $S$ instead of $S_{K}(F|K)$ , and we shall briefly
speak of the “Riemann space”. It should be kePt in mind, however, that K-
rational Places only are involved. It is possible that $S$ is empty. A necessary
and sufficient criterion for $F|K$ to admit a non-empty Riemann space $S$ will
be contained in our results below (theorem 2.3).

The image of $z\in F$ with respect to the place $P$ will be denoted by $z(P)$ or
briefly $zP$. If $P$ ranges over $S$ then we obtain a function $ z:S\rightarrow K\cup\infty$ . This
function is continuous with respect to the $\mathfrak{p}$ -adic topologies which are canoni-
cally defined on $S$ and on $ K\cup\infty$ . Let $u=(u_{1}, \cdots , u_{m})$ be a Pnite family of
elements in $F$, and consider the set $S_{u}$ of those places $P\in S$ which satisfy the
integrality conditions

$v(u{}_{j}P)\geqq 0$ $(1\leqq j\leqq m)$ .
$S_{u}$ is $\mathfrak{p}$ -adically open and closed in $S$ . The subsets $S_{u}$ of $S$ obtained in this
way form a basis for the $\mathfrak{p}$ -adic topology of $S$ ; this fact can be used as a
definition for the $\mathfrak{p}$ -adic toPology. Every such $S_{u}$ will be called a basic l)-adic
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subset of $S$ . If $u$ is empty then $S_{u}=S$ .
There is also the Zariski topology on $S$ . Let $x=(x_{1}, \cdots , x_{n})$ be a finite

family of elements in $F$. Consider the set $S^{x}$ of those places $P\in S$ which
satisfy the holomorphy conditions

$ x_{i}P\neq\infty$ $(1\leqq i\leqq n)$ .
$S^{x}$ is open in the Zariski-topology. The subsets $S^{x}\subset S$ obtained in this way
form a basis for the Zariski topology on $S$ ; this fact can be used as a definition
for the Zariski topOlOgy. Every such $S^{x}$ will be called a basic Zariski subset
of S. If $x$ is empty then $S^{x}=S$ .

We also consider sets of the form

$su=S.\cap S^{x}$ ,

intersection of a basic $\mathfrak{p}$ -adic set with a basic Zariski set. Any such se $f$ will
be called a basic subset of $S$ .

Let $P\in S$ . An element $z\in F$ is called holomorphic at $P$ if $z(P)\neq\infty,$ $i$ . $e$ . if
$z$ is contained in the valuation ring $\mathfrak{O}_{p}$ of $F$ belonging to $P$. For any subset
$\tau\subset s$ , its holomorphy ring consists of all those $z\in F$ which are holomorphic
at every place $P\in T$ . By definition, this holomorphy ring is the intersection
of the valuation rings $\mathfrak{O}_{p}$ belonging to the places $P\in T$ . If $T$ is empty then
this intersection is to be interpreted as being the whole field $F$.

Now we are going to state three main theorems about basic subsets of $S$

and their holomorphy rings. These theorems are of central importance in
algebraic function theory over $\mathfrak{p}$ -adic fields. We shall see that they imply the
validity of our results announced in section 1.

Let us repeat the description of the situation.
$F|K$ an algebraic function field over the $0$ -adically closed base field $K$ of

finite ramification
$S$ the Riemann space of K-rational points of $F|K$

$x$ $=(x_{1}, \cdots , x_{n})$ a finite family of elements in $F$

$u$ $=(u_{1}, \cdots , u_{m})$ ditto
$S_{u}^{x}$ the corresponding basic subset of $S$ as defined above
$R_{u}$ the Kochen ring of $F$ over $u$ , defined by formula (1.3).

THEOREM 2.1. The holomorphy ring of $S_{u}^{x}$ coincides with $R_{u}\cdot K[x]$ . In
other words: a funciion $z\in F$ is holomorphic on $S_{u}^{x}$ if and only if $z$ admits a
representation of the form

$z=\frac{s}{1-\pi t}$

with
$s\in K[x, u, \gamma F]$ and $t\in Z[u, \gamma F]$ .
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This theorem contains an explicit and constructive description of holo-
morphic functions on basic sets. On the other hand, the theorem can also be
regarded as providing a birational interpretation of the rings $R_{u}\cdot K[x]$ , thus
“explaining” why these rings appear in the Nullstellensatz of section 1.
Perhaps the following special cases are worthwhile mentioning: First, if $u$ is
empty then $R_{u}=R$ is the ordinary Kochen ring; we conclude that $R\cdot K[x]$ is
the holomorphy ring of the basic Zariski set $S^{x}$ . Secondly, if $x$ is empty then
we see that $R_{u}\cdot K$ is the holomorphy ring of the basic $\mathfrak{p}$ -adic set $S_{u}$ . Finally,
if both $u$ and $x$ are empty then $R\cdot K$ appears as the holomorphy ring of the
whole Riemann space $S$.

THEOREM 2.2. SuPpose $S_{u}^{x}$ to be non-empty. Let $f_{1},$ $\cdots$ , $f_{r},$ $g\in F$ be holo-
morphic functions on $S_{u}^{x}$ .

The necessary and sufficient condition for $g$ to vanish at all common zeros
$P\in S_{u}^{x}$ of $f_{1},$

$\cdots,$
$f_{r}$ , is that some power $g^{N}$ admits a representatjOn of the form

$g^{N}=\lambda_{1}f_{1}+\cdots+\lambda_{r}f_{r}$

where the $\lambda_{i}\in F$ are holomorPhic functions on $S_{u}^{x}$ . By theorem 2.1 this means
that

$\lambda_{i}\in R_{u}\cdot K[x]$ $(1\leqq i\leqq r)$ .

This is the Nullstellensatz for holomorphy rings. Notice that this theorem
is of birational nature; it does not refer to any variety which generates the
function field $F$. Moreover, the conditions for the coefficients $\lambda_{i}$ are the same
as the hypothesis for $f_{i}$ and $g$ , namely they should be holomorphic functions
on $S_{u}^{x}$ . Therefore theorem 2.2 can be interpreted as a statement about the
radical ideal structure of the ring of holomorphic functions on $S_{u}^{x}$ as follows.
Let us recall the notion of Jacobson $ring^{3)}$ : this is a ring $A$ (commutative

with unity) such that, for every ideal $\mathfrak{a}\subset A$ the Jacobson radical of $\mathfrak{a}$ coincides
with the nilradical of $\mathfrak{a}$ . In other words: the intersection of maximal A-ideals
above $\mathfrak{a}$ coincides with the ideal of those elements of $A$ which are nilpotent
modulo $\mathfrak{a}$ . This notion of Jacobson ring is generally considered to be adequate

in order to describe the ideal theoretic situation in connection with the classical
Hilbert Nullstellensatz. Now in our present situation the ring $A$ of holomorphic
functions on $S_{u}^{x}$ is in general not Jacobson. However in view of theorem 2.2
the Jacobson property holds for every finitely generated A-ideal $\mathfrak{a}=A\cdot f_{1}+\cdots$

$+A\cdot f_{m}$ . To see this, we observe that every place $P\in S_{u}^{x}$ determines a maximal
ideal of the holomorphy ring $A$ , namely its center on $A$ , consisting of all those
functions in $A$ which vanish at $P^{4)}$ Therefore, if $g\in A$ is contained in the

3) Some authors use the term ”Hilbert ring” [6].
4) The center $M$ of $P$ on $A$ is indeed maximal. This is because its residue field

$A/M$ is contained in $FP=K$ ; on the other hand $K$ is contained in $A$ and hence $K\subset A/M$ .
It follows $K=A/M$ .
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Jacobson radical of $\mathfrak{a}=A\cdot f_{1}+\cdots+A\cdot f_{m}$ then $g$ vanishes at all common zeros
$P\in S_{u}^{x}$ of the $f_{i}$ ; hence theorem 2.2 implies that $g$ is nilpotent modulo $\mathfrak{a}$ . Let
us dePne a generalized Jacobson ring by the property that for every finitely
generated ideal the Jacobson radical coincides with the nilradical. This is a
generalization in the same direction as Bezout rings are generalized principal
ideal rings, or Pr\"ufer rings are generalized Dedekind rings. In this generalized
sense we thus have the following

COROLLARY TO THEOREM 2.2. The holomorphy ring of every basic set $S_{u}^{x}$

is a generalized Jacobson ring.
In this statement we did not have to exclude the case when $S_{u}^{x}$ is empty.

For in that case the holomorphy ring of $S_{u}^{x}$ is the whole field $F$ and hence,
trivially, a Jacobson ring.

REMARK. In addition to the generalized Jacobson property, the holomorphy
rings of basic sets have the Bezout ProPerty, $i$ . $e$ . every finitely generated ideal
is principal (see theorem 3.3).

Theorem 2.2 will be complemented by the following criterion for $S_{u}^{x}$ to be
non-empty.

THEOREM 2.3. $S_{u}^{x}$ is non-empty if and only if the field $F$ is formally $\mathfrak{p}$ -adic
over $u$ . In particular, taking $ u=x=\emptyset$ we conclude: The Riemann space $S$ of
$F|K$ is non-empty if and only if $F$ is formally p-adic.

We observe that the condition of theorem 2.3 does not depend on $x$ . Hence
if $S_{u}$ is non-empty then $S_{u}^{x}$ is non-empty too, for arbitrary choice of $x$ . Now
we recall that $S_{u}$ is a basic set with respect to the $\mathfrak{p}$ -adic topology of $S$ , and
$S_{u}^{x}=S_{u}\cap S^{x}$ is its intersection with the basic set $S^{x}$ with respect to the Zariski
topology. Hence we obtain the following statement as a corollary to theorem
2.3.

DENSITY THEOREM. Every Zariski-open subset of $S$ is $\mathfrak{p}$ -adically dense in $S$.
If the base field $K$ is a $\mathfrak{p}$ -adic field in the sense of Hensel, hence locally

compact, then the density theorem is already contained in our paper [15]. The
generalization to arbitrary $\mathfrak{p}$ -adically closed fields has been given by R. Transier
in his thesis [16]. However, in this thesis a somewhat different notion of

$\mathfrak{p}$-adically closed field” is used and hence the results of [16] cannot be used
verbatim in the present context; therefore we have chosen to include theorem
2.3 in the present paper. In connection with the density theorem we refer
also to the interesting work of Er\v{s}ov $[5b]$ .

The reader will notice that we have formulated theorems 1.2 and 1.3 in
such a way that they appear entirely similar to theorems 2.2 and 2.3. We are
now going to show that the former can be easily deduced from the latter. So
let us consider the situation of theorems 1.2 and 1.3; we use the notations as
introduced in section 1. In particular $x=(x_{1}, \cdots , x_{n})$ is a generic point over
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$K$ of the variety $V$ and $F=K(x)$ is the function field of $V$. Also, the elements
$u_{j},$

$f_{i},$ $g$ are now supposed to be contained in $K[x]$ . We consider the Riemann
space $S$ of $F|K$ and its basic subset $S^{x}$ . If $P\in S^{x}$ then $x_{i}P\neq\infty(1\leqq i\leqq n)$ .
Hence

$xP=(x_{1}P, \cdots x{}_{n}P)$

is a point of $K^{n}$ . In fact, $xP$ is a specialization of $x$ over $K$ and hence $xP$ is
a K-rational point of the variety $V$. If we assign to every $P\in S^{x}$ the point
$xP\in V(K)$ then we obtain the projection map:

$S^{x}\rightarrow V(K)$ .

If $P\in S_{u}^{x}$ then $P$ satisfies the integrality conditions $v(u{}_{J}P)\geqq 0(1\leqq j\leqq m)$ . Con-
sidering $u_{j}=u_{j}(x)$ as a polynomial expression in $K[x]$ we see that $u{}_{!}P=u_{j}(xP)$ .
This shows that the projection point $xP\in V(K)$ satisfies the integrality condi-
tions $v(u_{j}(xP))\geqq 0$ and hence $xP\in V_{u}(K)$ . Conversely, if $xP\in V_{u}(K)$ then the
same arguments show that $P\in S_{u}^{x}$ . We obtain:

LEMMA 2.4. Aplace $P\in S^{x}$ is contained in $S_{u}^{x}$ if and only if its projection
$xP$ is contained in $V_{u}(K)$ . In other words: $S_{u}^{x}$ is the inverse image of $V_{u}(K)$

with respect to the projection map $S^{x}\rightarrow V(K)$ .
We also have:
LEMMA 2.5. The image of $S_{u}^{x}$ with respect to the projection map contains at

least all simple points of $V_{u}(K)$ .
In other words: If $a$ is a simple K-rational point of $V$ then there exists

a place $P\in S^{x}$ such that $xP=a$ . Equivalently, the specialization $x\rightarrow a$ can be
extended to a K-rational place $P$ of $F|K$ such that $xP=a$ . This is a well
known result from algebraic geometry and holds for arbitrary base fields, not
necessarily $\mathfrak{p}$ -adically closed. For the convenience of the reader we shall include
a proof in the appendix of this paper (see corollary A3).

PROOF OF THEOREM 1.2 (using theorem 2.2). By hypothesis of theorem 1.2
there exists a simple point $a\in V_{u}(K)$ . It follows from lemma 2.5 that $S_{u}^{x}$ is
non-empty. Therefore the hypothesis of theorem 2.2 is satisPed and hence that
theorem may be applied.

First we suppose that $g(x)$ vanishes at all common zeros $a\in V_{u}(K)$ of the
$f_{i}(x)$ . This means that the following statement holds for all $a\in V_{u}(K)$ .

(2.1) $\left\{\begin{array}{l}f_{i}(a)=0\\1\leqq i\leqq r\end{array}\right\}\subset\Rightarrow g(a)=0$ .

In particular this holds for those points $a\in V_{u}(K)$ which are projections of
places $P\in S_{u}^{x}$ . For such points $a$ we have $a=xP$ and hence

$f_{i}(a)=f_{i}P$ , $g(a)=gP$ .
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Using lemma 2.4 we conclude that the following statement holds for all places
$P\in S_{u}^{x}$ .

(2.2) $\left\{\begin{array}{l}f_{i}P=0\\1\leqq i\leqq r\end{array}\right\}t\Rightarrow gP=0$ .

Applying theorem 2.2 we see that some power $g^{N}$ admits a representation

(2.3) $g^{N}=\sum_{1\leqq i\leq r}\lambda_{i}f_{i}$ with $\lambda_{i}\in R_{u}\cdot K[x]$ .

Conversely, assume that some power $g^{N}$ admits a representation of the
form (2.3). By theorem 2.2 this implies statement (2.2) to be valid for all
$P\in S_{u}^{x}$ . Hence statement (2.1) holds for all those points $a\in V_{u}(K)$ which are
projections $a=xP$ of some $P\in S_{u}^{x}$ . In view of lemma 2.5 this includes all
simple points $a\in V_{u}(K)$ . Hence (2.1) holds for all simple points $a\in V_{u}(K)$ .

Q. E. D.
PROOF OF THEOREM 1.3 (using theorem 2.3). First, suppose that $F$ is not

formally $\mathfrak{p}$ -adic over $u$ . By theorem 2.3 it follows that $S_{u}^{x}$ is empty. We con-
clude from lemma 2.5 that there are no simple points in $V_{u}(K)$ .

Conversely, suppose that $F$ is formally $\mathfrak{p}$ -adic over $u$ . By theorem 2.3 there
exists a place $P\in S_{u}^{x}$ . We try to choose $P$ in such a way that its projection
$ a=xP^{\prime}is\llcorner$ simple; if this is done then it follows that $V_{u}(K)$ contains at least
one simple point. Now, the generic point $x$ is simple on $V$. Therefore, writing
down a system of dePning equations for $x$ over $K$ and its Jacobian matrix
$J(x)$ , we see that $J(x)$ has rank $n-d$ where $d$ denotes the dimension of $V$.
Let us choose one nonvanishing $n-d$ minor of $J(x)$ , say $D=D(x)$ . Every point
$a\in V$ with $D(a)\neq 0$ is simple on $V$. Thus we have to look for a place $P\in S_{u}^{x}$

whose projection $a=xP$ satisfies $D(a)=DP\neq 0$ ; putting $y=D^{-1}$ this means
$yP\neq\infty,$ $i$ . $e$ . $P\in S^{y}$ . In other words: $P$ should be contained in $S_{u}^{x}\cap S^{y}=S_{u}^{(x.y)}$

where $(x, y)=(x_{1}, x_{n}, y)$ . Now theorem 2.3 may be applied to $(x, y)$ showing
that $S_{u}^{(x.y)}$ does indeed contain at least on place $P$. Q. E. D.

The proof of theorem 2.1-2.3 will be found in sections 5 and 6. The next
two sections 3 and 4 will be of auxiliary nature, containing a review about
the relevant notions and facts from the theory of formally $\mathfrak{p}$ -adic fields which
we are going to use. Section 7 contains the main theorem on integral definite
functions, deduced as a consequence of theorem 2.3.

3. Generalities on formally $\mathfrak{p}$ -adic fields.

In the general context of this section we consider an arbitrary field $K$,
equipped with a place $P$ and corresponding valuation $v$ subject only to the
following conditions:
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(I) The residue field $K\mathfrak{p}$ is finite, say with $q$ elements.
(II) The value group $v(K)$ admits a smallest positive element, say $v(\pi)$ with

$\pi\in K$.
Every element $\pi\in K$ as in (II) is called a $\mathfrak{p}$ -adic prime element of $K$. In

the following discussion $\pi$ denotes a fixed such prime element, with the under-
standing that the results are independent of the choice of $\pi$ . As usual we
identify the ordered group of integers $Z$ with a subgroup of the value group
$v(K)$ by putting

$v(\pi)=1$

and, consequently, $v(\pi^{n})=n$ for every $n\in Z$. After this identification the
number 1 is the smallest positive element in $v(K)$ and hence $Z$ is an isolated
subgroup of $v(K)$ , in the sense of ordered groups.

It is conceivable that the theory of formally $\mathfrak{p}$ -adic fields admits a setting
in a more general framework where condition (I) or (II) or both are not satis-
fied. However, we shall not discuss this here. We suppose that the base field
$K$ satisfies the conditions (I) and (II). Later in the course of discussion we
shall add a third condition (III) which says that $K$ should be finitely ramified
(section 4).

Consider an extension field $F$ of $K$ and let $\mathfrak{P}$ be a place of $F$ which extends
the given place $P$ of $K$. The $\mathfrak{p}$ -adic residue field $K\mathfrak{p}$ is contained in the $\mathfrak{P}$ -adic
residue field $F\mathfrak{P}$ of $F$, and similarly for the corresponding value groups.

DEFINITION. $\mathfrak{P}$ is called a $\mathfrak{p}$ -place if $F\mathfrak{P}=K\mathfrak{p}$ and moreover, if $\pi$ remains
a $\mathfrak{P}$-adic prime element in $F$.

The second of these conditions may be expressed by saying that $v(\pi)=1$

is the smallest positive element in the $\mathfrak{P}$-adic value group of $F$. Hence in this
sense, $\mathfrak{P}$ is unramified over P.

A criterion for the existence of a $P$-place $\mathfrak{P}$ of $F$ is given by the following

theorem. This theorem refers to the $\mathfrak{p}$ -adic Kochen operator $\gamma(z)$ . The defini-
tion of $\gamma(z)$ has been given in section 1 already, namely:

(3.1) $\gamma(z)=\frac{1}{\pi}\cdot\frac{z^{q}-z}{(z^{q}-z)^{2}-1}$ .

Let $\gamma F$ denote the set of elements $\gamma(z)$ with $z\in F$ such that $\gamma(z)\neq\infty,$ $i$ . $e$ .
$z^{q}-z\neq\pm 1$ . Let $0$ denote the $\mathfrak{p}$ -adic valuation ring of $K$ and consider the ring
$\mathfrak{o}[\gamma F]$ generated by $\gamma F$ over $0$ . If

$\frac{1}{\pi}\not\in 0[\gamma F]$

then the field $F$ is said to be formally $\mathfrak{p}$ -adic. If this is so then there exists a
$P$ -place $\mathfrak{P}$ of $F$, and conversely [12]. More generally, let
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$u=(u_{1}, \cdots u_{m})$

be a finite family of elements in $F$. We are interested in those $\mathfrak{p}$ -places $\mathfrak{P}$ of
$F$ which lie above $u$ . This means that $\mathfrak{P}$ satisfies the integrality conditions

$v_{\mathfrak{P}}(u_{j})\geqq 0$ $(1\leqq j\leqq m)$ ,

$v_{\mathfrak{B}}$ denoting the $\mathfrak{P}$-adic valuation of $F$. In [12] we have studied $\mathfrak{p}$ -places which
lie above a given subring of $F$ ; if we take $\mathfrak{o}[u]$ to be that subring we obtain
the following theorem. For the proof see [12] page 191.

THEOREM 3.1. The necessary and sufficient condition for $F$ to admit a $\mathfrak{p}-$

place over $u$ , is that $\frac{1}{\pi}\not\in \mathfrak{o}[u, \gamma F]$ .

If the condition $\frac{1}{\pi}\not\in 0[\mathcal{U}, \gamma F]$ is satisfied then we say that the field $F$ is

$fo$ rmally $\mathfrak{p}$ -adic over $u^{5)}$ Hence theorem 3.1 can be stated in the following
form:

If $F$ is formally $\mathfrak{p}$ -adic over $u$ then there exists a $P$ -place of $F$, and conversely.
An element $f\in F$ is called totally $\mathfrak{p}$-integral if

$vq\}(f)\geqq 0$

for all $\mathfrak{p}$ -places $\mathfrak{P}$ of $F$. If this holds for all $\mathfrak{p}$ -places $\mathfrak{P}$ over $u$ then $f$ is calIed
totally $P$-integral over $u$ . All these elements $f$ form a subring of $F$, namely
the intersection of the valuation rings $\mathfrak{Q}_{\mathfrak{P}}$ belonging to the $\mathfrak{p}$ -places $\mathfrak{P}$ of $F$

over $u$ . This subring can be described by means of the Kochen ring over $u$

of the field $F$, denoted by $R_{u}$ . As explained in section 1 already, $R_{u}$ is defined
to be a ring of quotients of $\mathfrak{v}[u, \gamma F]$ , as follows.

(3.2) $R_{u}=\{-\frac{t^{\prime}}{-\pi t}1$ with $t,$ $t^{\prime}\in 0[u, \gamma F]\}$ .

THEOREM 3.2. The Kochen ring $R_{u}$ consists precisely of those $f\in F$ which
are totally $\mathfrak{p}$ -integral over $u$ . Hence if $\mathfrak{P}$ ranges over all $P$-places of $F$ over $u$

then
$R_{u}=\bigcap_{\mathfrak{P}}\mathfrak{O}_{\mathfrak{P}}$ .

For the proof of theorem 3.2 we refer to [12] page191. Actually the proof
in [12] uses the additional assumption ,that $F$ is formally $\mathfrak{p}$ -adic over $u$ .
Although this is the main case which we are interested in, it will be necessary
below to use theorem 3.2 also in the exceptional case when $F$ is not formally

5) If the base field $K$ is $\mathfrak{p}$ -adically closed then $0=\gamma K$ (see lemma 4.1). It follows
that $0[u,$ $\gamma F_{J}^{-}=Z[u, \gamma F]$ in this case.
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$P$-adic over $u$ . In this case there are no $\mathfrak{p}$ -places of $F$ over $u$ (theorem 3.1)
and the empty intersection in theorem 3.2 is to be interpreted as being the
whole field $F$. Thus if $F$ is not formally $D$-adic then the assertion of theorem
3.2 says that

(3.3) $R_{u}=F$ .

To see this we observe that $\pi$ is a unit in the ring $0[u, \gamma F]$ since $F$ is not
formally $\mathfrak{p}$ -adic over $u$ . Hence every element $s\in \mathfrak{o}[u, \gamma F]$ is representable in
the form $s=1-t$ with $t\in \mathfrak{o}[u, \gamma F]$ . In view of the definition (3.2) of $R_{u}$ we
conclude: $R_{u}$ is the quotient field of $0[u, \gamma F]$ . That is, we have

$R_{u}=K(u, \gamma F)$ .
From this we deduce the validity of (3.3) with the help of the following lemma:

(3.4) $K(\gamma F)=F$ .
This lemma is of purely field theoretic nature and has nothing to do with the
theory of formally P-adic fields. A proof has been given in Merckel’s thesis
[11] page 59. For the convenience of the reader we shall present another
proof of Merckel’s lemma 3.4 in aPpendix $B$ below.

Theorem 3.2 shows that the Kochen ring $R_{u}$ is the intersection of valuation
rings all of whose residue fields are finite with the same number of elements.
Hence the principal ideal theorem [13] may be applied and yields the following

THEOREM 3.3. The Kochen ring $R_{u}$ is a Bezout ring with $F$ as its field of
quotients. Consequently, every overring of $R_{u}$ in $F$ is a Bezout ring too.

We have mentioned this fact already in the foregoing section.–The follow-
ing theorem gives a characterization of $\mathfrak{p}$ -places over $u$ ; for its proof we refer
to [12] page 189.

THEOREM 3.4. Let $\mathfrak{P}$ be a place of $F$ which extends $P$ . If $\mathfrak{P}$ lies above the
Kochen ring $R_{u}$ then $\mathfrak{P}$ is a $\mathfrak{v}$ -Place over $u$ . The converse is also tnte in view
of theorem 3.2: if $\mathfrak{P}$ is a $\mathfrak{p}$ -Place over $u$ then $\mathfrak{P}$ lies above $R_{u}$ .

Now let us consider those places $P$ of $F$ which lie above $K,$ $i$ . $e$ . which are
trivial on the base field $K$. For such $P$ the residue field $FP$ is an extension of
$K$ There arises the question as to when the residue field $FP$ is formally $\mathfrak{v}-$

adic ? More generally consider our given family $u=(u_{1}, \cdots , u_{m})$ of elements in
$F$. Under which condition is $FP$ formally $P$-adic over $uP=(u{}_{1}P, \cdots , u{}_{m}P)$ ? This
question makes sense only if every $ u{}_{j}P\neq\infty$ . Let us agree to the following
terminology: if we say $FP$ is formally $\mathfrak{p}$ -adic over $uP$ ’ then this should
include the statement that $u{}_{J}P\neq\infty(1\leqq j\leqq m)$ .

THEOREM 3. $5.a$ . If $F|K$ admits a Place $P$ whose residue field $FP$ is formally
$\emptyset$ -adic over $uP$, then $F$ is formally $\mathfrak{p}$ -adic over $u$ .
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THEOREM 3. $5.b$ . Now suPpose $F$ is formally $P$ -adic over $u$ and let $P$ be
any place of $F|K$. The necessary and sufficient condition for $FP$ to be formally
$\mathfrak{p}$ -adic over $uP$ is, that $P$ lies above the Kochen ring $R_{u}$ of $F$ over $u$ . If this
is so then the image $R_{u}\cdot P$ coincides with the Kochen ring $FP$ over $uP$ .

The last contention can be expressed by the formula

$R_{u}(F)\cdot P=R_{uP}(FP)$

where we have written more precisely $R_{u}(F)$ to denote the Kochen ring of $F$

over $u$ , and similarly for $FP$ over $uP$.
PROOF OF THEOREM 3.5. $a$ .
(i) We have to show that $\pi$ is not a unit in the ring $c[u, \gamma F]$ . We com-

pare this ring with the corresponding ring in $FP$. We shall show below in
(ii) that

(3.5) $(\gamma F)\cdot P=\gamma(FP)$

and hence

(3.6) $\mathfrak{o}[u, \gamma F]\cdot P=\mathfrak{o}[uP, \gamma(FP)]$ .

Now if $\frac{1}{\pi}$ were contained in $\mathfrak{o}[u, \gamma F]$ then from (3.6)

$(\frac{1}{\pi})P=\frac{1}{\pi}\in \mathfrak{o}[uP, \gamma(FP)]$

contradicting the fact that $FP$ is formally $\mathfrak{p}$-adic over $P$.
(ii) It remains to prove (3.5). For every $z\in F$ we have

(3.7) $\gamma(z)\cdot P=\gamma(zP)$

with the understanding that some of the terms in this formula may have the
value $\infty$ ; in this case the usual rules apply concerning the calculus with the
symbol $\infty$ . On the other hand we recall that the definition of $\gamma F$ excludes the
value $\infty,$

$i$ . $e$ . $\gamma F$ consists of the elements of the form $\gamma(z)$ with $z\in F$ and $\gamma(z)$

$\neq\infty$ . Similarly, in the dePnitions $FP$ and $\gamma(FP)$ the value $\infty$ is excluded.
Therefore, in order to deduce (3.5) from (3.7) we have to discuss carefully the
possible appearance of $\infty$ in (3.7).

Let $z\in F$ sucb that $ zP\neq\infty$ and $\gamma(zP)\neq\infty$ . Then $\gamma(zP)$ is a typical element
in $\gamma(FP)$ . From (3.7) we conclude that $\gamma(z)\neq\infty$ , hence $\gamma(z)\in\gamma F$, and that $\gamma(zP)$

$=\gamma(z)\cdot P\in(\gamma F)\cdot P$. Hence
$\gamma(FP)\subset(\gamma F)\cdot P$ .

More precisely, we have shown that

$\gamma(FP)=(\gamma X)\cdot P$
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where $X$ denotes the subset of $F$ given by:

$X=\{z\in F:zP\neq\infty, \gamma(zP)\neq\infty\}$ .

It remains to show that for $z\in F\backslash X$, we still have $\gamma(z)\cdot P\in\gamma(FP)$ .
If $ zP=\infty$ then $\gamma(zP)=0$ since the denominator of the rational function $\gamma$ is

of larger degree than its numerator. On the other hand $0=\gamma(1)$ by dePnition
of $\gamma$ . Hence we conclude from (3.7) that $\gamma(z)\cdot P=0=\gamma(1)\in\gamma(FP)$ in this case.

Thus we may assume that $ zP\neq\infty$ . In this case we claim that $\gamma(zP)\neq\infty$ ,
$i$ . $e$ . that $z$ actually lies in $X$. Let us put $a=zP$. Suppose $\gamma(a)=\infty$ ; then
$a^{q}-a=\pm 1$ . Since $FP$ is formally $\mathfrak{p}$ -adic (by hypothesis) there exists a $\mathfrak{p}$ -place
of $FP$ ; let $\overline{a}$ denote the image of $a$ with respect to that $\mathfrak{p}- place$ . From $a^{q}-a$

$=\pm 1$ we conclude that $\overline{a}\neq\infty$ and $\overline{a}^{q}-\overline{a}=\pm 1$ . But this contradicts the fact that
the residue field of the $\mathfrak{p}$ -place has $q$ elements and hence $\overline{a}^{q}-\overline{a}=0$ . Hence
indeed $\gamma(zP)\neq\infty$ as asserted. Q. E. D.

PROOF OF THEOREM 3.5. $b$ .
(i) First we assume that $FP$ is formally $\emptyset$ -adic over $uP$ ; then we know

from the above proof that (3.6) holds. We claim that $P$ lies above $R_{u}$ . Con-
sider a typical element of $R_{u}$

$z=\frac{s}{1-\pi t}$

where $s,$ $t\in 0[u, \gamma F]$ . From (3.6) we infer that $sP,$ $tP\in 0[uP, \gamma(FP)]$ . More-
over, since $F$ is formally $\mathfrak{p}$ -adic over $uP$ it follows that $tP\neq\pi^{-1}$ and hence
$1-\pi\cdot tP\neq 0$ . Therefore

(3.8) $ zP=\frac{sP}{1-\pi\cdot tP}\neq\infty$ .

This holds for arbitrary $z\in R_{u}$ . In other words: $R_{u}$ is contained in the valu-
ation ring $\mathfrak{Q}_{P}$, which is to say that $P$ lies above $R_{u}$ .

Moreover, from (3.6) we see that the right hand side of (3.8) is a typical
element of the Kochen ring of $FP$ with respect to $uP$. Hence that Kochen
ring coincides with the image $R_{u}\cdot P$ of $R_{u}$ .

(ii) Conversely, we now assume that $P$ lies above $R_{u}$ . We claim that $FP$

is formally $\mathfrak{p}$ -adic over $uP$. We cannot yet use (3.6) since in the proof of that
formula we had assumed $FP$ to be formally $\mathfrak{p}$ -adic over $uP$. However from
(3.7) we see that in any case, every element $\gamma(zP)\in\gamma(FP)$ admits an inverse
image in $\gamma F$, namely $\gamma(z)$ . Accordingly every element $\overline{t}\in \mathfrak{o}[uP, \gamma(FP)]$ admits
an inverse image $t\in D[u, rF]$ such that

$tP=f$ .
We have $1-\pi t\neq 0$ since otherwise $t=\frac{1}{\pi}\in \mathfrak{o}[u, \gamma F]$ , contradicting the hypo-
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thesis that $F$ is formally tO-adic over $u$ . Moreover $1-\pi t$ is a unit in $R_{u}$ , by
the very definition of the Kochen ring. Since $P$ lies above $R_{u}$ it follows that
$1-\pi t$ is a unit in the valuation ring $\mathfrak{Q}_{P}$ . Hence

$(1-\pi t)\cdot P=1-\pi f\neq 0$ .

This holds for arbitrary $\overline{t}\in 0[uP, \gamma(FP)]$ . We conclude that $\frac{1}{\pi}\not\in 0[uP, \gamma(FP)]$

$i$ . $e$ . that $FP$ is formally $0$ -adic over $uP$. Q. E. D.
Now we consider the K-rational Places $P$ of $F|K$. By definition we have

$FP=K$. Under which condition is $K$ formally tO-adic over $uP$ ? According to
theorem 3.1 this is the case if and only if there exists a $\mathfrak{p}$ -place of $K$ over $uP$.
But the base field $K$ admits only one $\mathfrak{p}$ -place, namely $\mathfrak{p}$ itself. Hence the place

$\mathfrak{p}$ should lie above $uP$ which means that

$v(u{}_{j}P)\geqq 0$ $(1\leqq j\leqq m)$ .

Therefore we obtain from theorems 3.5 the following

COROLLARY 3.$6.a$ . If $F|K$ admits a K-rational Place $P$ satisfying the inte-
grality conditions

$v(u{}_{j}P)\geqq 0$ $(1\leqq j\leqq m)$

then $F$ is formally $\mathfrak{p}$ -adic over $u$ .
COROLLARY 3.$6.b$ . Now suppOse $F$ is formally $\mathfrak{p}$ -adic over $u$ and let $P$ be

any K-rational place of $F|K$. The necessary and sufficient condition for $P$ to
satisfy the above integrality condition is, that $P$ lies above the Kochen ring $R_{u}$ .
If this is so then $R_{u}\cdot P=0$ .

Now let us consider a ring of the form

$R_{u}\cdot K[x]$

where $u=(u_{1}, \cdots , u_{m})$ is as above and $x=(x_{1}, \cdots , x_{n})$ is another family of
elements in $F$. Such rings are of interest in view of our discussion in the
foregoing sections. From theorem 3.3 we infer that $R_{u}\cdot K[x]$ is a Bezout
ring ; in particular it is integrally closed in $F$. Therefore $R_{u}\cdot K[x]$ is the
intersection of the valuation rings $\mathfrak{Q}_{P}$ of the places $P$ of $F$ lying above $R_{u}\cdot K[x]$ .
These places $P$ can be characterized as follows. First, $P$ has to lie above $K$

which is to say that $P$ has to be a place of $F$ over $K$. Secondly, $P$ has to lie
above $R_{u}$ which by theorem 3. $5.b$ means that $FP$ has to be formally $\mathfrak{p}$ -adic
over $uP$. Thirdly, $P$ has to lie above $x$ . We obtain:

THEOREM 3.7. SuppOse $F$ to be formally $\mathfrak{p}$ -adic over $u$ . A place $P$ of $F|K$

lies above $R_{u}\cdot K[x]$ if and only if $P$ lies above $x$ and the residue field $FP$ is
formally $P$-adic over $uP$. If $P$ ranges over all places of $F|K$ with these pro-
perties then
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$R_{u}\cdot K[x]=\bigcap_{P}\mathfrak{Q}_{P}$ .

Again, let us specialize this statement considering K-rational places only.
In view of corollaries 3.6 we obtain:

COROLLARY 3.8. $SuPPoseF$ to be formally $\mathfrak{p}$ -adic over $u$ . A K-rational
place $P$ of $F|K$ lies above $R_{u}\cdot K[x]$ if and only if it satisfies simultaneously the
holomorPhy conditions

$ x{}_{i}P\neq\infty$ $(1\leqq i\leqq n)$

and the integrality conditions

$v(u{}_{j}P)\geqq 0$ $(1\leqq j\leqq m)$ .

If $P$ ranges over all K-rational places with these Properties then

$R_{u}\cdot K[x]\subset\bigcap_{P}\mathfrak{O}_{P}$ .

In general it cannot be expected that the equality sign holds in tbe last
formula. Theorem 2.1 contends that under certain additional hypotheses the
equality sign indeed holds. These additional hypotheses are twofold: the first
is about the structure of the field extension $F|K$ ; it is required that $F$ is
Pnitely generated over $K$ In other words: $F|K$ should be an algebraic function
field. The second hypothesis is concerned with the structure of the $P$-adic
base field $K$ ; it is required that $K$ is $\mathfrak{p}$ -adically closed and of finite ramification.
These notions will be explained in the next section.

4. $\mathfrak{p}$ -adically closed fields of finite ramification.

We consider the same situation as in the foregoing section 3. That is, $K$

is a field equipped with a place $\mathfrak{p}$ satisfying the conditions (I) and (II) of section
3. $F$ is an extension field of $K$

DEFINITION. $F$ is said to be $\mathfrak{p}$ -adically closed if $F$ is formally $\mathfrak{p}$ -adic, and
if there does not exist any proper algebraic formally $\mathfrak{p}$ -adic field extension of $F$.

Some properties of $\mathfrak{p}$ -adically closed fields are stated in the following lemma.
LEMMA 4.1. SuPpose $F$ is $\mathfrak{p}$ -adically closed. Then:
(i) there is one and only one $P$ -place $\mathfrak{P}$ of $F$ ;
(ii) $F$ is Henselian with respect to $\mathfrak{P}$ ;
(iii) the $\mathfrak{P}$-adic valuation ring $\mathfrak{Q}_{\mathfrak{P}}$ is given by $\mathfrak{Q}_{\mathfrak{P}}=\gamma F$ ;
(iv) the $\mathfrak{P}$-adic value group $\Gamma=v_{\mathfrak{P}}(F)$ is a $Z$-group in the sense that the

factor group $\Gamma|Z$ is divisible.
REMARK. It follows from the definition of $\mathfrak{p}$ -place that the additive group

$Z$ is embedded into the value grouP $\Gamma$ as an isolated subgrouP, the value of the
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prime element $\pi$ being $1\in Z$. The divisibility property of $\Gamma/Z$ is equivalent to
saying that for every natural number $n\in N$ the factor group $\Gamma/n$ is of order
$n$ , and that its cosets are uniquely represented by $0,1,$ $\cdots$ , $n-1$ . This last
Property is usually taken as the definition for $\Gamma$ to be a Z-group.

PROOF OF LEMMA 4.1.
(i) Since $F$ is formally $\mathfrak{p}$ -adic we infer from theorem 3.1 that there exists

at least one $\mathfrak{p}$-place of $F$. For any $\mathfrak{p}$ -place $\mathfrak{P}$ of $F$ we are going to prove the
validity of statements $(ii)-(iv)$ ; in particular it follows from (iii) that $\mathfrak{P}$ is uni-
quely determined (up to equivalence of places).

(ii) Let $F^{\prime},$ $\mathfrak{P}^{\prime}$ denote the Henselization of $F,$ $\mathfrak{P}$ . Then $F^{\prime}$ is a certain
algebraic and separable field extension of $F$, and $\mathfrak{P}^{\prime}$ is a place of $F^{\prime}$ which
extends $\mathfrak{P}$ . Moreover $\mathfrak{P}^{\prime}$ is an immediate extension of $\mathfrak{P}$ , which is to say that
the residue fields and the value groups of $\mathfrak{P}^{\prime}$ and of $\mathfrak{P}$ coincide. From this we
conclude that $\mathfrak{P}^{\prime}$ is a $\mathfrak{p}$ -place too, for the definition of $p$-place refers to the
residue field and the value group only. Thus we see that the field $F^{\prime}$ admits
a $\mathfrak{p}$ -place and hence $F^{\prime}$ is formally $\mathfrak{p}$ -adic (theorem 3.1). We conclude $F^{\prime}=F$

since $F$ is $\mathfrak{p}$ -adically closed.
(iii) If $a\in \mathfrak{O}_{\mathfrak{P}}$ then the equation

$a=\gamma(z)=\frac{1}{\pi}\cdot\frac{z^{q}-z}{(z^{q}-z)^{2}-1}$

has a solution $z\in \mathfrak{Q}_{\mathfrak{P}}$ ; this is immediate from Hensel’s lemma. Hence $\mathfrak{Q}_{\mathfrak{P}}\subset\gamma F$.
On the other hand theorem 3.2 implies that $\gamma F\subset \mathfrak{Q}_{\mathfrak{P}}$ . It follows $\gamma F=\mathfrak{Q}_{\mathfrak{P}^{6)}}$.

(iv) If $\Gamma/Z$ were not divisible then there would exist an element $\alpha\in\Gamma$

and a prime number $n$ such that $\alpha$ is not n-divisible in $\Gamma$ modulo $Z$. In this
situation we can construct a formally $\mathfrak{p}$ -adic field extension $F^{\prime}\supset F$ of degree $n$ ,
contradicting the fact that $F$ is $P$ -adically closed. The construction of $F^{\prime}$ is as
follows:

Let $a\in F$ be such that $ v_{\mathfrak{P}}(a)=\alpha$ and let $b$ be an n-th root of $a$ . Let us
put $F^{\prime}=F(b)$ . Then $[F^{\prime} : F]\leqq n$ . Let $\mathfrak{P}^{\prime}$ be a place of $F^{\prime}$ which extends $\mathfrak{P}$ ,
and put $\beta=v_{\mathfrak{P}},(b)$ . Then $\beta$ is contained in the value group $\Gamma^{\prime}=v_{\mathfrak{P}\prime}(F^{\prime})$ . From
$b^{n}=a$ it follows $ n\beta=\alpha$ . Since $\alpha$ is not n-divisible in $\Gamma$ and $n$ is a prime
number we conclude that $\beta$ is of order $n$ modulo $\Gamma$ Hence

(4.1) $[\Gamma^{\prime} : \Gamma]\geqq n\geqq[F^{\prime} : F]$ .
On the other hand it is known from general valuation theory that the index
of value groups is not Iarger than the field degree. We conclude

6) For later use we observe from this proof that the equation $\mathfrak{O}_{\mathfrak{P}}=\gamma F$ holds
whenever $F$ is Henselian with respect to $\mathfrak{P}$ .
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(4.2) $[\Gamma^{\prime} : \Gamma]=n=[F^{\prime} : F]$ .

Moreover it follows that $\mathfrak{P}^{\prime}$ is the only extension of $\mathfrak{P}$ to $F^{\prime}$ and that the
residue field of $\mathfrak{P}^{\prime}$ coincides with the residue field of $\mathfrak{P}$ . We claim that $\mathfrak{P}^{\prime}$ is
a $\mathfrak{p}$ -place; for this it remains to show that 1 is the smallest positive element
in the $\mathfrak{P}^{\prime}$ -adic value group $\Gamma^{\prime}$ . Suppose that there exists $\xi\in\Gamma^{\prime}$ such that
$0<\xi<1$ ; then $0<n\xi<n$ . From (4.2) it follows that $ n\xi\in\Gamma$ Since $Z$ is isolated
in $\Gamma$ we conclude that $n\xi=m\in Z$. On the other hand, since $\beta$ is of order $n$

modulo $\Gamma$ it follows from (4.2) that $\beta$ generates $\Gamma^{\prime}$ modulo $\Gamma$ ; hence $\xi$ is re-
presented in the form $\xi=k\beta+\omega$ with $\omega\in\Gamma$ and $k\in Z,$ $0<k<n$ . (We have $k\neq 0$

since $\xi\not\in\Gamma$ ) It follows $ n\xi=m=k\alpha+n\omega$ . From this we see that $ k\alpha$ and hence
$\alpha$ is n-divisible in $\Gamma$ modulo $Z$, contrary to the choice of $\alpha$ . (Observe that $n$ is
a prime number, hence $k$ is relatively prime to $n$ because $0<k<n.$)

We have seen that $\mathfrak{P}^{\prime}$ is a $\mathfrak{p}$ -place of $F^{\prime}$ . From theorem 3.1 we conclude
that $F^{\prime}$ is formally $\mathfrak{p}$ -adic, as contended. Q. E. D.

Now assume $F$ to be formally $\mathfrak{p}$ -adic (not necessarily closed). Among the
algebraic extension fields $F^{\prime}$ of $F$ which are formally $\mathfrak{p}$ -adic there exists a
maximal one by Zorn’s lemma; this is called the $\mathfrak{p}$ -adic closure of $F$. In general
it is not unique. If $\mathfrak{P}$ is a given $\mathfrak{p}$ -place of $F$ then there exists a P-adic
closure $F^{\prime}$ whose canonical $P$-place $\mathfrak{P}^{\prime}$ extends $\mathfrak{P}$ . To show this we may
replace $F,$ $\mathfrak{P}$ by its Henselization, in other words: we may assume that $F,$ $\mathfrak{P}$ is
Henselian. But then we have $\mathfrak{Q}_{\mathfrak{P}}=\gamma F$ and hence $\mathfrak{P}$ is the only $\emptyset$ -place of $F$

(see footnote 6)). If $F^{\prime}$ is an arbitrary $\mathfrak{p}$ -adic closure of $F$ then its $\mathfrak{p}$ -place $\mathfrak{P}^{\prime}$

induces a $\mathfrak{p}$-place in $F$ which, by the above uniqueness property, must coincide
with $\mathfrak{P}$ . Hence $\mathfrak{P}^{\prime}$ extends $\mathfrak{P}$ . We have shown:

LEMMA 4.2. Let $\mathfrak{P}$ be a $\mathfrak{p}$ -Place of F. Then there exists a $P$ -adic closure
$F^{\prime}$ of $F$ whose canonical place $\mathfrak{P}^{\prime}$ is an extension of $\mathfrak{P}$

Now we come to the description of the main theorem which governs the
theory of $\mathfrak{p}$ -adically closed fields. As to our present knowledge, this theorem
is restricted to the case of finitely ramified fields. This means that $K$ should
satisfy condition (III) below, in addition to conditions (I) and (II) as stated in
section 3 already. For convenience let us repeat conditions (I) and (II) so that
all three conditions are now listed together.

(I) The residue field $K\mathfrak{p}$ is finite, say with $q$ elements.
(II) The value group $v(K)$ admits a smallest positive element, say $v(\pi)$ with

$\pi\in K$.
(III) The value $v(p)$ of the residue characteristic $P$ is a multiple of $v(\pi)$ ,

say $v(P)=e\cdot v(\pi)$ with $e\in N$.
The integer $e$ as in (III) is called the ramification degree of the field $K$.

After the identiPcation $v(\pi)=1$ (as explained in section 3) we have
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$v(p)=e$ .

Condition (III) implies that $K$ is of characteristic zero. For otherwise $p=0$ in
$K$ and hence $ v(P)=+\infty$ , contradicting (III).

From now on we suppose that $K$ is finitely ramified in the above sense.
We observe that any formally $\mathfrak{p}$ -adic field extension $F$ of $K$ is again finitely
ramified, with respect to each $\mathfrak{p}$ -place $\mathfrak{P}$ of $F$. This is evident because the
condition (III) concerns the residue characteristic $p$ and a prime element $\pi$ of
$K$ only; both $P$ and $\pi$ keep their meaning in $F$ with respect to $\mathfrak{P}$ . Hence (III)
implies

$v_{\mathfrak{P}}(P)=e\cdot v_{\mathfrak{P}}(\pi)=e$

showing that $F,$ $\mathfrak{P}$ is indeed Pnitely ramified. Moreover, we see that the $\mathfrak{P}-$

adic ramification degree of $F$ coincides with the $\mathfrak{p}$ -adic ramification degree $e$ of
the base field $K$ Now the main theorem reads as follows:

THEOREM 4.3. Let $F^{\prime},$ $F^{\prime}$ be two $\mathfrak{p}$ -adically closed extension fields of K. If
$F^{\prime}\subset F$ then $F$ is an elementary extension of $F^{\prime}$ .

This means that if $\Sigma\cdot is$ any sentence about $F^{\prime}$ as a valued field then $\Sigma$

holds in $F^{\prime}$ if and only if $\Sigma$ holds in $F$“. It is assumed that $\Sigma$ is expressed in
a formal language of lower predicate calculus; its vocabulary consists of the
relations belonging to the theory of valued fields, and of names for the indi-
vidual elements of $F^{\prime}$ .

The above theorem is called the model-completeness theorem because is
expresses the fact that the theory of $\mathfrak{p}$-adically closed fields (of given residue
degree $q$ and ramification degree e) is model-complete. In case of unramified
fields $(e=1)$ the model completeness theorem was proved by Ax and Kochen
and, independently, by Er\v{s}ov. For a proof in the general case we refer to
Er\v{s}ov $[5a]$ or Ziegler [20] or Weispfenning [17] or Basarab [3].

We shall aPply theorem 4.3 in the following version which evidently is
equivalent to the theorem itself.

COROLLARY 4.4. SuPpose that the base field $K$ is $\mathfrak{p}$ -adically closed. Then
every $\mathfrak{p}$ -adically closed field $F^{\prime}\supset K$ is an elementary extension of $K$, in the sense
of valued fields.

REMARK 4.5. The most prominent example of $\mathfrak{p}$ -adically closed fields are
those which are locally compact with respect to the given valuation. Locally
compact fields of characteristic zero are finitely ramified; they can be charac-
terized as the completions of finite algebraic number fields with respect to a
nonarchimedean valuation.
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5. Existence theorems for rational places.

We are now returning to the situation of section 2. In preparation of our
proof of the three main theorems 2.1-2.3 we are going to prove two existence
theorems for rational places (theorems 5.1 and 5.4). We consider the following
situation.
K $P$-adically closed field of finite ramification
$v$ the canonical valuation of $K$

$F|K$ an algebraic function field, $i.e$ . a finitely generated field extension
$x$ $=(x_{1}, \cdots , x_{n})$ a finite family of elements in $F$

$u$ $=(u_{1}, \cdots , u_{m})$ ditto.
THEOREM 5.1. SuPpose $F$ to be formally $P$ -adic over $u$ . Then there exists

a K-rational place $P$ of $F|K$ satisfying simultaneously the holomorphy conditions

$ x{}_{i}P\neq\infty$ $(1\leqq i\leqq n)$

and the integrality conditions

$v(u{}_{J}P)\geqq 0$ $(1\leqq j\leqq m)$ .
Hence $S_{u}^{x}$ is non-empty.

Here $S_{u}^{x}$ denotes the basic subset of the Riemann space $S$ of $F|K$ deter-
mined by the above holomorphy and integrality conditions; this notation has
been introduced in section 2.

PROOF.
(i) Let $x^{\prime}$ be a finite family of elements in $F$ containing $x$ . If the

theorem is true for $x^{\prime}$ and $u$ then clearly, it is also true for $x$ and $u$ . Hence
in order to prove the theorem we may replace $x$ by $x^{\prime}$ if convenient. In
other words: we may enlarge $x$ by adding finitely many more elements of $F$.
After suitable such enlargement we may assume, Prstly, that $x$ generates the
field $F$ over $K$ :

$F=K(x)$ .
Let $V$ denote the irreducible variety over $K$ whose generic point is $x=(x_{1},$ $\cdots$ ,
$x_{n})$ . Thus $V$ is an affine variety in n-space and $F$ is the function field of $F$.
Secondly, we may assume that every $u_{j}$ appears among the $x_{i}$ . After suitable
renumbering of the $x_{i}$ we may then assume that $u=(u_{1}, \cdots , u_{m})$ consists of
the first $m$ coordinates of $x$ . Thus we have $m\leqq n$ and

$u_{j}=x_{j}$ $(1\leqq j\leqq m)$ .
(ii) By hypothesis of the theorem $F$ is formally $\mathfrak{p}$ -adic over $u$ . Hence

there exists a $\mathfrak{p}$ -place $\mathfrak{P}$ of $F$ over $u$ (theorem 3.1). Let $F^{\prime}$ be a $\mathfrak{p}$ -adic closure
of $F$ whose canonical $\mathfrak{p}$ -place $\mathfrak{P}^{\prime}$ lies above $\mathfrak{P}$ (lemma 4.2). Then $\mathfrak{P}^{\prime}$ lies above
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$u$ , which is to say that $v^{\prime}(u_{j})\geqq 0(1\leqq j\leqq m)$ . Here $v^{\prime}$ denotes the $\mathfrak{P}^{\prime}$-adic valu-
ation of $F^{\prime}$ . Since $u_{j}=x_{j}$ we may write this in the form

$v^{\prime}(x_{j})\geqq 0$ $(1\leqq j\leqq m)$ .
In other words: the first $m$ coordinates of the point $x\in V$ are $\mathfrak{P}^{\prime}$-adically
integral in $F^{\prime}$ . Observe that $X$ is a simple point of $V$ since $x$ is generic in $V$

over $K$. Hence we see that the following statement holds over the p-adically
closed field $F^{\prime}$ :

$(\Sigma^{\prime})$ There exists an F’-rational simple Point in $V$ whose first $m$ coordinates are
integral.

We envisage $V$ as being defined by a finite system of polynomial equations
over $K$. The condition for a point to be simple on $V$ can be expressed by
saying that at least one of the proper minors of the Jacobian matrix does not
vanish. Hence we see that the above statement can be expresse $d$ in formal
language of lower predicate calculus, the vocabulary of that language belonging
to the theory of valued fields and containing constants for the individual
elements of $K$

(iii) At this point we use the model completeness theorem 4.4. Con-
sequently, since the above statement holds over some $\mathfrak{p}$-adically closed field $F^{r}$

it also holds over the $\mathfrak{p}$ -adically closed base field $K$. We conclude:

$(\Sigma)$ There exists a K-rational simple point in $V$ whose first $m$ coordinates are
integral.

Let $a=(a_{1}, \cdots , a_{n})\in V(K)$ be such point. Then $a$ is a specialization of $x$ over
$K$ Since $a$ is simple on $V$ it follows that the specialization $x\rightarrow a$ can be ex-
tended to a K-rational place $P$ of $F$ (see appendix, lemma A3). We now have
$a=xP$. In particular,

$ x{}_{t}P=a_{i}\neq\infty$ $(1\leqq i\leqq n)$

which means that $P$ satisfies the holomorphy conditions of the theorem. Con-
sidering the first $m$ coordinates we have $u{}_{J}P=x{}_{J}P=a_{j}(1\leqq j\leqq m)$ . By con-
struction, the first $m$ coordinates $a_{1},$

$\cdots$ , $a_{m}$ are integral in $K$ Hence

$v(u{}_{J}P)=v(a_{j})\geqq 0$ $(1\leqq j\leqq m)$

showing that $P$ satisfies the integrality conditions too. Q. E. D.
REMARK 5.2. The above proof is the only instance in this paper where the

model completeness theorem is used. All other arguments are independent of
general model theory.

REMARK 5.3. If the base Peld $K$ is locally compact and of characteristic
zero then a different proof of theorem 5.1 has been given in [15] theorem 1.4.
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That proof is based on compactness arguments and does not use the model
completeness theorem. In view of remark 5.2 we see that the present paper
does also yield a “classical” proof of the Nullstellensatz, without using model
theory, in the case of locally compact base fields of characteristic zero.

Now we turn to the second existence theorem. This will be a direct gener-
alization of the first existence theorem 5.1, and both theorems could have been
proved simultaneously. The reason why we have preferred to separate these
two theorems is given in remark 5.2; we wanted to localize that part of our
proof where the model completeness theorem is used. The proof of theorem
5.4 will be a straightforward deduction from theorem 5.1, without resorting
once more to arguments from general model theory.

THEOREM 5.4. In the same situation as in theorem 5.1, suppOse again that
$F$ is fomally $\mathfrak{p}$ -adic over $u$ . Given any element $y\in R_{u}\cdot K[x]$ which is not a
unit in $R_{u}\cdot K[x]$ there exists a K-rational place $P\in S_{u}^{x}$ such that

$yP=0$ .

In $0$ ther words: $y$ admits at least one zero in $S_{u}^{x}$ .
PROOF.
(i) Since $y$ is not a unit there exists a maximal ideal $M\subset R_{u}\cdot K[x]$

containing $y$ . Applying the general existence theorem for places we conclude
that there exists a place $Q$ of $F$ lying above $R_{u}\cdot K[x]$ which is centered at
$M$. This means that every element in $M$ vanishes at $Q$ . In particular

$yQ=0$ .
By construction $Q$ lies above $K$ and hence the residue field $FQ$ contains an
isomorphic copy of $K$ After identifying $K$ naturally with its isomorphic copy
we may assume that $K\subset FQ$ . Moreover $Q$ does now aPpear as a place over $K$

Since $Q$ lies above $R_{u}$ it follows from theorem 3. $5.b$ that its residue field
$FQ$ is formally $\mathfrak{p}$ -adic over $uQ$ . Moreover we know that $Q$ lies above $x$ which
implies that $xQ=(x_{1}Q, \cdots , x_{n}Q)$ is a finite family of elements in $FQ$ .

(ii) If the residue field $FQ$ is finitely generated over $K$ then we may
apply theorem 5.1 to $FQ$ and the families of elements $xQ,$ $uQ$ in $FQ$ . It
follows that there exists a K-rational place $\overline{P}$ of $FQ|K$ satisfying the holomorphy
and integrality conditions

$ x_{i}Q\cdot\overline{P}\neq\infty$ , $v(u_{j}Q\cdot\overline{P})\geqq 0$ .
Consider the composite place

$P=Q\circ\overline{P}$ .

This is a K-rational place of $F|K$ satisfying the holomorphy and integrality
conditions
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$ x{}_{i}P\neq\infty$ , $v(u_{j}P)\geqq 0$ .
Moreover we have

$yP=yQ\cdot\overline{P}=0$ .
Hence $P$ solves the conditions of the theorem.

(iii) If $FQ|K$ is not finitely generated we try to replace the above place
$Q$ by some other place $Q^{\prime}$ of $F|K$ whose residue field is finitely generated; in
addition $Q^{\prime}$ should satisfy the same conditions hs $Q$ . More precisely, we re-
quire that

(5.1) $uQ^{\prime}=uQ$ , $xQ^{\prime}=xQ$ , $yQ^{\prime}=yQ$

and

(5.2) $FQ^{\prime}\subset FQ$ .

Recall that $FQ$ is formally $\mathfrak{p}$ -adic over $uQ$ ; this property is inherited by every
subfield of $FQ$ which contains $K$ and $uQ$ . Therefore we conclude from (5.1)
and (5.2) that $FQ^{\prime}$ is formally $\mathfrak{p}$ -adic over $uQ^{\prime}$ ; this is equivalent to saying
that $Q^{\prime}$ lies above $R_{u}$ (theorem 3. $5.b$). Moreover, it follows from (5.1) that $Q^{\prime}$

lies above $x$ ; we conclude that $Q^{\prime}$ lies above $R_{u}\cdot K[x]$ . Finally, the last
relation in (5.1) shows that $yQ^{\prime}=0$ .

Thus we have reduced our problem to the existence of a place $Q^{\prime}$ of $F|K$

satisfying (5.1) and (5.2) and such that $FQ^{\prime}$ is finitely generated over $K$ If
such $Q^{\prime}$ has been found then the arguments of part (ii) may be applied to $Q^{\prime}$

instead of $Q$ , yielding a K-rational place of $F|K$ with the required properties.
Now the existence of $Q^{\prime}$ is guaranteed by the following lemma which is well
known from algebraic geometry.

LEMMA 5.5. Let $F|K$ be an arbitrary algebraic function field of characteristic
zero. Let $x=(x_{1}, \cdots , x_{n})$ be a finite family of elements in $F$ and suppOse there
exists a place $Q$ of $F|K$ such that $x_{i}Q\neq\infty(1\leqq i\leqq n)$ . Then there exists a place
$Q^{\prime}$ of $F|K$ such that

$xQ^{\prime}=xQ$

and
$FQ^{\prime}\subset FQ$

and moreover, $FQ^{\prime}$ is finitely generated over $K$.
Notice that in the statement of this lemma we have slightly changed no-

tation: instead of writing $(u, x, y)$ as in condition (5.1) we have written $x$ in
lemma 5.5 in order to simplify the notation.

PROOF OF LEMMA 5.5. Let $x^{\prime}$ be a finite family of elements in the valu-
ation ring $\mathfrak{Q}_{Q}$ such that $x^{\prime}$ contains $x$ . If the lemma holds for $x^{\prime}$ then clearly,
it also holds for $x$ . Hence we may replace $x$ by $x^{\prime}$ if convenient. In other
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words: In order to prove lemma 5.5 we may enlarge $x$ by adding finitely many
elements of $\mathfrak{Q}_{Q}$ . After suitable such enlargement we may assume, firstly that
$x$ generates the function field $F|K,$ $i$ . $e$ .

$F=K(x)$ .

Let $V$ denote the irreducible variety over $K$ whose generic point is $x=(x_{1},$ $\cdots$ ,
$x_{n})$ . Thus $V$ is an affine variety in n-space and $F$ is the function field of $V$.
The place $Q$ is centered on $V$ at the point $xQ=(x_{1}Q, \cdots , x_{n}Q)$ . Secondly,
after further suitable enlargement of $x$ we may assume that $xQ$ is a simple
point of $V$. This is the content of Zariski’s local uniformization theorem which
holds over an arbitrary base Peld of characteristic zero [19].

Let us put $a=xQ$ . Since $a$ is a simple point on $V$, the specialization $x\rightarrow a$

can be extended to a place $Q^{\prime}$ of $F|K$ such that

$FQ^{\prime}=K(a)$

(see appendix, lemma A2). This shows that $FQ^{\prime}$ is finitely generated over $K$

Moreover we have by construction

$xQ^{\prime}=a=xQ$ . Q. E. D.

6. Proof of the three main theorems.

We consider the situation of theorems 2.1-2.3 and we use the notation as
introduced there.

PROOF OF THEOREM 2.1. We have proved already in corollary 3.8 that

(6.1) $R_{u}\cdot K[x]\subset\bigcap_{P}\mathfrak{O}_{P}$

where $P$ ranges over the places in $S_{u}^{x}$ . Hence every $z\in R_{u}\cdot K[x]$ is holomor-
phic on $S_{u}^{x}$ . We have to show that the equality sign holds in (6.1). Let us
first deal with the (trivial) case that $F$ is not formally $\mathfrak{p}$ -adic over $u$ . In this
case we know from (3.3) that $R_{u}=F$. Hence a fortiori $R_{u}\cdot K[x]=F$ and the
equality sign in (6.1) holds trivially.

Now suppose that $F$ is formally $\emptyset$ -adic over $u$ . Let $z\not\in R_{u}\cdot K[x],$ $z\in F$.
We have to show that $z$ is not holomorphic on $S_{u}^{x}$ . This means that there
should exist a place $P\in S_{u}^{x}$ such that $ z(P)=\infty$ . We observe that $R_{u}\cdot K[x]$ is a
Bezout ring with $F$ as its field of quotients (theorem 3.3). Therefore the
fractional $R_{u}\cdot K[x]$ -ideal generated by $z$ and 1 is principal. Let $t$ be a gener-
ator. Since 1 is a multiple of $t$ we have

$t=\frac{1}{y}$ with $y\in R_{u}\cdot K[x]$ .
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On the other hand $z$ is a multiple of $t$ ; since $z\not\in R_{u}\cdot K[x]$ it follows that $y$ is
not a unit in $R_{u}\cdot K[x]$ . APplying theorem 5.4 we obtain a place $P\in S_{u}^{x}$ such
that $y(P)=0$ , hence

$ t(P)=\infty$ .

By definition of $t$ there is a relation of the form

$ t=\lambda z+\mu$ with $\lambda,$ $\mu\in R_{u}\cdot K[x]$ .

We have seen in (6.1) that $\lambda,$

$\mu$ are holomorphic at $P$. Hence from $ t(P)=\infty$

we conclude $ z(P)=\infty$ . Q. E. D.
PROOF OF THEOREM 2.2.
(i) For brevity let us write $A$ for the holomorphy ring of $S_{u}^{x}$ . According

to theorem 2.1, $A=R_{u}\cdot K[x]$ . We know that $A$ is a Bezout ring (theorem 3.3).

Hence the A-ideal generated by $f_{1},$ $\cdots$ , $f_{r}$ is principal. Let $f$ be a generator.
The zeros $P\in S_{u}^{x}$ of $f$ are precisely the common zeros of $f_{1},$ $\cdots$ , $f_{r}$ . Therefore,
in order to prove theorem 2.2 we may replace $f_{1},$ $\cdots$ , $f_{r}$ by $f$. (In other words:
it suffices to prove theorem 2.2 in the case $r=1.$) We may assume that $g\neq 0$

because otherwise theorem 2.2 is trivial.
(ii) First we suppose that $g$ vanishes at every zero of $f$ in $S_{u}^{x}$ ; we have

to show that some power $g^{N}$ is contained in the ideal $A\cdot f$. Let us put

$y=\frac{1}{g}$

and consider the basic set
$S_{u}^{x}\cap S^{y}=S_{u}^{(x,y)}$ .

If $P\in S_{u}^{(x.y)}$ then $ y(P)\neq\infty$ and hence $g(P)\neq 0$ ; we conclude that $P$ cannot be a

zero of $f$. Therefore $f$ has no zero in $S_{u}^{(x,y)}$ which implies that $\frac{1}{f}$ is holo-

morphic on this set. Applying theorem 2.1 to the basic set $S_{u}^{(x.y)}$ we conclude
that

$\frac{1}{f}\in R_{u}\cdot K[x, y]=A[y]=A[\frac{1}{g}]$ .

Hence $\frac{1}{f}$ admits a representation as a polynomial in the form

$\frac{1}{f}=\lambda_{0}+\lambda_{1}\cdot\frac{1}{g}+\cdots+\lambda_{N}\cdot(\frac{1}{g})^{N}$

with coefficients $\lambda_{i}\in A$ . The number $N$ denotes the degree of the polynomial
on the right hand side. Multiplying the above relation by $g^{N}$ and by $f$ we
obtain
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$g^{N}=\lambda f$

where
$\lambda=\lambda_{0}\cdot g^{N}+\lambda_{1}\cdot g^{N- 1}+\cdots+\lambda_{N}$ .

We see that $\lambda\in A$ and hence $g^{N}\in A\cdot f$.
(iii) The converse is trivial: if some power $g^{N}$ is contained in $A\cdot f$ then

clearly $f(P)=0$ implies $g(P)=0$ , for every $P\in S_{u}^{x}$ . Q. E. D.
PROOF OF THEOREM 2.3.
(i) If $F$ is formally $\mathfrak{v}$ -adic over $u$ then we have proved in theorem 5.1

already that $S_{u}^{x}$ is non-empty.
(ii) Conversely, assume that SPu contains a place $P$. By definition, $P$ is a

K-rational place satisfying the integrality conditions

$v(u{}_{J}P)\geqq 0$ $(1\leqq j\leqq m)$ .

Now corollary 3. $6.a$ shows that $F$ is formally ))-adic over $u$ . Q. E. D.

7. On integral definite functions.

The study of integral definite functions is of importance for various pro-
blems in $\mathfrak{p}$ -adic diophantine geometry. The following results have been included
in this paper because their proof is an immediate consequence of the main
theorems in section 2. In the case of locally compact base fields, theorem 7.2
has been obtained in [15] already using compactness arguments. It seems note-
worthy that these results remain valid over an arbitrary $\mathfrak{p}$ -adically closed base
Peld of finite ramification.

We consider the same situation as in theorems 2.1-2.3 and we use the same
notation. In particular,

$S_{u}^{x}=S_{u}\cap S^{x}$

denotes the basic subset of the Riemann space $S$ of $F|K$, defined by the inte-
grality conditions

$v(u{}_{J}P)\geqq 0$ $(1\leqq j\leqq m)$

and holomorphy conditions

$ x{}_{i}P\neq\infty$ $(1\leqq i\leqq n)$ .

DEFINITION. An element $z\in F$ is said to be integral definite on $S_{u}^{x}$ if
$v(zP)\geqq 0$ for every place $P\in S_{u}^{x}$ . That is, the values $z(P)$ for $P\in S_{u}^{x}$ should be

$\mathfrak{p}$ -adic integers.
Let $z\in F$ be integral definite on $S_{u}^{x}$ . Consider the function

$ z:S\rightarrow K\cup\infty$
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which is given by $P-z(P)$ . Let $T\subset S$ denote the inverse image of $0$ . In other
words: $T$ is the largest subset of $S$ on which $z$ is integral definite. Since $\mathfrak{o}$ is
closed in $ K\cup\infty$ and the function $z$ is continuous it follows that $T$ is closed in
S. Here we refer to the $P$ -adic topology on S. We conclude that $T$ contains
the $\mathfrak{p}$ -adic closure of $S_{u}^{x}$ . Now we know that $S_{u}^{x}$ is dense in $S_{u}$ (density
theorem, section 2). Hence the $P$-adic closure of $S_{u}^{x}$ contains $S_{u}$ , and in fact it
coincides with $S_{u}$ since $S_{u}$ is closed by definition. We have shown that $ s_{u}\subset\tau$

which is to say that $z$ is integral definite on $S_{u}$ . Thus we have proved the
following

LEMMA 7.1. If an element $z\in F$ is integral definite on $S_{u}^{x}$ then $z$ is integral

definite on $S_{u}$ already.
We are now going to characterize the integral definite functions on $S_{u}$ . If

$S_{u}$ is empty then every element $z\in F$ is integral definite on $S_{u}$ . In the follow-
ing let us suppose that $S_{u}$ is non-empty, which is equivalent to saying that $F$

is formally $\mathfrak{p}$ -adic over $u$ (theorem 2.3).

THEOREM 7.2. Supp0se $F$ to be formally $\mathfrak{p}$ -adic over $u$ . Then the Kochen
ring $R_{u}$ coincides with the ring of integral definite functions on $S_{u}$ In other
words: an element $z\in F$ is integral definite on $S_{u}$ if and only if $z$ admits a
representation of the form

$z=\frac{s}{1-\pi s}$

with $s,$ $t\in Z[u, \gamma F]$ .
PROOF.
(i) If $z\in R_{u}$ then $z(P)\in 0$ according to corollary 3. $6.b$ .
(ii) Now suppose that $z\not\in R_{u}$ . We have to show that there exists $P\in S_{u}$

such that $z(P)\not\in 0$ . By theorem 3.2 there exists a $\mathfrak{p}$ -place $\mathfrak{P}$ of $F$ over $u$ such
that $z\not\in \mathfrak{Q}_{\mathfrak{P}}$ which is to say that

$v_{\mathfrak{P}}(z)<0$ ,

$v_{\mathfrak{B}}$ denoting the $\mathfrak{P}$-adic valuation of $F$. It follows

$v_{\mathfrak{P}}(\frac{1}{z})>0$

hence

$v_{\mathfrak{P}}(\frac{1}{z})\geqq 1=v(\pi)$

because of the defining properties of $\mathfrak{p}$ -places. For brevity let us put $w=\frac{1}{\pi z}$ ;
then

$v_{\mathfrak{P}}(w)\geqq 0$ .
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That is, $\mathfrak{P}$ lies above $w$ . By construction $\mathfrak{P}$ lies also above $u$ . Hence $\mathfrak{P}$ lies
above $(u, w)$ . We conclude that $F$ is formally $\mathfrak{p}$ -adic over $(u, w)$ (theorem 3.1).

Therefore the basic $\mathfrak{p}$-adic set $S_{(u.w)}\subset S$ is non-empty (theorem 2.3). In other
words: there exists a K-rational place $P$ of $F|K$ which satisfies the integrality
conditions

$v(u{}_{J}P)\geqq 0$ $(1\leqq j\leqq m)$

$v(wP)\geqq 0$ .
The first $m$ of these conditions say that $P\in S_{u}$ . As to the last condition,

we have

$wP=\frac{1}{\pi\cdot zP}$

and hence that condition implies

$v(zP)\leqq-1<0$ .
Q. E. D.

Appendix A: Simple points and rational places.

The following results are known from algebraic geometry [1]. They have
been included here for the convenience of the reader. First we consider the
following general situation.
$R$ a local integral domain7)

$M$ its maximal ideal
$\overline{R}$ $=R/M$ its residue class field
$F$ the quotient field of $R$ .

LEMMA Al. SuPpose that $R$ is regular in the sense of local rings. Then
there exists a place $P$ of $F$ dominating $R$ such that $\overline{R}=FP$.

As usual, we say that a place $P$ dominates $R$ if $P$ lies above $R$ and if,
moreover, $M$ is the center of $P$ on $R$ . If this is the case then the residue field
$\overline{R}$ is naturally contained in $FP$ :

RCFP.

Lemma Al says that with suitable choice of $P$ the equality sign holds.
PROOF.8) For $0\neq z\in R$ the R-degree $d_{R}(z)$ is defined to be the largest integer

exponent $d$ such that $z\in M^{d}$ . Since the local ring $R$ is regular, its degree
function $d_{R}(z)$ yields a valuation of $R$ and hence of its quotient field $F$. By

7) It should be noted that in this appendix the symbol $R$ does not denote the
Kochen ring.

8) For the general theory of regular local rings, see $e$ . $g$ . Zariski-Samuel, Com.
mutative Algebra, vol. II.
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definition, this valuation dominates $R$ . Hence if $\overline{F}$ denotes the residue field of
$F$ with respect to the degree valuation then

$\overline{R}\subset\overline{F}$ .
The corresponding place $F\rightarrow\overline{F}$ will be denoted by a bar; if $z\in F$ then $\overline{z}\in$

$\overline{F}\cup\infty$ . If $z\in R$ then 2 coincides with the residue class of $z$ modulo $M$.
Let $t_{1},$ $\cdots$ , $f_{n}$ be a minimal system of generators of the ideal $M$. Then

$n=\dim R$ . Let us put

$u_{i}=\frac{t_{i}}{t_{n}}$ $(1\leqq i\leqq n-1)$ .

It is a straightforward veriPcation that

$\overline{F}=\overline{R}(\overline{u}_{1}, \cdots,\overline{u}_{n-1})$ .

To see this let $0\neq\overline{z}$ be a typical element of $\overline{F}$ . We can write $z=\frac{X}{y}$ where

$x,$ $y\in R$ . Since $d_{R}(z)=0$ we see that $d_{R}(x)=d_{R}(y)=d$ , say. Hence $x$ and $y$ can
be represented in the form

$x=\Phi(t_{1}, \cdots, t_{n})$ , $y=\Psi(f_{1}, \cdots, t_{n})$

where both $\Phi,$ $\Psi$ are homogeneous polynomials in $n$ variables of degree $d$ ,

with coefficients in $R$ . Let us dehomogenize these polynomials:

$\frac{\Phi(t_{1},\cdots,t_{n})}{t_{n}^{d}}=f(u_{1}, \cdots u_{n-1})$

$\frac{\Psi(r_{1},\cdots,r_{n})}{t_{n}^{d}}=g(u_{1}, \cdots u_{n-1})$

where $f,$ $g$ are polynomials in $n-1$ variables of degree $\leqq d$ with coefficients in
$R$ . Let $\overline{f},\overline{g}$ denote the polynomials over $\overline{R}$ obtained from $f,$ $g$ by reducing
their coefficients modulo $M$. Then

$z=\frac{f(u_{1},\cdot.\cdot.\cdot.’ u_{n-1})}{g(u_{1},,u_{n-1})}$

and hence

$\overline{z}=\frac{\overline{f}(\overline{u}_{1},\cdot.\cdot.\cdot.’\overline{u}_{n-1})}{\overline{g}(\overline{u}_{1},,\overline{u}_{n-1})}$

which shows that $\overline{z}\in\overline{R}(\overline{u}_{1}, \cdots,\overline{u}_{n- 1})$ . Note that $\overline{g}(\overline{u}_{1}, \cdots , \overline{u}_{n-1})\neq 0$ since

$d_{R}(g(u_{1}, \cdots , u_{n-1}))=d_{R}(\frac{y}{t_{n}^{d}})=d_{R}(y)-d=0$ .
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We have now shown that $\overline{F}$ is generated over $\overline{R}$ by $\overline{u}_{1},$ $\cdots$ , $\overline{u}_{n-1}$ . We now
claim that these generators $\overline{u}_{1},$ $\cdots$ , $\overline{u}_{n-1}$ are algebraically independent over $\overline{R}$ .
Suppose there is a relation of the form $\overline{f}(\overline{u}_{1}, \cdots , \overline{u}_{n-1})=0$ where $\overline{f}$ is a poly-
nomial in $n-1$ variables over $\overline{R}$ . Let $f$ denote a foreimage of $\overline{f}$ over $R$ , say
of degree $d$ . We have

$f(u_{1}, \cdots u_{n-1})=\frac{\Phi(t_{1},\cdots,t_{n})}{t_{n}^{a}}$

where $\Phi$ is obtained from $f$ by the process of homogenization. By definition
$\Phi$ is a homogeneous polynomial of degree $d$ in $n$ variables, and the coefficients
of $\Phi$ coincide essentially with those of $f$. Now since $\overline{f}(\overline{u}_{1}, \cdots , \overline{u}_{n-1})=0$ it
follows $d_{R}(f(u_{1}, \cdots , u_{n-1}))>0$ and hence $d_{R}(\Phi(t_{1}, \cdots , t_{n}))>d$ . This means that

$\Phi(t_{1}, \cdots t_{n})\in M^{d+1}$ .

Recall that $\Phi$ as a polynomial is of degree $d$ . Therefore, using the fact that
$t_{1},$ $\cdots$ , $t_{n}$ is a regular system of generators of $M$, it follows that all the co-
efficients of $\Phi$ are contained in $M$. Hence the same is true for the coefficients
of $f,$ $i$ . $e$ . we have $\overline{f}=0$ .

We have seen that $\overline{F}$ is generated over $\overline{R}$ by $n-1$ elements which are
algebraically independent over $\overline{R}$ . In other words: $\overline{F}$ is a rational function
field in $n-1$ variables over $\overline{R}$ . Hence clearly, there exists an R-rational place
of $F|\overline{R}$ ; such place $\overline{P}$ can $e$ . $g$ . be obtained by successively specializing the
variables $\overline{u}_{1},$ $\cdots$ , $\overline{u}_{n-1}$ to $0$ . Now consider the place $P$ of $F$, defined by

$z(P)=\overline{z}(\overline{P})$ $(z\in F)$ .

This place $P$ is the composite of the two places $F\rightarrow\overline{F}$ (residue map of the R-
degree valuation) and $\overline{F}\rightarrow\overline{R}$ (modulo $\overline{P}$ ). In particular we conclude that $P$

dominates $R$ and that $FP=\overline{F}\overline{P}=\overline{R}$ . Q. E. D.
Now let us specialize the above lemma to the following geometric situation:

$K$ a field
$V$ an affine irreducible variety defined over $K$

$x$ $=(x_{1}, \cdots , x_{n})$ a generic point of $V$ over $K$

$F$ $=K(x)$ the function field of $V$ over $K$

$a$ $=(a_{1}, \cdots , a_{n})$ some point on $V$ ; the coordinates of $a$ are contained in some
overfield of $K$

COROLLARY A2. SuppOse that $a$ is simple on V. Then there exists a place
$P$ of $F|K$ such that $xP=a$ and $FP=K(a)$ .

PROOF. We aPply lemma Al to the local ring $R_{a}\subset F$ of the point $a$ . By
definition, $R_{a}$ is the ring of quotients of $K[x]$ with respect to those denomi-
nators $g(x)$ which do not vanish at $a,$

$i$ . $e$ . $g(a)\neq 0$ . The residue field $R_{a}/M_{a}$
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is naturally isomorphic to $K(a)$ and both fields may be identified. After this
identification the residue map $R_{a}\rightarrow\overline{R}_{a}=K(a)$ maps $x$ onto $a,$ $i.e.\overline{x}=a$ . Notice
that $R_{a}$ is regular since $a$ is simple on $V$ . Thus lemma Al leads to a place
$P$ of $F$ with the required properties. Q. E. D.

COROLLARY A3. In the same situation as in corollary $A2$ supp0se in addition
that $a$ is K-rational, $i$ . $e$ . $K(a)=K$. Then there exists a K-ra tional place $P$ of
$F|K$ such that $xP=a$ .

Appendix B: Merckel’s lemma.

The following lemma has been used in the proof of theorem 3.2 for the
“exceptional” case of non-formally $\mathfrak{v}$ -adic fields. The lemma itself, however,
is of general nature and does not refer to the theory of formally $\mathfrak{p}$ -adic fields.
We consider the following general situation:
$K$ an arbitrary field
$F$ an extension field of $K$

$\gamma(x)$ a rational function in $K(x)$ such that its differential $d\gamma(x)\neq 0$ .
The condition $d\gamma(x)\neq 0$ is equivalent to saying that $\gamma(x)$ should not be constant
and, if the characteristic of $K$ is a prime number $p>0$ , then $\gamma(x)$ should not
be a function of $x^{p}$ . Obviously this condition is satisfied if $\gamma(x)$ is the Kochen
operator as defined in the text above. Again in the general case, let $\gamma F$ denote
the set of elements $\gamma(f)$ where $f\in F$ and $\gamma(f)\neq\infty,$ $i$ . $e$ . $\gamma(f)$ should be defined
as an element in $F$. The field $K(\gamma F)$ generated by $\gamma F$ over $K$, is then a sub-
field of $F$.

LEMMA Bl. If the base field $K$ is infinite then $K(\gamma F)=F$ .
REMARK. Merckel [11] page 59 has proved this lemma also for finite

fields, Provided that $F$ has at least $(k+1)^{2}$ elements, $k$ being the maximum of
the degree of numerator and denominator of the rational function $\gamma(x)$ . If $F$

has less than $(k+1)^{2}$ elements then the assertion $K(\gamma F)=F$ may be false. We
shall prove Merckel’s lemma for infinite base field only; this is sufficient for
our present purpose.

PROOF OF LEMMA Bl.
(i) First we consider the case that $F$ is the rational function field in one

variable:
$F=K(x)$ .

For brevity let us put
$F_{0}=K(\gamma F)$ .

We have to show that $F_{0}=F$. The field $F_{0}$ contains the non-constant rational
function $\gamma(x)$ ; hence $F_{0}$ is transcendental over $K$ It follows that $F$ is algebraic
and of finite degree over $F_{0}$ . Moreover $F$ is separable over $F_{0}$ , in view of our
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hypothesis that the differential $d\gamma(x)$ does not vanish. It follows that there are
only Pnitely many places $P$ of $F|K$ which are ramified over $F_{0}$ (these places
need not be rational over $K$).

Now let us consider the automorphism group $G$ of $F|K$. It is well known
that every $\sigma\in G$ can be represented in the form

$x\sigma=\frac{ax+b}{cx+d}$

with coefficients $a,$ $b,$ $c,$ $d\in K$ and nonvanishing determinant. (We write $\sigma$ as
right operator.) For any $f=f(x)\in F$ we have

$f\sigma=f(\frac{ax+b}{cx+d})$ .

Since $\gamma(f)\cdot\sigma=\gamma(f\sigma)$ we conclude

$(\gamma F)\cdot\sigma=\gamma F$

$F_{0}\sigma=F_{0}$ .

Thus every automorphism $\sigma\in G$ maps the field $F_{0}$ onto itself. Consequentiy $G$

permutes the finitely many places of $F$ which are ramified over $F_{0}$ .
Recall that $G$ acts naturally on the places $P$ of $F|K$ ; the image $\sigma P$ of $P$

is given by the formula
$x\cdot\sigma P=x\sigma\cdot P$ .

We do not assume that $P$ is K-rational; thus $P$ is an arbitrary place of $F$ over
$K$ with values in the algebraic closure $\tilde{K}$ of $K$. In the above formula, the
values $x\cdot\sigma P$ and $x\sigma\cdot P$ are understood to be elements in $\tilde{K}\cup\infty$ .

Let $G_{0}$ denote the normal subgroup of $G$ which leaves every ramified place
of $F|F_{0}$ fixed. By what has been said above $G_{0}$ is of finite index in $G$ . It
follows that $G_{0}$ contains inPnitely many translations $\tau$ of the form

$x\tau=x+b$

with $b\in K$. Notice that the field $K$ is supposed to be inPnite; hence indeed
the group $T$ of all translations $\tau\in G$ is infinite and thus $G_{0}\cap T$ is infinite too.
Let $\tau\in G_{0}\cap T,$ $\tau\neq 1$ . Then $b\neq 0$ . If the place $P$ of $F|K$ is ramified over $F_{0}$

then $\tau P=P$ and hence

$xP=x\cdot\tau P=x\tau\cdot P=(x+b)\cdot P=xP+b$ .
Since $b\neq 0$ we conclude $ xP=\infty$ . Hence there is at most one place $P$ of $F|K$

which is ramified over $F_{0}$ , namely the pole of $x$ . After replacing $x$ by $x^{-1}$ the
pole of $x$ becomes the zero of $x^{-1}$ ; hence the pole of $x$ is not ramified either.
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In other words: $F$ is unramified over $F_{0}$ .
From L\"uroth’s theorem we know that $F_{0}$ is a rational function field over

$K$. Now a rational function field does not admit any proper separable-algebraic
field extension which is unramified and preserves the field of constants; this is
well known from the general ramification theory of function fields. We con-
clude $F=F_{0}$ , as contended.

(ii) Now let $F$ be an arbitrary extension field of $K$. Let $x$ be an indeter-
minate over $F$. In (i) we have proved that $x\in K(\gamma K(x))$ . This means that
there is a relation of the form

$(*)$ $x=\Phi(\gamma(f_{1}(x)), \cdots \gamma(f_{n}(x)))$

where $\Phi$ denotes a rational function in $n$ variables with coefficients in $K$, and
where $f_{1},$ $\cdots$ , $f_{n}\in K(x)$ . Let $a\in F$ be such that all rational functions involved
on the right hand side of $(*)$ are defined at $a$ , and that the specialization $x\rightarrow a$

yields the relation
$(**)$ $a=\Phi(\gamma(f_{1}(a)), \cdots \gamma(f_{n}(a)))$ .

This condition excludes only finite number of elements in $F$. For all remaining
$a\in F$ we infer from $(**)$ that $a\in K(\gamma K(a))\subset K(\gamma K)$ . Thus we have seen that
$K(\gamma F)$ contains all but finitely many elements $a\in F$. Since $F$ is infinite this
implies in fact that $K(\gamma F)=F$. Q. E. D.
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