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ON THE DIVISION FIELDS OF AN ALGEBRAIC FUNCTION FIELD
OF ONE VARIABLE.
AN ESTIMATE FOR THEIR DEGREE OF IRRATIONALITY.,
Peter Roquette

To the memory of Abraham Robinson.

Let FIK be an aigebraic function field of one variable over
an algebraically closed field of constants K. The degree of
irrationality d of F is defined to be the minimum of the degrees
of F over its rational subfields. We are concerned with the degree
of irrationality not of F itself, but of the maximal unramified
abelian extension of exponent n over F. (Here, n denotes a
natural integer which is not divisible by the characteristic of F.)
This extension is the n-th division field over F; let d_ denote its
degree of irrationality. We shall prove that 4, < d-g-x?zg'2 where
g is the genus of F; it is assumed that g> 0. In case of
characteristic 0, the above estimate had been obtained by C. L.
Siegel using the analytic theory of theta functions. Qur proof,
valid for arbitrary characteristic, is based on the so-called
inequality of Castelnuovo-Severi in the context of Deuring’s
theory of correspondences. Under certain assumptions, the above
estimate for d,, remains valid if the ground field K is not
algebraically closed. We had used this estimate in a recent paper,
written in collaboration with Abraham Robinson, on the
finiteness theorem of Siegel and Mahler concerning diophantine
equations,

L.Introduction. Let FIK be an algebraic function field of one variable over an
algebraically closed field of constants K. If x is a nonconstant element in F, then the
field degree of F over its rational subficld K(x) is finite. Let d denote the smallest of
these degrees, i.e.

d = Min[F: K(x)].
x€F
xEK
We shall refer to d as the degree of irrationality of FIK. It is an immediate
consequence of the theorem of Riemann-Roch that d < g+1, where g denotes the

genus of FiK. It is known that this estimate can be improved to be

251



252 PETER ROQUETTE

d<8d

and that this is best possible in general. (I have been informed by G. Martens that this
classical estimate holds also in the case of prime characteristic. See [5].) In this paper,
we are concerned with a special class of fields, namely the so-called division fields over
F. For these fields, the above estimate can be improved in its order of magnitude.

We consider the following situation. n denotes a natural number which is not
divisible by the characteristic of F. Let F,, be the maximal unramified abelian
extension of exponent n over F. It is well known that

[F,: F] = n28,
Since F,IF is unramified, the genus g, of F | is computed by the formula
gn = 1+ n8(g1).
We are locking for an estimate of the degree of irrationality dy of Fn. We may assume
that g > 0, since otherwise F, = F and hence dy=d=1.1fg=1, then also g, =1 and
hence d,, = d = 2; in this case the following estimate is trivial. We shall prove

THEOREM 1.1. In the situation as described above, the degree of irrationality

d, of F, satisfies
d, < d.g.n2g-2_
The essential feature is that the power n282 which enters into this estimate, is of
smaller order of magnitude than the power n28 which determines the genus g, of F .

In case of characteristic zero, an estimate of the above order of magnitude has
been obtained by C. L. Siegel, using the analytic theory of theta functions. ([13],
page 254, line 6 from below. There, the inequality of Theorem 1.1 is stated for large n
only. This is due to the fact that our ficld F, corresponds only for large n to the
unramified covering surface as constructed in [13]. Also, in [13] the constant factor
d-g3 appears whereas in Theorem 1.1 we sce that d-g will suffice.) Sicgel used this
estimate in the proof of his finiteness theorem concerning binary diophantine
equations. Recently, in a paper written in collaboration with Abraham Robinson, we
have given a nonstandard proof of Siegel’s theorem and also of Mahler’s generalization.
At a certain stage of our proof, we had to use Sicgcl’s estimate of dy ([7}1, Section 7,
Lemma 7.5.) At that occasion, there arose the question of whether this estimate is
susceptible of an algebraic proof which, hopefully, would extend to arbitrary

characteristic. Such a proof will be presented in this paper.
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Basically, our proof rests upon the so-called inequality of Castelnuovo-Severi, as
we have developed it earlier in the context of Deuring’s theory of correspondences
[81, [9]. In order to obtain the connection between our problem and the theory of
correspondences, we shall show that the field F; as defined above, admits a
representation as ficld of definition for certain divisors; this then will justify the
terminology of F, to be the n-th division field over F. For details, we refer to
Theorem 6.1 of Section 6. This theorem is of importance also in its own right,
independently of its application to the problem of estimating d .

We have said above that Theorem 1.1 is used in {7]. This is not quite correct,
however, since in Theorem 1.1 the ground field K is assumed to be algebraically
closed, wheras in [7] the field K is an algebraic number field of finite degree. Hence,
before being able to apply Theorem 1.1 to the situation as considered in (7], we have
first to discuss its generalization to arbitrary ground fields K, not necessarily
algebraically closed. In doing so, we assume the function field FIK to be conservative,
i.e. its genus g should not change while extending the field of constants. In geometrical
terms, this assumption means that F|K admits a model free of singularities. Also, for
technical reasons we have to assume that the ground field K is infinite.

Again, the degree d of irrationality of F|K is defined to be the minimum of the
degrees [F: K(x)] where x €F, x € K.

If the ground ficld K is not algebraically closed, then the definition of the field
extension F, over F has to be modified. This is because the *“maximal unramified
abelian extension of exponent n' would in general also involve an extension of the
field of constants, whereas in the present context we are interested in such extensions
only which preserve the ficld of constants. The correct definition of F), as a finite
extension of F is by means of the following properties (i) - (iv).

(i) Fy is regular over K. That is, F, is separably generated over K, and K is
algebraically closed in F,. It is well known that this is equivalent to saying that Fpis
K-linearly disjoint to the algebraic closure K2 of K.

(ii) Fn is unramified over F.

(iii) F,, is semi-abelian of exponent n over F. By this we mean that after
suitable extension K' D K of the ground field, the field F K’ will be abelian of

exponent n over FK'. Obviously, we can take K' = K2 to be the algebraic closure of K.
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(iv) [F,: F} =n?8,

It follows from these conditions that F K? is the maximal extension of FK2
which is unramified and abelian of exponent n. In other words, after extending the
ground field K to its algebraic closure, we have the situation of Theorem 1.1.

Such a field F, if it exists, is not unique in general. That is, for a given number n
there may exist several non-isomorphic field extensions of F all of which satisfy (i) -
(iv). (The different fields Fn may be characterized by a certain one-dimensional Galois
cohomology group. See e.g. [12], §4, Proposition 6.) However, all such fields Frl
become equal after suitable extension of the field of constants.

Again, if a field Fn satisfying (i) - (iv) is given, we denote by d, its degree of
irrationality over K. There arises the question of whether the inequality of Theorem
1.1 remains valid in this situation. Now, this is not true in general; there are
counterexamples of fields F;, which have no divisor of small degree. On the other
hand, if we assume that F,, and F have sufficiently many prime divisors of degree 1
then the above question is answered affirmatively.

THEOREM 1.2. Let F|K be a conservative function field of genus g > 0, its field
of constants K being arbitrary infinite, not necessarily algebraically closed. Let F"n
denote an extension of F satisfving the conditions (i) - (iv} above.

If F\K admits at least 2g-1 prime divisors of degree 1, and if F, nIK admits at least
one prime divisor of degree 1, then again

d, < d-g-n?82,

For the proof see Section 7.

In the situation of our earlier paper {7], the fields F and F, both are embedded
into a nonstandard model *K of K ([7], Theorem 7.4, where we have written E|
instead of Fj) and hence have infinitely many primes of degree 1. ([7], Section §,
Remark 5.6.) Therefore, the inequality of Theorem 1.2 holds in that situation (See
[71, Lemma 7.5, where we have cited this result).

2. Symmetric field composita. Until further notice in Section 7, the ground
field K is assumed to be algebraically closed.

According to the introduction, we consider a function field F|K of one variable.
Let d,g denote the degree of irrationality and the genus of F respectively. If necessary,

we assume g > 0.
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We work in a universal extension ficld K of K, which we assume to be
algebraically closed and of degree of transcendency » 1 over K. The field F admits a
K-isomorphic embedding p: F - K into K. Such an isomorphism is written as right
operator, i.e. xu denotes the image of x € F and K> Fu is the image field. If 1 is a
K-automorphism of E then ur is another embedding of F inte E That is, the
embeddings of F into K are permuted by the K-automorphisms of K.

Now let u) 1H7,..,4p be a system of r embeddings of F into f; in this context we
tacitly assume that they are mutually different, i.e. H; # Hj if i # j. The image fields
K D Fu; generate a subficld of K which is called the compositum of #,1y,....1y and is
denoted by

FuFuyeFpu.
In addition to this ordinary compositum, we have to consider the symmetric
compositum, which is defined as follows.

We consider those K-automorphisms 7 of K which permute the embeddings
MMk They form a group, say G. Every 7€ G induces in the compositum
Fuq<-+Fu, a certain automorphism, and this induced automorphism is the identity if
and only if w7 = p; (1 <i<r). Hence, the automorphism group of Fuy++-Fu, induced
by G is finite, being isomorphic to a permutation group of the r objects H{se-sbty- The
field of fixed elements in Fuy+++Fu, with respect to this automorphism group is called
the symmetric compositum of K|ty and it is denoted by

F,ul o Fuz 0 rokFpu.
By construction, the ordinary compositum is a finite Galois extension of the
symmetric compositum, and its degree k satisfies k < r!.
Let s; denote the degree of Fu,- **Fu, over Fu;. Then the number

3.,

I<i<r

| —

s =

is called the co-degree of the symmetric compositum F,u] 0°***0 Fpr (whereas the
number r is called its “degree”). The co-degree s is finite if and only if each s; is finite,
which is already the case if at lcast one of the s is finite, i.e. if Fu, ***Fu_is of degree
of transcendency 1 over K. If this is so, then s is easily scen to be an integer; we shall
see below that s can be regarded as the degree of a certain divisor.

LEMMA 2.1, Let EIK be an algebraic Junction field of one variable, and E C §
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We assume that E admits a representation as an r-fold symmetric compositum of F, i.e.
E=FujoFuyo-+-oFu.
Let s denote the co-degree of this symmetric compositum. Then the degree of
irrationality dg of E satisfies
dg <d-s.
Recall that d denotes the degree of irrationality of F.
PROOF. Let x € F be such that [F: K(x)] =d. We put Xj = Xy and
Y = X[X9* X,
Since y is a symmetric function of the x;, it is clear that y is contained in the
symmetric compositum E. Let us first assume that y is nonconstant, i.e. y & K. We
claim that [E: K(y)] <s-d.
For brevity, we put E' = Fuys+*Fy and k= [E': E]. Then our contention is that
(E: K] <ks'd= 25 sd,
I<i<r
in view of the above definition of the co-degree s. We have § = [E': Fui] and hence
s;°d = [E": Fyj] *[F: K(x)]
= [E": Fuyl [Fuy: K(x;)]
= [E': K(x)]
= deg(Ni)
where Nj denotes the divisor of poles of x; in E'.
From the above definition of y, it is clear that every pole of y is also a pole of
some X;, and that the pole divisor N of y satisfies
N< 2 N;.
I<i<r
Therefore,
[E": K(y)] =deg(N) < 213 deg(N;) = %’.‘ 5;°d,

as contended.
The above argument was based on the assumption that y is nonconstant. If y is
constant, then we try to choose a constant a € K such that the element
Ya = (xj-a)(xp-2)***(xp2a)
is nonconstant, so that the above argument can be applied to x-a and y, in place of x

and y. Let Q be a prime of E' which is a pole of some x;, say a pole of xy. Let us
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choose a € K such that
xi(Q) *a Q2<si<r).

(Notation: If Q is a prime (= place) of a field and if x is an element of that field then
x(Q) denotes the image of x with respect to the place Q. We have x(Q) = e if and only
if Q is a pole of x, which is to say that x is not contained in the valuation ring
belonging to Q. Sometimes we shall write xQ instead of x(Q).)These conditions say
that Q is not a zero of x;-a, for every i 2. In view of the above definition of y, we
see that Q, being a pole of X1-a, is not cancelled in the product and hence remains to
be a pole of y,. In other words: y, has at least one pole and is therefore nonconstant.

Now, applying the above arguments to x-a and y, we conclude that

[E: K(ya)] <sed.
It follows
dg <s+d
in view of the definition of the degree of irrationality. QED.

Our next aim is to obtain an estimate for the co-degree s of a symmetric
compositum. Before doing so, it is convenient to give a description of symmetric
composita as defining fields of divisors. This is done as follows.

Let us consider the constant extension FK of F, defined to be the quotient field
of the tensor product F % K. Until further notice, we identify F with the left factor
and K with the right factor of that tensor product; thus F and K now appear as
K-linear disjoint subfields of FK. We regard FK as an algebraic function field of one
variable with K as its ficld of constants. Every prime P of F|K has a unique extension
to a prime of FI‘ZIE; we denote this extension also with the same symbol P. The primes
of FK thus obtained are called the constant primes; by definition they correspond 1-1
to the primes of F.

In addition, there are the nonconstant primes M of FK, which are characterized
by the fact that they are trivial on F. (Of course, they are also trivial on K, since we
are considering primes of the function field FK with K as its field of constants.) The
map X ~* x(M) induces in F a K-isomorphism into i, i.e. an embedding u: F - K. In
this way, the nonconstant primes of FK correspond 1-1 to the embeddings u of F into
K. This correspondence is given by the formula

X(M) = xu (xE€EF)
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if M corresponds to .
Every system p],1y,-...4y of embeddings F — K yields an integral divisor
Z=M{+My+---+M;

of F'IZ, where the M; are the primes belonging to the ;. Since all components of Z are
nonconstant, Z is called totally nonconstant. If i # j then yu; # K and hence M; # Mj;
in - other words: Z is without multiple components. In this way, the systems
K1k seslly of embeddings F - X correspohd 1-1 to the integral, totally nonconstant
divisors Z of FK without multiple components.

Let D(FK) denote the divisor group of FKIK. Similarly, if E is a subfield of ¥
containing K, then D(FE) denotes the divisor group of FE|E. If we regard FK as a
constant extension of FE then the inclusion FE C FK yields a natural injection
D(FE) C D(Fﬁ) of the respective divisor groups, by means of which we regard D(FE)
as a subgroup of D(Fi). This injection preserves the degree and the dimension of
divisors. That is, the degree and the dimension of a divisor Z € D(FE) are independent
of whether we regard Z as a divisor of FE or as a divisor of FE. The divisors in D(FE)
are said to be defined over E. Now let Z€E D(FE). Among all subfields E C K
containing K, over which Z is defined, there is a unique minimal field; this field is
denoted by K(Z) and is called the field of definition of the divisor Z.

In an earlier paper [11], we have given a construction of these fields of definition
as certain generalized symmetric composita. (In [11] we use the name ‘“coordinate
field” (Koordinatenkdrper) instead of “field of definition”. For another treatment of
fields of definition, see [1].) Now, if Z= Ml +M2 +eoot Mr is an integral, totally
nonconstant divisor without multiple components, then K(Z) is identical with the
symmetric compositum

K(Z)=FuyoFuyo<+* o Fp,
where p;: F— K is the embedding belonging to M, as above. This follows directly from
our construction as given in [11]. (In particular, if Z = M is a nonconstant prime with
its corresponding embedding u: F— E, then we see that K(M) = Fu. That is, M is
defined over a subfield EC K if and only if E contains the image ficld Fp.)

The “degree” r of the symmetric compositum Fpl o***o Fu, can now be
interpreted as the degree of the corresponding divisor Z = My 4+ M,. Notice that

the divisor degree is independent of whether we regard Z as a divisor of FK or as a
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divisor of FE, provided Z is defined over E C K. Thus we may write
r= degpp p(2) if K(Z)CECK.
Here, the notation degFEIE is meant to emphasize that the divisor degree is to be
understood in the field FE with E as its field of constants.

Now let us assume in addition that E is an algebraic function field of one variable
over K. In this case, we may regard FE as an algebraic function field of one variable
not only over E but also over F as its field of constants; in the latter case, FE[F isa
constant extension of E|K. Since every component of Z is trivial on F, we may now
regard Z as a divisor of FE|F. As such a divisor, it also has a degree; we claim that

(2.1) [E: K(2)]*s = degpp p(Z) if K(Z)CECK,
where s is the co-degree of the symmetric compositum Fuj o+ 0 Fu, as defined
above.

In order to verify this formula, let us make the following preliminary remark.
Consider an extension E' of finite degree over E. If in (2.1) we replace E by E’ then
clearly the left hand side is multiplied by the field degree {E': E]. But the same is also
true for the right hand side of (2.1), i.e. we have

degpg!p(Z) = [E": E) *degpg p(2)-
This is because we have to regard the degrees over F as the field of constants; thus the
field of constants does not change if FE is extended to FE'; therefore the divisor
degree is multiplied by the ficld degree [FE': FE] = {E": E].

We have seen that both the left hand side and the right hand side of (2.1) is
multiplied by [E": E] if E is replaced by E'. Hence, the validity of (2.1) for E' implies
its validity for E, and conversely. Therefore, in order to prove (2.1) we may extend
the field E (by a finite extension) or contract it, as seems suitable.

First, we extend E in such a way that it contains each image field Fpi, which is to

say that each component M; of Z is defined over E. We then have

degpp @)= 2 degppp(My.
1<i<r

On the other hand, since E contains the compositum Fuy*+-Fp,, and since K(2)

equals the symmetric compositum Fuj o0+ 0 Fu,, we have

[E:K(Z))'s= 2 [E: Fu
1<r
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by the very definition of the co-degree s. Therefore, in order to prove (2.1) we have to
verify that

(2.2) (E: Pyl =degppp) (1 <i<n),

Here, M; is a prime divisor of the field FE whose residue field is E; the residue
homomorphism induces in F the isomorphic embedding F - F,ui. Therefore, [E: Fu;l
is the degree of the residue field of M; over the isomorphic image of F, which is to say
that [E: Fu;] is the degree of the prime M; of FE over F as ground field. Hence (2.2)
holds.

Formula (2.1) is now proved. In this formula, we may take E = K(Z); we obtain

(2.3) s =degpg|R(2) if E=K(2).

This formula yields an interpretation of the co-degree by means of the degree of a
divisor; in particular, we see that s is an integer, as mentioned above already.
The above discussion shows that Lemma 1 may be reformulated in terms of the
field of definition of divisors, instead of symmetric composita. We obtain:
LEMMA 2.2, Let E be an algebraic function field of one variable, and E C f We
assume that there is an integral divisor‘ Z of F'I?, totally nonconstant and without
multiple components, such that
E=K(Z),

i.e. E is the field of definition of Z. Then the degree of irrationality d g satisfies
dp <d-s,

where s = degFEu;( Z).

A further estimate for s will be obtained with the help of the inequality of
Catelnuovo-Severi, but for *“normalized™ divisors Z only. In the next section, we shall
explain this notion of normalized divisor and develop its relevant properties.

3. Normalized divisors. We retain the notations introduced in Section 2. In
particular, K is a universal extension of K, and FK is the corresponding constant
extension of F.

A divisor Z of FK is called nonspecial if it is integral and if dim(Z) = 1. Here, the
dimension is to be understood in the sense of the theorem of Riemann-Roch. The
condition dim(Z) = 1 is equivalent to saying that Z is the only integral divisor in its
class. That is, if Z~ Z' and Z' > 0 then Z= Z'. (The relation Z~ Z' denotes the

ordinary divisor equivalence, modulo principal divisors.) Every nonspecial divisor is of
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degree < g.

If a divisor is defined over K then it is called a constant divisor; this is the case if
and only if each of its components is a constant prime divisor. We write Z~ Z' if Z
and Z' are equivalent up to a constant divisor, i.e. if there exists a constant divisor A
such that Z~ Z'+ A. The rclation Z= Z' is called the coarse equivalence relation.
(“Grabere I\quivalcnz“ in the sense of Deuring (3].)

LEMMA 3.1. Let Z be a nonspecial divisor of FK. If Z' is any other divisor of
FK such that Z= Z', then K(Z) C K(Z'). If in addition Z' is nonspecial too then
K(Z)=K(Z').

In other words: K(Z) is the unique minimal field among all fields of definition
for divisors which are coarse equivalent to Z.

PROOF. For brevity, let us put E = K(Z’). We have to show that Z is defined
over E. By assumption, there is a constant divisor A such that Z ~ Z' +A.Since Ais
constant, Z'+A is defined over E. We have dim(Z'+A) = dim(Z) = 1 because Z is
nonspecial. Now, the dimension of Z'+A is independent of whether we regard Z'+A as
a divisor of FK or as a divisor of FE. In the latter case, the relation dim(Z'+A) = |
implies that there exists a unique integral divisor X of FE such that X~ Z'+A. By
construction, X is defined over E. On the other hand, in FE we have X~ Z'+A~ Z
and therfore X = Z since Z is nonspecial. We conclude that Z is defined over E. QED.

Qur aim in this section is to construct in every coarse equivalence class a unique
divisor which is “normalized” in a certain sense. These normalized divisors will be
nonspecial; this explains why we are interested in the above lemma concerning
nonspecial divisors. But not every nonspecial divisor is normalized. Before stating the
definition of *“normalized™ divisor, let us recall the following facts about specialization
of divisors.

We consider a K-place (i.e. a place which is the identity on K)

0: K~K.
Since K is algebraically closed, such places do exist; the identity map K = K can be
extended to a place from KtoK. By means of o, the constant field K of FK is reduced
to the constant ficld K of F. It is well known that this yields a corresponding
homomorphism of the divisor groups

o: D(FK) - D(F)
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which reduces the divisor group of FK to the divisor group of F. In an earlier paper
[10], we have given a construction of this homomorphism and proved its basic
properties, namely the following.

If Z is a divisor in D(FK) then we write Zo for its image in D(F); in the present
context we shall call Zo the specialization of Z by means of o. The homomorphism
Z v Zo preserves the divisibility relation:

ifZ<Z' thenZo <Z'o
as well as the equivalence relation:

ifZ~Z' then Zo ~ Z'o.
Moreover, the degree is preserved:

deg(Zo) = deg(Z)

and constant divisors are unchanged:

if A € D(F) then Ao = A.
If M is a nonconstant prime divisor of FK then its specialization Mo can be described
as follows. First, the above properties imply that Mo is an integral divisor of degree
one, hence a prime divisor (= place) of F|K. Now, this place Mo : F-» K is obtained as
the composition of the two maps M: F-+ K and o: K- K. This statement can be
expressed by the formula:

(3.1) x*Mo =xM-o (x €F).

As said above, the proofs of the above mentioned properties of specializations can be
found in our paper [10].

This being said, we can now state the definition of “‘normalized” divisor. This
concept is not canonical; it refers to two auxiliary data which are assumed to be given
in advance, namely:

(i) a K-place o: K—+Kas above;

(ii) a nonspecial divisor B of FIK of degree g, without multiple components.
(It is well known that there are infinitely many such divisors B if g > 0. See e.g. [4],
page 470. If g = 0 then B = 0 is the only nonspecial divisor of F|K.)

Referring to these data, we give the following

DEFINITION. A divisor Z of FK is called normalized if Z is integral, totally
nonconstant and if Zo < B.

More precisely, Z should be called o,B - normalized. If o',B' is another datum
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satisfying (i) and (ii) then the 0,B-normalized divisor need not be 0’,B’-normalized. We
shall call o and B the normalization parameters which enter into the definition of
“normalized divisor”. In the following, we regard ¢ and B as being fixed, and then we
omit the reference to o and B. Our results will be independent of the choice of the
normalizing parameters (except in Section 7 where the ground field will not be
algebraically closed).

If Z is normalized then deg(Z) < g. This follows from the fact that the degree is
preserved under specialization; we have deg(Z) = deg(Zo) <deg(B) = g.

Furthermore, a normalized divisor Z has no multiple components. This follows
from the fact that the divisorial divisibility relation < is preserved under specialization;
if M would be a multiple component of Z then 2M < Z, hence 2-Mo < Zo < B,
contradicting the fact that B is free from multiple components.

Another property of normalized divisors is that they are nonspecial. To show
this, we observe that Zo divides the nonspecial divisor B, hence Zo is nonspecial too.
From this our contention follows in view of the general

LEMMA 3.2. Ler Z be an integral divisor of FK. If Zo is nonspecial, then Z is
nonspecial too, (More generally, for any divisor of FE one can show the inequality
dim(Z) < dim(Zo).)

PROOF. We first assume that, in addition, Z is of degree g. In this case, we
conclude from the theorem of Riecmann-Roch that

dim(Z) =1 + dim(W-Z)
where W is a canonical divisor of FIK. (Observe that W is also canonical divisor of
FKIE.) If Z were special, then dim(Z) > 1 and hence d‘im(W-Z)> 0; this means that
there exists an integral divisor X which is equivalent to W-Z:

X>0and X~ W-Z.

Specialization yjelds:

Xo 2 0and Xo ~ W - Zo.
(Observe that W is constant and hence Wo = W.) Thus there exists at least one integral
divisor which is equivalent to W- Zo; this means that dim(W-Zo)> 0. Now,
deg(Zo) = deg(Z) = g; hence we have again by Riemann-Roch:

dim(Zo)=1 +dim(W-Zo)> 1,

contradicting the fact that Zo is nonspecial.
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We have proved Lemma 3.2 in the case where deg(Z) = g. The general case is
reduced to this one as follows. Since Zo is nonspecial, it follows from the
Riemann-Roch theorem that deg(Zo) < g; moreover, there is an integral divisor A > Q
of FIK such that Ze + A is of degree g and nonspecial ([4], page 470). Since Ao = A
we have

(Z+A)=Zo+A.
In particular, deg(Z + A) = deg(Zo + A) = g. By what we have shown above, Z+ A is
nonspecial. From this we conclude that Z, which is a divisor of Z + A, is nonspecial
too. QED

Our next result says that our notion of “normalized” divisor, as defined above,
serves to select from every coarse divisor class a unique representative. Morcover, this
representative is minimal as regards the field of definition, More preciscly, we have

LEMMA 3.4. Given any divisor Z' of Fif, there exists one and only one
normalized divisor Z such that Z~ Z'. We have K(Z) C K(Z'), i.e. Z is defined over
every field, over which Z' is defined. If Z' is nonspecial then K(Z) = K(Z'),

(i) Existence: Consider the constant divisor A’ = B - Z'0. We have
(Z’+AY =Z0+A'=B.
In particular, we conclude that deg(Z'+ A')= deg(B)= g. Hence, by the
Riemann-Roch theorem, there exists an integral divisor Z" which is equivalent to Z' +
Aljie.
2°20and 2"~ Z'+ A’
From the second of these relations we deduce that Z"o0 ~ (Z' + A")o = B. From the
first relation, Z"0 = 0. It follows
Z'o=8B
since B is nonspecial. The divisor Z" may contain constant components; let A denote
its constant part and Z its totally nonconstant part, so that
Z20,A20andZ"=Z + A,
From Z < Z” we deduce
Zo<Z'o=B,
showing that Z is normalized. By construction,
Z=2"-A~Z'+A'-A=x7',

(ii) Field of definition: We have seen above that every normalized divisor Z,
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is nonspecial. Hence, from Z = Z' we conclude K(Z) C K(Z'), in view of Lemma 3.1.
If Z' is nonspecial, then again by Lemma 3.1 we have K(Z) = K(Z').

(iii) Uniqueness: We assume that both Z,Z' are normalized divisors, and
Z =~ Z' We have to show that Z = Z'. Let us define constant divisors A,A’ by

A=B-Zo, A'=B-Z.
Since Z and Z' are normalized, we have
A>0and A' > 0.
Moreover, the definition of A and A’ shows that
(Z+Ao=B=(Z'+A).
The assumption Z ~ Z' implies Z+ A = Z' + A", hence
Z+A~Z'+A'+C
where C is some constant divisor. Specialization by o yields B~ B + C, hence c~0
and therefore
Z+A~Z' +A.
Since (Z + A)o = B is a nonspecial divisor, we conclude from Lemma 32that Z+ Ais
nonspecial too. Hence the above equivalence implies
Z+A=Z'"+A'

Now, Z is totally nonconstant and A is constant. Thus Z can be characterized as the
totally nonconstant part of the divisor Z + A. Similarly, Z' is the totally nonconstant
part of Z' + A’. Hence the relation Z + A =2' + A’ implies Z = Z'. QED

4. The inequality of Castelnuovo-Severi. For a normalized divisor Z, we are now
going to give an estimate for his co-degree (in the sense of Lemma 2.2). For this we
have to use the inequality of Castclnuovo-Severi. Let us first recall the relevant notions
and facts about the Weil metric.

Let EIK denote an algebraic function field of one variable, such that EC K.
According to [9], the divisor group D(FE) carries naturally a symmetric bilinear form
0(Z,Z') whose values are rational integers. The value o(Z,Z') depends only on the
coarse equivalence classes of the divisors Z and Z'. The inequality of
Castelnuovo-Severi says that the corresponding quadratic form is positive definite, i.e.

0(Z2,2)>0 ifZ#0.
o is called the Weil metric of the ficld FE.

Our proof of the inequality of Castelnuovo-Severi, as given in [9], yields at the
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same time a more detailed result, which can be explained as follows.

Since 0(Z,Z) depends on the coarse equivalence class of Z only, we may assume Z
to be normalized, according to Lemma 3.4. (In [9], page 246 our terminology is
“besonderer Divisor” instead of “normalized divisor.”) Now we put

r= degFE|E(Z)’ 5= degFEIF(Z).
That is, r is the degree and s the ‘‘co-degree” of the normalized divisor Z € D(FE).
According to the definition of the Weil metric, we have ([9], page 244, (3) and (C3))]
o(Z2,2) =2rs- (2,2)
where x(Z,Z) is a certain other quadratic form on the divisor group of FE. We need
not go into the details of the definition of x(Z,Z), which can be interpreted as a
self-intersection number. What we want to point out is that we have proved in [9] the
following formula: ([9], page 247, (7))
MZ,Z) < 2(r-1)s.

This yields
, o(Z,Z) 2 2s
for every normalized divisor Z. If Z> 0 then s> 0 and thus the inequality of
Castelnuovo-Severi follows.

- By what we have said, the following statement holds, the proof of which is
contained in [9].

LEMMA 4.1. Let E|K be an algebraic function field of one variable, and E C E
Let Z be a normalized divisor, defined over E. Then its co-degree s = a’egi—;f,:l FZ)
admits the estimate

s<1/2°0(Z,2)
where a denotes the Weil metric of the field FE.

Combining this with Lemma 2.2 we obtain as an immediate corollary:

LEMMA 4.2. In the same situation as in Lemma 4.1 assume in addition that E is
the field of definition of Z, ie. E= K(Z). Then the degree of irrationality dp of E
satisfies

dg <d/2-0(Z,2).

REMARK 4.3. The Weil metric is defined on the divisor group of FE, and thus jt

depends on the field F as well as on E. In our situation, the ficld F is to be regarded as

given, whereas E may vary inside K. If we want to indicate which ficld E we are
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considering then we write op(Z,Z). If E' is a finite algebraic extension of E then we
have
op(Z,2)= [E": E]*0g(Z,Z)

for every divisor Z of FE. In other words: if we extend the field E to E' then the Weil
metric is multiplied by the field degree [E': E]. (The reason is that the Weil metric is
defined by means of degrees of certain divisors, and that these degrees are multiplied
by the field degree if E is extended to E'. See [9], page 244, (4) and page 241, (13).)
We shall have to use this remark in the next section.

5. n-division. In the following, n denotes a natural number.

LEMMA 5.1. The group of coarse divisor classes of FK is uniquely divisible by n.
That is, for every divisor Z of FK there exists a divisor X, uniquely determined up 10
coarse equivalence, such that nX = Z,

X can be chosen such as to be algebraic over K(Z). If n is not divisible by the
characteristic of F, then X can be chosen to be separably algebraic over K(Z).

Here, X is called (separably) algebraic over K(Z) if X is defined over some
(separably) algebraic extension of K(Z).

The proof of Lemma 5.1 is based on the following two statements (A) and (B),
well known from the theory of algebraic function fields, concerning the divisibility of
the group of divisor classes of degree 0. If L is any subfield of E containing K, then
C,(FL) denotes the group of divisor classes (modulo principal divisors) of degree O of
the function field FL. If L C L’ then C,(FL) CCO(FL'). That is, the map L +» C,(FL)
determines a functor from ficlds to abelian groups (G, (FL) can be interpreted as the
group of L-rational points of the Jacobian variety belonging to the function field F.)

(A) If L is algebraically closed then C,(FL} is divisible by n. In case n is
relatively prime to the characteristic, then it suffices that L is separably algebraically
closed.

The division by n in C(FL) is in general not unique. That is, there may be
torsion elements in C(FL). We denote by C(FL) the group of those divisor classes of
degree 0 which are annihilated by n. The elements of G (FL) are usually referred to as
the n-th division classes of the function field FL.

(B) There are only finitely many n-th division classes in CO(FL). and all of
them are defined over K. That is, we have C,(FL) = C,(F). The order of C,(Flis<
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n28, and it is = w8 if n is relatively prime to the characteristic.

This being said, we now turn to the

PROOF OF LEMMA 5.1. (i) Let L denote the algebraic closure of K(Z). We
know that Z is defined over L, and hence Z determines a certain divisor class of the
function field FL. In general Z is not of degree 0 and hence statement (A) cannot be
applied directly. Therefore, we first replace Z by a divisor which is of degree 0, e.g.
Z' =Z - A where A is some constant divisor which is of the same degree as Z:

deg(A) = deg(2).
Since A is constant, Z' is defined over K(Z) and hence also over L. Since deg(Z") =0,
we infer from statement (A) that the class of Z' in C,(FL) is divisible by n. That is,
there exists a divisor X of FL such that
nX~2Z'=Z2Z-A=2Z.
By construction, X is defined over L, the algebraic closure of K(Z). This means that X
is algebraic over K(Z).

If n is not divisible by the characteristic, then we define L to be the
separably-algebraic closure of K(Z); the same proof as above then yields a divisor X,
separably-algebraic over K(Z), such that nX =~ Z.

(ii) It remains to prove the uniqueness statement of Lemma 5.}. This is
equivalent to the statement that the coarse divisor class group of FK has no torsion.
Accordingly, we now assume that nX = 0 for some divisor X of FE; we have to show
that X = 0.

After subtracting from X a constant divisor of the same degree, we may assume
that deg(X) = 0. Now, the assumption nX = O implies that there is a constant divisor A
such that nX ~ A; we have

deg(A)=n-deg(X)=0.

Applying statement (A) to the case L = K, we conclude that the class of A is divisible
by nin CO(F). That is, there exists a constant divisor A’ such that

nX~A~nA'
We now have n(X-A') ~ 0, which is to say that the class of X-A'is an n-th division
class. From statement (B) we infer that this class is defined over K, i.e. it contains a
constant divisor, say A”. We now have X - A' ~ A", i.e.

X~A'+A"=0
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since both A’ and A" are constant. QED.

As an immediate corollary of our foregoing results we now state

LEMMA 5.2, Let Z be a normalized divisor ofFl?. There exists one and only one
normalized divisor Z,) such that nZ, ~ Z. We have

K(Z) CK(Z})),
and this field extension is algebraic of finite degree. If n is not divisible by the
characteristic then K(Z,) is separable over K(Z).

PROOF. According to Lemma 5.1, the relation nX = Z can be solved by some
divisor X of FK. By Lemma 3.4 there is a normalized divisor Z, of FK such that Z,~
X. Multiplication by n yiclds nZ =~ Z.

If Z;l is another normalized divisor and nZ;lz Z then, by the uniquencss
statement of Lemma 5.1, we have Z;, = Z,. It follows Z; = Z, since every coarse
divisor class contains only one normalized divisor by Lemma 3.4,

By assumption, Z is normalized too. Therefore the relation Z ~ nZ, implies
K(Z) € K(nZ,) in view of Lemma 3.4. On the other hand, we have trivially K(nZ,)C
K(Z,). Thus

K(Z) CK(Z).
We claim that Z is algebraic over K(Z) (resp. separably algebraic if n is not divisible
by the characteristic). By Lemma 5.1, we can solve the relation nX= Z by some
divisor X which is (scparably) algebraic over Z. We now have Zn = X and hence, since
Z, is normalized, K(Z,)C K(X) in view of Lemma 3.4. Therefore, Z, too is
(separably) algebraic over K(Z). In other words: K(Z,) is a (separably) algebraic
extension field of K(Z).

Finally, we observe that the field of definition of any divisor is finitely generated
over K (since it can be represented as a symmetric compositum of F). We conclude
that K(Z,,) is finitely generated over K(Z); since it is also algebraic, the degree [K(Z,):
K(2)] is finite, QED.

Given a normalized divisor Z of FK, Lemma 5.2 shows that there is a series of
field extensions K(Z,) of K(Z), where n ranges over the natural numbers. These
extensions are called the division fields belonging to the divisor Z; this name reflects
the relation nZ,, = Z, which shows that Z, can be regarded as obtained from Z

through *‘division” by n. In view of Lemma 3.4 the normalized divisors Z and Z, are
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unique representatives of certain coarse divisor classes; thus the notion of division field
is associated, in fact, to coarse divisor classes rather than to divisors.

‘Our aim is to obtain an estimate for the degree of irrationality of the n-th
division field. Before doing so, let us first prove the following result which gives more
detailed information about division fields. For reasons of simplicity, we restrict the
Jollowing discussion to the case where n is not divisible by the characteristic of F.

LEMMA 5.3. Let Z and Z,, be as in Lemma 5.2. The field extension K(Z,) of
K(Z) is Galois, and its Galois group is isomorphic to a subgroup of G,(F), the group of
n-th division classes of F. In particular, K(Zn) is abelian and of exponent n over K(Z),
and [K(Z,):K(Z)] <n?8,

Moreover, K(Z,) is unramified over K(Z) in the following sense : every K-place
K(Z) > K is unramified in K(Z,)

Let us first state some preliminary remarks concerning automorphisms and their
action on divisors. '

Let 7 be a K-automorphism of K. There is a unique extension of 7 to an
automorphism of the field FE, such that the elements of F are left fixed. This
extension is again denoted by 7. As an automorphism of the function ficld FK, it is
clear that 7 acts naturally on the divisor group D(FE). We write Z7 for the image of
the divisor Z. The automorphism Z - Z7 preserves the divisibility relation and the
equivalence relation, as well as the degree and the dimension of divisors. Constant
divisors remain fixed under 7; this is so because constant divisors can be regarded as
divisors of F|K, and the field F remains elementwise fixed under 7. If M is a
nonconstant prime divisor of FK then its image Mr can be described as follows. First,
the above mentioned properties imply that Mr is an integral divisor of degree one,
hence a prime divisor of FE; this prime divisor Mr is necessarily nonconstant,
Accordingly, Mr is uniquely determined by its induced embedding F = K. Now, this
embedding Mt; F - K is obtained as the composition of the two maps M: F -+ K and
7: K- K. This statement can be expressed by the formula

(5.1) x*Mr=xM-r (x € F).

The situation is quite analoguous to the corresponding situation with specializations;
compare formula (3.1) in Section 3.

Since 7 leaves constant divisors unchanged, it preserves the coarse equivalence,
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That is,
ifZ~2Z'thenZr= Z'r.

If a divisor Z€ D(Fﬁ) is defined over a subfield EC K then its image Zr is

defined over E7, and conversely. From this we conclude that

K(Z)r = K(Z71).
In this sense, the action of T on divisors is coherent with its action on the fields of
definition of these divisors.

If 1 leaves a subfield E C K elementwise fixed, then t leaves FE elementwise
fixed; therefore 7 acts trivially on the divisor group D(FE). In particular, if t leaves
K(Z) elementwise fixed, then we see that Zr = Z. The inverse of this statement does
also hold:

if Zr = Z then 1 leaves K(Z) elementwise fixed.

This is an immediate consequence of the construction of K(Z) as symmetric
compositum [11]. We shall need the above statement in the case of a normalized
divisor Z only. In this case, Z= M| + ++* + M, where the M are nonconstant primes
and M;# M; if i# j. Let u),...u be the embeddings F— K induced by M},...My.
Now, if Zr= Z then t permutes the M;; from (5.1) we conclude that the p; are
permuted under 7 in the same way. Hence, it follows from the definition of symmetric
composita, that r leaves the elcments of Fuy 0 =<+ 0 Fu, =K(Z) fixed.

The K-places q: K- K are permuted under r; the image 7q of q is defined by the
formula '

(5.2) usrg =ur«q (u Gi).

This formula says that the place 7q: 'k -+ K is obtained as the composition of the maps
r:K->Kand q:. K=K IfZ is any divisor of FE, then we have the formula
Z'r1q=2rq.
In other words: the specialization of Z with respect to rq is obtained by first forming
the automorphic image Zr and then specializing this image with respect to q. In order
to prove this formula, one may assume via linearity that Z is a prime divisor, and in
fact nonconstant (for constant divisors, the formula is trivial). Now, if Z= M is a
nonconstant prime then the formula
M:rq =Mrq
is immediately obtained by going back to the definitions, using formulas (3.1), (5.1)
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and (5.2).
This being said, we now give the
PROOF OF LEMMA 5.3. (i) Galois property: We know from Lemma 5.2 that
K(Z,)) is separable over K(Z). Let 7 be an automorphism of K which leaves K(Z)
elementwise fixed; then Zr= Z. We have to show that r maps K(Zn) onto itself.
Applying 7 to the relation nZ, = Z we obtain
nZyr=ir= IZ=nZ,
and hence
Zr=1Z,
in view of the uniqueness statement of Lemma 5.1. Now, since Z, is normalized we
know from Lemma 3.2 that Zn is nonspecial. Since the property of being nonspecial is
canonically defined, this property is stable under automorphisms; we conclude that
Z,7 is nonspecial too (although in general not normalized). Therefore, Lemma 3.1
shows that
KZ, ) =K(Zp).
On the other hand, we have
K(Z,7)=K(Z)r.
Hence
K(Z)r=K(Z,)
as contended. Thus K(Zn) is a Galois extension of K(Z).
(ii) Galois group: Let r be an automorphism of K over K(Z). We know
from (i) that Z 7 = Z; hence there is a constant divisor C, such that
C,~Zy7-1,.
C, is uniquely determined up to equivalence. We claim that nC_ ~ 0. In fact: since
nZ, ~ Z we have nZ, ~ Z + A with some constant divisor A. Applying 7 we obtain
nZr~Zr+Ar=7Z+ A~ nZ, and therefore nC, ~n(Z,r-Z,)~ 0, as contended.
Thus the class of C, is an n-th division class. The map r+ C., induces a
homomorphism of the group of K(Z)-automorphisms of K into the group C,(F). The
kernel of this homomorphism consists of those r for which Z r~ Z_; since Z,is
nonspecial this implies Z 7= Z_, and hence that r leaves the ficld K(Z,)) elementwise
fixed. Using Galois theory, we conclude that r + C, induces an infection of the Galois

group of K(Z,)IK(Z) into Cn(F). In particular, this Galois group is abelian aud of




DIVISION FIELDS OF AN ALGEBRAIC FUNCTION FIELD OF ONE VARIABLE 273

exponent n. Since |C (F) = n=8 (see statement (B) above), we conclude [K(Z):
K(Z)] <nZe,

(iii) Unramifiedness: Let gq: E =+ K be a K-place from E to K. We denote
by G(q) the group of those automorphisms r ofE over K(Z), which leave g fixed, i.e.
7q = q. Then G(q) is the “inertia group” of ¢ over K(Z). This group G(q) induces in
K(Z,) a certain subgroup of its Galois group over K(Z), say G(q). It follows from
general ramification theory that G(g) is the inertia group of ¢ in the extension
K(Z,)IK(Z). Hence, in order to show that ¢ is unramified in the extension
K(Z)IK(Z), we have to show that G(g) = 1, which means that every T € G(q) leaves
K(Z,,) elementwise fixed. In fact: we have

Z.rgq=2,1q=12,"q
and hence
Corq~(Zr- Z)q=0.
Here, C, is defined as in (ii). Since C,. is constant, we have
C,rq= C.,..

We conclude that C_~ 0. By what we have shown in (ii), this implies 7 leaves K(Zp)
elementwise fixed. QED.

The following proposition is the main result of this section. Again, we assume
that n is not divisible by the characteristic of F.

PROPOSITION 5.4. Let EiK be an algebraic function field of one variable, and
E C K. We assume there is a normalized divisor Z of FK such that E = K(Z).

Let E, denote the n-th division field over E with respect to Z. That is, E, =
K(Z,) where Z, is normalized and nZ, = Z. The degree of irrationality d,, of E 1K
satisfies

d, <d/2:0(Z,Z)n82
where o denotes the Weil metric of the field FE.

Recall that d denotes the degree of irrationality of FIK.

PROOF. E, is a finite extension of E of degree < n28 (Lemma 5.3). In
particular, E, is an algebraic function ficld of one variable over K. Hence Lemma 4.2
is applicable to E . We conclude

(5.3) d,; <d/2:0,(Z,.Z,)

where o, denotes the Weil metric of the ficld FEn. From nZn = Z we infer that
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0,(Z,Z) = 0,(nZ,,nZ,) = n0,(Z,,Z,),
in view of the bilinear property of o,. On the other hand, since Z is defined over E, we
have by Remark 4.3:
0p(Z,Z) = [E: E]0(Z,Z) < n%8-0(Z,2).

Combining these two formulas, we conclude

(5.4) 0,(Z,,2,) <n?82.6(2,2).
Substitution into (5.3) yields our contention. QED.

6. The n-th division field of an algebraic function field of one variable. We select
a subfield F' C K which is K-isomorphic to F. Let ¢ be a K-isomorphism from F to F’,
If we regard tas an embedding

«:F—> K
then it defines a certain nonconstant prime divisor of FT(, according to Section 2, We
denote this prime divisor by 1. As said in Section 2, we have
K()=F«=F"
If I'o < B then I is normalized. In general, however, [ will not be normalized. By
Lemma 3.4, there is a unique normalized divisor Z of FK such that
Z=]
Since I is a prime divisor of degree one, we have dim(I) = 1. (From now on we assume
that g > o. (If g=0 then dim(I) =2 and Z = 0.)) That is, I is nonspecial. From Lemma
3.4 we conclude that
K(Z)y=K()=F'.

In this way we have represented F' as the field of definition of a normalized divisor Z
of FK.

Let F, denote the n-th division field over F' with respect to Z. That is, we have

F,=K(Z,)
where Z,, is a normalized divisor satisfying
nZ,~7=1

By definition, F, is a certain field extension of F'. If we identify F = F' by means of
the isomorphism ¢ then F|, becomes a field extension of F itself. However, it is
advisable not to make this identification at this stage; until further notice we shall
distinguish between F and F' and regard F|, as an extension of F'.

From Lemma 5.3 we know that Fn is unramified over F’, and abelian of
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exponent n. Recall that we assume n not to be divisible by the characteristic of F.

THEOREM 6.1. The n-th division field F,, over F'can be characterized as the
maximal unramified abelian extension of exponent n.

In particular, we see that F, is uniquely determined by the field structure of F’'
(and does not depend on the choice of the normalized divisor Z such that K(Z) = F'),

In the proof of Theorem 6.1 we shall need some basic facts from Deuring’s
theory of correspondences which we first want to recall:

Let E|K be any algebraic function field of one variable, and E Cﬁ. Consider the
divisor group IXFE), i.e. the group of those divisors of FK which are defined over E.
According to Deuring [3], every divisor Z € D(FE) defines a homomorphism from the
divisor group D(F) to D(E). If A€ D(F), then the image of A under this
homomorphism is denoted by Z(A) or, more precisely, ZF_,E(A). In this way, the
divisor group D(FE) is represented as a certain group of homomorphisms from D(F) to
D(E); these maps are called the correspondences from F to E. Any correspondence

Zp_,g: D(F) ~» D(E)
preserves the divisibility relation between divisors, as well as the equivalence relation.
It is in general not degree preserving; instead, it multiplies the divisor degree with the
number s = degFE[F(Z). That is, we have the formula
deg(Zp_, g(A)) =s+deg(A)

for any A € D(F). In particular, it follows that divisors of degree O are mapped onto
divisors of degree 0. Hence the correspondence Z g, induces a map

Zp, g Co(F) = G(E)
of the divisor classes of degree 0. This map is called the multiplier determined by the
divisor Z. It may well be that two different divisors Z and Z' induce the same
multiplier; Deuring [3] has shown that this is the case if and only if Z and Z' are
coarse equivalent. In particular, we see that the following statement holds:

If Z~ 7' then Zg,p(A) ~ Zp,,g(A)

for every divisor A € D(F) of degree 0.

Apart from the above mentioned formal properties of correspondences, we need
the following explicit description in case Z = M is a nonconstant prime divisor which is
defined over E. As said in Section 2, M is characterized by its induced embedding

u:F—+ K
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Since M is defined over E, we have Fu C E. Let us regard the following diagram of

fields: E

I

F ———— Fu

m
where the vertical arrow means the inclusion map. This diagram yields a corresponding

diagram for the divisor groups D(E)
D(F) u — D(Fu)

Here, the horizontal arrow is the natural isomorphism of divisors which results from
the field isomorphism from F to Fu. The vertical arrow is the natural injection of
divisors which results from the inclusion Fu C E. (Observe that E is a finite algebraic
extension of Fu ) Sometimes this injection is also called the conorm from Fu to E. In
view of this, we shall call the composite map D(F) = D(Fu) > D(E) the u-conorm
from F to E. Now, the correspondence map Mg_,g: D(F) = D(E) coincides with the
y-conorm map from F to E.

As said above, the proofs of these facts can be found in Deuring’s paper on
correspondences [3}. See also [10}. In the following arguments, we shall apply these
remarks in the case where E= F |

PROOF OF THEOREM &1 We use the notations I, Z, Zn in accordance with
the definition of F, as given above, preceding Theorem 6.1. Thus we have F'= K=
K(Z) and Fn= K(Zn) From

I~Z=~nZ,
we conclude for the respective multipliers:
IpF, (A) ~ Zpop (A) ~ 1*(Zp)pap (A) ~ (Zo)par, (nA).
Here, A denotes an arbitrary divisor of F which is of degree 0. It follows:

If nA ~ Q then lF“*Fn(A) ~ 0.

Now, [ is the nonconstant prime divisor which belongs to thé embedding ¢ F—» F,.
We conclude:

Every n-th division class vanishes under the +conorm map CO(F) = C,(F,).

At this point it is convenient to idéntify F = F' by means of the isomorphism ¢
Then F,, becomes an extension of F, and the tconorm map is the ordinary conorm,

resulting from the inclusion F C F,. We now have the following situation:
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(i) F, is an unramified extension of F, abelian and of exponent n,
(it) Every n-th division class of F vanishes in F,. That is, if A is any divisor
of F representing an n-th division class (i.e, nA ~ 0) then A becomes principal in F,.

From these two statements we have to conclude that Fn is the maximal
unramified extension of F, which is abelian and of exponent n. This is shown as
follows:

Let E(F be any unramified abelian extension of exponent n. As a Kummer
extension, E is generated by n-th radicals t, so that t" = u € F. We have to show that
every such radical t is contained in F. Now, since E|F is unramified, it is well known
that the principal divisor (u) of u is divisible by n. That is, there is a divisor A of F
such that (u) = nA. Hence (t) = A. Now, since nA ~ 0 in F, we conclude from (ii) that
A becomes principal in F,. That is, there is an element t’ € F such that Y=A=(1).
We conclude that t and t' differ by a constant factor only, i.e. t=c*t’ with c€EK.
Hence t € F, as contended. QED.

In order to estimate the degree of irrationality d,, of F,, we use Proposition 5.4.
In this proposition, we have to replace E by F’ and En by F,,. We obtain

d, <d/2:0(Z,Z)'n282 = d/2-0(1,1)-n2E2,
the latter equation holding since Z = I. Recall that ¢ denotes the Weil metric of FF',
and that I is the prime divisor representing the isomorphism « from F to F'. In this
case, the value o(1,1) is easy to compute, namely ([9], page 248, (2))
(6.1) o(I,I)=2g.
Thus we obtain
d, < d.g.n22°2.
Combining this with Theorem 6.1 we get the following corollary. In this corollary, we
again have identified F = F' so that F, D F.

COROLLARY 6.2, Let F, be the maximal unramified extension of F which is

abelian and of exponent n. Then its degree of rationality d,, admits the estimate
d <d-g-nlt?,

This statement is identical with that of Theorem 1.1 of the introduction.

7. Arbitrary ground fields, So far we had assumed that the ground field K is
algebraically closed. Now let K be an arbitrary infinite field and F|K a function field

of one variable, conservative and of genus g > 0. We shall try to extend our result to
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this more general situation; our aim is to prove Theorem 1.2 stated in the
introduction. As said there already, it is necessary to introduce additional assumptions
concerning the divisorial structure of F{K. Our standing assumption in this section will
be the following:

(A) The field F|IK admits a nonspecial divisor B of degree g which is
separable and without multiple components.

Here, the separability condition means that every prime divisor of F|K which
appears in B has a separable residue field over K. This condition guarantees that B
remains without multiple components after arbitrary constant field extensions,
including inseparable ones. _

Before starting our discussion, let us briefly explain that assumption (A) is
satisfied if FIK admits sufficiently many prime divisors of degree 1.

LEMMA 7.1. If FIK admits at least 2g-1 prime divisors of degree 1 then there
exist g distinct primes P 1,...,Pg of degree 1 whose sum B=Pyt +»+ + Pg is nonspecial.

PROCF. Starting from an arbitrary prime P; of degree 1 we try to select
successively P:,_,,P3,...,Pg such that at each step the sum B;= Pl"’ et P s
nonspecial Also, we have to take care that the P, are mutually distinct. Assume that
Py,P5,...,P; have been chosen already according to these specifications, and that i < g.
The conditions for Pyyy are first that Py # Py,...,P;, and secondly that dim(B; +
Pi+l)= dim(Bi)= 1. By the theorem of Riemann-Roch, this second condition is
equivalent to dim(W - B; - P;;{) <dim(W - B)). (Here, W denotes a canonical divisor of
FIK). In other words: there should exist at least one integral divisor X ~ W - B; which
does not contain P, . Let T; > 0 denote the greatest common divisor of all integral
divisors X ~ W - B,. (Observe that B; is nonspecial, ie. dim(B;)= 1. By Riemann-Roch
theorem, this implies dim(W - B;)= g-i> 0. Hence there are integral divisors X ~ W -
B; and therefore T; is well defined.) Then the condition is that P;, | should not appear
in T; Since deg(T;) < deg(W - B;)= 2g-2-i we see that there are at most 2g- 2 - j
primes of degree 1 which appea; in Ti' These primes, together with the i primes
P{,...P; should be avoided in choosing P;; 1. Thus there are at most 2g - 2 primes to be
avoided; since F|K admits more than 2g - 2 primes of degree 1, we conclude that Pisl
can be chosen appropriately, and that our construction finally yields the nonspecial

divisor B= Py ++es +Pgas required. (The above construction of nonspecial divisors is
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well known from the general theory of algebraic function fields; see e g (4], page
47Q Our aim here was to put into evidence that 2g - 1 primes of degree 1 are already
sufficient ) QED.,

As in the preceding sections, f('dcnotes a universal field extension of K We
assume K to be algebraically closed and of degree of transcendency 2 1 over K We
work in the function ficld FR{K which arises from FIK by means of the constant field
extension KC K Accordingly, we regard F and K as K-linearly disjoint subfields of
FK Let K2 denote the algebraic closure of K Then K3 C E and we may regard FK as
a constant field extension of FK?, If this is done, then we may apply all the notions
and facts of the preceding sections, which refer to algebraically closed ground fields,

to this situation.

In particular, the rclation of coarse equivalence Z = Z' between divisors Z,Z' of FK is
now to be understood as referring to K3, Specifically, this relation means that Z ~
Z' + A where A is some divisor defined over K3, which is to say that A is algebraic over
K

If Z is any divisor of FEthen its ficld of definition over K is denoted by K(Z);
this is the smallest subficld of E containing K over which Z is defined. K2(Z) denotes
the field of definition of Z over K3, Obviously, K3(Z) is the ficld compositum of K2
with K(Z).

Our results of the preceding sections can be regarded as giving some information
about the fields K*Z), in particular for normalized divisors Z. In the following
discussion, our aim is to supplement these results in order to obtain information about
the ficlds K(Z) itself.

Some remarks about the notion of “normalized divisor” are necessary. According
to Section 3, this notion refers to certain normalization parameters 0 and B which are
arbitrarily chosen, but are kept fixed throughout the discussion. In our present
situation, o is a K3-place from K to K2, and B is a nonspecial divisor of degree g of

FK?/K3, free from multiple components. If we change these parameters and consider
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another such pair o',B' then to every o,B-normalized divisor Z there belongs exactly
one o' ,B’-normalized divisor Z' such that
=7

This follows directly from Lemma 3.4. The same lemma shows that

K¥Z')= K¥Z)
in this situation. In other words: the field K*Z) does not depend on the choice of the
normalization parameters 0,B. However, we shall now be interested in the field K(Z),
where K is not necessarily algebraically closed. In this situation, K(Z) may well depend
on the choice of the normalization parameters 0,B. Therefore, we shall have to be
more careful in selecting these parameters in a way which is adapted to our problems.

From now on, we assume that the second normalization parameter B is chosen
With the additional specification that Bis defined over K already.

In view of our above assumption (A), such a divisor B of F|K does exist. We do
not yet impose an additional condition on the ﬁrst normalization parameter o, which
is still at our disposal.

Our first problem is the following. Assume we are given a regular field extension
E{K such that E C K Assume furthermore that EK? admits a representation as field of
definition

EK3= K3(Z)

where Z is an o,B-normalized divisor of FK. The problem is, whether in this situation
we can deduce that

E=K(2),
possibly after changing the first normaliation parameter o suitably, and changing 2
accordingly in its coarse equivalence class, More precisely: Does there exist a divisor
Z' =~ Z such that

E= K(Z")
and that Z' is o',B-normalized for some place o": 'K - K27 The following conditions
are obviously necessary:

Stability condition: Zr = Z for every automorphism 7 of K which leaves E
elementwise fixed.

Separability condition: There exists a divisor X = Z which is scparably algebraic

over E.
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Now we claim: if E|K admits a place of degree 1 then these two conditions are
also sufficient for the solvability of the above problem.

The given K-place E = K of degree | extends uniquely to a K%-place EK2 - K3,
and from there it can be extended (not uniquely) to a K3-place o: K- K2 By
construction, this place o induces in E the given place of degree 1,ie we have Eo= K
In other words: if E|K admits a place of degree 1 then there is a K?-place o: K- K2
such that Eo= K |

This being said, our contention can be stated as follows

LEMMA 7.2 Let E|K be a regular field extension, and E C K. It is assumed that
there is a normalized divisor Z of F K such that

EK? = K%(2),
and that Z satisfies the above stability and separability conditions over E.

If E\K admits a place of degree 1 then there is a K%-place o: K - K% such that
Eo = K. Let us assume that this place o is chosen to be the first normalization
parameter, i.e. that Z is 0, B-normalized. Then we have

E=K(Z).

PROOF. It suffices to show that Z is defined over E. For, if this is shown then
we have K(Z) C E. Since E is K-linearly disjoint to K? and since K3(Z) = EK? by the
hypothesis of the lemma, we conclude K(Z) = E.

In order to show that Z is defined over E, we first show that

Zr=2
for every automorphism 7 of K over E. Due to the above stability condition, we know
that Zr = Z. Thus, in view of Lemma 3.4 it suffices to prove that Zr is normalized.
According to the definition of normalized divisors in Section 3, we have to verify that
Zr'o <B.

Since B is defined over K, we have Br = B. Hence, after applying 1

our contention

now reads as follows:
Z'for" < B.

LLK>Klisa place which is the identity on K? (since o is the

Observe that 7ot
identity on K®). That is, rorlisa K2-place. On the other hand, ror’] coincides with o
on E (since 7 is the identity on E). It follows that the two K%places o and ror

coincide on the field EK?,
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Now recall that Z is defined over EK2, Hence, the specialization Z rror-! depends
only on the action of ror! on EK9. By what we have said above, ror”! and 0 have the
same action on EK2. Hence

Zerorl =20 < B,
as contended.

We have now shown that Z is stable under all E-automorphisms r of K.In order
to show that Z is defined over E, it remains to prove Z is separably algebraic over E,
Due to the above separability condition, we know that there exists a divisor X ~ 7
such that X is separably algebraic over E. From this we deduce that Z is separably
algebraic over E, as follows.

It is well known that there exists a prime divisor P of FK which is separably
algebraic over K (in fact: there are infinitely many such primes). Consider the divisors
X+ mP where m = 0,£1,£2,... . We have dim(XH(m+1)P)<I +dim(X+mP). If m is large
then, by Riemann-Roch theorem, we have dim(X+mP) > 0. On the other hand, if m is

“small then deg(X+mP) < 0 and hence dim(X+mP) = 0. We conclude that there exists

some integer m such that dim(X+mP) = 1. Then there is one and only one integral
divisor Z' > 0 such that Z' ~ X+mP. Moreover, Z' is defined over every field over
which X+mP is defined. Since X and P are both separably algebraic over E, we
conclude that Z' too is separably algebraic over E.

By construction, Z' is nonspecial and Z' = X =~ Z. Now, let us go back to Lemma
3.4 and part (i) of its proof where we have constructed the normalized divisor Z which
is coarse equivalent to Z'. Let us check every step in this construction and verify that
the divisor constructed in this step is separably algebraic over E. Then after the final
step we will conclude that Z is separably algebraic over E.

First, we have to form the constant divisor A’'= B- Z'o. Recall our general
agreement above, that the second normalization parameter B should be chosen such
that it is defined over K. As to Z'o, we claim that it is separably algebraic over K, i.e.
that it is defined over the separably-algebraic closure K3 of K. Note that Z' s
nonspecial and Z' = Z. We conclude from Lemma 3.4 that K*(Z') = K3(Z) = EK2. |n
other words: the two fields K5(Z') and EKS become equal if their ground field KS g
extended to K. On the other hand, both fields are separably algebraic over E, i.e. they

are contained in the separably algebraic closure ES of E. Since ES is KS-linearly disjoint
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to K2, we conclude that KS(Z') = EKS. From this we see that Z' is defined over EKS. In
particular, its specialization Z'o depends only on the action of @ on EKS, and 2’0 is
defined over the image ficld (EK%)o. According to the choice of o as specified in
Lemma 7.2, we have Eo =K and hence (EKS)o = K5, Therefore, Z'o is defined over KS,
as contended.
We have shown that A'=B-Z'o is separably algebraic over K, hence a fortiori
over E. Since by construction Z' is separably algebraic over E, the same is true for Z' +
A’. According to part (i) of the proof of Lemma 3.4, we now have to consider the
divisor Z" defined by
Z"»0and Z"~Z'+ A"
Since Z"0 = B is nonspecial, we infer from Lemma 3.2 that Z" is nonspecial too.
Hence, Z" is uniquely determined by the above conditions, and it is defined over every
field over which Z' + A’ is defined. It follows: Z” is separably algebraic over E.
According to part (i) of the proof of Lemma 3.4, the normalized divisor Z is now
obtained as the totally nonconstant part of Z". That is, we have
2"=7+A
where A is constant and Z is totally nonconstant. Since
Z’0=2Z0+A=B
we see that A <B. By construction, B is composed of primes which are separably
algebraic over K. We conclude that the same is true for A; hence A is separably
algebraic over K. It follows that Z = Z" - A is separably algebraic over E. QED.
As in Section 6, we now fix a subfield F' € K which is K-isomorphic to F. Let
:F-F
be a fixed K-isomorphism. The embedding ¢ F — E defines a nonconstant prime
divisor of FK which is denoted by 1. We have
F' =K.
Let n be a natural number, not divisible by the characteristic. According to
Section 5, there is one and only one normalized divisor Z, of FK such that
nZ, =L
We have
F'K® = K3(I) CK¥(Z,),

and K#(Z,)) is the n-th division ficld over F'K® in the terminology of Section 6.
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Now assume we are given a regular field extension F|K such that F, O F' and
F K3=K¥%Z).
We claim

LEMMA 7.3. If F,)|K admits a place of degree 1 then, after suitable choice of the

normalization parameter and adjusting Z, accordingly,
F,=K(Zp,).

PROOF. In view of Lemma 7.2 we have to verify that Z satisfics the stability
and separability conditions over F .

Let 7 be an automorphism of K which leaves F, elementwise fixed. Then 7 leaves
its subfield F' = K(I) elementwise fixed and hence I = 1. Therefore, applying 7 to the
relation nZ =~ I, we obtain n*Z,r ~ 1~ nZ,. Lemma 5.1 now shows that Zyr=1Z.

As to the separability condition, let us consider the separably-algebraic closure
F'S of F'; it contains K5 as a subfield. We have said above already that there exists a
prime divisor P of FKS of degree 1, i.e. P is defined over K3, The divisor I- P is of
degree O and is defined over F'S. The divisor class group C,(FF'S) is divisible by n (see
statement (A) in Section 5). Hence there exists a divisor X of FF'S such that nX ~ 1 -
P= I. From Lemma 5.1 we conclude X = Z . By construction, X is defined over F'S, :1
i.e. X is separably algebraic over F' and hence over F,. QED.

In the same situation as in Lemma 7.3, let us write

Zy=Mp+My ot M,
where the Mi are nonconstant prime divisors of FK which are mutually distinct, Let
ui: F -X

denote the embedding which is induced by M;. The relation F, = K(Z,) implics that
F,isthe symmetric compositum of gy,....p, i.e.
Fo=Fujo Fuy o<+ oFu,.
Because of this relation, we can obtain an estimate for the degree of irrationality of !
F 1K, similarly as in Section 2. The argumecnt is as follows. ‘
Let d and d, denote the degrees of irrationality of the ficlds FIK and F,IK
respectively. Let x € F be chosen such that
(F: K(x)] =d. ‘
Let us put x; = xp;, and

¥, = (xg-a)(x5-a){x-a)
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where a € K. Since y, is invariant under permutations of the Xj, it is clear that Y, is
contained in the symmetric compositum of the p;- That is, y_ € F,- In order to
estimate the degree [Fp: K(y,)], we obsecrve that F,, is regular over K, which is to say
that Fn is K-linearly disjoint to the algebraic closure K3, Hence, we have

[Fpi K(yy)) = [F K% K?(y,)].

In other words: we have reduced the computation of [Fn: K(ya)] to the case where
the ground field is algebraically closed; in this case the arguments of Section 2 (proof
of Lemma 2.1) apply. (They do not apply directly to the situation over K. For, the
ordinary compositum FplFuz ove F,ur need not be a regular extension of K.)

We conclude, first that there is only a finite number of elements a € K such that
y, is constant. Hence, since K is infinite, we may choose a € K such thaty, € K, i.e.
that [F: K(y,)] < eo. This being done, we again write x instead of x - a and y instead
of y,; thus we have

Y =X|X X
and
[Fp: K1 = [F K2 K¥(y)] <eo.
As in the proof of Lemma 2.1, we obtain
[FaK2: K(y)] <s:[FK2: K?(x)] =s-[F: K(x)} =s*d
where s is the co-degree of the symmetric compositum, which is defined over the
algebraically closed ground ficld K2 precisely as in Section 2. Since d, < [F,: K(y)]
we obtain:
d, <d-s.
The essential feature of this estimate is the following: whereas d,, and d are defined
over K as the ground ficld, the number s is defined over the algebraic closure K2 and
thus may be estimated by the same arguments and methods which are used in the
preceding sections. We obtain
s <g-nt?,
Let us briefly recall the various steps which finally lead to this estimate:
(1) s can be interpreted as the degree of the divisor Z,,if Z, isregarded as

a divisor of FK2 - FnKa over FK? as ficld of constants. See formula (2.3) and Lemma
2.2.

(2) Since Z is normalized, s can now be estimated with the help of the
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inequality of Castelnuovo-Severi. We obtain s €1/2-a,(Z,,Z,,), where ¢, denotes the
Weil metric of the field FK3-F,K2. See Lemma 4.1,

(3) In view of the relation nZ ,~ I, we obtain ll2'an(Zn,Zn) <
1/2+0(11)n282 where o is the Weil metric of the field FK3+F'K®. See formula (5.4)
in the proof of Proposition 5.4,

(4) Finally, we have 1/2-0(LI) g; see formula (6.1).

The steps (1) - (4) lead to the estimate s < g'nzg'2 and this yields

d, < d-g'n282,
In this formula, d,, denotes the degree of irrationality of the field F, /K, the latter
being defined as in Lemma 7.3. That is, F , is an extension of F' such that F,, is regular
over K and that Fnl(a = K¥(Z,,). That is, F K2 is the n-th division ficld over F'K2, In
view of Theorem 6.1, we conclude that F K2 is the maximal extension of F'’K? which
is unramified and abelian of exponent n. Hence, FnIF' is an extension of maximal
degree which is unramified and semi-abelian of exponent n.

At this stage we identify F = F' by means of the isomorphism « We obtain:

COROLLARY 7.4. Let F,, be an extension of F, regular over K, such that F,IF
is unramified, semi-ubelian of exponent n, and of maximal degree [F,: F] = n?g, If !
F,|K admits a prime divisor of degree 1 then the degree of irrationality d, of F K
satisfies the estimate d,, <d-g-nl82,

Recall that this result is obtained under the assumption (A), stated at the
beginning of this section, about the existence of nonspecial divisors of FIK. We know
that this assumption (A) is satisfied if FIK admits at lcast 2g- 1 primes of degree 1
(Lemma 7.1). Therefore, Theorem 2.1 is contained in Corollary 7.4.
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