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Abstract

Recall that a group has property (FA) when for any action (without
inversion) on a tree there is a global fixed point. Last time we have
discussed some criteria for a group to be (FA); in particular, if the group
is denumerable, it cannot be an amalgam. Today we look at groups with
a presentation.

Definition. Let S be a set, F(S) the free group over S, and R = (rj)j∈J

a family of words in F(S). A presentation is then defined by 〈S | R〉 :=
F(S)/ 〈〈R〉〉, where 〈〈R〉〉 is the smallest normal subgroup containing R.

It is known that every group G is isomorphic to a group 〈S | R〉. Our
goal for today is to derive from a group’s presentation if it has property
(FA). In particular, we will show that every 2-spherical Coxeter group –
sometimes referred to as abstract reflection group – has property (FA).
To achieve this, we first look at automorphisms of a tree and their fixed
points.
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1 Fixed points of an automorphism of a tree

We formulate some needed terms for the study of automorphisms.

1.1 Distance and subtrees

Recall that a geodesic is a path c without backtracking. We know that if X is
a tree, its geodesics are unique and injective.

Let P −Q denote the geodesic joining two vertices P and Q of a tree, where
P and Q lie in subtrees T1 resp. T2.

Figure 1: A tree X with subtrees T1, T2

Definition. The distance between two subgraphs is defined as

dist(T1, T2) = inf
P∈T1,Q∈T2

ℓ(P, q)

where ℓ is the length of the geodesic joining P and Q.

Remark. If there is no path (that is, T1 and T2 lie in different connected com-
ponents), we set the distance to ∞. Since trees are connected, this case does
not apply to us. If the distance is 0, T1 and T2 meet at some vertex.

If X is a tree, we can make the following statements about distance.

Lemma 1. Let T1 and T2 be disjoint subtrees of a tree X, with dist(T1, T2) = n.

1. There is a unique pair (P1, Pn) in vert(T1)× vert(T2) such that

ℓ(P1, Pn) = n.

2. If Q1 ∈ vert(T1) and Q2 ∈ vert(T2), then

ℓ(Q1, Q2) = ℓ(Q1, P1) + n+ ℓ(Pn, Q2). (1)

3. Every subtree T of X with T ∩T1 6= ∅ and T ∩T2 6= ∅ contains the geodesic
P1 − Pn (with P1, Pn as in 1.)

We say that P1 − Pn is the geodesic joining T1 and T2.
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Figure 2: Juxtaposing of geodesics

Proof. Let P1 ∈ vert(T1) and Pn ∈ vert(T2) such that ℓ(P1, Pn) = n. (Such
a pair exists by definition, but it is not unique a-priori.) We first prove the
formula (1).

2. Consider the (unique) geodesic P1−Pn in X . The inner vertices P2, . . . , Pn−1

do not belong to either T1 or T2; otherwise, the geodesic would not have
minimal length.

Let now Q1 ∈ T1, Q2 ∈ T2 with geodesics Q1 − P1 resp. Q2 − Pn. By the
above, the juxtaposed path

Q1 −Q2 := (Q1 − P1, P1 − Pn, Pn −Q2)

is without backtracking, which implies (1).

1. Let (Q1, Q2) be a pair of vertices such that ℓ(Q1, Q2) = n. By (1),

ℓ(Q1, P1) = ℓ(Pn, Q2) = 0,

that is, Q1 = P1 resp. P2 = Q2.

3. Let T be a subtree meeting both T1 and T2. Let Q1 ∈ T1 and Q2 ∈ T2,
and let γ := Q1 −Q2 be the unique geodesic joining Q1 and Q2 in X ; by
2. this geodesic contains P1 − Pn.

Let γT be the geodesic joining Q1 and Q2 in the subtree T . As X contains
no circuits, the paths γ and γT must coincide, and the claim follows.

1.2 Automorphisms with fixed points

Last time, we have formulated fixed points for an action G y Mor(X). In this
auxiliary section, it suffices to look at general automorphisms in X , without
necessary involvement of a group action.
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Figure 3: A tree X may contain no circuits

Definition. Let s be an automorphism without inversion of a tree X , that is
sy 6= y for all y ∈ edge(X). We say that s has a fixed point if the subgraph
Xs ⊂ X of points fixed by s is non-empty, in which case it is a tree. [As before
for XG, if s fixes two points in a tree, it must fix the geodesic joining them,
implying connectivity.]

If an automorphism s has some fixed point, the following proposition will
allow us to construct a fixed point, by considering the geodesic joining any point
P in the tree with its image under s.

Proposition 2. Let s be an automorphism without inversion of a tree X. Sup-
pose s has a fixed point. Let P ∈ vert(X), and let dist(P,Xs) = n. Let P − P ′

be the geodesic joining P to Xs. (see Lemma 1.)
Then the geodesic P − sP is obtained by juxtaposing the geodesics P − P ′

and P ′ − sP = s(P ′ − P ).

Remark. The last equality P ′ − sP = s(P ′ − P ) holds by definition of a graph
morphism.

Figure 4: The geodesic P − sP
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Proof. If P ∈ Xs, then sP = P and the statement is clear. Let therefore
P /∈ Xs, that is, dist(P,Xs) ≥ 1.

Let y /∈ Xs denote the edge of the geodesic P − P ′ with origin P ′ ∈ Xs.
There holds sy 6= y; otherwise, y ∈ Xs. It follows that the path obtained by
juxtaposing P ′ − sP and P − P ′ is without backtracking; by uniqueness, this
path is the geodesic s− sP .

Corollary. ℓ(P, sP ) = 2n.

Proof. By Proposition 2, ℓ(P, sP ) = ℓ(P − P ′) + ℓ(P ′ − sP )
︸ ︷︷ ︸

=n (s aut.)

.

Corollary. The midpoint of P − sP is fixed by s.

Proof. By Proposition 2, the midpoint of P − sP is given by P ′ ∈ Xs.

2 Groups with fixed points

We now have all required tools to derive property (FA) from a group presenta-
tion. We formulate our main result:

Proposition 3. Consider the group G = 〈ai, bj〉 with subgroups A = 〈(ai)i∈I〉,
B = 〈(bj)j∈J 〉. Assume that G acts on a tree X so that XA 6= ∅, XB 6= ∅, and
so that for all pairs (i, j) the automorphism has aibj has a fixed point.

Then XG 6= ∅, that is, G has a fixed point.

Figure 5:

Proof. By definition, XG = XA ∩XB. Assume that XA and XB are disjoint,
and let P − Q denote the geodesic joining them, with P ∈ XA, Q ∈ XB. (cf.
Lemma 1).

Let P1 be the vertex of P − Q at distance 1 from P . We have P1 /∈ XA;
it follows there is an index i such that aiP1 6= P1. The path obtained by
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juxtaposing is therefore without backtracking; it is the geodesic Q − aiQ with
midpoint P .

As Q ∈ XB, we have bjQ = Q for all j, in particular aiQ = aibjQ. Since
aibj has a fixed point (by assumption), Proposition 2 shows that the midpoint
P ∈ XA of Q−aibjQ is fixed by aibj, that is aibjP = P resp. bjP = a−1

i P = P .
This shows that P is fixed by all bj; a contradiction.

We have the following simple consequence:

Corollary. Let a, b and c be three automorphisms of a tree such that abc = 1.
If a, b, c have fixed points, then they have a common fixed point.

Proof. Let P ∈ Xc. Then ab cP
︸︷︷︸

=P

= P = abP by assumption; it follows that ab

has a fixed point. By Proposition 3, a, b, ab have a common fixed point Q. As

✚✚abcQ = Q =✚✚abQ, this point is also fixed by c.

Proposition 2 is somewhat unwieldy when considering group presentations
〈S | R〉. We therefore formulate:

Corollary. Suppose that G = 〈s1, . . . , sn〉 is a finitely generated group, and that
sj and sisj have fixed pionts for all i, j ∈ {1, . . . ,m}, i 6= j. Then G has a fixed
point.

Proof. Proceed by induction on m, applying Proposition 2.

3 Coxeter groups

Definition. Let I be a finite index set. A Coxeter group is a group W with
presentation

W ∼=
〈
S | s2i = 1 ∀i ∈ I, (sisj)

mij = 1 ∀i 6= j
〉

where mij ∈ {2, 3, 4, . . .} ∪ {∞} and mij = mji for all i, j ∈ I. S is called the
Coxeter generating set. mij = ∞ denotes that sisj is of infinite order.

Remark. It is a priori not clear what the order of elements sisj , mij 6= ∞ is;
all we know that the order divides mij . We may prove that the presentation is
“honest” using a faithful linear representation

ρ : W → GLn(R),

the Tits representation (by Jacques Tits).

Example. The dihedral groups D2m (isometry groups of a regular polygon)
give a simple class of examples for Coxeter groups. For m = 3, we have the
representation:

D6 =
〈
s1, s2 | s21 = s22 = (s1s2)

3 = 1
〉
.
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Figure 6: Presentations of the dihedral group D6.

By replacing an axis of reflection with an axis of rotation, we get:

G =
〈
r, s | rm = s2 = 1, rs = sr−1

〉

While the group G is isomorphic to D6, it is no longer a Coxeter group by the
definition above.

Remark. More generally, different Coxeter generating sets may generate the
same group W (up to isomorphism). For example, D12 has the presentations:

W =
〈
s1, s2 | s21 = s22 = (s1s2)

6 = 1
〉
,

=
〈
t1, t2, t3 | t21 = t22 = (t1t2)

3 = (t2t3)
2 = (t3t1)

2 = 1
〉
.

with Coxeter diagrams •
6

• resp. • • • . (The fact
that these graphs are not isomorphic leads to the notion of rigidity.)

Definition. A Coxeter group (W,S) is 2-spherical if mij 6= ∞ for each (i, j).

We now formulate our final proposition.

Proposition 4. Let (W,S) be a 2-spherical Coxeter group. Then W has prop-
erty (FA).

Proof. By definition, each generator and pair sisj are of finite order, and thus
have a fixed point when acting on a tree. By Proposition 3, W has property
(FA).
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