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Abstract

Recall that a group has property (FA) when for any action (without
inversion) on a tree there is a global fixed point. Last time we have
discussed some criteria for a group to be (FA); in particular, if the group
is denumerable, it cannot be an amalgam. Today we look at groups with
a presentation.

Definition. Let S be a set, F(S) the free group over S, and R = (r;);jes
a family of words in F(S). A presentation is then defined by (S | R) :=
F(S)/ ((R)), where ((R)) is the smallest normal subgroup containing R.

It is known that every group G is isomorphic to a group (S | R). Our
goal for today is to derive from a group’s presentation if it has property
(FA). In particular, we will show that every 2-spherical Coxeter group —
sometimes referred to as abstract reflection group — has property (FA).
To achieve this, we first look at automorphisms of a tree and their fixed
points.
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1 Fixed points of an automorphism of a tree

We formulate some needed terms for the study of automorphisms.

1.1 Distance and subtrees

Recall that a geodesic is a path ¢ without backtracking. We know that if X is
a tree, its geodesics are unique and injective.

Let P — @ denote the geodesic joining two vertices P and @) of a tree, where
P and @ lie in subtrees T3 resp. Ts.

Figure 1: A tree X with subtrees T1, Tb

Definition. The distance between two subgraphs is defined as

diSt(Tl,TQ) = K(P, q)

inf
PeT,QeT,
where ¢ is the length of the geodesic joining P and Q.

Remark. If there is no path (that is, 77 and T3 lie in different connected com-
ponents), we set the distance to co. Since trees are connected, this case does
not apply to us. If the distance is 0, 77 and T5 meet at some vertex.

If X is a tree, we can make the following statements about distance.
Lemma 1. Let Th and Ty be disjoint subtrees of a tree X, with dist(T1,T) = n.
1. There is a unique pair (Py, P,) in vert(Ty) x vert(Tz) such that
(P, P,) =n.
2. If Q1 € vert(T1) and Q2 € vert(T3), then
UQ1,Q2) = U(Q1, Pr) + n+ (P, Q2). (1)

3. Every subtree T of X with TNTy # 0 and TNTy # () contains the geodesic
P, — P, (with P\, P, asin 1.)

We say that P; — P, is the geodesic joining 7} and T5.
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Figure 2: Juxtaposing of geodesics

Proof. Let P; € vert(T1) and P, € vert(T:) such that ¢(P1, P,) = n. (Such
a pair exists by definition, but it is not unique a-priori.) We first prove the
formula (1).

2. Consider the (unique) geodesic P;—P,, in X. The inner vertices Pa, ..., P,_1
do not belong to either T or Ts; otherwise, the geodesic would not have
minimal length.

Let now Q1 € T1, Q2 € Ts with geodesics Q1 — Py resp. Q2 — P,,. By the
above, the juxtaposed path

Q1— Q2= (Q1—P,PL — Py, P, — Q2)
is without backtracking, which implies (1).
1. Let (Q1,Q2) be a pair of vertices such that £(Q1,Q2) = n. By (1),

0Q1,P) =4(P,,Q2) =0,
that iS, Ql = P1 resp. P2 = QQ.

3. Let T be a subtree meeting both 77 and T. Let Q1 € T1 and Q2 € Ty,
and let v := Q1 — Q2 be the unique geodesic joining ()1 and @2 in X; by
2. this geodesic contains P, — P,.
Let v be the geodesic joining @)1 and @2 in the subtree T'. As X contains
no circuits, the paths v and vy must coincide, and the claim follows.

O

1.2 Automorphisms with fixed points

Last time, we have formulated fixed points for an action G ~ Mor(X). In this
auxiliary section, it suffices to look at general automorphisms in X, without
necessary involvement of a group action.
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Figure 3: A tree X may contain no circuits

Definition. Let s be an automorphism without inversion of a tree X, that is
sy # 7 for all y € edge(X). We say that s has a fixed point if the subgraph
X?® C X of points fixed by s is non-empty, in which case it is a tree. [As before
for X, if s fixes two points in a tree, it must fix the geodesic joining them,
implying connectivity.]

If an automorphism s has some fixed point, the following proposition will
allow us to construct a fixed point, by considering the geodesic joining any point
P in the tree with its image under s.

Proposition 2. Let s be an automorphism without inversion of a tree X. Sup-
pose s has a fized point. Let P € vert(X), and let dist(P, X®) =n. Let P — P’
be the geodesic joining P to X*. (see Lemma 1.)

Then the geodesic P — sP is obtained by juxtaposing the geodesics P — P’
and P’ — sP = s(P' — P).

Remark. The last equality P’ — sP = s(P’ — P) holds by definition of a graph
morphism.

Figure 4: The geodesic P — sP



Proof. If P € X* then sP = P and the statement is clear. Let therefore
P ¢ X*, that is, dist(P, X*) > 1.

Let y ¢ X* denote the edge of the geodesic P — P’ with origin P’ € X*.
There holds sy # y; otherwise, y € X*°. It follows that the path obtained by
juxtaposing P’ — sP and P — P’ is without backtracking; by uniqueness, this
path is the geodesic s — sP. O

Corollary. ¢(P,sP) = 2n.

Proof. By Proposition 2, £(P,sP) = {(P — P') + {(P' — sP). O
————

=n (s aut.)
Corollary. The midpoint of P — sP is fixed by s.

Proof. By Proposition 2, the midpoint of P — sP is given by P’ € X?*. O

2 Groups with fixed points

We now have all required tools to derive property (FA) from a group presenta-
tion. We formulate our main result:

Proposition 3. Consider the group G = {(a;, b;) with subgroups A = {(a;)icr),
B = {((bj)jes). Assume that G acts on a tree X so that X4 # (), XB # 0, and
so that for all pairs (i,j) the automorphism has a;b; has a fized point.

Then X # 0, that is, G has a fized point.

Figure 5:

Proof. By definition, X¢ = X4 N XB. Assume that X4 and X7 are disjoint,
and let P — @ denote the geodesic joining them, with P € X4, Q € XB. (cf.
Lemma 1).

Let P; be the vertex of P — @ at distance 1 from P. We have P, ¢ X4,
it follows there is an index ¢ such that a;P; # P;. The path obtained by



juxtaposing is therefore without backtracking; it is the geodesic @ — a;Q with
midpoint P.

As Q € XB, we have b;QQ = @ for all j, in particular a;Q = a;b;Q. Since
a;b; has a fixed point (by assumption), Proposition 2 shows that the midpoint
P € X# of Q—a;b;Q is fixed by a;bj, that is a;b; P = P resp. b;P =a;'P = P.
This shows that P is fixed by all b;; a contradiction. (|

We have the following simple consequence:

Corollary. Let a,b and c be three automorphisms of a tree such that abc = 1.
If a, b, c have fixed points, then they have a common fized point.

Proof. Let P € X¢. Then ab ¢cP = P = abP by assumption; it follows that ab

=P
has a fixed point. By Proposition 3, a,b,ab have a common fixed point Q). As
abeQ = Q = abQ, this point is also fixed by c. O

Proposition 2 is somewhat unwieldy when considering group presentations
(S| R). We therefore formulate:

Corollary. Suppose that G = (s1,...,8n) is a finitely generated group, and that
s; and $;8; have fized pionts for alli,j € {1,...,m}, i # j. Then G has a fived
point.

Proof. Proceed by induction on m, applying Proposition 2. O

3 Coxeter groups

Definition. Let I be a finite index set. A Coxeter group is a group W with
presentation

W2(S|s;=1Viel, (s;8))™7 =1Vi#j)

where m;; € {2,3,4,...} U{oo} and m;; = my; for all ¢,j € I. S is called the
Coxeter generating set. m;; = co denotes that s;s; is of infinite order.

Remark. It is a priori not clear what the order of elements s;s;, m;; # oo is;
all we know that the order divides m;;. We may prove that the presentation is
“honest” using a faithful linear representation

p: W = GL,(R),
the Tits representation (by Jacques Tits).

Example. The dihedral groups Da,, (isometry groups of a regular polygon)
give a simple class of examples for Coxeter groups. For m = 3, we have the
representation:

D6 = <51,82 | S% = S% = (5152)3 = 1> .
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Figure 6: Presentations of the dihedral group Ds.

By replacing an axis of reflection with an axis of rotation, we get:
G=<r,s|rm:szzl, rs:sr_1>

While the group G is isomorphic to Dg, it is no longer a Coxeter group by the
definition above.

Remark. More generally, different Coxeter generating sets may generate the
same group W (up to isomorphism). For example, D12 has the presentations:

W = <51,52 | s% = s% = (5152)6 = 1>,

= (t1,ta,t3 | t] = t3 = (tat2)® = (tat3)® = (tst1)” = 1).

with Coxeter diagrams e e resp. e ° e . (The fact
that these graphs are not isomorphic leads to the notion of rigidity.)

Definition. A Coxeter group (W, S) is 2-spherical if m;; # oo for each (i, 7).
We now formulate our final proposition.

Proposition 4. Let (W, S) be a 2-spherical Coxeter group. Then W has prop-
erty (FA).

Proof. By definition, each generator and pair s;s; are of finite order, and thus

have a fixed point when acting on a tree. By Proposition 3, W has property
(FA). O



