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1 Amalgam

We recall the definition of an amalgamated product of two groups.

Definition. Let A, G1 and G2 be groups with G1 6= A 6= G2. Let i1 : A →֒ G1, i2 : A →֒ G2 be injective
homomorphisms (we thus identify A with its image under these morphisms). We have the following diagram in
Grp:

G2

G1 A
i1oo

i2

OO

Taking the colimit (direct limit) results in the pushout

H

G1 ∗A G2

∃!■
■

dd■
■

G2
oo

oo

G1

OO

RR

A

OO

oo

which we denote as the amalgam G1 ∗A G2 of G1 and G2 over A.

Remark. We may write G as the quotient of the free product G1 ∗ G2 (the coproduct in Grp) with the normal
subgroup generated by the relations i1(a)i2(a)

−1.

We wish to address the following:

Question. When is a group G not an amalgam?
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2 The fixed point property for groups acting on trees

Let G be a group which acts on a tree X . As before, we assume that this groups acts without inversion, that is

gy 6= y ∀g ∈ G, y ∈ edge(X).

This allows to again define G\X in an obvious way. (x ∼ y if x and y are in the same orbit Gx).

Claim. Let XG be the set of points fixed by the action G y X . If XG is non-empty, it is a subtree of X .

Proof. If P and Q are fixed by G, the geodesic P−Q joining these points (in X) is also fixed and therefore contained
in XG. The graph XG is therefore connected; since any connected subgraph of a tree is a tree, the claim follows.

Definition. We say that a group G has property (FA)1 if the following holds:

XG 6= ∅ for any tree on which G acts.

Under certain conditions, this is equivalent to the group G not being an amalgam. More precisely, the following
holds:

Theorem 2.1. Let G be a denumerable group. G has property (FA) if and only the following conditions are satisfied:

1. G is not an amalgam.

2. G has no quotient isomorphic to Z.

3. G is finitely generated.

Remark. G is denumerable (as a set) if and only it as a denumerable generating set. Therefore every finitely
generated group is denumerable, but not vice-versa.

Corollary 2.1. SL2(Z) does not have property (FA).

Proof. The claim follows since SL2(Z) is generated by S =

(

0 −1
1 0

)

and T =

(

1 1
0 1

)

, and isomorphic to the

amalgam Z/4Z ∗Z/2Z Z/6Z.

Proof of Theorem 2.1, “⇒”. We first show that if G satisfies property (FA), that the three given conditions are
satisfied.

1. Assume G = G1 ∗A G2 with G1 6= A 6= G2, and that G has a fixed point for any tree X upon which it acts.

By talk 4, there is a (unique up to isomorphism) tree X upon which G acts, with fundamental domain a
segment PQ, where GP = G1 and GP = G2 as stabilisers. By Remark A.2, any stabilisers of vertices in X
are conjugates of either GP or GQ. By assumption, G 6= GP and G 6= GQ; the same must hold for these
conjugates. Contradiction.

2. Assume there exists H EG with
G�H

∼= Z = 〈1〉 .

Then G�H acts freely on the Cayley graph Γ(Z, {1}), a doubly infinite chain, by left multiplication, i.e. it has
no fixed points.

Figure 1: Action on a double infinite chain

1Presumably, “F” stands for “fixe” and “A” for “arbre”. The property was originally introduced under the name “La propriété de point

fixe pour les groupes opérant sur les arbres” in [Serre74].
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3. Since G is denumerable, it is the union of an increasing sequence

G1 ( G2 ( · · · ( Gn ( · · ·

of finitely generated subgroups.

Definition. Let X be a graph with vertex set:

vert(X) =
⊔

Gn<G

G�Gn

with two vertices P,Q joined by an edge iff P ∈ G�Gn
and Q ∈ G�Gn+1

correspond under the canonical

homomorphism:

π : G�Gn
−→ G�Gn+1

gGn 7−→ gGn+1

Claim. X is a tree.

Figure 2: The tree X

Proof. Since the cosets in G�Gn
form a partition of G, and since Gn ⊆ Gn+1 for each n ∈ N, π is a well

defined and surjective map. Therefore X has no circuits and is connected, respectively.

Let G act on X via:
g.(hGn) = (gh)Gn

Note that g fixes hGn if g ∈ hGnh
−1. If G has property (FA), there is a vertex P of X invariant under the

action of G. Let P ∈ G�Gn
, that is

P = hGn for some h ∈ G.

For any other coset gGn we have:

gGn = g.(h−1h)Gn = (gh−1).hGn = hGn ∀g ∈ G.

where the last equality holds because gh−1 ∈ G. Therefore G = Gn, i.e. G is finitely generated.

Remark 2.1. Let G be a denumerable group which is not necessarily (FA). Let G acts on the tree X as above.

• For each g ∈ G there exists some vertex P such that gP = P :

Since G is denumerable, it is the countable union of finitely generated sets Gn. For each g ∈ G, this implies
there is an n ∈ N such that g ∈ Gn. Then g fixes Gn (as a coset!).
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• In general, there is no P fixed by the whole G! (Trivial case: G is finitely generated, then G�G = {G} is a
vertex, which is fixed by all g ∈ G)

We now wish to prove the opposite implication of the theorem. We will require the following corollary to the
Structure Theorem:

Corollary 2.2. Let G be a group which acts without inversion on a tree X. Let R be the normal subgroup of G

generated by the GP , P ∈ vert(X). Then G�R can be identified with the fundamental group of the graph Y = G\X.

Proof.

• Since X is a tree, by the structure theorem the map π1(G, Y, T ) → G is an isomorphism, where Y = G\X
and T is a maximal tree of Y .

• By the remark to [Serre77, 5.1], the quotient π1(G, Y, T )�R is the fundamental group π1(Y, T ) of the graph
Y . Since T is simply connected, this is isomorphic to π1(Y, P0) for some P0 ∈ T .

It follows that G�R is isomorphic to π1(Y, P0) ∼= π1(Y ).

Remark. R is a normal subgroup since it contains all conjugates of GP , cf. Remark A.2.

Proof of Theorem 2.1, “⇐”. Suppose that G has properties 1, 2 and 3 and acts on some tree X . We wish to find a
fixed point of X by the action of G.

Let T = G\X . By the above corollary, π1(T ) ∼= G�R. Since π1(T ) is a free group by [Serre77, 5.1], but G has
no quotient isomorphic to Z by hypothesis 2, π1(T ) = {1} must hold. Therefore, T is a tree. By [Serre77, 3.1] we
can lift T to a subtree of X .

T̃ ⊂ X

��
T = G�X id

//

99ssssssssss

T

This subtree T̃ gives us the fundamental domain required to apply [Serre77, 4.5, Theorem 10]. , so that

G ∼= GT = lim
−→

(G, T ),

limit of the tree of groups defined by the groups GP and Gy , fixing P ∈ vert(T ) and y ∈ edge(T ), respectively.
By repeatedly adjoining a vertex P and geometric edge {y, y}, we have

G =
⋃

T ′ ⊂
finite

T

lim
−→

(G, T ′)

the union of the groups GT ′ = lim
−→

(G, T ′), with T ′ finite. Since G is finitely generated, there is a T ′ such that

G = GT ′ ; choose a minimal T ′ with this property.

Case 1. If T ′ reduces to a single vertex P , we have G = GP and G has a fixed point.

Case 2. If not, T ′ has a terminal vertex P , and
T ′′ = T ′ − {P}

is a tree by Proposition A.1. If y denotes the unique edge which joins P to T ′′, there holds: (compare
Remark A.3)

G = GT ′ = GT ′′ ∗A GP , where A = Gy.

Since T ′ was minimal we have GT ′′ 6= G and GP 6= G. This implies G is an amalgam, which is absurd
by hypothesis 1.
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3 Examples of property (FA)

Proposition 3.1. Let G be a group with property (FA). If G is a subgroup of an amalgam G1 ∗A G2, then G is a
subgroup of a conjugate of G1 or of G2.

Proof. Let G < G1 ∗AG2. By talk 4, G1 ∗AG2 acts on (unique up to isomorphism) tree X with fundamental domain
T ⊂ X , and stabilisers:

•
P
−→ •

Q
, GP = G1, GQ = G2.

Since G has property (FA), the action G y X has a fixed point. Denote wlog. this fixed point as P0 := gP ,
where g ∈ G1 ∗A G2. Let h ∈ G be arbitrary. There holds:

hP0 = hgP = gP ⇔ g−1hgP = P.

That is, g−1hg ∈ G1 resp. h ∈ gG1g
−1.

Example 3.1. A finitely generated torsion group has property (FA).

Proof. Recall that a group is a torsion group if every element has finite order. Such groups have no quotient
isomorphic to Z.

By assumption and Theorem 2.1, it suffices to check they are not an amalgam G1 ∗A G2. Let s1 ∈ G1 −A and
s2 ∈ G2 −A be (non-trivial) right coset representatives of A\G1 and A\G2, respectively. Then the element

g = f(a)f1(s1)f2(s2)

is cyclically reduced, and is thus of infinite order; a contradiction.

Example 3.2. If G has property (FA), so has every quotient of G.

Proof. Let H EG, and assume by contradiction that G�H acts on a tree X with X
G�H 6= ∅. Let

π : G → G�H, g 7→ gh

denote the canonical homomorphism. We have the composition:

G
π
։ G�H

h
−→ Mor(X).

If x ∈ X is fixed by the action of G (this point exists due property FA), h ◦ π(g)(x) = x for all g ∈ G.

Consequently, x is fixed for all gH ∈ G�H; a contradiction.

Example 3.3. Let H be a normal subgroup of G. If H and G�H have property (FA), then so has G.

Proof. Assume by contradiction that G acts on a tree X with XG 6= ∅. Let XH be the subtree fixed by H y X .

Since H has property (FA), XH 6= ∅. Since G�H has property (FA), the subtree X
G�H fixed by G�H y XH is

non-empty; a contradiction.

Fact 3.1. If a subgroup G′ has finite index in a group G, then the core

Core(G′) =
⋂

g∈G

g−1G′g

is a normal subgroup with finite index in G.

Fact 3.2. Any action of a finite group on a (non-empty) tree has a global fixed point.

Example 3.4. Let G′ be a subgroup of finite index in G. If G acts on a tree X and if XG′

6= ∅, then XG 6= ∅.

Proof. Let H the core of G′ in G; in particular, H is normal. By assumption

∅ 6= XG′

⊂ XH

where the inclusion holds because of H < G′. As in Example 3.3, consider the action G�H y XH . The group
G�H is finite by Fact 3.1, and has a fixed point by Fact 3.2. It follows that XG 6= ∅.

Remark. Put differently, a group virtually having property (FA) is equivalent to the group having this property.
This does not imply that all subgroups of finite index have property (FA).

For example, the Schwartz group has a subgroup of finite index which is isomorphic to a surface group; such a
group has a quotient isomorphic to Z, and does therefore not satisfy property (FA).
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A Preliminaries

A.1 Graphs

Definition A.1. Let n be an integer ≥ 0. Consider the oriented graph Pathn.

Figure 3: Pathn

It has n+ 1 vertices 0, 1, . . . , n and the orientation given by the n edges [i, i+ 1], 0 ≤ i < n with o([i, i+1]) = i
and t([i, i+ 1]) = i+ 1. A path (of length n) in a graph Γ is a morphism of Pathn into Γ.

Remark A.1. A pair of the form (yi, yi+1) = (yi, yi) in the path is called a backtracking. If there is a path from
P to Q in Γ, then there is one without backtracking.

Definition A.2. A graph is said to be connected if any two vertices are the extremities of at least one path.
The maximal connected subgraphs (under the relation of inclusion) are called the connected components of the
graph.

Definition A.3. Let Γ be a graph and let X = vert Γ, Y = edge Γ. Let P be a vertex and let YP be the set of
edges y such that P = t(y). The cardinal n of YP is called the index of P .

• If n = 0 one says that P is isolated; if Γ is connected this is not possible unless X = {P}, Y = ∅.

• If n ≤ 1 one says that P is a terminal vertex (or a pending vertex).

We let Γ− P denote the subgraph of Γ with vertex set X − {P} and edge set Y − (YP ∪ Y P ).

Proposition A.1. Let P be a non-isolated terminal vertex of a graph Γ.

1. Γ is connected if and only if Γ− P is connected.

2. Every circuit of Γ is contained in Γ− P .

3. Γ is a tree if and only if Γ− P is a tree.

A.2 Cyclically reduced elements

Suppose we are given a group A, a family of groups (Gi)i∈I and, for each i ∈ I, an injective homomorphism A → Gi.
We identify A with its image in each of the Gi. We denote by ∗AGi the direct limit of the family (A,Gi) with
respect to these homomorphisms, and call it the sum of the Gi with A amalgamated.

Definition A.4 (Reduced word). For all i ∈ I choose a set Si of right coset representatives of Gi\A, and assume
1 ∈ Si. The map (a, s) 7→ as is then a bijection of A× Si onto Gi mapping A× (Si − {1}) onto Gi −A.

Let i = (i1, . . . , in) be a sequence of elements of I (with n ≥ 0) satisfying the following condition:

im 6= im+1 for 1 ≤ m ≤ n− 1. (T )

A reduced word of type i is any family

m = (a; s1, . . . , sn)

where a ∈ A, s1 ∈ Si1 , . . . , sn ∈ Sin and sj 6= 1 for all j.

We denote by f (resp. fi) the canonical homorphism of A (resp. Gi) into the group G = ∗AGi.
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Theorem A.1. For all g ∈ G there is a sequence i satisfying (T) and a reduced word m = (a; s1, . . . , sn) of type i

such that
g = f(a)fi1(s1) · · · fin(sn).

Furthermore, i and m are unique.

Definition A.5. The integer n is called the length of g. An element g of length ≥ 2 is called cyclically reduced
if its type i = (i1, . . . , in) is such that i1 6= in.

Proposition A.2. Let G denote the group ∗AGi.

1. Every element g of G is conjugate to a cyclically reduced element, or an element of one of the Gi.

2. Every cyclically reduced element is of infinite order.

A.3 Graph of groups

Definition A.6. Let G be a group acting on a graph X without inversion. A fundamental domain of G\X is a
subgraph T of X such that T → G\X is an isomorphism.

Proposition A.3. Let G = G1 ∗A G2 be an amalgam of two groups. Then there is a tree X (and only one, up to
isomorphism) on which G acts, with fundamental domain a segment

T =
P
•

y
−→

Q
•,

the vertices of which have GP = G1, GQ = G2 and Gy = A as their respective stabilizers.

Remark A.2. Let gP be a point in the graph X , with g ∈ G, P ∈ vert(G\X) and stabilizer GP = G1 as in the
above proposition. Then gP is fixed by a conjugate of G1:

(gg1g
−1)gP = gg1(g

−1g)P = gg1P = gP, g1 ∈ G1.

Similarly, any vertex gQ is fixed by a conjugate of G2.

Definition A.7. A graph isomorphic to Path1 =
0
• −→

1
• is called a segment.

Definition A.8. A graph of groups (G, T ) consists of a graph T , a group GP for each P ∈ vert T , and a group
Gy for each y ∈ edge T , together with a monomorphism

Gy → Gt(y), a 7→ ay;

one requires in addition that Gy = Gy. In the case where T is a tree, we say that (G, T ) is a tree of groups.

Example A.1. Take T to be a segment
P
•

y
−→

Q
•. Then GT is equal to GP ∗Gy

GQ.

Remark A.3. Suppose that T is obtained by adjoining a vertex P and a geometric edge {y, y} to a tree T ′. In other
words, P is a terminal vertex of T , and T ′ = T − P . We then have

GT = GT ′ ∗Gy
P, whence GT ′ = lim

−→
(G, T ′)

Definition A.9. Let T be a maximal tree of Y . The fundamental group π1(G, Y, T ) of (G, Y ) at T is defined
as:

F (G, Y )�〈〈y〉〉, y ∈ edge(T )

Thus, if gy denotes the image of y in π1(G, Y, T ), the group π1(G, Y, T ) is generated by the groups GP (P ∈
vert Y ) and the elements gy (y ∈ edge Y ) subject to the relations:

gya
yg−1

y = ay, gy = g−1
y , if y ∈ edge Y, a ∈ Gy

gy = 1 if y ∈ edge T.

In particular, we have ay = ay if y ∈ edge T , a ∈ Gy.
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