
CHAPTER 2

Symmetric Spaces

Introduction

We remark that a prerequisite for this course is a basic understanding of Rie-
mannian geometry, see for instance [Boo86] or [Hel79], which at the same time
is a standard reference for the theory of symmetric spaces. See also [Bor98] for a
much more condensed version of the latter.

In 1926, É. Cartan began to study those Riemannian manifolds, for which
central symmetries are distance preserving. The term central symmetry is going to
be made precise later but you can think of it as a reflection about a point, as in Rn

for instance. These spaces are now known as symmetric spaces; he noticed that the
classification of these is essentially equivalent to the classification of real semisimple
Lie algebras. The local definition of symmetric spaces is a generalisation of constant
sectional curvature. Just as a differentiable function from R to R is constant if its
derivative vanishes identically, one may ask for the Riemann curvature tensor to
have covariant derivative zero. As incomprehensible as this statement may be at the
moment, it yields an important equivalent characterization of symmetric spaces.
Example. The following list of examples of symmetric spaces contains the constant
curvature cases.

(i) Euclidean n-space En = (Rn, geucl) has constant sectional curvature zero
and isometry group Iso(En) ∼= O(n)! Rn.

(ii) The n-sphere Sn = (Sn, geucl) has constant sectional curvature one. Its
Riemannian metric arises through restriction of the Riemannian metric of
the ambient space Rn+1 ⊃ Sn to the tangent bundle of Sn. The isometry
group of Sn is O(n).

(iii) Hyperbolic n-space Hn has constant sectional curvature minus one. To
define hyperbolic n-space, consider the quadratic form

q(x1, . . . , xn, xn+1) := x2
1 + · · ·+ x2

n − x2
n+1

on Rn and define Hn := {x ∈ Rn+1 | q(x) = −1, xn+1 > 0}. For n =
2, this set is the upper sheet of the following two-sheeted hyperboloid.
The group O(n, 1) = {g ∈ GL(n,R) | q(g(x)) = q(x) ∀x ∈ Rn+1} acts
transitively on the two-sheeted hyperboloid and the group

Iso(Hn) := O(n, 1)+ := {g ∈ O(n, 1) | g(Hn) = Hn}

does so on the upper sheet. It is the isometry group of Hn for the Rie-
mannian metric which arises through restriction of the euclidean metric
of the ambient space Rn+1 to Ten+1 H

n and propagation to Tp H
n for all

p ∈ Hn using elements of O(n, 1)+. This is well-defined since the scalar
product on Ten+1 H

n is invariant under the induced action of the stabilizer
stabO(n,1)+(en+1) on Ten+1 H

n.
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1. Overview

Before making precise all the terms used above, we provide an overview of the
two characterizations of symmetric spaces and their relation.

1.1. Riemannian Characterization. Let M be a Riemannian manifold. A
geodesic symmetry about p ∈ M is a map sp : U → M , defined on a neighbourhood
U of p, which fixes p and reverses every geodesic through p. This definition still
is not precise but suffices to give an idea about the geometric aspects we want to
highlight in this section.
Definition 1.1. Let M be a connected Riemannian manifold. Then M is locally
symmetric if for every p ∈ M there is a geodesic symmetry about p which is an
isometry. It is (globally) symmetric if it is locally symmetric and in addition every
geodesic symmetry sp (p ∈ M) is defined on the whole of M .

The connectedness assumption in the definition above will become clearer later.
For instance, we want symmetric spaces to be homogeneous under the action of a
connected group. Globally symmetric spaces will often simply be called symmetric.
Example. Following the example in the Introduction, we have the following.

(i) Let M = En and let p ∈ M . Then sp : M → M is given by v '→ 2p−v. Note
that each sp has a unique fixed point p and that by a composition of two
such geodesic symmetries one obtains all translations. These observations
will generalize later on.

(ii) Let M = Sn and let p = en+1 ∈ Sn ⊆ Rn+1. Then Rn+1 decomposes as
Rn+1 = R p ⊕ (R p)⊥. In this decomposition, sp : Sn → Sn is given by
tp + w '→ tp − w. Note that in this case, each sp has exactly two fixed
points, namely p and −p.

p

−p

sp

Some of the useful features of (locally) symmetric spaces are the following.

(i) The universal covering of a locally symmetric space is a globally symmetric
space. Hence every locally symmetric space M is of the form M = Γ\M̃
where Γ is a subgroup of Iso(M̃) which acts properly discontinuously and
without fixed points on M̃ .

(ii) A globally symmetric space X is homogeneous under the action of Iso(X)◦

with compact stabilizers. In fact Iso(X)◦ is going to be a Lie group of
a specific kind for which there is a well-established theory. For locally
symmetric spaces one then has to look at subgroups Γ of these as above.

Example 1.2. Here are some more examples of (locally) symmetric spaces that
illustrate the above features.

(i) Compact, orientable connected surfaces are completely determined up to
homeomorphism by their genus g. For g = 0, we have the globally sym-
metric space S2. For g = 1, there is the torus. It admits many locally
symmetric metrics but they all come from bases of R2 and hence organize
themselves in a parameter space. For instance, the torus can be realized
as R2 /Z2. Higher genus surfaces all have universal cover H2.

(ii) Flat, compact, three-dimensional manifolds correspond to cristallographic
groups acting on E3.
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(iii) Consider Hn and the subgroup Γ := O(n, 1,Z)+ of Iso(Hn) = O(n, 1)+.
Then Γ is discrete in Iso(Hn) and the space Γ\Hn is non-compact, but
has finite volume, i.e. finite quotient measure.

(iv) In a sense, the mother example of all symmetric spaces is the space

Sym+
1 (n) := {X ∈ Mn,n(R) | XT = X, X ≫ 0, detX = 1}.

If you think about it geometrically as a subset of Mn,n(R) it seems like a
rather complicated space. Anyway, it comes with the action

SL(n,R)× Sym+
1 (n) → Sym+

1 (n), (g,X) '→ gTXg

for which stabSL(n,R)(Idn) = SO(n) and hence Sym+
1 (n) ∼= SL(n,R)/ SO(n).

1.2. Lie Characterization. Lie-theoretically, we will start out with a con-
nected Lie group G and an automorphism σ : G → G such that σ2 = id. Assume
that Gσ = {g ∈ G | σ(g) = g} is compact, hence closed, and therefore a Lie sub-
group. Then G/Gσ is a manifold which by compactness of Gσ can be equipped with
a Riemannian metric. Choose (Gσ)◦ ≤ K ≤ Gσ and consider M := G/K. Then for
any G-invariant Riemannian metric, M is a symmetric space.

One may look at Deσ : g → g which is an automorphism of the Lie algebra
g of G satisfying (Deσ)2 = Id. Therefore g decomposes as a vector space as g =
k⊕m where k = E1(Deσ) and m = E−1(Deσ) are the eigenspaces of Deσ for the
eigenvalues one and minus one respectively. The relations [k, k] ⊆ k, [k,m] ⊆ m and
[m,m] ⊆ m are then immediate. In particular, k is a Lie subalgebra of g. This kind
of data classifies, as we shall see, globally symmetric spaces.

1.3. Connection Between the Riemannian and the Lie Characteriza-
tion. If M is a symmetric space, then G = Iso(M)◦ is a connected Lie group such
that M is homogeneous under the action of G. Fix p ∈ M , let K = stabG(p) and let
sp be the geodesic symmetry about p. Then σ : G → G, g '→ spgsp is an involutory
automorphism of G and (Gσ)◦ ≤ K ≤ Gσ.

1.4. Classification. Notice that products of symmetric spaces are again sym-
metric. It holds true that any symmetric space M admits a decomposition

M ∼= En ×M+ ×M−.

The symmetric space M+ is said to be of compact type. It has non-negative sectional
curvature and Iso(M+) is compact semisimple. Hence also M+ is compact and in a
sense generalizes Sn. The symmetric space M− is said to be of non-compact type. It
has non-positive sectional curvature and Iso(M−) is non-compact semisimple. Also,
M− is non-compact and in a sense generalizes Hn.

There is a duality theory between symmetric spaces of compact type and those
of non-compact type. In this theory, Sn and Hn are dual spaces.

An important invariant of a symmetric space is its rank which is the maximal
dimension of a totally geodesic flat subspace. Apart from the En part, these may
be contained in the non-compact type part. For instance, Sym+

1 (n) has rank n− 1.

2. Generalities on Riemannian Symmetric Spaces

In this section, we thoroughly define symmetric spaces. We will always assume
smooth manifolds to be second-countable. In particular, a manifold has countably
many connected components and admits a countable dense subset.
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2.1. Isometries and the Isometry Group. A Riemannian metric on a
smooth manifold M is a map which to every x ∈ M associates a scalar product
gx on the tangent space TxM of M at x, such that in local coordinates the map
x '→ gx is smooth: Let (U,ϕ) be any chart on M . Then we require the map U →
Sym+

1 (dimM), x '→ (gx((Deϕ)−1(ei), (Deϕ−1(ej))i,j is smooth. Equivalently, a
Riemannian metric is a smooth section of the appropriate bundle.

Let (M, g) be a Riemannian manifold. The length of a smooth curve c : [0, 1] →
M is defined by

∫ 1
0

√
gc(t)(ċ(t), ċ(t)) dt. The distance of x, y ∈ M is defined by

d(x, y) := inf{l(c) | c : [0, 1] → M smooth, c(0) = x, c(1) = y}.
Definition 2.1. Let (M, g) and (N, h) be Riemannian manifolds. A Riemannian
isometry between (M, g) and (N, h) is a diffeomorphism f : M → N such that
f∗h = g, i.e. hf(p)(Dpf(u), Dpf(v)) = gp(u, v) ∀p ∈ M ∀u, v ∈ TpM .

The fact that a Riemannian isometry is the same as a distance-preserving bijec-
tion reduces to the euclidean case for which it can be proven directly, see [Hel79,
Thm. I.11.1]
Theorem 2.2. Let (M, g) be a Riemannian manifold with associated distance d.
Further, let f : M → M be a map. Then the following statements are equivalent.

(i) f is a Riemannian isometry.
(ii) f is a distance-preserving bijection.

We shall call an isometry any self-map of a Riemannian manifold which satis-
fies the equivalent conditions of Theorem 2.2. Next, we prove a rigidity-type result
for such isometries of Riemannian manifolds: They are determined globally by local
data, in contrast to isometries of arbitrary metric spaces: An isometry of the simpli-
cial realization of the 3-valent tree for instance is not determined by its restriction
to any finite radius ball about a point. In the Riemannian setting, however, we have
the following.
Lemma 2.3. Let M and N be Riemannian manifolds and let M be connected.
Further, let f1, f2 : M → N be Riemannian isometries. If there is p ∈ M such that
f1(p) = f2(p) and Dpf1 = Dpf2, then f1 ≡ f2.

For the proof, we recall the notion of a normal neighbourhood of a point p ∈
M and of 0 ∈ Tp(M) respectively. Let Expp : TpM → M be the Riemannian
exponential map at p. A normal neighbourhood of 0 ∈ TpM is an open, star-shaped
neighbourhood N0 of 0 ∈ TpM such that U := Expp is open and Expp |N0 → U is
a diffeomorphism. In this case U is a normal neighbourhood of p ∈ M .

Proof. (Lemma 2.3). The isometry f := f−1
2 ◦ f1 : M → M satisfies f(p) = p

and Dpf = Id. We aim to show that f ≡ id. If M was complete, we could argue as
follows: There is a geodesic arc connecting p to q with tangent vector v ∈ TpM at
p. Since an isometry preserves geodesics, Dpf = Id implies that this geodesic arc is
fixed, in particular f(q) = q. However, M need not be complete. Consider the set

S := {q ∈ M | f(q) = q, Dqf = Id}.

Then S contains p and is closed by smoothness of f . It now suffices to show that
S is open in which case S = M by connectedness of M . Let q ∈ S and let N0 be a
normal neighbourhood of 0 ∈ TqM . Since f is an isometry, we have for all v ∈ N0

and t ∈ R such that tv ∈ N0:

f(Expq(tv)) = Expq(Dqf(tv)) = Expq(tv)

where the first equality follows from the fact that f is an isometry, as well as local
existence and uniqueness of geodesics. Hence f is the identity on U := Expq(N0)
which implies U ⊆ S by openness of U . Therefore, S is open. !
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Now, let Iso(M) denote the group of isometries of a Riemannian manifold
(M, g). Recall that Iso(M) is a topological group when endowed with the compact-
open topology a subbasis of which is given by

S = {W (C,U) | C ⊆ X compact, U ⊆ Y open}.

Since the topology of M is given by the distance d associated to g, this topology on
Iso(M) coincides with the topology of uniform convergence on compact subsets. In
fact, one can exploit the Riemannian setting further to show coincidence with the
topology of pointwise convergence.
Lemma 2.4. Let M be a Riemannian manifold, S ⊆ M and (fn)n∈N a sequence of
isometries. If (fn)n converges pointwise on S then it does so on S.
Idea of Proof. If M is complete, this is merely an argument using Cauchy se-
quences: If p ∈ S, there is a Cauchy sequence (pk ∈ M)k∈N converging to p. Then
(fn(p))n is a Cauchy sequence as well since

d(fn(p), fm(p)) ≤ d(fn(p), fn(pk)) + d(fn(xk), fm(xk)) + d(fm(xk), fm(p))

and hence convergent. If M is not complete one has to use local compactness to
avoid issues of non-completeness.
Lemma 2.5. Let M be a Riemannian manifold. On Iso(M), the topology of uniform
convergence on compact sets coincides with the topology of pointwise convergence.
Sketch of Proof. Let (fn)n∈N be a sequence in Iso(M) such that limn fn(p) =:
f(p) exists for all p ∈ M . Then d(f(p), f(q)) = limn d(fn(p), fn(q)) = d(p, q) and
hence f is distance-preserving. Showing that f is bijective requires more work. We
now show that (fn)n converges uniformly on compact sets. If not, there exists a
compact set C ⊆ M , δ > 0 and (xm)m∈N in C such that d(f(xm), fm(xm)) > δ for
all m ∈ N. By compactness of C, we may assume by passing to a subsequence that
(xm)m converges to some y ∈ C. Pick m0 ∈ N such that d(xm, y) ≤ δ/3 for all m ≥
m0. Then d(fm(xm), fm(y)) = d(xm, y) ≤ δ/3 and d(f(xm), f(y)) = d(xm, y) ≤ δ/3
for all m ≥ m0 and hence

d(fm(y), f(y)) ≥ d(f(xm), fm(xm))− d(f(y), f(xm))− d(fm(y), fm(xm)) ≥ δ/3

for all m ≥ m0 which contradicts pointwise convergence.
Using the preceeding lemmas, we obtain the following rigidity-type statement

for sequences of isometries of Riemannian manifolds.
Theorem 2.6. Let M be a Riemannian manifold. Further, let (fn)n≥1 be a se-
quence in Iso(M) such that limn fn(p) exists for some p ∈ M . Then there is a
subsequence (fnk

)k≥1 which converges uniformly on compact subsets to an isome-
try f ∈ Iso(M).
Idea of Proof. First, using local compactness of M , one shows

{q ∈ M | (fn(q))n∈N has compact closure} = M.

Again, this is easy in the case where M is complete using the Heine-Borel theorem.
We now turn to the desired subsequence of (fn)n. Using second-countability of

M , pick a dense subset D of M . By the first step, (fn(d))n has compact closure for
all d ∈ D. Since D is countable we may thus use Cantor’s diagonal procedure to
produce a subsequence (fnk

)k of (fn)n which converges pointwise for every d ∈ D.
By Lemma 2.4 we conclude that (fnk

)k converges pointwise on D = M . Lemma 2.5
then implies uniform convergence on compact sets.

In summary, we have exploited the nature of the involved maps being isometries
to conclude uniform convergence from pointwise convergence on a single point.
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We following theorem collects what we know about the isomorphism group of a
Riemannian manifold.
Theorem 2.7. Let M be a Riemannian manifold. Then Iso(M) is a locally com-
pact, second countable topological group which acts continuously with compact
stabilizers on M .
Idea of Proof. We show that Iso(M) is locally compact. For every p ∈ M and
every open, relatively compact neighbourhood U ∈ U(p) of p, the set

W (p, U) := {f ∈ Iso(M) | f(p) ∈ U}

is a neighbourhood of id ∈ Iso(M). By Theorem 2.6, every sequence in W (p, U)
has a convergent subsequence. Given that the compact-open topology on Iso(M) is
metrisable and that Iso(M) is second-countable W (p, U) is thus compact.

2.2. Geodesic Symmetries. We now turn to the precise definition of a (lo-
cally) symmetric space, which we keep as synthetic as possible, that is, avoiding
explicit mention of the smooth structure.
Definition 2.8. Let M be a connected Riemannian manifold. Then M is locally
symmetric if for all p ∈ M there is a normal neighbourhood U of p ∈ M and an
isometry sp : U → U such that s2p = id and such that p is the unique fixed point of
sp in U . The space M is globally symmetric if it is locally symmetric and each sp
can be extended to an isometry of M .

Note that for a globally symmetric space M and p ∈ M , the geodesic symmetry
sp need not arise from choosing U = M in the definition of a locally symmmetric
space, see the example Sn in the Introduction.

The following lemma, combined with Lemma 2.3 implies that the extension of
a locally defined geodesic symmetry to the whole space is unique if it exists.
Lemma 2.9. Let M be a locally symmetric space, p ∈ M and sp : U → U a
geodesic symmetry as in Definition 2.8. Let N0 be the normal neighbourhood of
0 ∈ TpM corresponding to U , in particular Expp(N0) = U . Then Dpsp = − Id and
sp(Expp v) = Expp(−v) ∀v ∈ N0.

Proof. Since s2p = id, we have (Dpsp)2 = Id, i.e. Dpsp ∈ GL(TpM) is aninvo-
lution of Tp(M); it is hence diagonalizable with possible eigenvalues λ ∈ {−1, 1}. We
aim to show that λ := 1 cannot be an eigenvalue. In fact, assume that v ∈ TpM−{0}
satisfies Dpsp(v) = v. Then by rescaling, we may assume that v ∈ N0. But then
sp(Expp tv) = Expp(tDpsp(v)) = Expp tv for all t ∈ R such that tv ∈ N0. Hence
there is a geodesic segment of fixed points which contradicts the assumption that
p is the unique fixed point in U . !

We now aim to prove the following criterion for a locally symmetric space to
be globally symmetric.
Theorem 2.10. Let M be a complete, simply connected locally symmetric space.
Then M is globally symmetric.

The converse of Theorem 2.10 does not hold. For instance, here is an example
of a globally symmetric space which is not simply connected.
Example 2.11. Consider Sn and Γ := {± id} < O(n+1,R) = Iso(Sn). Then Γ acts
by isometric covering transformations on Sn, i.e. without fixed points and properly
discontinuously. We claim that M := Γ\ Sn is a globally symmetric space and for
n ≥ 2 satisfies π1(M) ∼= Z /2Z, in particular it is not simply connected in this case.
Since Γ acts by covering transformations, M is again a Riemannian manifold. We
argue that it is symmetric: Let sp denote the geodesic symmetry about p ∈ Sn.
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Since sp commutes with Γ, it induces a well-defined diffeomorphism σπ(p) of M
onto itself, making the following diagram commute:

Sn
sp

!!

π

""

Sn

π

""

M σπ(p)

!! M.

Given p ∈ M , the map σπ(p) is indeed the geodesic symmetry about π(p): By
definition of the Riemannian metric on Sn, the map Dqπ : TqSn → Tπ(q)M is an
isomorphism of inner product spaces for all q ∈ Sn, and the diagram

TqSn
Dqsp

!!

Dqπ

""

Tsp(q)S
n

Dsp(q)π

""

Tπ(q)M Dσπ(p)(π(q))σπ(p)

!! Tσπ(p)(π(q))M

commutes. Thus, in particular, σπ(p) is an isometry. Specializing the diagram to
q = p shows that Dπ(p)σπ(p) = − Id, hence π(p) is an isolated fixed point of σπ(p).

The space M is typically denoted by Pn(R) and called real projective n-space.
We now state several lemmas, of independent interest, to show that a globally

symmetric space is a homogeneous space of the connected component of its isometry
group. This will be useful to show that the latter is a Lie group.
Lemma 2.12. Let M be a globally symmetric space. Then M is complete.

Proof. By the Hopf-Rinow theorem, it suffices to show that any geodesic
segment γ : [a, b) → M can be extended to b ∈ R. Let ε := (b−a)/4, let p := γ(b−ε).
Define

η : [0, b− ε) → M, t '→ sp(γ(b− ε− t)).

Then η is a geodesic segment starting at η(0) = sp(p) = p with η̇(0) = γ̇(b − ε).
Thus, setting t = ε we obtain the sought-for extension.

γ(a)

γ(b− 2ε)
p

η(ε) =: γ(b)

!

Lemma 2.13. Let M be a globally symmetric space. Then the action of Iso(M) on
M is transitive.

Proof. Let p, q ∈ M . By Lemma 2.12, M is complete. Hence there exists a
geodesic segment γ : [0, d] → M such that γ(0) = p and γ(d) = q with d = d(p, q).
Let m = γ(d/2). Then sm(γ(t)) = γ(d− t): Indeed, let η : [0, d] → M, t '→ sm(γ(t)).
Then η(d/2) = m and η̇(d/2) = Dmsm(γ̇(d/2)) = −γ̇(d/2). By uniqueness of
geodesics, this implies the assertion. In particular we have η(d) = p = sm(γ(d)) =
sm(q), that is, Iso(M) acts transitively on M . !

Given a symmetric space M , we would not only like Iso(M), but also Iso(M)◦

to act transitively on M , thus allowing only orientation-preserving transformations.
Connectedness of M is clearly a necessary condition for this. We shall prove that
it is also sufficient using the following two lemmas.
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Lemma 2.14. Let M be globally symmetric space. Further, given p ∈ M , define
K := stabIso(M)(p). Then the map Iso(M)/K → M, gK '→ g(p) is a homeomor-
phism.

Prove this as an exercise using a Baire argument.
Lemma 2.15. Let M be a globally symmetric space. The map M → Iso(M), p '→ sp
is continuous.

Proof. Let p0 ∈ M . Given g ∈ Iso(M), it is immediate that gsp0g
−1 fixes gp0

and has derivative − Id at gp0. Hence gsp0g
−1 = sgp0 . Now, consider the following

commutative diagram.

M
g '→sp

!! Iso(M)

Iso(M)/K

gK '→gp0

##

h

$$❧❧❧❧❧❧❧❧❧❧❧❧❧

Iso(M)

π

## g '→gsp0 g
−1

%%
②②

②②②②
②②②②

②②②②
②②②②

②②②

The map Iso(M) → Iso(M), g '→ gsp0g
−1 is continuous since Iso(M) is a topo-

logical group. It factors through π via h which hence is a continuous map as well
by the definition of the quotient topology. Since further by Lemma 2.14 the map
orbital map Iso(M)/K → M, gK '→ g(p0) is a homeomorphism, we conclude the
assertion. !

Proposition 2.16. Let M be a globally symmetric space. Then Iso(M)◦ acts tran-
sitively on M .

Proof. Consider the continuous map ϕ : M ×M → M, (m,m′) '→ sm ◦ sm′ .
Its image contains id = sm ◦ sm (m ∈ M) and is thus contained in Iso(M)◦. We
now show that imϕ acts transitively on M : Given p, q ∈ M , let γ : [0, d] → M be a
geodesic connecting p to q as in the proof of Lemma 2.13. Then sγ(d/2) ◦ sp(p) = q.
Hence Iso(M)◦ acts transitively on M . !

We are now in a position to sketch a proof of the theorem that Iso(M)◦ is a
Lie group. In fact, an argument by Myers-Steenrod shows that the isometry group
of any Riemannian manifold is a Lie group. However, it is rather complicated. Our
proof will utilize the fact that a symmetric space M is homogeneous under the
action of Iso(M)◦.
Theorem 2.17. Let M be a globally symmetric space. Then Iso(M)◦ admits a
smooth structure which turns it into a Lie group. The action of Iso(M)◦ is then
smooth and the map Iso(M)◦/K is a diffeomorphism.
Sketch of Proof. We are going to show that Iso(M)◦ is locally homeomorphic
to a smooth manifold. Let p0 ∈ M . First, note that K := stabIso(M)◦ is compact and
comes with the representation ϕ : K → O(Tp0M), k '→ Dp0k which is continuous
and faithful by Lemma 2.3. Hence K is homeomorphic to its image imϕ under ϕ
which is a compact hence closed subgroup of the Lie group O(Tp0). Therefore, by
Cartan’s theorem, K is a Lie group in its own right.

So we already know that in the expression M ∼= Iso(M)◦/K both M and K
are manifolds; hence there should be a compatible manifold structure on Iso(M)◦.
This comes about as follows: We show that the map π : Iso(M)◦ → M admits
local cross-sections. Namely, let U be a normal neighbourhood of p0 ∈ M and let
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N0 ⊆ Tp0(M) be the corresponding normal neighbourhood of 0 ∈ Tp0(M). Then
consider the map

ΦU : U → Iso(M)◦, Expp0
v '→ sExpp0

(v/2) ◦ sp0 .

This is a continuous local cross-section of the map π : Iso(M)◦ → M, g '→ gp0; in
other words, ΦU : U → π−1(U) is a continuous right-inverse of π. In particular, ΦU

is a homeomorphism onto its image and we deduce that

U ×K → π−1(U), (p, k) '→ ΦU (p)k

is a homeomorphism between the manifold U ×K and the open subset π−1(U) of
Iso(M)◦. This was the main step. It produces charts on Iso(M)◦ and it remains to
be checked that transition maps are smooth.

In the sequel, we shall make use of the principle of analytic continuation. The
following remark establishes several preliminaries in this direction.
Remark 2.18. (Real analyticity). Let U ⊆ Rn (n ∈ N) be open. A function f : U →
R is called real analytic on U if for all x0 ∈ U there is a power series

∑
α cα(x−x0)α

which converges in some ball B(x0, ε) to f . Here, α = (α1, . . . ,αn) is a multi-index
and (x−x0)α := (x1−x01)α1 · · · (xn−x0n)αn . The multi-index notation allows one to
handle multi-dimensional expressions as if they were one-dimensional. If f : U → R
is real analytic, then the power series at x0 ∈ U converges absolutely and uniformly
in B(x0, r) for all r < ε, the function f is smooth and cα = (Dαf)(x0)/α!.

Let U be as above. A function f : U → Rm is called real analytic if all its
coordinate functions are real analytic. An atlas of a manifold is called real analytic
if the associated transition maps are real analytic. The implicit function theorem
holds also for real analytic maps.

One of the reasons to consider analytic objects is the principle of analytic
continuation, to be described later on, and the following rigidity-type statement:
Let U ⊆ Rn be open and connected. Further, let f1, f2 : U → Rm be analytic maps
such that f1|V ≡ f2|V where V ⊆ U is open. Then f1 ≡ f2 on U . To prove this,
show that the set {x ∈ U | Dαf1(x) = Dαf2(x) ∀|α| ≥ 0} is open and closed in U .

Real analyticity is relevant in our context because of the following: The expo-
nential map Exp : Mn(R) → GL(n,R) is a real analytic map. More generally, given
any Lie group G with Lie algebra g, let exp : g → G be the corresponding exponen-
tial map. Fix an open neighbourhood V ⊆ g of 0 ∈ g such that exp |V : V → exp(V )
is a diffeomorphism. Then {(g exp(V ), exp−1 ◦Lg−1) | g ∈ G} is an atlas on G giv-
ing the existent smooth structure on G. Using a version of the Baker-Campbell-
Hausdorff theorem, one can show that the transition maps with respect to this atlas
are in fact real analytic. It also follows, that multiplication and iversion are real
analytic maps with respect to this atlas.

In what follows, we will often assume manifolds to be real analytic. This is not
really a restriction: It is a theorem that every smooth manifold admits a (unique)
compatible real analytic structure. In the case of a Riemannian manifold, the Rie-
mannian metric and the exponential maps are real analytic with respect to this
structure.

To prove Theorem 2.10, we shall use the principle of real analytic continuation
the statement and proof of which we prepare with the following Lemma.
Lemma 2.19. Let (M, g) and (N, h) be Riemannian, real analytic manifolds. Let
p ∈ M . Choose ϱ > 0 such that B(p, ϱ) is a normal neighbourhood of p ∈ M .
Assume that for some 0 < r < ϱ we have an isometry f : B(p, r) → B(f(p), r).
Then f is real analytic and extends to an isometry F : B(p, ϱ) → B(f(p), ϱ).
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Proof. Let Nr := Exp−1
p (B(p, r)). Then since f is an isometry, the diagram

Nr
Dpf

!!

Expp

""

Tf(p)N

Expf(p)

""

B(p, r)
f

!! N

commutes. Therefore, also the diagram

TpMr
Dpf

!! Tf(p)N

Expf(p)

""

B(p, r)
f

!!

Exp−1
p

##

N

commutes, from which we deduce that f is a composition of real analytic maps
and hence real analytic. A candidate for the extension F of f to B(p, ϱ) clearly is
F := Expf(p) ◦Dpf ◦ Exp−1

p . We need to show that F is an isometry. Since f is an
isometry we have fora ll q ∈ B(p, r) and Xq, Yq ∈ TqM :

hf(q)(Dqf(Xq), Dqf(Yq)) = gq(Xq, Yq).

As F coincides with f on B(p, r), the two real analytic maps from B(p, ϱ) to R given
by q '→ hF (q)(DqF (Xq), DqF (Yq)) and q '→ gq(Xq, Yq) respectively, also coincide
on B(p, r) and hence coincide on B(p, ϱ) by Remark 2.18. !

The next lemma is at the heart of the analytic continuation principle. Recall the
following fact from Riemannian geoemtry: Let (M, g) be a Riemannian manifold.
For every p ∈ M , there is ε > 0 such that for all r ≤ ε, the ball B(p, r) is geodesically
convex, i.e. there is a unique distance-minimising geodesic between x and y, entirely
contained in B(p, r). If for p, q ∈ M the balls B(p, r) and B(q, l) are geodesically
convex, then so is B(p, r) ∩ B(q, l) which hence in particular is connected. Given
a compact subset C of M , there is ε > 0 such that for all p ∈ C, the ball B(p, ε)
is a normal, geodesically convex neighbourhood of p ∈ C, and for all p, q ∈ C the
subset B(p, ε) ∩B(q, ε) of M is connected (the empty set being connected).
Lemma 2.20. Let (M, g) and (N, h) be complete, real analytic Riemannian mani-
folds, p ∈ M and U ∈ U(p) open and normal. Further, let f : U → N be an isometry
onto an open subset of N . Given a continuous path η : [0, 1] → M starting at p,
there is for all t ∈ [0, 1] a neighbourhood Ut of η(t) and an isometry ft : Ut → N
such that

(i) U0 = U, f0 ≡ f , and
(ii) ∃ε > 0 : ∀t, s ∈ [0, 1]with |t−s| < ε: Ut∩Us ̸= ∅ and ft|Ut∩Us ≡ fs|Ut∩Us .

Proof. Apply the above mentioned fact to C := η([0, 1]): Let r > 0 such that
B(η(t), r) is a normal neighbourhood of η(t) (uniformly) for every t ∈ [0, 1], and
B(η(t), r) ∩B(η(s), r) is connected for all s, t ∈ [0, 1].

Now, if t ∈ [0, 1] is such that η(t) ∈ U , choose ε(t) > 0 with B(η(t), ε(t)) ⊆ U .
Then by Lemma 2.19, f |B(η(t),ε(t)) extends to an isometry ft : B(η(t), r) → N . We
may then continue in this fashion: Formally, let

I ′ :=

{
s ∈ [0, 1]

∣∣∣∣
f satisfies the conclusions of Lemma 2.20
for η|[0,1] with Ut := B(η(t), r)

}
.

Then the above argument shows that I ′ is open: Note first, that we have the fol-
lowing monotonicity property: If s1, s2 ∈ [0, 1] such that s1 ≤ s2 and s2 ∈ I ′, then
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s1 ∈ I ′. Now, if s2 ≥ s1 but with η(s2) ∈ B(η(s1, r), then we may construct an
isometry fs2 : B(η(s2), r) → N as before.

A similar argument shows that I ′ is closed: Let s0 := sup I ′. Then, as before,
[0, s0) ⊆ I ′, and we may choose s ∈ [0, s0) such that s0 ∈ B(η(s), r) to continue as
before. Overall, I ′ is non-empty, open and closed in [0, 1], hence equal to [0, 1]. !

Now, we can strengthen the shape of the analytic continuation obtained in
Lemma 2.20 in the following way: Let (M, g) and η : [0, 1] → M be as in Lemma
2.20. A pair (r, ε) ∈ R>0 ×R>0 is η-admissible if

(i) B(η(t), r) is a normal neighbourhood of η(t) for all t ∈ [0, 1].
(ii) B(η(t), r) ∩B(η(t′), r) is connected.
(iii) d(η(t), η(t′)) < r/2 if |t− t′| < ε. (By uniform continuity of η).
Then if further U , f and (N, h) are as in Lemma 2.20 and (r, ε) is η-admissible,

there is a unique family (ft, B(η(t), r))t∈[0,1] such that
(i) ft : B(η(t), r) → N is an isometry onto its image.
(ii) f0 and f coincide on U ∩B(p, r).
(iii) Whenever |t− t′| < ε, then ft and ft′ coincide on B(η(t), r) ∩B(η(t′), r).
We call (fηt , U

η
t ) an analytic continuation of (f, U) along η. The map t '→

ft(η(t)) is independent of (r, ε) and if (ft, Ut) and (f ′
t , U

′
t) are two analytic contin-

uations of (f, U) along η, then f1 and f ′
1 coincide on B(η(1), r) ∩B(η(1), r′). This

goes into the phrasing of the following Lemma.
Lemma 2.21. Let (M, g) and (N, h) be complete, real analytic Riemannian man-
ifolds, p ∈ M and U ∈ U(p) open and normal. Further, let f : U → N be an
isometry onto an open subset of N . If η, δ : [0, 1] → M are homotopic paths in M
starting at p, having the same end point η(1) = δ(1), then fη1 and f δ1 coincide on
B(η(1), r) ∩B(δ(1), r′).

Proof. Let H : [0, 1]× [0, 1]→ M, (t, s) '→ Hs(t) be a homotopy from H0 ≡ η
to H1 ≡ δ with fixed end points. Since the image of H is compact, we may pick
r′ ≤ r such that for all p ∈ im(H), the ball B(p, r′) is geodesically convex. Further,
by equicontinuity of Hs, let ε > 0 such that for all t, t′ ∈ [0, 1] with |t− t′| < ε we
have d(Hs(t), Hs(t′)) ≤ r/2 for all s ∈ [0, 1].

Then the pair (r, ε) is Hs-admissible for all s ∈ [0, 1]. Let (fHs
t , UHs

t ) be the
corresponding analytic continuation along Hs and consider

I ′ := {s ∈ [0, 1] | ∀s′ ∈ [0, s] : fHs′

1 ≡ fH0
1 ≡ fη1 }.

We aim to show that I ′ is non-empty, open and closed in [0, 1]. Clearly, I ′ contains
0 ∈ [0, 1]. Then observe that if s1, s2 ∈ [0, 1] satisfy s1 ≤ s2 and s2 ∈ I ′, then s1 ∈ I ′.
To show that I ′ is closed it therefore suffices to show that l := sup I ′ is contained in
I ′: By uniform continuity, choose s ∈ I ′ near enough to l such that for all t ∈ [0, 1]
we have d(Hl(t), Hs(t)) < r/2. Further, choose ε′ > 0 such that for t, t′ ∈ [0, 1] with
|t− t′| < ε′ we have d(Hs(t′), Hs(t)) < r/4. Then B(Hl(t), r) ⊇ B(Hs(t), r/2) and

B(Hl(t), r) ∩B(Hl(t
′), r) ⊇ B(Hs(t), r/2) ∩B(Hs(t

′), r/2)

which is non-empty and connected. Then
(
fHl
t |B(Hs(t),r/2), B(Hs(t), r/2)

)

is an analytic continuation of (f, U) along Hs. In particular, fHl |B(η(1),r/2) ≡
fHs |B(η(1),r/2); hence they coincide on B(η(1), r). This shows that l ∈ I ′. An anal-
ogous argument shows that I ′ is open. !

The proof of Theorem 2.10 now basically follows from the following result of
our so far discussion.
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Theorem 2.22. Let (M, g) and (N, h) complete, real-analytic Riemannian mani-
folds, p ∈ M and U ∈ U(p) open and normal. Assume that M is simply connected.
Further, let f : U → N be an isometry onto on open subset of N . Then f extends
uniquely to a local isometry F : M → N , i.e. for all q ∈ M ∃r > 0 such that
F |B(q,r) → B(F (q), r) is an isometry.

The map F of Theorem 2.22 is not necessarily going to be globally injective,
and therefore not a global isometry. Think of a covering map, e.g. π : E2 → Z2 \E2.
However, if the target manifold N is simply connected as well, then F is a global
isometry: Extend a local inverse along paths in N . Then the composition of F with
the so obtained map is an extension of the identity and hence equal to the identity.

Proof. (Theorem 2.22). For every q ∈ M , pick a continuous path η from p
to q. Let (fηt , U

η
t ) be an analytic continuation of (f, U) along η and define F (q) :=

fη1 (η(1)). Since M is simply connected, Lemma 2.21 implies that F does not depend
on the chosen paths and hence is well-defined. To see that F is a local isometry at
q ∈ M , let η be a path from p to q. Then for all x ∈ B(q, r), the value F (x) is given
the value of the analytic continuation of (f, U) along the concatenation of η and a
path ηx from q to x. Hence F |Uη

1
≡ fη1 which is an isometry onto its image. !

Proof. (Theorem 2.10). Let sp : U → U be a geodesic symmetry in a normal
neighbourhood U of p. Let Fp : M → M be the extension of sp given by Theorem
2.22. To see that Fp is a diffeomorphism, note that Fp ◦ Fp extends sp ◦ sp ≡ id;
hence Fp is its own inverse. !

Overall we obtain the following algebraization of the theory of symmetric
spaces: If M is a complete, real analytic locally symmetric space, then its uni-
versal cover M̃ is globally symmetric and M ∼= π1(M)\M̃ where π1(M) is viewed
as a subgroup of the isometry group of M̃ . Given a point p ∈ M̃ , we therefore have

M ∼= π1(M)\ Iso(M̃)/K,

where K := stabIso(M̃)(p), which describes M as a double coset space. The study
of locally symmetric spaces therefore reduces to the study of certain pairs (G,K)
where G is a Lie group and K ≤ G is compact, and certain discrete subgroups of G.
In the above discussion, we may also write M = Iso(M̃)◦/K for K = stabIso(M̃)◦(p)
in which case we still have M ∼= π1(M)\ Iso(M̃)◦/K which however is not a double
coset space as π1(M) may not be contained in Iso(M̃)◦. This happens e.g. in the
case of the Klein bottle.
Remark 2.23. Let X be a globally symmetric, simply connected space. Let G :=
Iso(X)◦. Then for every p ∈ X the stabilizer stabG(p) is connected (and compact):
Let K◦ be the connected component of K. We aim to show that K◦ = K. Since
K is a Lie group, K◦ is an open (normal) subgroup of K and hence K/K◦ =: F
is a finite group. The map π : G/K◦ → G/K is G-equivariant. It is actually a
Galois covering map with Galois group F : The map K × G/K◦ → G/K◦ defines
a right action of K on G/K◦, because K◦ "K, for which K◦ acts trivially. Then
π is F -invariant and one verifies that it is a covering map. If now G/K is simply
connected and G/K◦ is connected, we must have K = K◦.

2.3. Transvections and Parallel Transport. Let M be a smooth manifold.
A connection on M is a map ∇ : Vect(M)×Vect(M) → Vect(M), (X,Y ) '→ ∇XY
which is designed to make sense of “the derivative of Y in the direction of X”. It
has to satisfy the following properties:

(i) ∇ is C∞(M)-linear in the first variable.
(ii) ∇ is R-linear in the second variable.
(iii) (Leibniz) ∀X,Y ∈ Vect(M), ∀f ∈ C∞(M) : ∇X(fY ) = f∇XY +(Xf)Y .
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Properties (i) and (ii) imply that (∇XY )(p) depends only on X(p) and Y |U where
U is open neighbourhood of p ∈ M . When we turn to the Lie-theoretic point of
view on symmetric spaces, many connections will come into play. For a Riemannian
manifold there is always the Levi-Civita connection associated to the metric but
nonetheless the general concept is very important.

Property (i) above allows us to make sense of the “derivative of a vector field
along a curve”. Let c : I → M be a smooth curve where I ⊆ R is interval (if I is not
open then smoothness means that c is the restriction of a smooth map defined on
an open neighbourhood of I). Recall that a smooth vector field along c is a smooth
map V : I → TM which makes the diagram

I
V !!

c
&&
❈❈

❈❈
❈
❈❈

❈ TM

π

""

M

commute. The derivative of V along c is a vector field DV/dt along c, the oper-
ator D/dt on vector fields along curves having the (characterizing) property that
DV/dt = ∇ċ(t)Y whenever V (t) = Y (c(t)) where Y ∈ Vect(M).
Definition 2.24. Let c : I → M be a smooth curve. Further, let V : I → TM be
a vector field along c. Then V is parallel if (DV/dt)(t) = 0 for all t ∈ I.
Proposition 2.25. Let c : I → M be a smooth curve. Further, let v ∈ Tc(0)M .
Then there exists a unique smooth vector field V along c with V (0) = v and
DV/dt ≡ 0.

Thus, given a smooth curve c : I → M and t0, t1 ∈ M , Proposition 2.25
provides a well-defined linear map Pc;t0,t1 : Tc(t0) → Tc(t1) which to v0 ∈ Tc(t0)

associates the value at t1 of the parallel vector field along c with initial value v0.
The uniqueness statement of Proposition 2.25 implies

∀ t0, t1, t2 ∈ I : Pc;t1,t2 ◦ Pc;t0,t1 ≡ Pc;t0,t2 .

In particular, since Pc;t0,t0 = Id for all t0 ∈ I, all the Pc;t0,t1 (t0, t1 ∈ I) are
isomorphisms of vector spaces.

Now, given a Riemannian manifold (M, ⟨−,−⟩), there exists a unique connec-
tion ∇ on M which satisfies

(i) ∇XY −∇Y X = [X,Y ]
(ii) X⟨Y, Z⟩ ≡ ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩

Condition (ii) can be utilized to prove existence through symmetrizing the ex-
pression and (i) establishes uniqueness. This connection is called the Levi-Civita
connection. Property (ii) has the following geometric content: Let c : I → M be a
smooth curve and let V1, V2 be vector fields along c, each of which is parallel. Then

ċ(t)⟨V1(t), V2(t)⟩c(t) =
〈
DV1

dt
(t), V2(t)

〉

c(t)

+

〈
V1(t),

DV2

dt
(t)

〉

c(t)

= 0.

Hence ⟨V1(t), V2(t)⟩c(t) (t ∈ I) is constant and therefore Pc;t0,t1 : Tc(t0 → Tc(t1M
preserves the Riemannian metric.

A consequence of the uniqueness of the Levi-Civita connection is the following
behaviour with respect to isometries which can be proven using the formula for the
Levi-Civita connection obtained from the axioms.
Lemma 2.26. Let M be a Riemannian manifold with Levi-Civita connection ∇.
Further, let f ∈ Iso(M). Then

∇f∗X(f∗Y ) = f∗(∇XY ) where f∗Z(f(p)) = Dpf(Z(p)) (Z ∈ Vect(M)).
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Let us assume now, that M is a Riemannian manifold. Further, let γ : R → M
be a geodesic in M which is preserved by f ∈ Iso(M). Since Iso(R) = {±1} ! R,
we have f ◦ γ(t) = γ(at + b) for a ∈ {±1} and b ∈ R. Thus, if V : R → TM is a
vector field along γ then so is f∗V ; and V is parallel along γ if and only if f∗V is
parallel along γ. Let now M be a globally symmmetric space and let γ : R → M
be a geodesic. Then for every t ∈ R, we may define

T t : M → M, p '→ sγ(t/2) ◦ sγ(0)(p).

For every geodesic γ : R → M and t ∈ R, the map T t is an isometry of M , termed
a transvection. If M = Rn (n ∈ N), then T t is a translation. Transvections are an
important class of isometries because of the following.
Proposition 2.27. Let M be a Riemannian manifold and γ : R → M a geodesic.
Let T t (t ∈ R) denote the transvections along γ. Then

(i) ∀s, t ∈ R : T t(γ(s)) = γ(s+ t),
(ii) ∀s, t ∈ R : Dγ(s) T t ≡ Pγ;s,s+t,
(iii) ∀t1, t2 ∈ R : T t1 ◦ T t2 ≡ T t1+t2 , and
(iv) T t is independent of any orientation-preserving reparameterisation of γ.
Proposition 2.27 provides many one-parameter subgroups R → Iso(M)◦, t '→

T t, i.e. elements of the Lie algebra of Iso(M)◦. This point of view will be important
later on. For now, we prove Proposition 2.27.

Proof. For (i), compute

T t(γ(s)) = sγ(t/2) ◦ sγ(0)(γ(s)) = sγ(t/2)(γ(−s)) = γ(t+ s).

As for part (ii), observe that sγ(l)(γ(t)) = γ(2l − t), hence the isometry s(γl)
preserves the geodesic γ for all l ∈ R and acts as an orientation-preserving repa-
rameterisation. Therefore, if V is a parallel vector field along γ, then so is (sγ(l))∗V .
Observe further, that (sγ(l))∗V (l) = −V (l) and hence (sγ(l))∗V ≡ −V . This implies
(T t)∗V = V for all parallel vector fields V along γ, i.e.

(T t)∗V (l) = (Dγ(l) T t)(V (l)) = V (t+ l)

and hence Dγ(l) T t ≡ Pγ;t,t+l.
For part (iii), we appeal to the rigidity-type Lemma 2.3 for isometries using

Dγ(s)(T t ◦ T t′) ≡ Dγ(s+t′) T t Dγ(s) T t′

≡ Pγ;s+t′,s+t+t′Pγ;s,s+t′ ≡ Pγ;s,s+t′+t ≡ Dγ(s) T t+t′ .

Hence the isometries T t ◦ T t′ and T t+t′ both map γ(s) to γ(s + t + t′) and have
the same derivative at γ(s).

We check part (iv) on translations:

sγ(t/2+b) ◦ sγ(b) ≡ sγ(t/2+b) ◦ sγ(0) ◦ sγ(0) ◦ sγ(a)
≡ T t+2b ◦(sγ(b) ◦ sγ(0))−1 ≡ T t+2b ◦ T −1

2b ≡ T t .

!

2.4. Lie Group Viewpoint. We have seen that a globally symmetric space
M is homogeneous under the action of G := Iso(M)◦ with compact point stabilizer
K. We are now going to characterize the pairs (G,K), consisting of a connected
Lie group G and a compact subgroup K ≤ G, that come from symmetric spaces as
above. This will unveil deeper structures. A central notion will be the following.
Definition 2.28. Let G be a Lie group and let σ : G → G be an automorphism.
Then σ is involutive if σ2 = id.
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Proposition 2.29. Let M be a symmetric space, o ∈ M , so the geodesic symmetry
about o ∈ M , G := Iso(M)◦ and K := stabG(o). Then the map σ : G → G,
g '→ sogso = sogs−1

o is an involution of G such that (Gσ)◦ ⊆ K ⊆ Gσ.

Proof. First of all, σ is an involution of G since it is given by conjugation
with so. To see that K ⊆ Gσ, note that sokso(o) = o. Taking the derivative of
sokso : M → M at o ∈ M yields

Do(sokso) = (Doso)(Dok)(Doso) = (− Id)(Dok)(Id) = Dok.

Hence the isometries sokso and k coincide up to first order at o ∈ M . By Lemma
2.3 they are thus equal.

To prove (Gσ)◦ ⊆ K, it is enough to show the existence of a neighbourhood U
of e in Gσ contained in K. Then (Gσ)◦ ⊆ ⟨U⟩ ⊆ K. Let V be a neighbourhood of
o ∈ M such that o is the only fixed point of so in V and set U := {g ∈ Gσ | g(o) ∈
V }. Then U is an open neighbourhood of e ∈ Gσ. It is also contained in K: For
every g ∈ U , we have sog(o) = sogso(o) = σ(g)(o) = g(o). That is, g(o) ∈ V is a
fixed point of so. By definition of V , this implies g(o) = o and hence g ∈ K. !

Example 2.30. The condition (Gσ)◦ ⊆ K ⊆ Gσ of Proposition 2.29 cannot be
made more precise as the subsequent examples will show. However, recall that if
M is simply connected then K is connected and hence K = (Gσ)◦ in this case.

(i) M = S2, o = e3, G := Iso(M)◦ = SO(3). Here,

so =

(
− Id2

1

)
∈ G and for g =

(
A −b
−c d

)

we have

σ(g) =

(
− Id2

1

)(
A b
c d

)(
− Id2

1

)
=

(
A −b
−c d

)
.

Therefore,

Gσ =

{(
A

d

)∣∣∣∣A ∈ O(2), d ∈ {±1}, (detA)d = 1

}

which is disconnected because of the continuous map d : Gσ → {±1};
in fact Gσ has two connected components. Furtermore, by the opening
remark,

K = (Gσ)◦ =

{(
A

1

)∣∣∣∣A ∈ SO(2)

}
.

(ii) M = P2(R) = {± Id}\ S2, o = [e3], G := Iso(M)◦ = Iso(M) = O(3)/{± Id}.
Here, stabG(o) has two connected components and equals Gσ.

(iii) M = S3, o = e4, G := Iso(M)◦ = SO(4). Here,

so =

(
− Id3

1

)
̸∈ G

and as in part (i), Gσ has two connected components whereas K = (Gσ)◦

is connected.
(iv) M = P3(R) = {± Id}\ S3, o = [e4]. In this case we have

G := Iso(M)◦ = SO(4)/{± Id} ≠ O(4)/{± Id} = Iso(M).

and Gσ is connected.
As announced, we now characterize pairs (G,K) of a connected Lie group G

and a compact subgroup K ≤ G coming from symmetric spaces.
Definition 2.31. Let G be a connected Lie group and let K ≤ G be a closed
subgroup of G. Then (G,K) is a Riemannian symmetric pair if
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(i) AdG(K) ≤ GL(g) is compact, and
(ii) there exists an involution σ : G → G with (Gσ)◦ ⊆ K ⊆ Gσ.

Recall, that the adjoint representation Ad : G → GL(g) of a Lie group G is
given by Ad(g) = Deint(g) where int(g) : G → G, h '→ ghg−1, as in the following
commutative diagram:

G
int(g)

!! G

g

exp

##

Ad(g)
!! g .

exp

##

The first condition of Definition 2.31 means that K is compact up to the center
of G since kerAdG = CG(G0) (thus for connected G we have: kerAdG = Z(G)).
In virtue of Proposition 2.29, every symmetric space M gives rise to a Riemannian
symmetric pair. Conversely, we shall prove the following.
Theorem 2.32. Let (G,K,σ) be a Riemannian symmetric pair. Then there exists
a G-invariant Riemmanian metric on the homogeneous space M := G/K and M
is a symmetric space with respect to any such metric. If π : G → G/K denotes
the natural projection, o := eK ∈ G/K and so is the geodesic symmetry about
o ∈ G/K, then soπ = πσ.

As a corollary, we note that the geodesic symmetry so of Theorem 2.32 is
independent of the choice of the G-invariant Riemannian metric on G/K.
Example 2.33. Theorem 2.32 provides a powerful way to construct Riemannian
symmetric spaces. Rather than thinking of its geometric shape, we may just look
at Lie groups with certain subgroups. However, note that Theorem 2.32 is useless
so far in that it does not say what the Riemannian metric is; however, this will be
remedied by the proof.

(i) Let G = SL(n,R), K = SO(n) and σ : G → G, g '→ (g−1)T . Then σ is an
involution of G and Gσ = {g ∈ SL(n,R) | gT g = Id} = SO(n) = K. Now,
for instance it is well known that SL(2,R)/ SO(2) ∼= H2. In this sense,
SL(n,R)/ SO(n) is a good generalization of the hyperbolic plane.

(ii) Let L be a compact connected Lie group. Further, set G = L×L and σ :
G → G, (x, y) '→ (y, x). Then σ is an involution of G and Gσ = ∆L×L =:
K is compact. Hence, by theorem 2.32, G/K is a symmetric space. Note
that the map L × L → L, (g, h) '→ gh−1 induces a diffeomorphism L ×
L/∆L×L → L. Hence L may be viewed as a symmetric space. In this case,
the G = L× L-action on L = G/K is given by (g, h)∗l = glh−1.

Proof. (Theorem 2.32). We first give an appropriate model for ToM and its
K-action. By assumption, we have (Gσ)◦ ⊆ K ⊆ Gσ. Denoting by k the Lie algebra
of K, we conclude k = Lie((Gσ)◦) = Lie(Gσ). Hence

k = Lie(Gσ) = {X ∈ g | exp tX ∈ Gσ ∀t ∈ R}
= {X ∈ g | σ(exp tX) = exp tX ∀t ∈ R}
= {X ∈ g | DeσX = X}

where the last equality follows from the fact σ is a Lie group homomorphism and
therefore satisfies σ(exp tY ) = exp(tDeσ(Y )) for all t ∈ R and Y ∈ g. Note further,
that Deσ ∈ GL(g), being the derivative of an automorphism of G. It satisfies
(Deσ)2 = De(σ2) = Id. Overall, Deσ is an involutive automorphism of g and as
such is diagonalizable with eigenvalues in {±1}. By the above, E1(Deσ) = k. Thus,
if p := E−1(Deσ),

(CD) g = k⊕ p .
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Now, since σ(k) = k ∀k ∈ K, we have σ◦ int(k) ≡ int(k)◦σ for all k ∈ K. Passing to
the derivative at e ∈ G, we obtain DeσAdG(k) ≡ AdG(k)Deσ for all k ∈ K which
implies that Ad(K) ≤ GL(g) preserves p. Since Ad(K) ≤ GL(g) also preserves k, it
preserves the decomposition CD.

In the following, for the sake of clarity, we will denote by Lg the diffeomorphism
M = G/K → G/K, xK '→ gxK. For k ∈ K, consider the following commutative
diagrams:

(T) G
int(k)

!!

π

""

G

π

""

G/K
Lk

!! G/K

g
Ad(k)

!!

Deπ
""

g

Deπ
""

ToG/K
DoLk

!! ToG/K;

the right one being obtained by taking derivatives in the first. By construction of
the differentiable structure on G/K, the map π : G → G/K is a submersion, in
particular Deπ : g → ToG/K is surjective; and it has kernel kerDeπ = k. Therefore,
Deπ|p : p → ToG/K is an isomorphism of vector spaces and by the above diagram
an isomorphism of K-modules, i.e. DeπAd(k)|p = DoLkDeπ|p for all k ∈ K.

This description of ToG/K and its K-action allows us to prove the existence
of a G-invariant Riemannian metric on M = G/K. First of all, a G-invariant
Riemannian metric {Bp : TpM × TpM → R | p ∈ M} on M is determined by Bo

since for g ∈ G, p := Lgo and v, w ∈ ToM the G-invariance forces

Bp(DoLgv,DoLgw) = Bo(v, w).

The above equation also shows that Bo is a K-invariant scalar product on To(M).
Conversely, any K-invariant scalar product Bo on ToM gives rise to a well-defined,
G-invariant Riemannian metric {Bp | p ∈ M} on M via

BLgo(v, w) = Bo(DeLg−1v,DeLg−1w).

Now, using the right diagram of (T), we see that K-invariant scalar products on
ToM correspond to Ad(K)-invariant scalar products on p. By assumption, Ad(K) ≤
GL(g) is compact and hence so is Ad(K)|p ≤ GL(p). This implies the existence of
an Ad(K)|p-invariant scalar product on p: If µ denotes the left Haar measure on
p and ⟨−,−⟩ : p× p → R is any scalar product on p, then an Ad(K)|p-invariant
scalar product on p is given by

(u, v) :=

∫

Ad(K)|p

⟨Au,Av⟩ µ(A)

(If the action of Ad(K)|p on p is irreducible, this is essentially the only such prod-
uct. Otherwise, the irreducible pieces of p give rise to a decomposition of M into
geometric pieces that are again symmetric.)

We have found a model for ToG/K and its K-action, and used it to equip M =
G/K with a G-invariant Riemannian metric. It remains to provide the geodesic
symmetries. Define so(p) := Lσ(g)o whenever Lgo = p. This is well-defined since
Lσ(gk)(o) = Lσ(g)Lσ(k)o = Lσ(g)o. We now aim to show that Doso = − Id. To this
end, note that so commutes with π in the sense that

G
σ !!

π

""

G

π

""

G/K so
!! G/K
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commutes. Taking derivatives implies DosoDeπ = DeπDeσ : g → ToG/K. Re-
stricting to p now yields for all X ∈ p:

DosoDeπ(X) = DeπDeσ(X) = −DeπX.

Since Deπ|p : p → ToM is an isomorphism, this implies that Doso = − Id. It
remains to show that so is an isometry with respect to any G-invariant metric
{Bp | p ∈ M} on M . We need to verify that for all p ∈ M and for all v, w ∈ TpM
we have

Bso(p)(Dpsov,Dpsow) = Bp(v, w).

To this end, the following prelimary computation will by useful:

soLg(xK) = so(gxK) = σ(gx)K = σ(g)σ(x)K = σ(g)so(xK) = Lσ(g)so(xK).

Now we verify the isometry condition mentioned above. Write p = Lgo and let
v = DoLgvo as well as w = DoLgwo for vo, wo ∈ ToM . Then Bp(v, w) = Bo(vo, wo)
by G-invariance and

Bso(p)(Dpsov,Dpsow) = Bso(Lgo)(DLgoso(DoLgvo), DLgoso(DoLgwo))

= Bso(Lgo)(Do(soLg)vo, Do(soLg)wo)

= BLσ(g)o(Do(soLg)vo, Do(soLg)wo)

= BLσ(g)o(DoLσ(g)(Dosovo), DoLσ(g)(Dosowo))

= BLσ(g)o(DoLσ(g)(vo), DoLσ(g)wo)

= Bo(vo, wo).

As to the geodesic symmetry about an arbitrary point p ∈ M , the natural definition
sp := LgsoL−1

g works. !

Remark 2.34. Let M be a symmetric space and let (G,K) be the Riemannian
symmetric pair associated to M . Then the involution σ : G → G such that (Gσ)◦ ⊆
K ⊆ Gσ is unique. A priori, given G and K, there may be several σ with this
property. However, if the pair (G,K) comes from a symmetric space there is just
one: Indeed, let so be the geodesic symmetry about o ∈ M . If σ1,σ2 : G → G are
involutions of G such that (Gσi )◦ ⊆ K ⊆ Gσi (i ∈ {1, 2}), then by the proof of
Theorem 2.32 we have Lσ1(g) = soLgs−1

o = Lσ2(g) for all g ∈ G. Hence σ1(g) = σ2(g)
for all g ∈ G since G is the isometry group of M , see Lemma 2.3.
Definition 2.35. Let (G,K,σ) be a Riemannian symmetric pair. Further, denote
g = Lie(G) and k = Lie(K). The map Θ := Deσ : g → g is the Cartan involution
associated to (G,K,σ) and g = E1(Θ)⊕E−1(Θ) = k⊕ p, where p = E−1(Θ), is the
Cartan decomposition of g with respect to Θ.
Proposition 2.36. Retain the notations of Definition 2.35. Then [k, k] ⊆ k, [k, p] ⊆ p
and [p, p] ⊆ k.

Proof. This is a consequence of the eigenspace decomposition of g into k and
p with respect to Θ. Namely, if ΘX = λX and ΘY = µY , then

Θ[X,Y ] = [ΘX,ΘY ] = λµ[X,Y ]

Hence the assertion. !

2.5. Exponential Map and Geodesics. Given that symmetric spaces come
from Riemannian symmetric pairs and conversely, in this section we ask what the
relation between the Riemannian and the Lie group exponential is.

In the following, we therefore let (G,K,σ) be a Riemannian symmetric pair
with associated symmetric space M = G/K, basepoint o ∈ M and π : G → M ,
g '→ g∗o the natural projection.
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Theorem 2.37. Let g = k⊕ p be the Cartan decomposition of g. Further, denote by
exp : g → G the Lie group exponential and by Expo : ToM → M the Riemannian
exponential at o ∈ M . Then the following diagram commutes:

p

exp

""

Deπ|p
!! ToM

Expo

""

G π
!! M.

In particular, for Y ∈ p, the map R → M, t '→ exp(tY )∗o is the geodesic through
o in the direction DeπY and every geodesic through o is of this form.

Proof. For X ∈ p, consider the geodesic γ : R → M, t '→ Expo(tDeπ(X))
and let (T t)t be the associated one-parameter group of transvections, given by
T t = sγ(t/2)sγ(0) ∈ Iso(M)◦ = G. Recall that it satisfies T t γ(s) = γ(s + t) for
all s, t ∈ R. Since (T t)t is a one-parameter group in G, there is Y ∈ g such that
T t = exp tY for all t ∈ R. We show that actually Y ∈ p ⊆ g: To this end, compute

σ(exp tY ) =σ(T t) = σ(sγ(t/2)so) = sosγ(t/2)soso = sosγ(t/2) =

= s−1
o s−1

γ(t/2) = (sγ(t/2)so)
−1 = (T t)

−1 = exp(tY )−1 = exp(−tY ).

Overall, this is exp(tDeσ(Y )) = σ(exp(tY )) = exp(−tY ) and hence DeσY = −Y
by taking the derivative d/dt|t=0. Thus Y ∈ p. Furthermore, we have for all t ∈ R:

π(exp tY ) = exp(tY )∗o = T t γ(0) = γ(t) = Exp0 tDeπ(X).

Passing to tangent vectors yields Deπ(Y ) = Deπ(X) and hence X = Y since
X,Y ∈ p and Deπ|p is injective. This implies the assertion. !

We finish this section about the Lie group viewpoint by constructing a con-
nection on a given Lie group G whose geodesics through e ∈ G are exactly the
one-parameter subgroups of G; therefore the exponential of this connection coin-
cides with the Lie group exponential. This will be useful later on.

First of all, we introduce the following model for vector fields on G. The map

X : C∞(G, g) → Vect(G), F '→ (X(F ) : g '→ DeLgF (g))

is an isomorphism of C∞(G)-modules. Now, any connection

∇ : Vect(G)×Vect(G) → Vect(G)

gives rise to a map D : C∞(G, g)× C∞(G, g) → C∞(G, g) via

(F1, F2) '→ (DF1F2 : g '→ (DeLg)
−1(∇XF1XF2))

such that the following diagram commutes

Vect(G)×Vect(G)
∇ !! Vect(G)

C∞(G, g)× C∞(G, g)

X×X

##

D
!! C∞(G, g)

X

##

and the subsequent three properties hold:
(D1) D is R-linear in the second variable.
(D2) D is C∞(G)-linear in the first variable.
(D2) (Leibniz rule) For all f ∈ C∞(G) ∀F1, F2 ∈ C∞(G, g):

DF1(fF2)(g) = De(f ◦ Lg)(F1(g))F2(g) + f(g)DF1F2(g)
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The first two properties follow from the fact that X is an isomorphism of
C∞(G)-modules. The Leibniz rule may be verified as follows:

DF1(fF2)(g) = (DeLg)
−1(∇XF1X(fF2)(g))

= (DeLg)
−1(∇XF1fX(F2)(g))

= (DeLg)
−1(X(F1)(f)(g)X(F2)(g) + f(g)∇XF1XF2(g))

= X(F1)(f)(g)︸ ︷︷ ︸
see below

(DeLg)
−1X(F2)(g)︸ ︷︷ ︸
F2(g)

+ f(g)∇XF1XF2(g).

The Leibniz rule now follows from the computation

X(F1)(f)(g) = Dgf(X(F1)(g)) = Dgf(DeLg(F1(g))) = De(f ◦ Lg)F1(g).

Conversely, any map D : C∞(G, g) × C∞(G, g) → C∞(G, g) satisfying the
above properties (D1), (D2) and (D2) gives rise to a connection ∇ on G via

∇XF1XF2(g) = DeLg(DF1F2(g)).

The point of this new model for connections on G is that it facilitates writing down
actual connections. In fact, define a map D : C∞(G, g)×C∞(G, g) → C∞(G, g) by

(F1, F2) '→
(
DF1F2 : g '→ d

dt

∣∣∣∣
t=0

F2(g exp tF1(g)) = De(F2 ◦ Lg)(F1(g))

)
.

Lemma 2.38. The map D above satisfies properties (D1), (D2) and (D2). Let ∇
be the connection on G associated to D. Then

(i) ∇ is G-invariant,
(ii) ∇X̃ Ỹ = 0 for all left-invariant vector fields X̃, Ỹ ∈ Vect(M)G, and
(iii) the exponential map associated to ∇ is the Lie group exponential.

Proof. It is readily checked that D satisfies the properties (D1), (D2) and
(D2). To show (i), let F ∈ C∞(G, g) and g ∈ G. We reduce to showing that D is
G-invariant in the suitable sense. First, compute

(Lg∗X(F ))(gh) = (DhLg)(X(F )(h)) = DeLh(F (h)) =

= De(Lgh(F (h))) = De(Lh(F (g−1h))).

Thus defining an element of GL(C∞(G, g)) by (λ(g)F )(h) = F (g−1h), we have
Lg∗X(F ) = X(λ(g)F ). Now we can verify the invariance property of ∇ using the
corresponding invariance property of D:

(
Dλ(g)F1

λ(g)F2

)
(h) =

d

dt

∣∣∣∣
t=0

(λ(g)F2) (h exp tλ(g)F1(h))

=
d

dt

∣∣∣∣
t=0

F2

(
g−1h expF1(g

−1h)
)

= DF1F2(g
−1h)

= λ(g)(DF1F2)(h).

For assertion (ii), observe that X(F )(g) = (DeLg)F (g) is left-invariant if and only
if F is constant. Hence left-invariant vector fields correspond to constant maps.
Hence the assertion.

As to (iii), note that ∇X̃X̃ = 0 for all X ∈ g by (ii). Hence if γX : R → G is
the one-parameter group associated to X , then ∇γ̇X(t)γ̇X(t) = 0. Therefore, γX is
the unique ∇-geodesic through e ∈ G satisfying γ̇X(0) = X . That is, Exp∇(X) =
γX(1) = exp(X). !
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Now, for the theory of totally geodesic submanifolds, we will need the following
formula for the derivative of the Lie group exponential. It follows readily from the
formula for general analytic connections, see [Hel79, Thm. I.6.5].
Theorem 2.39. Let G be a Lie group with Lie algebra g. Further, let X ∈ g. Upon
identifying TX g with g, the derivative of exp at X ∈ g is given by the following
diagram:

TX g
DX exp

!! TexpXG

g

##

∑
∞

n=0
ad(X)n

(n+1)!

!! g,

DeLexpX

##

that is, DX exp = (DeLexpX) ◦
(∑∞

n=0
(adX)n

(n+1)!

)
.

We now apply this formula in the context of symmetric spaces: Let M be a
symmetric space, o ∈ M , G := Iso(M)◦, K := stabG(o) and Lie(G) =: = k⊕ p the
Cartan decomposition. Further, let π : G → M, g '→ g∗o be the orbit map. Recall
that Deπ|p : p → ToM is an isomorphism. We use it to define Exp : p → ToM → M
and record the following Corollary to Theorem 2.39.
Corollary 2.40. Retain the above notation. Let X ∈ p. Then

DX Exp = DoLexpX ◦Deπ

(
∞∑

n=0

ad(X)2

(2n+ 1)!

)
.

Proof. We have

DX Exp = DX(Expo ◦Deπ|p) = DX(π ◦ exp |p)

and therefore, temporarily ignoring the restriction to p,

DX(π ◦ exp) = DexpXπ ◦DX exp

= DexpXπ ◦DeLexpX ◦
(

∞∑

n=0

ad(X)n

(n+ 1)!

)

= De(π ◦ LexpX)

(
∞∑

n=0

ad(X)n

(n+ 1)!

)

= De(LexpX ◦ π)
(

∞∑

n=0

ad(X)n

(n+ 1)!

)

= DoLexpX ◦Deπ

(
∞∑

n=0

ad(X)n

(n+ 1)!

)
.

We now examine the last expression in the above computation for X ∈ p. Given
Y ∈ p, we have ad(X)n(Y ) ∈ k whenever n is odd because of Proposition 2.36.
Since Deπ(k) = 0 we therefore obtain

Deπ

(
∞∑

n=0

ad(X)n

(n+ 1)!

)
= Deπ

(
∞∑

n=0

ad(X)2n

(2n+ 1)!

)

which is the assertion. !

2.6. Totally Geodesic Submanifolds. In this section we present an appli-
cation of the formula for the derivative of the Lie exponential to the characterization
of totally geodesic submanifolds of a symmetric space. First we recall this notion.
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Definition 2.41. Let M be a Riemannian manifold and let N be a submanifold.
Let p ∈ N ⊆ M . The submanifold N is geodesic at p if for all v ∈ TpN , the M -
geodesic with initial data (p, v) is contained in N . The submanifold N is totally
geodesic if it is geodesic at all p ∈ N .

As an exercise, assume that N is totally geodesic in M and prove that any
N -geodesic is an M -geodesic and that any M -geodesic contained in N is an N -
geodesic. This is far from to true for submanifolds that are not totally geodesic,
think e.g. of S2 ⊂ R3. We also record the following proposition. For a systematic
treatment of totally geodesic submanifolds, we refer to [Hel79, Ch. I.14].
Proposition 2.42. Let M be a Riemannian manifold and let N be a totally geo-
desic submanifold of M . Then the M -parallel transport along curves in N preserves
the tangent space distribution {TpN | p ∈ N}.
Remark 2.43.

The Lie-theoretic concept that comes with total geodesicity is the following.
Definition 2.44. Let g be a Lie algebra. A subset n ⊆ g is a Lie triple system if
[n, [n, n]] ⊆ n.
Example 2.45. If g = p⊕ p is the Cartan decomposition associated to a symmetric
space, then p is a Lie triple system in g.

In fact there is going to be a one-to-one correspondence between totally geodesic
submanifolds of a symmetric space and Lie triple systems in p.
Lemma 2.46. Let g be a Lie algebra and let n ⊆ g be a Lie triple system. Then

(i) [n, n] ⊆ g is a subalgebra, and
(ii) n+[n, n] ⊆ g is a subalgebra.

Proof. For (i), let X,Y, Z,W ∈ n. By Jacobi’s identity

[[X,Y ], [Z,W ]] + [[[Z,W ], X ]︸ ︷︷ ︸
∈n

, Y︸︷︷︸
∈n

] + [[Y, [Z,W ]]︸ ︷︷ ︸
∈n

, X︸︷︷︸
∈n

] = 0

and therefore [[X,Y ], [Z,W ]] ∈ [n, n].
For (ii), we consider the following possibilities: If X,Y ∈ n, then [X,Y ] ∈ [n, n].

If X ∈ n and Y ∈ [n, n], then [X,Y ] ∈ [n, [n, n]] ⊆ n. Finally, if X,Y ∈ [n, n], then
[X,Y ] ∈ [n, n] by part (i). !

We now prove the announced correspondence between Lie triple systems and
totally geodesic submanifolds.
Theorem 2.47. Let M be a symmetric space, o ∈ M , G := Iso(M)◦, K :=
stabG(o), π : G → M, g '→ g∗o and Lie(G) =: g = k⊕ p the Cartan decompo-
sition. Then the following statements hold.

(i) If n ⊆ p is a Lie triple system, then N := Exp0(Deπ(n)) ⊆ M is a totally
geodesic submanifold of M .

(ii) If N is a totally geodesic submanifold of M containing o ∈ M , then
n := (Deπ)−1ToN ⊆ p is a Lie triple system.

Remark 2.48. Retain the notation of Theorem 2.47. If the totally geodesic sub-
manifold N ⊆ M does not pass through o ∈ M , then transitivity of Iso(M) on M
implies that there exists an isometry of M which takes N to the point o ∈ M , and
this isometric translate of N is again a totally geodesic submanifold of M .

Proof. (Theorem 2.47). For (i), let G′ be the Lie subgroup of G associated to
the subalgebra g′ := n+[n, n]. Put M ′ := G′

∗o and K ′ := stabG′(o) = G′ ∩K. Then
K ′ is a closed subgroup of G, hence a Lie subgroup. Therefore G′/K ′ has a smooth
manifold structure. Further, the map G′/K ′ → M, g′K ′ '→ g′∗o is smooth and
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immersive which follows from the same properties of the map G′ → G. Therefore,
Deπ(g′ ∩ p) = ToM ′. Now observe that g′ = n+[n, n] implies g′ ∩ p = n. Thus
actually Deπ(n) = ToM ′. Now recall that every geodesic through o ∈ M is of the
form t '→ (exp tX)∗o for some X ∈ p. Hence such a geodesic is tangent to M ′ at
o ∈ M if and only if X ∈ n. In this case, exp tX ∈ G′ for all t ∈ R and therefore
exp(tX)∗o ∈ M ′ for all t ∈ R. Hence M ′ is totally geodesic at o ∈ M . Using the
G′-action on M ′, one sees that M ′ is geodesic at all p ∈ M ′, hence totally geodesic.

For (ii), let n := (Deπ)−1ToN ⊆ p. Recall the map Exp = Expo ◦Deπ|p : p →
ToM → M . If X,Y ∈ n, then Exp(tX) and Exp(tY ) are M -geodesics which are
contained in N by the definition of total geodesicity. Now, consider the restriction
Exp : n → N and its differential DtY Exp : n → TExp(tY )N . By Corollary 2.40, this
is

DtY (Exp(X) = DoLexp tY )Deπ

(
∞∑

n=0

ad(tY )2n(X)

(2n+ 1)!

)
.

Since the M -parallel transport preserves {TpN | p ∈ M} by Proposition 2.42 and
is implemented by transvections by 2.27 we conclude

Deπ

(
∞∑

n=0

ad(tY )2n(X)

(2n+ 1)!

)
= DtY (Exp(X)DoLexp−tY ) ∈ T0N.

Thus, by definition of n, we have

∞∑

n=0

ad(tY )2n(X)

(2n+ 1)!
=

∞∑

n=0

t2n ad(Y )2n(X)

(2n+ 1)!
∈ n

which in turn implies ad(Y )2(X) ∈ n, that is, [Y, [Y,X ]] ∈ n for all X,Y ∈ n. In
particular, for X,Z, Y ∈ n we have ad(Y + Z)2(X) ∈ n. Making this explicit using

ad(Y +Z)2 = (ad(Y )+ad(Z))2 = ad(Y )2+ad(Y ) ad(Z)+ad(Z) ad(Y )+ad(Z)2 ∈ n

yields ad(Y ) ad(Z)(X) + ad(Z) ad(Y )(X) ∈ n, that is

(L) [Y, [Z,X ]] + [Z, [Y,X ]] ∈ n

Applying Jacobi’s identity to the second term yields

[Z, [Y,X ]]+[Y, [X,Z]]+[X, [Z, Y ]] = 0 ⇔ [Z, [Y,X ]] = −[X, [Z, Y ]]−[Y, [X,Z]].

and by performing the same computation on the first term of (L) leads to

2[Y, [Z,X ]] + [X, [Y, Z]] ∈ n and 2[X, [Z, Y ]] + [Y, [X,Z]] ∈ n

and thus finally by subtraction

3[Y, [Z,X ]] + 3[X, [Y, Z]] = −3[Z, [X,Y ]] ∈ n,

i.e., n is a Lie triple system in g. !

Remark 2.49. It is an exercise to show that if M is a (locally) symmetric space
and N is a totally geodesic submanifold of M , then N is a (locally) symmetric space
in its own right and to identify the corresponding Riemannian symmetric pair in
the global case, including the involution.

2.7. Examples. In this section we illustrate the developed theory with several
guiding examples.
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2.7.1. The Riemannian Symmetric Pair (SL(n,R), SO(n)). Let G = SL(n,R).
An involution on G is given by σ(g) := (g−1)T . We have

K := stabG(σ) = {g ∈ SL(n,R) | g = (g−1)T } = SO(n).

Since K is itself compact, (G,K,σ) is a Riemannian symmetric pair. Therefore,
M := G/K = SL(n,R)/ SO(n) is a symmetric space for any G-invariant Riemann-
ian metric on M . The Lie algebra g := Lie(G) = {X ∈ Mn,n(R) | trX = 0}
is well-known. To determine the Cartan decomposition we compute the Cartan
involution Θ = Deσ : g → g:

Θ(X) =
d

dt

∣∣∣∣
t=0

σ(exp tX) =
d

dt

∣∣∣∣
t=0

exp(−tXT ) = −XT .

Thus
k = E1(Θ) = {X ∈ Mn,n(R) | trX = 0, X +XT = 0}

and
p = E−1(Θ) = {X ∈ Mn,n(R) | trX = 0, X = XT }

In words, the Cartan decomposition in this case is just the decomposition of a
matrix into its symmetric and its antisymmetric part.

In order to give a G-invariant Riemannian metric on M , it suffices to pro-
vide an Ad(K)-invariant scalar product on p by (T). To this end, recall that
Ad : SL(n,R) → GL(sl(n,R)) is given by g '→ (Ad(g) : X '→ gXg−1). Then
⟨X,Y ⟩ := tr(XY ) is clearly an Ad(K)-invariant scalar product on p. As a model
for M we have

Sym+
1 (n) = {S ∈ Mn,n(R) | ST = S, S ≫ 0, detS = 1}.

Viewed as quadratic forms, Sym+
1 (n) may be identified with the set of all ellipsoids

in Rn centered at 0 ∈ Rn with volume 1. This manifold M arises as a homogeneous
space of G through the action g∗S := gSgT , which is transitive by a linear algbra
argument and has stabG(Id) = K. The Riemannian exponential map ExpId : p →
Sym+

1 (n) can be computed using Theorem 2.37:

Exp(X) = expG(X)∗ Id = exp(X) Id exp(X)T =

= expG(X) expG(X) = expG(2X) ∈ Sym+
1 (n)

Part of the beauty of the theory of symmetric spaces indeed lies in the fact that it
facilitates otherwise difficult computations as the one above.

We end this example by making explicit the relationship between Sym+
1 (2) and

H2. To every

S =

(
a b
b d

)

we associate the quadratic form qS(x, y) := (x, y)S(x, y)T = ax2+2bxy+dy2. Since
ad− b2 = 1 we have ad ̸= 0 and therefore

q(x, y) = ay2
((

x

y

)2

+
2b

a

(
x

y

)
+

d

a

)
= ay2

(
x

y
− z

)(
x

y
− z

)

where z, z are given by

− 2b
a ±

√
4
(
b
a

)2 − 4 d
a

2
=

− 2b
a ±

√
4(b2−ad)

a2

2
=

−b± i

a
.

Since S is positive definite, a > 0 and hence z := (−b + i)/a ∈ H. In this way,
we obtain a map Sym+

1 (2) → H2, S '→ zS which has the following equivariance
property: zg∗S = (g−1)T∗ zS where the action on right hand side is by fractional linear
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transformations. This map is very important and was probably already known by
Gauss. Possibly, it is a natural way to discover fractional linear transformations.

2.7.2. Closed Adjoint Subgroups. Let G ≤ SL(n,R) be a closed connected sub-
group which is adjoint, i.e. closed under transposition. Then σ(g) := (g−1)T is an
involution of G and K := Gσ = G ∩ SO(n) is compact. Therefore, (G,K,σ) is a
Riemannian symmetric pair. It comes with a natural bijection G/K → G∗ Id ⊆
Sym+

1 (n) and in fact is a totally geodesic submanifold of Sym+
1 (n) as can be shown

using the chararcterization via Lie triple systems.
2.7.3. Quadrics. To produce an example of a closed connected adjoint subgroup

of SL(n,R), let Q(x, y) be the quadratic form on Rp+q of signature (p, q), i.e.

Q(x, y) =
p∑

i=1

xiyi −
p+q∑

j=p+1

xjyj = xTSy where S =

(
Idp

− Idq

)
.

Set n = p+ q. The orthogonal group of Q is denoted by

O(Q) = O(p, q) = {g ∈ GL(n,R) | gTSg = S}.
Due to the symmetry of S, the group O(p, q) is closed under transposition. Thus
G := SO(p, q)◦ is a closed connected adjoint subgroup of SL(n,R) and

K = SO(p, q)◦ ∩ SO(n) =

{(
A

D

)∣∣∣∣A ∈ SO(p), D ∈ SO(q)

}
.

The Lie algbra of G is given by

g := Lie(SO(p, q)◦) = {X ∈ sl(n,R) | exp tX ∈ SO(p, q) ∀t ∈ R}
= {X ∈ sl(n,R) | (exp tX)TS exp tX = S ∀t ∈ R}
= {X ∈ sl(n,R) | XTS + SX = 0}

where the last equality follows from taking derivatives. Writing X ∈ sl(n,R) as

X =

(
A B
C D

)
with A ∈ Mp,q(R), B ∈ Mp,q(R), C ∈ Mq,p(R), D ∈ Mq,q(R),

the above computation of g continues as

=

{(
A B
C D

)
∈ sl(n,R)

∣∣∣∣A+AT = 0, D +DT = 0, C = BT

}

=

{(
A B
BT D

)
∈ gl(n,R)

∣∣∣∣A+AT = 0, D +DT = 0

}
.

The Cartan involution Θ = Deσ of g is given by Θ(X) = −XT , as for any closed
connected adjoint subgroup of SL(n,R). We therefore have

k = E1(Θ) =

{(
A

D

)
∈ gl(n,R)

∣∣∣∣A+AT = 0, D +DT = 0

}
,

p = E−1(Θ) =

{(
A B
C D

)
∈ gl(n,R)

∣∣∣∣B ∈ Mp,q(R)

}
.

We conclude for instance that dim(G/K) = dim(TeKG/K) = dim p = pq.
To obtain a model for G/K, let W0 = ⟨e1, . . . , ep⟩ ≤ Rp+q. Then W0 is a

subspace of Rn on which Q is positive definite and it is maximal with respect to this
property. Consider W0 ∈ Grp(Rn), the Grassmannian of p-dimensional subspaces
of Rn. Then

stabSO(p,q)◦(W0) = K =

{(
A

D

)∣∣∣∣A ∈ SO(p), D ∈ SO(q)

}
.

A model of G/K therefore is Xp,q = {W ∈ Grp(Rn) | Q|W ≫ 0} which is an open
subset of Grp(Rn). For p = 1, the space X1,q is of dimension q and is the unique
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complete simply connected Riemannian manifold of constant sectional curvature
−1. It is known as the projective model of Hn. In particular, for q = 2, we obtain
yet another model of the hyperbolic plane H2.

2.7.4. Symplectic Groups. Another example of a closed connected adjoint sub-
group of SL(n,R) goes as follows. The standard symplectic form on R2n is given
by

ω(x, y) =
n∑

i=1

xiyn+1 −
n∑

j=1

xn+jyj = xT Jy where J =

(
Idn

− Idn

)
.

The orthogonal group of ω is called symplectic group and denoted by

Sp(2n,R) := O(ω) = {g ∈ GL(2n,R) | gTJg = J}.

Due to the symmetry of J , the group Sp(2n,R) is closed under transposition. It
can be further shown, that G := Sp(2n,R) is indeed a closed connected adjoint
subgroup of SL(2n,R). Then

K = Sp(2n,R) ∩ SO(2n) = {g ∈ Sp(2n,R) | g−1Jg = J} = ZSp(2n,R)(J).

The Lie algebra of G is given by

g := Lie(Sp(2n,R)) = {X ∈ sl(2n,R) | XTJ + JX = 0}

as in the previous section. Writing X ∈ sl(2n,R) as

X =

(
A B
C D

)
with A,B,C,D ∈ Mn,n(R),

the Lie algebra of Sp(2n,R) can be written more explicitly as

=

{(
A B
C D

)
∈ sl(n,R)

∣∣∣∣A
T +D = 0, BT = B, CT = C

}
.

The Cartan involution Θ = Deσ is again given by Θ(X) = (X−1)T whence

k = E1(Θ) =

{(
A B

−BT −AT

)
∈ gl(n,R)

∣∣∣∣A
T +A = 0, BT = B

}
,

p = E−1(Θ) =

{(
A B
B −A

)
∈ gl(n,R)

∣∣∣∣A = AT , B = BT (R)

}
.

In particular, we have dim(G/K) = dim(p) = 2(n(n+ 1)/2) = n(n+ 1) ∈ 2Z.
To obtain a model for G/K, we investigate more closely the properties of J .

It satisfies J2 = − Id and the map B : R2n ×R2n → R, (x, y) '→ ω(Jx, y) is a
symmetric positive definite bilinear form. Indeed,

ω(Jx, y) = (Jx)T Jy = −xT J2y = xT y.

A complex structure on R2n is an endomorphism M ∈ End(R2n) which satisfies
M2 = − Id. The reason for this terminology is that the map

C×R2n → R2n, (x+ iy, v) '→ xv +Myv

defines a C-vector space structure on R2n. We say that a complex structure M on
R2n is ω-compatible if ω(M−,−) is a symmetric positive definite bilinear form on
R2n. Let S2n denote the set of all ω-compatible structures on R2n. Then Sp(2n,R)
acts on S2n by conjugation: It is readily checked that, given g ∈ Sp(2n,R) and
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M ∈ S2n, the endomorphism gMg−1 again defines a complex structure on R2n.
One also verifies that this action is transitive. Hence G/K ∼= S2n where

K = stabSp(2n,R)(J)

= {g ∈ Sp(2n,R) | gJ = Jg}
= {g ∈ GL(2n,R) | gJ = Jg, (x, y) '→ ω(Jx, y) + iω(x, y) is preserved}
= {g ∈ GL(n,C) | g preserves a fixed positive definite hermitian form}
= U(n)

The positive dimensional center of U(n) is responsible for the existence of a natural
complex manifold structure on S2n which is invariant under the action of Sp(2n,R).
This is connected to abelian varieties in number theory.

2.8. Decomposition of Symmetric Spaces. In this section, we present a
decomposition theorem for symmetric spaces based on curvature properties. This
requires some knowledge about semisimple Lie algebras which we present below.

2.8.1. The Killing Form. Let g be a Lie algebra over a field k. Recall the adjoint
representation

ad : g → gl(g), X '→ [X,−]

which is a homomorphism of Lie algebras.
Definition 2.50. Let g be a Lie algebra. The bilinear form

Bg : g× g → k, (X,Y ) '→ tr(ad(X) ◦ ad(Y ))

is the Killing form of g.
We now collect some properties of the Killing form of a Lie algebra.

Lemma 2.51. Let g be a Lie algebra with Killing form B. Then
(i) ∀D ∈ Der(g) ∀X,Y ∈ g : B(DX,Y ) +B(X,DY ) = 0, and
(ii) ∀α ∈ Aut(g) ∀X,Y ∈ g : B(αX,αY ) = B(X,Y ).

In other words, automorphisms of g preserve Bg, and derivations of g are anti-
symmetric with respect to Bg, in particular this holds for ad(Z) (Z ∈ g).

Proof. For (i), recall that D[X,Y ] = [DX,Y ] + [X,DY ] for all X,Y ∈ g.
Thus we have for all X,Y, Z ∈ g:

[DX, [Y, Z]] = −[X,D[Y, Z]] +D[X, [Y, Z]]

= [−X, [DY,Z]]− [X, [Y,DZ]] +D[X, [Y, Z]]

In terms of ad this reads

ad(DX) ad(Y ) = − ad(X) ad(DY )− ad(X) ad(Y )D +D ad(X) ad(Y )

and hence the result follows by taking the trace on both sides.
For (ii), recall that α[X,Y ] = [αX,αY ] for all X,Y ∈ g. Thus α ad(X) ad(Y ) =

ad(αX) ad(αY ) and therefore α ad(X) = ad(αX)α or α ad(X)α−1 = ad(αX). We
conclude

B(αX,αY ) = tr(ad(αX), ad(αY )) = tr(α ad(X)α−1α ad(Y )α−1) =

= tr(ad(X) ad(Y )) = B(X,Y ).

!

Definition 2.52. Let g be a real Lie algebra. Then g is semisimple if Bg is non-
degenerate.

We will show later on that a Lie algebra is semisimple if and only if it is a direct
sum of non-abelian simple ideals.
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2.8.2. Orthogonal Symmetric Pairs. So far, we have seen that a symmetric
space M with base point o ∈ M leads to a Riemannian symmetric pair (G,K,σ)
which in turn provides a pair (g,Θ) of a Lie algebra g and in involutive auto-
morphism Θ of g such that k := E1(Θ) is a subalgebra of g with the property
that adg(k) = LieAdG(K) is the Lie algebra of a compact subgroup of GL(g). In
this section, we study pairs (g,Θ) of this kind and prove a decomposition theorem
for them which we eventually globalize to a decomposition theorem for symmetric
spaces.
Definition 2.53. Let g be a Lie algebra. A subalgebra k ≤ g is compactly embedded
if adg(k) is the Lie algebra of a compact subgroup of GL(g).
Definition 2.54. An orthogonal symmetric Lie algebra is a pair (g,Θ) consisting
of a real Lie algebra g and an involutive automorphism Θ ̸= Id of g such that
u = E1(Θ) is compactly embedded in g. An orthogonal symmetric Lie algebra is
effective if Z(g) ∩ u = 0.

The term "orthogonal" in Definition 2.54 is motivated by the following Lemma.
Lemma 2.55. Let (g,Θ) be an orthogonal symmetric Lie algebra and let g =
E1(Θ) ⊕ E−1(Θ) =: u⊕ e be the eigenspace decomposition of g with respect to
Θ. Then u and e are orthogonal with respect to the Killing form.

Proof. Let X ∈ u and Y ∈ e. Then

Bg(X,Y ) = Bg(ΘX,ΘY ) = Bg(X,−Y ) = −Bg(X,Y )

and hence Bg(X,Y ) = 0. !

The property of an orthogonal symmetric Lie algebra of being effective has the
following consequence.
Lemma 2.56. Let (g,Θ) be an effective orthogonal symmetric Lie algebra with
Cartan decomposition g = u⊕ e. Then Bg|u× u is negative definite.

Proof. Let U ≤ GL(g) be a compact such that Lie(U) = adg(u). With respect
to a suitable basis, we have U ≤ SO(n) where n = dim g and hence adg(u) ⊆
Lie(SO(n)) = {X ∈ Mn,n(R) | X +XT = 0}. Hence we have for all v ∈ u,

Bg(v, v) = tr(ad(v) ad(v))− tr(ad(v)T ad(v)) ≤ 0

with equality if and only if ad(v) = 0 in which case v ∈ Z(g) ∩ u = 0. !

Our decomposition theorem for effective orthogonal symmetric Lie algebras will
distinguish the following three types.
Definition 2.57. Let (g,Θ) be an effective orthogonal symmetric Lie algebra with
Cartan decomposition g = u⊕ e and Killing form Bg.

(i) If Bg ≪ 0 then (g,Θ) is of compact type.
(ii) If Bg is non-degenerate and Bg|e× e ≫ 0 then (g,Θ) is of non-compact

type.
(iii) If e is an abelian ideal in g then (g,Θ) is of Euclidean type.

Remark 2.58. The three types of effective orthogonal symmetric Lie algebras of
Definition 2.57 are clearly mutually exclusive. However, they are not inclusive; in
fact, as we will show later on, every orthogonal symmetric Lie algebra admits a
decomposition as a direct sum of effective orthogonal symmetric Lie algebras of the
above types.

By Lemma 2.56, we have Bg|u× u ≪ 0 for every effective orthogonal symmetric
Lie algebra (g,Θ). Hence (g,Θ) is of compact type if and only if Bg|e× e ≪ 0, and
is of non-compact type if and only if Bg|e× e ≫ 0.
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Example 2.59. As an example of an orthogonal symmetric Lie algebra of Euclidean
type, let g = Rn with the zero bracket and define Θ : Rn → Rn by X '→ −X . Then
g = e = Z(g) and u = 0.

We now state and prove the announced decomposition theorem for effective
orthogonal symmetric Lie algebras.
Theorem 2.60. Let (g,Θ) be an effective orthogonal symmetric Lie algebra. Then
g = g0 ⊕ g+ ⊕ g− is a direct sum of Θ-stable ideals such that:

(i) The gµ (µ ∈ {0,+,−}) are mutually orthogonal with respect to Bg.
(ii) The pairs

(
g0,Θ|g0

)
,
(
g+,Θ|g+

)
,
(
g−,Θ|g

−

)
are orthogonal symmetric

Lie algebras of Euclidean, non-compact and compact type resepectively.
For the proof, let g = u⊕ e be the Cartan decomposition of g. Recall that

adg(u) preserves e and that hence so does K ≤ GL(g) which satisfies adg(u) =
Lie(K). Given that K is compact by assumption, we may choose a K-invariant
scalar product ⟨−,−⟩ on e and write Bg(X,Y ) = ⟨AX, Y ⟩ for all X,Y ∈ e and some
symmetric endomorphism A of e. In addition, A commutes with K and adg(u). Let
(f1, . . . , fn) be a ⟨−,−⟩-orthonormal (and hence Bg-orthogonal) basis of e consisting
of eigenvectors of A, let (β1, . . . ,βn) be the corresponding eigenvalues and define

e0 := ⟨fi | βi = 0⟩, e+ := ⟨fi | βi > 0⟩, e− := ⟨fi | βi < 0⟩.

These spaces are going to be the e’s of the decomposition of g. The following prop-
erties, which are consequences of the above, should be kept in mind: adg(u) and K
leave e0, e+ and e− invariant; and we have Bg|e+ × e+ ≫ 0 as well as Bg|e− × e− ≪ 0.
Lemma 2.61. Retain the above notation. Then the following holds.

(i) The space e0 = {X ∈ g | Bg(X,Y ) = 0 ∀Y ∈ g} is the kernel of the Killing
form. In particular, it is an ideal in g.

(ii) We have [e0, e] = 0. In particular, e0 is abelian.
(iii) We have [e+, e−] = 0.

Proof. For part (i), let n = {X ∈ g | Bg(X,Y ) = 0 ∀Y ∈ g}. Since
Bg(ad(X)Y, Z) = −Bg(Y, ad(X)Z) for all X,Y, Z ∈ g, it follows that n" g. Fur-
thermore, since Θ preserves Bg, we have Θ(n) = n. Therefore, n = (n∩ u) + (n∩ e).
Since Bg is negative definite on u, we conclude n∩ u = 0. Thus n ≤ e and then n ⊆ e0
since for X ∈ n and Y ∈ e we have 0 = Bg(X,X) = ⟨AX, Y ⟩, terefore AX = 0, i.e.
X ∈ kerA = e0. We now show that e0 ⊆ n. First of all, we already know that e0 is
orthogonal to u with respect to the Killing form. It therefore suffices to show that
e0 is orthogonal to e: For X ∈ e0 and Y ∈ e we have B(X,Y ) = ⟨AX, Y ⟩ = 0 since
X ∈ e0 = kerA.

For part (ii), note that [e0, e] ⊆ u. By the fact that Bg is negative definite on
u it therefore suffices to show Bg([Y,X ], Z) = 0 for all Y ∈ e, X ∈ e0 and Z ∈ u.
This is indeed the case:

Bg([Y,X ], Z) = −Bg(X, [Y, Z]])
(i)
= 0.

In particular, [e0, e0] ⊆ [e0, e] = 0, that is, e0 is abelian.
Finally, for part (iii), we let X ∈ e+, Y ∈ e− and Z ∈ u. Then

Bg([X,Y ], Z) = −Bg(Y, [X,Z]) = ⟨AY, ad(Z)X⟩ = 0

since AY ∈ e−, ad(X)Z ∈ e+ and these spaces are orthogonal with respect to
⟨−,−⟩. As in part (ii) this suffices to conclude that [X,Y ] = 0, thus [e+, e−] = 0. !

It is now natural to define

u+ := [e+, e+] and u− := [e−, e−].
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Lemma 2.62. Retain the above notation. Then u+ and u− are orthogonal with
respect to Bg.

Proof. Let X+, Y+ ∈ u+ and X−, Y− ∈ u−. Using Jacobi’s identity, we com-
pute

Bg([X+, Y+], [X−,Y−]) = −Bg(Y+, [X+, [X−, Y−]]) =

= Bg(Y+, [Y−, [X+, X−]]) +Bg(Y+, [X−, [Y−, X+]]) = 0

by Lemma 2.61. !

Given the above lemma, we finally set

u0 := u⊖(u+ ⊕ u−).

Then u = u0 ⊕ u+ ⊕ u− is an orthogonal direct sum and there are the following
commutator relations.
Lemma 2.63. Retain the above notation. The the following statements hold.

(i) u0, u− and u+ are ideals in u.
(ii) [u0, e−] = [u0, e+] = 0.
(iii) [u−, e0] = [u−, e+] = 0.
(iv) [u+, e0] = [u+, e−] = 0.

Proof. For part (i), recall that [u, u+] = [u, [e+, e+]]. Let X ∈ u and Y, Z ∈ e+.
Then

[X, [Y, Z]] = −[Z, [X,Y ]]− [Y, [Z,X ]] ∈ u+,

that is, [u, u+] ⊆ u+. Similarly, [u, u−] ⊆ u−. Furthermore, since u0 is the orthogonal
complement of an ideal in u, it is an ideal itself.

For the second assertion, we already know that [u0, e−] ⊆ e− since adg(u)
preserves e−, and that Bg|e− × e− ≪ 0. Thus, let X ∈ u0 and Y, Z ∈ e−. Then

Bg([X,Y ], Z) = −Bg(Y, [X,Z])−Bg(X, [Y, Z]) = 0.

From negative definiteness of Bg on e− we therefore conclude [X,Y ] = 0. An anal-
ogous argument works for [u0, e+].

For part (iii), Jacobi’s identity again shows

[u−, e0] = [[e−, e−], e0] ⊆ [[e0, e−], e−] = 0

and similarly [u−, e+] = 0.
Part (iv) can be shown in the same manner. !

The following lemma summarizes several of the preceeding results.
Lemma 2.64. Retain the above notation. Let δ, µ ∈ {0,+,−}. If δ ̸= µ then

[eδ, eµ] = 0, [uδ, uµ] = 0, and [uδ, eµ] = 0.

Furthermore, [uδ, eδ] ⊆ eδ and [u, uδ] ⊆ uδ.
To complete the proof of Theorem 2.60, we would like to set

g0 := u0 ⊕ e0, g+ := u+ ⊕ e+, g− := u− ⊕ e− .

However, if e0 = 0 we count u0 to g− if e− ̸= 0 and otherwise to g+ since in this
case e+ ̸= 0. (At least one of the eµ is non-zero since Θ ̸= Id). Then g0, g+ and g−
are ideals in g and g = g0 ⊕ g+ ⊕ g−. In addition, g0, g+ and g− are Θ-invariant.
We therefore set Θµ := Θ|gµ

for µ ∈ {0,+,−}. It now remains to show that the
Killing form of the gµ (µ ∈ {0,+,−}) coincides with the according restriction of
Bg. This is a general fact: Let a" g be an ideal in g. Then Ba = Bg|a× a (which in
general is not true if a is only a subalgebra of g). As to the proof, simply note that if
W ≤ V are finite-dimensional vector spaces and T ∈ End(V ) preserves W , then T
canonically induces two endomorphisms, TW ∈ End(W ) and TV/W ∈ End(V/W ),
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which satisfy trT = tr TW + tr TV/W . In our case, if a" g, then for X,Y ∈ a we
have

Bg(X,Y ) = trg(adg(X) adg(Y ))

= tra(ada(X) ada(Y )) + trg / a(adg/ a(X) adg / a(Y ))
︸ ︷︷ ︸

0

= Ba(X,Y )

where the second summand vanishes because adg / a(X) = 0 ∈ End(g / a) for all
X ∈ a since a is an ideal.

To show that (gµ,Θµ) (µ ∈ {0,+,−}) is an orthogonal symmetric Lie algbra,
it only remains to show that uµ is compactly embedded. This follows from the
following general lemma whose proof is an exercise.
Lemma 2.65. Let G be a Lie group with Lie algebra g. Suppose g = g1 ⊕ g2 is the
direct sum of two ideals g1 and g2. Further, let k1 and k2 be subalgebras of g1 and
g2 respectively. Set k := k1 + k2. Then k is compactly embedded in g if and only if
k1 and k2 are compactly embedded in g1 and g2 respectively.

We now turn to globalizing the Decomposition Theorem 2.60 to obtain a decom-
position result for symmetric spaces. Recall that we have introduced the following
three categories:

(i) Pointed symmetric spaces (M, o)
(ii) Riemannian symmetric pairs (G,K,σ)
(iii) (Effective) Orthogonal symmetric Lie algebras (g,Θ).

In order to give a decomposition theorem for (pointed) symmetric spaces we
first have to see how the notion of effectiveness of orthogonal symmetric Lie algebras
travels through these categories. Recall that an orthogonal symmetric Lie algebra
(g,Θ) is effective if Z(g) ∩ u = 0, where g = u⊕ e is the Cartan decomposition of
(g,Θ). Now, if (G,K,σ) is a Riemannian symmetric pair and (g,Θ) = (Lie(G), Deσ)
is the associated orthogonal symmetric Lie algebra, then Z(g)∩u = Lie(Z(G)∩K).
Hence (g,Θ) is effective if and only if Z(G)∩K has a 0-dimensional Lie algebra. Be-
ing closed this is equivalent to Z(G)∩K being discrete. Accordingly, a Riemannian
symmetric pair (G,K,σ) is effective if Z(G) ∩K is discrete. The following lemma
records that all Riemannian symmetric pairs coming from symmetric spaces are
effective.
Lemma 2.66. Let M be a symmetric space, o ∈ M and (G,K,σ) the associated
Riemannian symmetric pair. If N "G with N ⊆ K, then N is trivial. In particular,
Z(G) ∩K = {e} and hence (G,K,σ) is effective.

Proof. Let n ∈ N . We show that n fixes every point of M . Let p ∈ M , then
p = g(o) for some g ∈ G and hence

n(p) = ng(o) = g(g−1ng)︸ ︷︷ ︸
∈N⊆K

(o) = g(o).

Thus n = id ∈ Iso(M)◦ = G. !

Definition 2.67.

(i) An effective Riemannian symmetric pair is of Euclidean (compact, non-
compact) type if the corresponding orthogonal symmetric Lie algebra is.

(ii) A Riemannian symmetric space is of Euclidean (compact, non-compact)
type if the corresponding (effective) Riemannian symmetric pair is.

The announced globalization of Theorem 2.60 now reads as follows.
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Theorem 2.68. Let M be a simply connected symmetric space. Then M = M0 ×
M+ × M− is the Riemannian product of symmetric spaces of Euclidean, non-
compact and compact type respectively.

The assumption that M be simply connected in Theorem 2.68 is necessary. For
instance the space ⟨σ⟩\(S2×S2), where σ : (x, y) '→ (−x,−y), covers and is covered
by a product but itself is not a product.

Proof. (Theorem 2.68). Let o be a basepoint in M . Further, let (G,K,σ)
be the associated effective Riemannian symmetric pair and (g,Θ) the associated
effective orthogonal symmetric Lie algebra. By Theorem 2.60, we obtain a decom-
position g = g0 ⊕ g+ ⊕ g− such that in particular k = k0 ⊕ k+ ⊕ k− and Θµ = Θ|gµ

(µ ∈ {0,+,−}).
Now, let G0, G+ and G− be the Lie subgroups of G corresponding to the sub-

algebras g0, g+ and g−, and consider the isomorphism of Lie algebras

ψ : g0 ⊕ g+ ⊕ g− → g, (x, y, z) '→ x+ y + z.

Let G̃0, G̃+, G̃− and G̃ be the universal covering groups of G0, G+, G− and G,
and let Ψ : G̃0 × G̃+ × G̃− → G̃ be the isomorphism of Lie groups whose derivative
is ψ. Now, let p : G̃ → G be the canonical covering homomorphism. Then the
map G̃/p−1(K)◦ → G̃/p−1(K) ∼= M is a covering map because p−1(K)◦ is an open
subgroup of p−1(K). As in Remark 2.23, we conclude that p−1(K) is connected.
Let now K0, K+ and K− be the Lie subgroups of G̃0, G̃+ and G̃− corresponding to
k0, k+ and k−. Since ψ = DeΨ : g0 ⊕ g+ ⊕ g− → g maps k0 × k+ × k− isomorphically
to k, we have that Ψ maps K0 ×K+ × K− bijectively to p−1(K) by connectivity
of the latter. Since Ψ is bicontinuous, we deduce that K0, K+ and K− are closed
subgroups of G̃0, G̃+ and G̃− respectively. One verifies that (G̃0,K0), (G̃+,K+)
and (G̃−,K−) are Riemannian symmetric pairs of the according type. From the
above it is furthermore clear that Ψ induces an equivariant diffeomorphism

Ψ : G̃0/K0 × G̃+/K+ × G̃−/K− → G̃/p−1(K) = M

which implies that the Riemannian metrics correspond.
!

Remark 2.69. Let (G,K) be a Riemannian symmetric pair. In general, the cover
G̃ → G may be infinite, as is the case for e.g. (G,K) = (SL(2,R), SO(2)) since
π1(SL(2,R)) = π1(SO(2)) ∼= π1(S1) ∼= Z,

1 !! Z !! G̃ !! G !! {e}

Z !! p−1(K) !! K

as can be seen from the Iwasawa decomposition. This motivates the funny-looking
assumption that AdG(K) rather than K be compact in Definition 2.31 of a Rie-
mannian symmetric pair. We will see later that if G/K is of non-compact type,
then G has the same homotopy type as K.

2.8.3. Irreducible Symmetric Spaces. We have obtained a decomposition theo-
rem for symmetric spaces. It remains the natural question whether there are "small-
est pieces" into which such a space can be decomposed and which do not admit any
further decomposition. For instance, the symmetric space En admits many ways to
decompose it further into a Riemannian product. For a general symmetric space,
there is the notion of irreducibility so that a general such space is a canonical
product of irreducible ones.
Definition 2.70. Let (g, θ) be an orthogonal symmetric Lie algebra with associated
Cartan decomposition g = k⊕ p. Then (g, θ) is irreducible if
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(i) g is semisimple and k contains no ideal of g, and
(ii) the Lie algebra adg(k) acts irreducibly on p.

Definition 2.71. A Riemannian symmetric pair (G,K,σ) is irreducible if the as-
sociated orthogonal symmetric Lie algebra is. A symmetric space M is irreducible
if the associated Riemannian symmetric pair is.

Before we state a decomposition theorem regarding irreducible orthogonal sym-
metric Lie algebras, here are some remarks.
Remark 2.72.

(i) Any irreducible orthogonal symmetric Lie algebra (g, θ) is effective since
Z(g) ∩ k is an ideal in k and hence vanishes.

(ii) Let (G,K,σ) be an irreducible Riemannian symmetric pair. Then there is
up to scaling a unique G-invariant Riemannian metric on M := G/K: To
show this, it suffices to see that there is up to scaling a unique AdG(K)-
invariant scalar product on p where g := Lie(G) = k⊕ p is the Cartan
decomposition of g, see the proof of Theorem 2.32. Since (G,K,σ) is ir-
reducible, AdG : K → GL(p) is an irreducible representation. As in the
proof of Theorem 2.60, let ⟨−,−⟩ be an AdG(K)-invariant scalar product
on p. Then there is a symmetric endomorphism A ∈ End(p) such that
Bg(X,Y ) = ⟨AX, Y ⟩ for all X,Y ∈ p. Hence A commutes with AdG(K)
and therefore has a unique eigenvalue given that AdG(K) acts irreducibly
(Schur’s Lemma); A = λ Id. Therefore, any two AdG(K)-invariant scalar
products on p are scalar multiples of each other; and we may take −Bg|p× p

respectively Bg|p× p in the compact and non-compact case as such a prod-
uct.

Theorem 2.73. Let (g, θ) be an orthogonal symmetric Lie algebra with Cartan
decomposition g = k⊕ p such that g is semisimple and k does not contain an ideal
of g. Then there are ideals (gi)i∈I of g such that

(i) g =
⊕

i gi,
(ii) the (gi)i∈I are pairwise orthogonal with respect to Bg and θ-invariant,

and
(iii) (gi, θ|gi

) is an irreducible orthogonal symmetric Lie algebra.
As before, this decomposition passes from effective orthogonal symmetric Lie

algebras to symmetric spaces, see [Hel79, Prop. VIII.5.5].

2.9. Curvature of symmetric spaces. In this section, we will see that the
distinction of symmetric spaces into the three types has a fundamental geometric
meaning.
Theorem 2.74. Let (G,K,σ) be a Riemannian symmetric pair and let M := G/K
be the associated symmetric space (equipped with an arbitrary G-invariant Rie-
mannian metric). Then the following statements hold.

(i) If (G,K,σ) is of compact type, then M has sectional curvature everywhere
bigger than or equal to zero.

(ii) If (G,K,σ) is of non-compact type, then M has sectional curvature ev-
erywhere less than or equal to zero.

(iii) If (G,K,σ) is of Euclidean type, then M has sectional curvature every-
where equal to zero.

First of all, we recall the Riemannian curvature tensor and sectional curvature.
Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇. The Rie-
mannian curvature operator is the multilinear mapping R : Vect(M)×Vect(M)×
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Vect(M) → Vect(M) given by

(X,Y, Z) '→ R(X,Y )Z := ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z.

Using the Leibniz rule, one verifies that (R(X,Y )Z)p only depends on the values
Xp, Yp and Zp and hence is a tensor invariant of the Riemannian metric. We refer
to [Ber03, Sec. 4.4] for a discussion of various aspects of the Riemannian curvature
tensor.

Another curvature notion, which is "equivalent" to the knowledge of Riemann-
ian curvature is the sectional curvature (σp)p∈M defined for all p ∈ M on the
Grassmannian 2-planes in TpM as follows:

σp : Gr2(TpM) → R, P '→ ⟨R(u, v)u, v⟩gp ,
where (u, v) is an orthonormal basis of P ≤ TpM .

Note that if dimM = 2, then sectional curvature may be viewed as a function
on M and as such equals Gaussian curvature. Recall in this context, that S2, H2

and E2 are the unique simply connected Riemannian symmetric spaces of dimension
two of constant sectional curvature one, minus one and zero respectively.

To illustrate the significance of sectional curvature, we recall a theorem essen-
tially due to Hadamard which will be essential for the study of the metric properties
of Riemannian symmetric spaces of non-compact type.
Theorem 2.75. Let M be a complete Riemannian manifold of sectional curvature
everywhere less than or equal to zero. Further, let p ∈ M , v ∈ TpM and identify
Tv(TpM) with TpM . Then

Dv expp : TpM → Texpp vM

is norm-increasing in the sense that ∥Dv expp(ξ)∥ ≥ ∥ξ∥ for all ξ ∈ TpM . This has
in particular the following consequences:

(i) ∀σ : [0, 1] → TpM : length(σ) ≤ length(expp ◦σ).
(ii) expp : TpM → M is a covering map.
(iii) If M is simply connected, expp : TpM → M is a diffeomorphism and

d(expp v, expp w) ≥ ∥v − w∥
for all v, w ∈ TpM .

The proof of Theorem 2.75 is based on a non-trivial computation which we
nevertheless skip. Instead we turn to proving Theorem 2.74 by establishing the fol-
lowing simple formula to compute the Riemannian curvature tensor of a symmetric
space.
Theorem 2.76. Let (G,K,σ) be a Riemannian symmetric pair and R the Rie-
mannian curvature tensor of the associated (pointed) symmetric space (M, o) with
respect to any G-invariant Riemannian metric. Further let g = Lie(G) = k⊕ p be
the Cartan decomposition of g. With the usual isomorphism Deπ : p → ToM we
then have

Ro(X,Y )Z = [[X,Y ], Z]

where T := Deπ(T ) for T ∈ p.
There are different proofs of this theorem; one at [Hel79, Thm. IV.4.2] using

Theorem 2.39, and another in [Jos05] using the theory of Jacobi fields. Theorem
2.74 now follows rather easily.

Proof. (Theorem 2.74). Let (g, θ) be the orthogonal symmetric Lie algbera
with Cartan decomposition g = k⊕ p associated to (G,K). To compute sectional
curvatures of M = G/K, we compute for X1, X2 ∈ p:

Bg([[X1, X2], X1], X2) = −Bg([X1, [X1, X2]], X2) = Bg([X1, X2], [X1, X2]).
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By Remark 2.58, we may take −Bg|p× p as the Riemannian metric of M at o ∈ M
if (G,K) is of compact type, and Bg|p× p if (G,K) is of non-compact type. Thus,
if X1, X2 are orthonormal in ToM , we compute

σo(⟨X1, X2⟩) = ∥[X1, X2]∥2 respectively σo(⟨X1, X2⟩) = −∥[X1, X2]∥2

if (G,K) is of compact respectively non-compact type. This proves the assertion.
!

These simple formulas will be used later on to study totally geodesic flat sub-
spaces in symmetric spaces M = G/K.

2.10. Semisimple Lie Groups: Basics. We have seen that the theory of
Riemannian symmetric spaces leads to the study of a class of objects called semisim-
ple Lie algebras. The corresponding Lie groups are then closely related to isometry
groups of Riemannian symmetric spaces. In this short introductory section we will
establish an important global property of those with negative definite Killing form.
Definition 2.77. A real Lie group G is semisimple if its Lie algebra Lie(G) is.

Besides their importance in the theory of Riemannian symmetric spaces, semisim-
ple Lie groups are together with the solvable ones the basic building blocks of general
real Lie groups and afford a theory of their own. For the sake of culture, we will
just indicate one decomposition theorem which explains the name "semisimple".
Definition 2.78. A Lie algebra is simple if it is not abelian and contains no proper,
non-zero ideals.
Theorem 2.79. A Lie algebra g is semisimple if and only if it is a direct sum of
simple ideals.

The proof of the only if direction of theorem 2.79 proceeds by taking an ideal
of positive dimension, showing that Bg restricted to it is non-degenerate and then
proceeding with the orthogonal complement.

Now, let G be a real connected Lie group with Lie algebra g. Consider its
adjoint representation Ad : G → GL(g), g '→ Deint(g). Clearly, Ad(G) is contained
in the closed subgroup

Aut(g) := {g ∈ GL(g) | g is an automorphism of g}
= {g ∈ GL(g) | g[X,Y ] = [gX, gY ] ∀X,Y ∈ g}.

of GL(g). The first global result that we establish about semisimple Lie groups is
the following.
Theorem 2.80. Let G be a connected, semisimple Lie group. Then Ad(G) =
Aut(g)◦. In particular, Ad(G) is a closed subgroup of GL(g).

The proof of Theorem 2.80 will use the following purely algebraic result.
Proposition 2.81. Let g be a semisimple Lie algebra. Then every derivation D ∈
Der(g) is inner, i.e. there is X ∈ g such that D = ad(X).

Proof. Consider the inclusion of spaces

adg(g) ⊆ Der(g) ⊆ End(g).

On End(g), we have the non-degenerate symmetric bilinear form (A,B) '→ tr(AB).
Its restriction to ad(g) is the Killing form (X,Y ) '→ Bg(X,Y ) = tr(adX adY )
which is non-degenerate since g is assumed to be semisimple. In order to show that
Der(g) = ad(g) it therefore suffices to show that if D ∈ Der(g) is orthogonal to
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ad(g), then it vanishes. Indeed, we have for all X,Y ∈ g:

Bg(DX,Y ) = tr(ad(DX) ad(Y ))

= tr(D ad(X) ad(Y )− ad(X)D ad(Y )) (D derivation)

= tr(D ad(X) ad(Y )−D ad(Y ) ad(X))

= tr(D[ad(X), ad(Y )]) = tr(D ad([X,Y ])) = 0

since by assumption, D is orthogonal to ad(g). Overall, Bg(DX,Y ) = 0 for all
X,Y ∈ g which implies D = 0 by the opening remarks. !

The proof of Theorem 2.80 now follows with the help of the following Lemma
which is left as an exercise.
Lemma 2.82. Let g be a Lie algebra. Then Aut(g) is a Lie subgroup of GL(g) and
its Lie algebra coincides with Der(g).

Proof. (Theorem 2.80). Let G be a connected semisimple Lie group. Then
Ad(G) ⊆ Aut(g) as we have noted before, and Lie(Ad(G)) = ad(g) = Der(g) by
Propositon 2.81 and hence Lie(Ad(G)) = Lie(Aut(g)) which proves the assertion.

!

We now turn to the main result of this section which is the following.
Theorem 2.83. Let G be a connected Lie group with Lie algebra g. Suppose that
the Killing form Bg is negative definite. Then G is compact.
Corollary 2.84. Let (G,K) be a Riemannian symmetric pair of compact type.
Then G is compact and hence so is M := G/K.

Note that symmetric spaces of non-compact type are non-compact by Hadamard’s
Theorem 2.75.

Proof. (Theorem 2.83). Since Aut(g) is a closed subgroup of GL(g) preserving
a negative definite symmetric bilinear form form, it is compact. Thus Aut(g)◦ is
compact as well. Since G is semisimple, it follows from Theorem 2.80 that Ad(G) =
Aut(g)◦ is compact as well. Consider now the exact sequence of topological groups

e → kerAd = Z(G) → G → Ad(G) → e.

Since g is semisimple, Z(g) = 0 and hence Z(G), being closed, has to be discrete.
Set U := Ad(G). Then G is a connected covering group of U and therefore is a
quotient the universal covering group Ũ of U .

We claim that if U is a compact connected Lie group with negative definite
Killing form, then π1(U) is finite. In this case, Ũ is compact as a finite extension
of U . Hence also G is compact being covered by Ũ .

Now for the claim: We know that π1(U) is abelian (being a discrete and normal,
hence central subgroup of Ũ). By Hurewicz’ theorem,

π1(U)ab = H1(U,Z)

and hence π1(U) ∼= H1(U,Z). Since U is a compact manifold, H1(U,Z) is finitely
generated and hence, being an abelian group, isomorphic to Zl ⊕F for some l ∈ N
and a finite abelian group F . By the universal coefficient theorem, we thus have

H1(U,R) = hom(H1(U,Z),R) ∼= Rl .

Now we employ de Rham’s theorem H1(U,R) ∼= H1
dR(U,R) and proceed to show

that H1
dR(U,R) = 0 in which case l = 0 and we are done. Recall that

H1
dR(U,R) = {closed 1-forms on U}/{exact 1-forms on U}.
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Let ω be a 1-form with dω = 0. Now, the fundamental observation to make is
that L∗

gR
∗
hω − ω is exact for all g, h ∈ U where Lg and Rh denote left- and right

multiplication in U with the respective element. This can be seen using the con-
nectedness of U to construct a primitive directly, or by observing that since Lg

and Rh are homotopic to idU , they induce the identity in H1(U,Z) and hence in
H1(U,R) ∼= H1

dR(U,R) by duality. Thus ω and

α :=

∫

U

∫

U
L∗
gR

∗
hω µ(g) µ(h)

represent the same element in H1
dR(U,R). But now α is a bi-invariant 1-form on U .

In particular, αe : U = TeU → R is an Ad(U)-invariant linear form. Let a ∈ u be
the vector determined by αe(x) = Bu(a, x) for all x ∈ u. Then a is Ad(U)-fixed and
hence R a ⊆ Z(u). Thus a = 0 by semisimplicity and hence αe ≡ 0. By invariance,
we therefore have α = 0 ∈ H1

dR(U,R). Hence also ω = 0 ∈ H1
dR(U,R). !

Remark. There are many different proofs of Theorem 2.83, none of which is easy.

2.11. Duality Theory. There is a remarkable duality between symmetric
spaces of compact and of non-compact type which we outline in this section.

Let g be a real Lie algebra. On the R-vector space g× g define an R-linear
map by J : g× g → g× g, (X,Y ) '→ (−Y,X). It allows us to equip g× g with the
structure of a C-vector space, denoted gC, as follows: Given z = x + iy ∈ C and
Z = (X,Y ) ∈ g× g define z · Z := (xX, xY ) + J(yX, yY ) = (xX − yX, xY + yX).
One checks that the C-vector space gC is endowed with the structure of a complex
Lie algebra via the bracket

[(X1, Y1), (X2, Y2)] := ([X1, X2]− [Y1, Y2], [Y1, X2] + [X1, Y2]).

The map g → gC, X '→ (X, 0) identifies g with an R-subalgebra of gC. Under this
identification, we have i g = {(0, Y ) | Y ∈ g} and gC = g⊕i g, that is, every element
Z of gC can be written uniquely in the form X + iY where X,Y ∈ g. We now have

[Z1, Z2] = [X1 + iY1, X2 + iY2] = [X1, X2]− [Y1, Y2] + i([Y1, X2] + [X1, Y2])

as above. We remark that gC need not be an orthogonal symmetric Lie algebra if g
is; however, we always have the map

ζ : gC → gC, X + iY '→ X − iY

which is an R-linear involutory automorphism of the real Lie algebra gC.
Definition 2.85. Let h be a complex Lie algebra. A real form of h is a real Lie
algebra g such that gC is isomorphic to h is a complex Lie algebra.

Of course, a real Lie algebra is a real form of its complexification but in general,
there may be many pairwise non-isomorphic real forms. This corresponds to the fact
that all non-degenerate symmetric bilinear forms are equivalent over C but may not
be so over R.

Now, let (g, θ) be an orthogonal symmetric Lie algebra with Cartan decomposi-
tion g = k⊕ p. Then there are the following immediate bracketing relations between
the real subspaces k, i k, p and i p of gC.

(i) [k, k] ⊆ k
(ii) [k, i p] = i[k, p] ⊆ i p
(iii) [i p, i p] = −[p, p] ⊆ k

In particular, g∗ := k⊕i p is an R-Lie subalgebra of gC. In addition, ζ preserves
g∗. Then ζ|g∗ is an involutory automorphism of g∗ and g∗ = k⊕i p is the Cartan
decomposition of g∗ with respect to ζ|g∗ .
Lemma 2.86. Let (g, θ) be an orthogonal symmetric Lie algebra. Then so is (g∗, ζ|g∗).
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As to the proof, it remains to show that k ≤ g∗ is compactly embedded which
we leave as an exercise; it boils down to the fact the continuous maps preserve
compacta.
Definition 2.87. Let (g, θ) be an orthogonal symmetric Lie algebra. The dual
orthogonal symmetric Lie algebra of (g, θ) is (g∗, ζ|g∗).

In the following, we shall write (g∗, ζ) instead of (g∗, ζ|g∗). It is an exercise to
show that the bidual of (g, θ) is isomorphic to (g, θ).
Proposition 2.88.

(i) Let (g, θ) be an orthogonal symmetric Lie algebra. Then (g∗, ζ) is of com-
pact (non-compact) type if and only if (g, θ) is of non-compact (compact)
type.

(ii) Let (g1, θ1) and (g2, θ2) be orthogonal symmetric Lie algebras. Then (g1, θ1)
and (g2, θ2) are isomorphic if and only if (g∗1, ζ1) and (g∗2, ζ2) are.

Proof. We only prove the first assertion. To this end, we establish a relation
between the respective Killing forms: Note that there is the isomorphism of real
vector spaces Ψ : k⊕ p = g → k⊕i p = g∗ given by X+Y '→ X+ iY . Let Z1, Z2 ∈ p
and compute

adg∗(iZ1) adg∗(iZ2)(X + iY ) = [iZ1, [iZ2, X + iY ]]

= −[Z1, [Z2, X ]]− i[Z1, [Z2, Y ]]

= −Ψ([Z1, [Z2, X + Y ]])

= −Ψ(adg(Z1) adg(Z2)(X + Y )).

That is, adg∗(iZ1) adg∗(iZ2)Ψ = −Ψ adg(Z1) adg(Z2). Therefore we have the equal-
ity Bg∗(iZ1, iZ2) = −Bg(Z1, Z2) which proves the assertion. !

Example 2.89. Consider the orthogonal symmetric Lie algebra (sl(n,R), θ) of non-
compact type where θ : X '→ −XT . Its Cartan decomposition is given by

k = {X ∈ sl(n,R) | XT +X = 0}, p = {X ∈ sl(n,R) | X = XT}.
Then sl(n,R)C = sl(n,C) and

k+i p = {Z ∈ sl(n,C) | Z = X + iY, XT +X = 0, Y T = Y }

= {Z ∈ sl(n,C) | Z + Z
T
= 0}

= su(n).

In this way, the symmetric spaces SL(n,R)/ SO(n) and SU(n)/ SO(n) are dual to
each other. For n = 2, we obtain that H2, "a sphere of radius i", is dual to S2 since
SU(2) is the universal cover of SO(3).
Example 2.90. Whereas in the non-compact type case, the involution of an or-
thogonal symmetric Lie algebra is unique, there may be many in the compact type
case. For instance, let

g := so(n) = {X ∈ gl(n,R) | XT +X = 0}.
Then for p, q such that p+ q = n, define

θp,q : gl(n,R) → gl(n,R), X '→ Ip,qXIp,q where Ip,q =

(
−Ip

Iq

)
.

Then θp,q is an involutive automorphism of gl(n,R) preserving so(n). One shows

(so(n), θp,q)
∗ = (so(p, q), θp,q).

In particular, the spaces Sn = SO(n + 1)/ SO(n) and Hn = SO(n, 1)◦/ SO(n) are
dual.
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3. Symmetric Spaces of Non-Compact Type

We now study the geometry of symmetric spaces of non-compact type.

3.1. Cartan’s Fixed Point Theorem. To begin with, we collect certain
geometric facts about Cartan-Hadamard manifolds.
Definition 3.1. A connected, simply connected, complete Riemannian manifold
of non-positive sectional curvature is a Cartan-Hadamard manifold.

Observe that on a Cartan-Hadamard manifold M , there is a unique geodesic
segment between a pair of points: Since the exponential map increases distance by
Theorem 2.75 there cannot be different starting vectors. Thus, for p, q, o ∈ M where
o /∈ {p, q}, we may define the angle #o(p, q) := #ToM{u, v} where u, v ∈ To(M) are
such that Expo(u) = p and Expo(v) = q.
Proposition 3.2. Let M be a Cartan-Hadamard manifold. Consider the following
geodesic triangle inside M .

b

ca

p q

r

γ

Then c2 ≥ a2 + b2 − 2ab cosγ.
Recall that in the Euclidean case we have equality in Proposition 3.2.

Proof. Consider the exponential map expp : TpM → M and let u, v ∈ TpM
with expp(u) = r and expp(v) = q. Then ∥u∥ = a and ∥v∥ = b as well as #0(u, v) =
γ. Thus, by Theorem 2.75 we have

c2 = d(expp(u), expp(v)) ≥ ∥u− v∥2

= ∥u∥2 + ∥v∥2 − 2⟨u, v⟩ = a2 + b2 − 2ab cosγ.

!

Proposition 3.2 can be utilized to show the following general fact about non-
positive curvature.
Proposition 3.3. Let M be a Cartan-Hadamard manifold and let S ⊆ M be a
bounded subset. Then there exists a unique closed ball B(z, r), z ∈ M of minimal
radius containing S.

Proof. Since S is bounded, the set E = {(x, r) ∈ M × R≥0 | B≤(x, r) ⊇
S} is non-empty. Set R := inf{r | ∃x ∈ M : (x, r) ∈ E}. Take any sequence
(xn, rn) ∈ E such that rn → R. We claim that in this case (xn)n is a Cauchy
sequence which readily implies the asserted uniqueness (think of a sequence with
(xn)n alternating between different centers). Now, let ε > 0 and N = N(ε) such
that rn < R + ε for all n ≥ N ; pick n,m ≥ N and an arbitrary point p ∈ S.
Consider the geodesic triangle (p, xn, xm) and let q be the midpoint of the segment
xnxm. Then #q(p, xm) +#q(p, xn) = π. Without loss of generality, we may assume
that #q(p, xn) ≥ π/2. Then cos#q(p, xn) ≤ 0. By Proposition 3.2 we thus have

(R + ε)2 ≥ r2n ≥ d(xn, p)
2 ≥ d(xn, xm)2

4
+ d(p, q)2.

Observe that supp∈S d(q, p) ≥ R by definition of R. Therefore,

(R + ε)2 ≥ d(xn, xm)2

4
+R2 ⇒ 4(2Rε+ ε2) ≥ d(xn, xm)2
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In particular, we conclude that the sequence (xn)n is Cauchy. Let z = limn xn.
Then for all n ∈ N we have

S ⊆ B(xn, rn) ⊆ B(z, rn + d(z, xn))

which implies that S ⊆ B(z,R). !

Theorem 3.4. Let M be a symmetric space of non-compact type and let Iso(M)◦ ≤
G ≤ Iso(M). Then the following statements hold.

(i) K := stabG(p) meets every connected component of G.
(ii) Any compact subgroup of G fixes a point.
(iii) The set of all maximal compact subgroups of G is {stabG(p) | p ∈ M}.
Part (i) of Theorem 3.4 says that K is as disconnected as G is; part (iii) implies

that we can recover M from G as opposed to the compact-type case. Also, observe
that any two maximal compact subgroups are conjugate.

Proof. We only sketch the proofs.

(i) (Idea). The map G/K◦ → G/K = M is a Galois covering of M with
Galois group K/K◦ acting from the right. Since M is simply connected,
G/K◦ is diffeomorphic to M ×K/K◦.

(ii) Let K be a compact subgroup of G and let p ∈ M . Then C = Kp ⊆ M
is a compact K-invariant subset of M . Its circumcenter z ∈ M is fixed by
K.

(iii) This is immediate from part (ii).

!

3.2. Flats and Rank. In this section, we study the flat subspaces of a sym-
metric space. They organize themselves into a combinatorial object called root
system which together with its associated Weyl group is used to classify symmetric
spaces.
Definition 3.5. A Riemannian manifold is flat if its sectional curvature vanishes
identically.

This is equivalent to saying that the Riemannian curvature tensor vanishes.
Observe that if F is a flat, complete Riemannian manifold, then given p ∈ F , the
map expp : TpF → F is a covering and a local isometry. In particular, if F is simply
connected, it is isometric to the Euclidean space TpM via expp.

Definition 3.6. Let M be a symmetric space. The rank of M , denoted rk(M), is
the maximal dimension of a flat totally geodesic submanifold of M .

We are now going to concentrate on the non-compact type case.
Remark 3.7. Let M be a Riemannian manifold. If F ⊆ M is a totally geodesic
submanifold then the Riemannian objects of F are the restriction from M . This
applies in particular to the Riemannian connection, the sectional curvature and the
exponential map. It is far from true for submanifolds which are not totally geodesic:
Consider for instance S2 ⊂ R3.

Note that if M is a symmetric space then rk(M) ≥ 1 since geodesics are flats.
In fact, a symmetric space of non-compact type has rank one if and only if its
sectional curvature is strictly negative. The full list of rank one symmetric spaces
of non-compact type goes as follows:
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Space Symmetric Pair Remark
Hn

R, n ≥ 1 (SO(n, 1), S(O(n)× O(1)) constant sectional curvature
Hn

C, n ≥ 1 (SU(n, 1), S(U(n)× U(1)) non-constant sectional curvature
Hn

K, n ≥ 1 non-constant sectional curvature
H2

O G = F4(−20) non-constant sectional curvature

Here, F4(−20) is an exceptional Lie group. Note that, R, C and K are exactly the
division algebras over R. They are related to the group structures on S0 = {±1},
S1 = {z ∈ C | ∥z∥ = 1} and S3 ∼= {x ∈ K | ∥x∥ = 1}. If an associativity condition
is dropped, one also obtains O. In this case, S7 is an H-group, i.e. it satisfies the
group axioms up to homotopy.

Lemma 3.8. Let (G,K) be a symmetric pair of non-compact type, M = G/K,
o ∈ M , Lie(G) =: g = k⊕ p and Exp : p → M, X '→ (expG(X)).o. There is a
one-to-one correspondence between flat submanifolds of M through o ∈ M and
abelian subspaces of g contained in p.

An abelian subspace is one whose commutator with itself vanishes.

Proof. By Theorem 2.47 there is a one-to-one correspondence between Lie
triple systems in p and totally geodesic submanifolds of M going through o ∈
M . Now, given an orthonormal frame (X1, X2) in p we have σo(⟨X1, X2⟩) =
Bg([X1, X2], [X1, X2]) which vanishes if and only if [X1, X2] since Bg is (negative)
definite. !

Example 3.9. In this example we compute the rank of several symmetric spaces.

(i) Let M = SL(n,R)/ SO(n). Then p = {X ∈ Mn,n(R) | trX = 0, X =
XT }. In this case,

a := {X ∈ p | X is diagonal}

is a maximal abelian subspace of dimension n− 1: The computation
⎡

⎢⎣

⎛

⎜⎝
t1

. . .
tn

⎞

⎟⎠ , X

⎤

⎥⎦ = (tj − ti)Xij

shows that a is maximal for inclusion. Furthermore, every abelian subspace
of p can be conjugated into a via K, hence a is also maximal in terms of
dimension. Thus rk(M) = n− 1.

Similar arguments in linear algebra show the following.

(ii) rk(SO(p, q)/S(O(p)× O(q))) = min(p, q)
(iii) rk(Sp(2n)/U(n)) = n.
We now move towards the existence and “uniqueness“ of maximal flat subspaces.

Let (g, θ) be an orthogonal symmetric Lie algebra (of compact or non-compact
type). Recall that the centralizer of X ∈ g is Zg(X) = {Y ∈ g | [Y,X ] = 0} ≤ g. For
X ∈ p, the involution θ stabilizes Zg(X), hence Zg(X) = (Zg(X)∩ k)⊕ (Zg(X)∩p).
Now, let a ⊆ p be an abelian subspace and let X ∈ a. Then a ⊆ Zg(X) ∩ p. Thus
Zg(X) ∩ p is maximal abelian as soon as it is abelian.
Definition 3.10. Let (g, θ) be an orthogonal symmetric Lie algebra and let X ∈ p.
Then X is regular if Zg ∩ p is abelian.
Theorem 3.11. Let M be a symmetric space of compact or non-compact type
with associated Cartan decomposition Lie(Iso(M)◦) =: g = k⊕ p. Then for every
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maximal abelian subspace a ⊆ p, there exists X ∈ p such that a = Zg(X) ∩ p. In
particular, X is regular.

Proof. We will first prove this for symmetric spaces of compact type and then
deduce the result for the non-compact type case using duality.

(i) (Compact type case). Let (U,K,σ) be a symmetric pair of compact type
and let (u, θ) be the associated orthogonal symmetric Lie algebra with
Cartan decomposition u = k⊕ e. Now, let a ⊆ p be a maximal abelian
subspace. Then exp a ⊆ U is a connected abelian subgroup. Then exp a =:
A is a closed connected abelian subalgebra and hence u ⊇ Lie(A) ⊇ a is
an abelian subalgebra. Since

σ(expX) = exp(θX) = exp(−X) = exp(X)−1

for all X ∈ a, we have σ(a) = a−1 for all a ∈ A. Thus Lie(A) ⊆ p and hence
Lie(A) = a by maximality of a. Therefore, exp(a) is a closed (connected
abelian) subgroup of U , namely a torus (Kronecker). Hence there exists
X ∈ a such that {exp tX | t ∈ R} is dense in exp a. If now Y ∈ Zu(X) then
[Y,X ] = 0. Hence {exp sY | s ∈ R} commutes with {exp tX | t ∈ R} and
hence commutes with exp a by density of {exp tX | t ∈ R}. In other words,
[Y, a] = 0 and hence Zu(X) = Zu(a) whence Zu(X) ∩ p = Zu(a) ∩ p = a.

(ii) (Non-compact type case). Let (g, θ) be an orthogonal symmetric Lie alge-
bra of non-compact type with associated Cartan decomposition g = k⊕ p.
Furthermore, let g∗ = k⊕i p be its compact dual. For every n ⊆ p we have
[[i n, i n], i n] = i[[n, n], n] and [i n, i n] = [n, n]. Therefore n is a Lie triple
system (abelian) if and only if i n is. Also, i(Zg(X) ∩ p) = Z(iX) ∩ i p for
every X ∈ p; that is, X is regular if and only if iX is.

!

Next, we will show that any two maximal abelian subspaces of p are Ad(K)-
conjugate. To this end, let (G,K) be a symmetric pair of non-comact type with
associated Cartan decomposition Lie(G) =: g = k⊕ p. Then if a ⊆ p is maximal
abelian with respect to inclusion then so is AdG(k)(a) ⊆ p.
Theorem 3.12. Let (G,K) be a symmetric pair of non-compact type with associ-
ated Cartan decomposition Lie(G) =: g = k⊕ p. Further, let a, a′ ⊆ p be maximal
abelian subspaces. Then there is k ∈ K such that AdG(k)(a) = a′

In particular, Theorem 3.12 implies that all maximal abelian subspaces have
the same (maximal) dimension.

Proof. Let H,H ′ ∈ p be regular elements for a and a′, i.e. a(
′) = Zg(H(′))∩p.

Consider the smooth map

K → R, k '→ Bg(Ad(k)H,H ′).

Since K is a compact manifold without boundary, it has a critical point k0 ∈ K;
that is:

∀z ∈ k :
d

dt

∣∣∣∣
t=0

Bg(Ad(k0 exp(tZ)H,H ′) = 0.

Expanding the expression yields

g(Ad(k0) ad(Z)H︸ ︷︷ ︸
Ad(k0)[Z,H]

, H ′) = 0 ⇒ Bg(Ad(k0)Z︸ ︷︷ ︸
generic in k

, [Ad(k0)H,H ′]) = 0

for all Z ∈ k. Therefore, [Ad(k0)H,H ′] = 0 whence Ad(k0)H ∈ Zg(H ′) ∩ p = a′.
This in turn implies that a′ ⊆ Zg(Ad(k0)H) ∩ p = Ad(k0)(Zg(H) ∩ p) = Ad(k0) a.
By the same argument, there is some k1 ∈ K such that a ⊆ Ad(k1) a′ and hence
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a′ ⊆ Ad(k0) a ⊆ Ad(k0k1) a′ which implies equality everywhere by the assumption
that a′ is maximal. !

The following is an immediate consequence of Theorem 3.12.
Corollary 3.13. Let M = G/K be a symmetric space of non-compact type. Then
any to two maximal flat subspaces F, F ′ of M are G-congruent, i.e. there is g ∈ G
such that gF = F ′.

3.3. Roots and Root Spaces. Let (g, θ) be an orthogonal symmetric Lie
algebra of non-compact type. On g we define a symmetric positive definite bilinear
form by ⟨X,Y ⟩ := −Bg(X, θ(Y )): Whereas bilinearity is immediate, symmetry
follows from the fact that Bg is invariant under θ (in fact any automorphism of g).
To see positive definiteness, decompose vectors according to g = k⊕ p and use that
(g, θ) is of non-compact type.
Lemma 3.14. Retain the above notation. For all X ∈ p, the map adg(X) ∈ gl(g) is
symmetric with respect to ⟨−,−⟩.

Proof. Let X ∈ p and Y, Z ∈ g. Then

−Bg([X,Y ], θ(Z)) = Bg(Y, [X, θ(Z)])

= −Bg(Y, [θ(X), θ(Z)) = −Bg(Y, θ([X,Z])).

!

The crucial observation now is that for an abelian subspace a ⊆ p, the operators
{ad(H) | H ∈ a}, which are symmetric with respect to ⟨−,−⟩, commute and hence
are simultaneously diagonalizable. For λ ∈ a∗ we thus define

gλ = {X ∈ g | ad(H)X = λ(H)X ∀H ∈ a}
Then g decomposes into subspaces of the form gλ.
Definition 3.15. Let (g, θ) be an orthogonal symmetric Lie algebra of non-compact
type with Cartan decomposition g = k⊕ p. Further, let a ⊂ p be an abelian sub-
space. A root of a in g is a linear form α ∈ a∗ −{0} such that gα ̸= 0, which is the
associated root space.

Retain the above notation and let Σ denote the set of roots of a in g. Then

g = g0 ⊕
⊕

α∈Σ

gα .

In particular, σ is finite.
Lemma 3.16. Retain the notation of Definition 3.15. Then the following hold.

(i) ∀α,β ∈ a∗ : [gα, gβ ] ⊆ gα+β.
(ii) θ(gα) = g−α.

Proof. For (i), let H ∈ a ⊆ p, X ∈ gα and Y ∈ gβ . Then

0 = [H, [X,Y ]]+[X, [Y,H ]︸ ︷︷ ︸
−β(H)Y

]+[Y, [H,X ]︸ ︷︷ ︸
α(H)X

] ⇒ [H, [X,Y ]] = (α(H)+β(H))[X,Y ].

For part (ii), compute

[H, θ(X)] = [−θ(H), θ(H)] = −θ([H,X ]︸ ︷︷ ︸
α(H)X

) = −α(H)(X).

!

Now, for every root α ∈ σ ⊆ a∗ −{0}, there is a vector Hα uniquely determined
by requiring α(H) = B(H,Hα) for all H ∈ a.
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Lemma 3.17. Retain the notation of Definition 3.15. Let a ⊆ p be maximal abelian.
Further, let α ∈ Σ. Then for all X ∈ gα we have

[X, θ(X)] = −B(X, θ(X))Hα = ⟨X,X⟩Hα.

Proof. Let X+ ∈ gα, X− ∈ g−α and Y ∈ a. Then

⟨[X+, X−], Y ⟩ = −B([X+, X−], θ(Y )) = B([X+, X−], Y ) =

= −B(X−, [X+, Y ]) = B(X−, [Y,X+]) = α(Y )B(X−, X+)

= α(Y )B(X+, X−) = B(Hα, Y )B(X+, X−)

= −B(Hα, θ(Y ))B(X+, X−) = ⟨Hα, Y ⟩B(X+, X−).

Therefore, [X+, X−] − HαB(X+, X−) is orthogonal to a with respect to ⟨−,−⟩.
Applying this to X+ = X and X− = θ(X) yields

⟨[X, θ(X)]−HαB(X, θ(X)), Y ⟩ = 0 ∀Y ∈ a,

i.e. Z := [X, θ(X)] − HαB(X, θ(X)) ∈ g0. Now, by Lemma 3.16, θ(g0) = g0 and
hence g0 = (g0 ∩ k)⊕(g0 ∩ p). Consider g0 ∩ p and let R ∈ a be a regular element for
a in g. Then a = Zg(R)∩p ⊇ g0 ∩ p ⊇ a. Therefore, g0 ∩ p = a whence g0 = g0 ∩ k⊕ a
and hence Z ∈ g0 ∩ k. However, one computes θ(Z) = −Z, i.e. Z ∈ p. Overall, Z = 0
which is the assertion. !

Note that the proof of Lemma 3.17 crucially uses maximality of a through the
existence of regular elements. We conclude that for all X ∈ gα−{0} we have

−Hα =

[
X√

⟨X,X⟩
,

θ(X)√
⟨X,X⟩

]
.

Define hα = 2Hα/Bg(Hα, Hα). Then for X ∈ gα we have

[hα, X ] =
2[Hα, X ]

B(Hα, Hα)
=

2α(Hα)X

B(Hα, Hα)
= 2X

and similarly, [hα, X ] = −2X for X ∈ g−α. Pick X ∈ gα with ⟨X,X⟩ = 2/B(Hα, Hα).
Then

[X, θ(X)] =
2Hα

B(Hα, Hα)
= hα.

The upshot of these computations is that sX := RX + Rhα + R θ(X) is a Lie
subalgebra isomorphic to sl(2,R).
Example 3.18. Consider the orthogonal symmetric Lie algebra (sl(2,R), θ) where
θ : X '→ −XT . Choose

a =

{(
λ

−λ

)
| λ ∈ R

}
.

Then we have the following commutator relations:
[(
λ

−λ

)
,

(
µ
)]

= 2λ

(
µ
)

,

[(
λ

−λ

)
,

(

µ

)]
= −2λ

(

µ

)
.

Defining α ∈ a∗ by α(diag(λ,−λ)) = 2λ we then have

gα =

{(
µ
)∣∣∣∣µ ∈ R

}
, g−α =

{(

µ

)∣∣∣∣µ ∈ R

}
and g0 = a .

Furthermore, one computes

B

((
λ

−λ

)
,

(
µ

−µ

))
= 8λµ

whence

Hα =

(
1
4

− 1
4

)
and hα =

2Hα

B(Hα, Hα)
=

(
1

−1

)
.
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Let X := µE1,2. Then θ(X) = −µE2,1 and [X, θ(X)] = diag(−µ2, µ2) = −µ2hα.
Thus setting

e+ :=

(
1
)
, e− = θ(X) =

(

−1

)
and h := hα =

(
1

−1

)

we have the commutator relations found above, namely

[h, e+] = 2e+, [h, e−] = −2e− and [e+, e−] = −h.

By the computations preceeding Example 3.18 we have for every X ∈ gα a
copy of sl(2,R) in g, summarized by the following lemma.
Lemma 3.19. Retain the notation of Lemma 3.17. Let X ∈ gα be such that
⟨X,X⟩ = 2/⟨Hα, Hα⟩, then

[hα, X ] = 2X, [hα, θ(X)] = −2θ(X) and [X, θ(X)] = −hα.

Hence the map sl(2,R) → sl(2,R)X := RX + Rhα + R θ(X) which sends e+ to x,
h to hα and e− to θ(X) is a Lie algebra isomorphism onto its image.

Given Lemma 3.19, we need to understand the representation theory of the Lie
algebra sl(2,R) as in sl(2,R) → sl(2,R)X ⊆ g

ad−→ gl(g).
Theorem 3.20. Every finite-dimensional representation of sl(2,R) is a direct sum
of irreducible ones. Up to isomorphism, every irreducible, finite-dimensional rep-
resentation of sl(2,R) is classified by its dimension. If ϱ : sl(2,R) → gl(V ) is
an irreducible represenation then ϱ(h) is diagonalizable with simple eigenvalues
{dimV − 1, dimV − 3, dimV − 5, . . . , 1− dimV }.
Example 3.21. We now illustrate Theorem 3.20 with some examples.

(i) The standard representation ϱ : sl(2,R) " R2 is irreducible. In this case,
ϱ(h) = h with eigenvalues {1,−1} = {2− 1, 1− 2}.

(ii) The adjoint representation ad : sl(2,R) → gl(2,R) is irreducible as well
and ad(h) has eigenvalues {2, 0,−2} = {3− 1, 3− 3, 1− 3}.

(iii) The general irreducible n-dimensional representation of sl(2,R) can be
described as follows: Let Vn = {f(X,Y ) =

∑n
k=0 akX

kY n−k | ak ∈ R}
be the vector space of real homogeneous polynomials of degree n. It has
the basis {Y n, XY n−1, . . . , Xn} and admits the irreducible representation
ϱn : SL(2,R) → GL(Vn), ϱn(g)(f)(X,Y )T = f(g−1(X,Y )T ) of SL(2,R).
Its derivative DIdϱn : sl(2,R) → gl(Vn) is the n-dimensional irreducible
representation of sl(2,R).

Let now α,β ∈ Σ and X ∈ gα as above. We consider now the adjoint action
of sl(2,R)X = RX + Rhα + R θ(X) on g. Consider the space W :=

⊕
n∈Z

gβ+nα.
Observe that for y ∈ gβ+nα we have

[hα, y] = (β + nα)(hα)y = β((hα) + 2n)y

as well as the relations

[gα, gβ+nα] ⊆ gβ+(n+1)α and [g−α, gβ+nα] ⊆ gβ+(n−1)α .

In particular, W is invariant under the action of sl(2,R)X . We may thus consider
ad : sl(2,R)X → gl(W ). Let W =

⊕
l∈I Vl be a decomposition of W into a direct

sum of irreducible subspaces. If W (λ) = Ead(hα)(λ) then W (λ) =
⊕

l∈I Vl(λ). Now,
since β ∈ Σ, we have gβ ̸= 0 and gβ = W (β(hα)) ̸= 0. Therefore, Vl(β(hα)) ̸= 0
for some l ∈ I. That is, there is an irreducible V ⊆ W with V ∩ gβ ̸= 0. By
the structure of irreducible representations of sl(2,R)X , we deduce that there are
integers k ≤ 0 ≤ s such that V ∩ gβ+nα ̸= 0 for all k ≤ n ≤ s. And these k, s
are determined by 1 − dimV = β(hα) + 2k and dimV − 1 = β(hα) + 2s. Adding
these equations we obtain −β(hα) = k + s where k ≤ k + s ≤ s. In particular,
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V ∩gβ+(k+s)α ̸= 0. Thus β+(k+ s)α = β−β(hα)α ∈ Σ. We have thus constructed
a new root out of α,β which will turn out to be very strong information. We
summarize this in the following lemma.
Lemma 3.22. Retain the above notation. If α,β ∈ Σ, then there exist k ≤ 0 ≤ s
with β + nα ∈ Σ for all k ≤ n ≤ s, k + s = −β(hα) and β − β(hα)α ∈ Σ.
Lemma 3.23. Retain the above notation. Assume that α,β ∈ Σ with β = λα for
some λ ∈ R. Then λ ∈ {±1/2,±1,±2}.

Proof. The equation β = λα implies the assertion since β(hα) ∈ Z and
α(hβ) ∈ Z by Lemma 3.22. !

3.4. Root Systems. Let (g, θ) be an orthogonal symmetric Lie algebra of
non-compact type with associated Cartan decomposition g = k⊕ p. Let a ⊆ p be an
abelian subspace which we equip with the inner product −Bg|a× a. In this context,
we set R := {Hα | α ∈ Σ} and define for α ∈ Σ the reflection

σα : a → a, v '→ v − 2B(Hα, v)

B(Hα, Hα)
Hα

about the hyperplane (RHα)⊥.
Corollary 3.24. Retain the above notation. Then the following hold.

(i) a = ⟨R⟩.
(ii) ∀α ∈ Σ : σα(R) = R.
(iii) ∀α,β ∈ Σ : 2B(Hα, Hβ)/B(Hα, Hα) = β(hα) ∈ Z

The conditions that Corollary 3.24 imposes on the finite set of vectors R in
the Euclidean space a are very strong. The set R is called a root system and is
used to classify orthogonal symmetric Lie algebras of non-compact type. The group
generated by the reflections {σα | α ∈ Σ} is termed Weyl group.
Example 3.25. Here are some examples of root systems. For more information on
root systems and their Weyl groups, see e.g. [Bro89].

(i) The root system of sl(2,R) is

Hα−Hα

The associated Weyl group is isomorphic to Z /2Z.
(ii) The root system of sl(3,R) is

α

α+ ββ

The associated Weyl group is isomorphic to S3.
(iii) The root system of sp(4) is

2α+ β

α+ β

β

α

The associated Weyl group is isomorphic to D4.


