

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

MATHEMATISCHES INSTITUT

Vorlesung Geometrische Gruppentheorie Heidelberg, 18.10.2018

Hausaufgaben 2

Thema der Woche: Cayleygraphen

Keine Abgabe; Besprechung in der Übung am 30.10.2019

Aufgabe 1. Welche der folgenden Aussagen sind wahr? Begründen Sie jeweils kurz Ihre Antwort.

- 1. Ist X unendlich, so ist die symmetrische Gruppe S_X nicht endlich erzeugt.
- 2. Für jedes n existiert eine Untergruppe $H < \mathbb{Z}^2$, die zu \mathbb{Z}_n isomorph ist.
- 3. Für jedes n existiert eine Untergruppe $H < \mathbb{F}_2$, die zu \mathbb{F}_n isomorph ist.

Aufgabe 2. (Cayleygraphen)

- 1. Zeichnen Sie einen zusammenhängenden Cayleygraph für D_5 mit 2 Erzeugern.
- 2. Zeichnen Sie den Cayleygraph für $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$ mit den Erzeugern $S=\{(1,0),(0,1)\}.$

Aufgabe 3. Zeigen Sie, dass der Petersen-Graph kein Cayleygraph ist.

Aufgabe 4. (Bäumen und freie Gruppen)

- 1. Bestimmen Sie den Grad der Ecken im Cayleygraph einer freien Gruppe mit freiem Erzeugendensystem S.
- 2. Sei T_4 ein 4-reguläre Baum. Zeigen Sie, dass $\operatorname{Aut}(T_4)$ überabzählbar ist.

Aufgabe 5. Zeigen Sie, dass zu jeder abzählbaren Gruppe G einen zusammenhängender Graph Γ existiert, so dass $\operatorname{Aut}(\Gamma) \cong G$.