9.1. Consider the symmetric space

$$S_n = \{ M \in \operatorname{Sym}^+(n, \mathbb{R}) \mid \det(M) = 1 \}$$

associated to the Riemannian symmetric pair (SL(n, R), SO(n)).

(a) Compute the Cartan decomposition associated to the point

$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \in S_n,$$

where $\lambda_1 > \ldots > \lambda_n$ and $\lambda_1 \cdots \lambda_n = 1$.

- (b) Denote by Θ^{Λ} (resp. Θ^{Id}) the Cartan involutions associated to the points Λ (resp. Id), and by \mathfrak{p}^{Λ} (resp. \mathfrak{p}^{Id}) the eigenspaces for -1. What is $\mathfrak{p}^{Id} \cap \mathfrak{p}^{\Lambda}$?
- (c) In general given two points $x, y \in S_n$ what are the possible dimensions of $\mathfrak{p}^x \cap \mathfrak{p}^y$? *Hint:* show that for every pair (x, y) there exists real numbers $\lambda_1 \geq \ldots \lambda_n$ with $\lambda_1 \ldots \lambda_n = 1$ and g in $\mathrm{SL}(n, \mathbb{R})$ such that $(g \cdot \mathrm{Id}, g \cdot \Lambda) = (x, y)$.
- **9.2.** Let M = G/K be a globally symmetric space and $p \in M$. Denote by $s_p : M \to M$ the geodesic symmetry about $p \in M$. Recall that $\sigma : G \ni g \to s_p g s_p \in G$, and $\pi : G \ni g \to g p \in M$. Denote by $\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{p}$ the associated decomposition. Denote by $\exp : \mathfrak{g} \to G$ the exponential map in the sense of Lie groups and by $\operatorname{Exp}_p : T_p M \to M$ the exponential map in the sense of Riemannian manifolds. Recall from class that the following diagram commutes:

$$\begin{array}{ccc} \mathfrak{p} & \stackrel{D_e\pi|\mathfrak{p}}{\longrightarrow} & T_pM \\ \downarrow & & \downarrow \\ G & \stackrel{\pi}{\longrightarrow} & M \end{array}$$

where the arrow $\mathfrak{p} \to G$ is given by $\exp|_{\mathfrak{p}}$ and the arrow $T_p M \to M$ is given by \exp_p . Make this explicit for $M = \mathbb{R}^2, \mathbb{S}^2, \mathbb{H}^2$.

9.3. Give an example of an irreducible orthogonal symmetric Lie algebra of compact type and one of an irreducible OSLA of non-compact type. Is $(\mathfrak{so}(2,2),\Theta)$ irreducible? Recall that

 $\mathfrak{so}(2,2) = \{g \in \mathfrak{sl}(4,\mathbb{R}) | X^T S_{2,2} + S_{2,2} X = 0\}$

with $S_{2,2} = \begin{pmatrix} Id_2 & 0 \\ 0 & -Id_2 \end{pmatrix}$ and $\Theta(X) = S_{2,2}XS_{2,2}$.