University Bonn — SS $2018/19$	Maria Be	atrice Pozzetti
Advanced Geometry II–Symmetric spaces		
Exercises 8–Riemannian Symmetric pairs– Hand in by Jun	ne 5th	May 30, 2019

- 8.1. (a) Give an expression for two distinct involutive automorphisms $\sigma_1, \sigma_2 : SO(n) \rightarrow SO(n)$ such that the groups G_{σ_i} are non trivial and such that the quotients G/G_{σ_i} are isomorphic. What are the groups G_{σ_i} in your example?
 - (b) Find two non-isomorphic simply connected symmetric spaces M_1, M_2 having $\text{Iso}^0(M_i) = SO(n)$. For each one of them, give one example of an involutive automorphism σ_i , such that $G/G_{\sigma_i} = M_i$.
- **8.2.** Consider the vector space \mathbb{C}^{n+1} with the standard positive definite Hermitian form:

$$h(x,y) = \sum_{i=0}^{n} \bar{x_i} y_i$$

Denote by $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$ the usual projection into the projective space. You can identify the tangent space at every point of \mathbb{C}^{n+1} with the vector space \mathbb{C}^{n+1} .

- (a) Show that, $d\pi_v$ induces an isomorphism of the orthogonal space at v for the form h with the tangent space at $[v] = \pi(v)$.
- (b) Define a Riemannian metric on \mathbb{CP}^n using the real part of the restriction of h to these orthogonal subspaces. This metric is the Fubini-Study metric.
- (c) Show that \mathbb{CP}^n with the Fubini-Study metric is a Riemannian symmetric space by finding the associated Riemannian symmetric pair.
- **8.3.** Consider \mathbb{C}^n with the standard positive definite Hermitian form h. We identify it with the pair (\mathbb{R}^{2n}, J) , where J is a linear map $J : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ with $J^2 = -\text{Id}$. The real part of h gives a scalar product \langle , \rangle on \mathbb{R}^{2n} . A totally real subspace is a real vector subspace V of dimension n such that V is orthogonal to J(V) with respect to \langle , \rangle . A linear map A is complex antilinear if A(J(v)) = -J(A(v)).
 - (a) Verify that, for the scalar product <,> on \mathbb{R}^{2n} , the map J is orthogonal.
 - (b) Prove that the map that associates to a complex anti-linear reflection its set of fixed points is a bijection between the set of complex anti-linear reflections and the set of totally real subspaces.
 - (c) The set TR(n) of totally real subspaces is a subset of the Grassmannian $\operatorname{Gr}_n(\mathbb{R}^{2n})$. Prove that it is a totally geodesic submanifold. (Hint: show that TR(n) is the subset of fixed points of an isometry).

- (d) Verify that the real span of an unitary basis is a totally real subspace, and that an orthogonal basis of a totally real subspace is an unitary basis.
- (e) Show that TR(n) with the metric induced by the Grassmannian $\operatorname{Gr}_n(\mathbb{R}^{2n})$ has a structure of Riemannian symmetric space by finding an associated Riemannian symmetric pair.