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8.1. (a) Give an expression for two distinct involutive automorphisms σ1, σ2 : SO(n)→
SO(n) such that the groups Gσi are non trivial and such that the quotients
G/Gσi are isomorphic. What are the groups Gσi in your example?

(b) Find two non-isomorphic simply connected symmetric spaces M1,M2 having
Iso0(Mi) = SO(n). For each one of them, give one example of an involutive
automorphism σi, such that G/Gσi = Mi.

8.2. Consider the vector space Cn+1 with the standard positive definite Hermitian
form:

h(x, y) =
n∑
i=0

x̄iyi

Denote by π : Cn+1 \ {0} → CPn the usual projection into the projective space.
You can identify the tangent space at every point of Cn+1 with the vector space
Cn+1.

(a) Show that, dπv induces an isomorphism of the orthogonal space at v for the
form h with the tangent space at [v] = π(v).

(b) Define a Riemannian metric on CPn using the real part of the restriction of
h to these orthogonal subspaces. This metric is the Fubini-Study metric.

(c) Show that CPn with the Fubini-Study metric is a Riemannian symmetric
space by finding the associated Riemannian symmetric pair.

8.3. Consider Cn with the standard positive definite Hermitian form h. We identify
it with the pair (R2n, J), where J is a linear map J : R2n → R2n with J2 = −Id.
The real part of h gives a scalar product <,> on R2n. A totally real subspace is
a real vector subspace V of dimension n such that V is orthogonal to J(V ) with
respect to <,>. A linear map A is complex antilinear if A(J(v)) = −J(A(v)).

(a) Verify that, for the scalar product <,> on R2n, the map J is orthogonal.

(b) Prove that the map that associates to a complex anti-linear reflection its set
of fixed points is a bijection between the set of complex anti-linear reflections
and the set of totally real subspaces.

(c) The set TR(n) of totally real subspaces is a subset of the Grassmannian
Grn(R2n). Prove that it is a totally geodesic submanifold. (Hint: show that
TR(n) is the subset of fixed points of an isometry).



(d) Verify that the real span of an unitary basis is a totally real subspace, and
that an orthogonal basis of a totally real subspace is an unitary basis.

(e) Show that TR(n) with the metric induced by the Grassmannian Grn(R2n)
has a structure of Riemannian symmetric space by finding an associated
Riemannian symmetric pair.
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