6.1. For $X \in Mat(n, n, \mathbb{C})$, consider the limit

$$\sum_{k=1}^{\infty} \frac{1}{k!} X^k = \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k!} X^k$$

- (a) Prove that for every X the limit exists in $Mat(n, n, \mathbb{C})$. We will denote it e^X . (Hint: choose a suitable norm on $Mat(n, n, \mathbb{C})$, prove that $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{1}{k!} |X|^k$ exists in \mathbb{R} , and from this deduce the same result for matrices.)
- (b) Prove that for X, Y commuting matrices, $e^{X+Y} = e^X e^Y$.
- (c) Prove that for all $X \in Mat(n, n, \mathbb{C}), e^X \in GL(n, \mathbb{C}).$
- (d) Prove that for every $X \in Mat(n, n, \mathbb{C})$, the map

$$\mathbb{R} \ni t \to e^{tX} \in GL(n, \mathbb{C})$$

is a one-parameter subgroup of $GL(n, \mathbb{C})$.

(e) Prove that the map

$$Mat(n, n, \mathbb{C}) \ni X \to e^X \in GL(n, \mathbb{C})$$

is locally invertible around 0.

- (f) Prove that the above map is the exponential map of the Lie group $GL(n, \mathbb{C})$.
- **6.2.** Compute the killing form for $SL(n, \mathbb{R})$ and prove that $SL(n, \mathbb{R})$ is semisimple. Is $GL(n, \mathbb{R})$ semisimple?
- **6.3.** Let G be a compact Lie group.
 - (a) Show that G admits a bi-invariant Riemannian metric.
 Hint: Find a bijection between bi-invariant Riemannian metrics and Ad(G)-invariant scalar products on g. Then construct one such scalar product.
 - (b) Show that for any bi-invariant metric, the one parameter subgroups are geodesics.

Hint: Use Kozul's formula to show that $\nabla_X Y = \frac{1}{2}[X, Y]$, where X, Y are left invariant vector fields.

(c) How many bi-invariant metrics are there on the torus?