- **4.1.** Let $\mathbb{S}^2 \subset \mathbb{R}^3$ be the unit sphere, c an arbitrary parallel of latitude on \mathbb{S}^2 and v a tangent vector to \mathbb{S}^2 at a point of c.
 - a) Describe geometrically the parallel transport of v along c. *Hint:* Consider the cone C tangent to \mathbb{S}^2 along c, and show that the parallel transport of v along c is the same, whether taken relative to \mathbb{S}^2 or to C.
 - b) Is there an isometry $f:\mathbb{S}^2\to\mathbb{S}^2$ realizing the parallel transport along c? Is it a transvection?
- **4.2.** Consider the action of the group \mathbb{Z}^n on \mathbb{R}^n by integral translations:

$$\mathbb{Z}^n \times \mathbb{R}^n \ni ((m_1, \dots, m_n), (x_1, \dots, x_n)) \longrightarrow (x_1 + m_1, \dots, x_n + m_n) \in \mathbb{R}^n.$$

Notice that the translations are isometries for the standard Riemannian metric of \mathbb{R}^n . The cubical torus is the quotient $\mathbb{R}^n/\mathbb{Z}^n$, with its induced Riemannian metric. Prove that the cubical torus is a symmetric space. What is its group of isometries?

- **4.3.** Let M be either the sphere \mathbb{S}^n or the hyperbolic space \mathbb{H}^n . For \mathbb{H}^n , you can use any model you know, after shortly describing it and its group of isometries. Let $p \in M$ be a point. In each of the two cases
 - (a) Write the geodesic symmetry at p.
 - (b) Find two transvections T, S with T(p) = S(p) and $T \neq S$.