University Bonn — SS $2018/19$	Maria Beatrice Pozzetti
Advanced Geometry II–Symmetric spaces	
Exercises 3–Locally symmetric spaces	April 24, 2019

- **3.1.** Find two Riemannian manifolds M, N and a local diffeomorphism $f : M \to N$ such that
 - (a) for every $p \in M$ and for every $v \in T_pM$, $|df_p(v)| \ge |v|$ but f is not a covering map.
 - (b) M complete, there exists $p \in M$ such that for every $v \in T_pM$, $|df_p(v)| \ge |v|$ but f is not a covering map.
- **3.2.** Let (M, g_M) , (N, g_N) be two Riemannian manifolds with parallel curvature tensors. Assume that (N, g_N) is complete. Given $m \in M$ and $n \in N$, assume that there exists a linear isometry $\phi : T_m M \to T_n N$ preserving the Riemann curvature tensor at m, i.e. such that for all $u, v, w \in T_m M$,

$$R_n^N(\phi(u),\phi(v))\phi(w) = \phi(R_m^M(u,v)w).$$

Prove that for every normal neighborhood U of m there exists a normal neighborhood V of n and a local isometry $f: U \rightarrow V$ such that f(m) = n and $D_m f = \phi$.

3.3. Construct a complete metric on the cylinder $\mathbb{S}^1 \times (0, 1)$ which is locally symmetric but not symmetric. *Hint:* consider the isomety $A \in \text{PO}(1, 2)$ with axis a and such that $a(m_1) = m_2$. What is $\mathbb{H}^2/\langle A \rangle$? What can you say about the geodesic reflection at [q]?

