- **2.1.** Let $p: \overline{M} \to M$ be a covering map, and g be a Riemannian metric on M.
 - (a) Show that there exists a unique Riemannian metric \bar{g} on \bar{M} such that p is a local isometry. Such metric is called the *covering metric*.
 - (b) Show that (M, g) is complete if and only if (M, \bar{g}) is complete.
- **2.2.** Let M, N be Riemannian manifolds, N connected, and $h, k : N \to M$ be local isometries. Assume there is a point $p \in N$ with h(p) = k(p) and $d_p h = d_p k$. Show that h = k.
- **2.3.** Let M be a Riemannian manifold of constant sectional curvature K, and let $\gamma : [0, \ell] \to M$ be a geodesic parametrized by arc-lenght, let γ' be its derivative and let J be a Jacobi field along γ , normal to γ' .
 - (a) Prove that the Jacobi equation can be written as

$$\frac{D^2J}{dt^2} + KJ = 0.$$

Hint: you can use without proving it, that in a manifold of constant sectional curvature it holds;

$$g(R(X,Y)W,Z) = K\left(g(X,W)g(Y,Z) - g(Y,W)g(X,Z)\right).$$

(b) Let w(t) be a parallel field along γ with $\langle \gamma'(t), w(t) \rangle = 0$ and |w(t)| = 1. Prove that the solution of the Jacobi equation with initial conditions J(0) = 0, J'(0) = w(0) are given by:

$$J(t) = \begin{cases} \frac{\sin(t\sqrt{K})}{\sqrt{K}}w(t), & \text{if } K > 0\\ tw(t), & \text{if } K = 0\\ \frac{\sinh(t\sqrt{-K})}{\sqrt{-K}}w(t), & \text{if } K < 0 \end{cases}$$

- (c) Find all the pairs of conjugate points on the sphere \mathbb{S}^n . What is their multiplicity?
- **2.4.** Let ∇ be the Levi-Civita connection on the Riemannian manifold (M, g), and R its curvature tensor. Prove that $\nabla R = 0$ if and only if for every smooth curve $c: I \to M$ and for every three parallel vector fields X, Y, Z along c, the vector field R(X, Y)Z is a parallel vector field along c.