- **11.1.** Consider the subgroup $SO(p,q) < SL(n,\mathbb{R})$.
 - (a) Choose a point $x \in S_n = \operatorname{SL}(n, \mathbb{R}) / \operatorname{SO}(n)$ such that $\operatorname{SO}(p, q) \cdot x$ is a copy of the positive Grassmannian embedded as a totally geodesic subspace of S_n .
 - (b) Compute the associated Lie triple system.
 - (c) Choose a point $y \in S_n \setminus SO(p,q) \cdot x$. What is the stabilizer of y in SO(p,q)?
- 11.2. (a) Show that if the symmetric space \mathcal{X} splits as the Riemannian product $\mathcal{X}_1 \times \mathcal{X}_2$, then, for every Cartan decomposition $\mathfrak{g} = \mathfrak{t} + \mathfrak{p}$ of $\mathfrak{g} = \text{Lie}(\text{Isom}^0(\mathcal{X}))$ associated to a point $x \in \mathcal{X}$, there are Lie triple systems $\mathfrak{n}_1, \mathfrak{n}_2 < \mathfrak{p}$ such that $\mathfrak{p} = \mathfrak{n}_1 \oplus \mathfrak{n}_2$.
 - (b) In $\mathfrak{sp}(2n, \mathbb{R})$ denote by \mathfrak{n}_1 (resp \mathfrak{n}_2) the vector subspaces

$$\mathbf{n}_1 = \left\{ \begin{pmatrix} A & 0 \\ 0 & -A \end{pmatrix} \mid A \text{ symmetric } \right\}$$
$$\mathbf{n}_2 = \left\{ \begin{pmatrix} 0 & A \\ A & 0 \end{pmatrix} \mid A \text{ symmetric } \right\}.$$

Show that they are Lie triple systems and there is a Cartan decomposition such that $\mathfrak{p} = \mathfrak{n}_1 \oplus \mathfrak{n}_2$.

- (c) Is the simply connected symmetric space associated to $\mathfrak{sp}(2n, \mathbb{R})$ irreducible?
- **11.3.** Let \mathbb{H} denote the algebra of quaternions, \mathbb{H}_+ the vector space of quaternions with vanishing real part, Q the multiplicative group of quaternions of norm one.
 - (a) Show that Q is a twofold cover of SO(3) *Hint*: define a norm preserving action of Q on \mathbb{H}_+
 - (b) Show that $Q \times Q$ is a two-fold cover of SO(4) *Hint*: study the action

$$\begin{array}{rccc} (Q \times Q) \times \mathbb{H} & \to & \mathbb{H} \\ ((x,y),X) & \mapsto & xXy^{-1}. \end{array}$$

(c) Consider the Lie algebra automorphisms

Show that the orthogonal symmetric Lie algebras $(\mathfrak{so}(3) \times \mathfrak{so}(3), s_0)$ and $(\mathfrak{so}(4), \sigma_{1,3})$ are isomorphic. *Hint:* consider the derivative of the homomorphism constructed in (b).

(d) Compute the orthogonal symmetric Lie algebras dual to $(\mathfrak{so}(3) \times \mathfrak{so}(3), s_0)$ and $(\mathfrak{so}(4), \sigma_{1,3})$ respectively