1.1. Let $\operatorname{Gr}_k(\mathbb{R}^n)$, k < n, be the set of all k-dimensional linear subspaces of \mathbb{R}^n (the Grassmannian).

Given $V \in \operatorname{Gr}_{n-k}(\mathbb{R}^n)$, consider the set

$$\mathcal{U}_V = \{ U \in \operatorname{Gr}(k, \mathbb{R}^n) \mid U \cap V = (0) \}$$

- (a) Choose $U_0 \in \mathcal{U}_V$, and notice that $U_0 \oplus V = \mathbb{R}^n$.
- (b) Define a bijection

$$\phi_{V,U_0}: \mathcal{U}_V \to \operatorname{Hom}(U_0, V) = \mathbb{R}^{k \times (n-k)}$$

- (c) Prove that the set of pairs $\{(\mathcal{U}_V, \phi_{V,U_0})\}$ is an atlas for a smooth structure on $\operatorname{Gr}_k(\mathbb{R}^n)$.
- **1.2.** We consider the following Riemannian metric on $\operatorname{Gr}_k(\mathbb{R}^n)$. Choose a scalar product on \mathbb{R}^n . For every $U \in \operatorname{Gr}_k(\mathbb{R}^n)$, recall from Exercise 1.1 that $\mathcal{U}_{U^{\perp}}$ is a neighborhood of U identified, via $\phi_{U^{\perp},U}$, with $\operatorname{Hom}(U, U^{\perp})$. Hence the tangent space $T_U \operatorname{Gr}_k(\mathbb{R}^n)$ is identified, via $d\phi_{U,U^{\perp}}$ with $T_0 \operatorname{Hom}(U, U^{\perp}) = \operatorname{Hom}(U, U^{\perp})$, where 0 denotes the zero map. The scalar product on U and U^{\perp} induces a scalar product g_U on $\operatorname{Hom}(U, U^{\perp}) = U^* \otimes U^{\perp}$. Show that
 - (a) The Grassmannian $\operatorname{Gr}_k(\mathbb{R}^n)$ is homogeneous, i.e. given two elements $U, V \in \operatorname{Gr}_k(\mathbb{R}^n)$, there is an isometry $f \in \operatorname{Isom}(\operatorname{Gr}_k(\mathbb{R}^n))$ with f(U) = V.
 - (b) The Grassmannian $\operatorname{Gr}_k(\mathbb{R}^n)$ is a symmetric space, i.e. for every $U \in \operatorname{Gr}_k(\mathbb{R}^n)$, there is an isometry $s_U \in \operatorname{Isom}(\operatorname{Gr}_k(\mathbb{R}^n))$ with $s_U(U) = U$,

$$(ds_U)_U = -\mathrm{Id} : T_U \mathrm{Gr}_k(\mathbb{R}^n) \to T_U \mathrm{Gr}_k(\mathbb{R}^n).$$

- **1.3.** Choose a scalar product on \mathbb{R}^n , as in Exercise 1.3. This gives a Riemannian metric on $\operatorname{Gr}_k(\mathbb{R}^n)$. Choose an orthonormal family of vectors v_1, \ldots, v_n .
 - (a) Let $V_m \subset \text{Span}\{v_1, \ldots, v_{k-1}\}^{\perp}$ an *m*-dimensional subspace, where $2 \leq m \leq n-k+1$. Show that

$$P_m = \{ \operatorname{Span}\{v_1, \dots, v_{k-1}, v\} \mid v \in V_m \setminus \{0\} \}$$

is a submanifold isometric to \mathbb{RP}^{m-1} .

(b) Let $m \leq \min(k, n - k)$, and let V_i , for $1 \leq i \leq m$, be a sequence of 2dimensional, mutually orthogonal, subspaces of $\text{Span}\{v_1, \ldots, v_{k-m}\}^{\perp}$. Show that

$$T_m = \{\operatorname{Span}\{v_1, \dots, v_{k-m}, w_1, \dots, w_m\} \mid w_i \in V_i \setminus \{0\}\}$$

is a submanifold isometric to a flat m-torus.