
Konvexgeometrie

Unten findet ihr eine Beschreibung der einzelnen Vorträge. Die Beschreibungen sind auf
Englisch, da die meisten Quellen auch auf Englisch sind. Wenn es nicht explizit geschrieben
wird, beziehen sich die Kapitel auf das Buch [Web], das in der Bibliothek von Mathematikon
im Apparat vom nächsten Semester zu finden ist. Andere interessante Quellen findet ihr unten
im Abschnitt ”Further Readings”. Wenn ihr Probleme habt, Zugang zu einer der Quellen zu
haben (zum Beispiel seid ihr nicht in Heidelberg), schreibt mir bitte eine Email. Wir folgen
den Syllabus von JProf. Dr. Gabriele Benedetti (Heidelberg, WiSe 20/21)

1 Einführung in die konvexen Mengen: konvexe Hülle und
Satz von Gauss-Lucas (Proseminar)

Speakers: Jonas Biba, Simon Weiß

In this talk, you will introduce operation on sets and recall some known facts about affine
sets and transformations. Then, you will define convex sets and the notion of convex hull. As
a nice application you prove the Theorem of Gauss–Lucas about roots of complex polynomials.
If you are short on time, you could leave out some of the part referring to Chapter 1 (which
should be familiar from Linear Algebra), and only recall them orally when you use them.

Roadmap: From Chapter 1 you should recall the main definitions (translate, sum of sets
and of multiplication of a set by a scalar [Ch.1.1], flat and segment [Ch.1.2], affine hull, affine
combination, affine dependent/independent points [Ch. 1.3], affine transformation[Ch.1.5])
possibly with some examples/counterexamples. You should then focus on Chapter 2.1-2, and
define convex sets, convex combination, convex hull, you should state and prove Theorem
2.2.2 characterizing convex hulls in terms of convex combinations and Theorem 2.2.9 (Gauss–
Lucas Theorem): The roots of the derivative of a non-constant complex polynomial belong to
the convex hull of the set of roots of the polynomial itself. Observe that the theorem is false
for real polynomials. Time permitting you could include some other results from Chapter 2,
such as Theorems 2.1.4 and/or 2.1.5.

2 Der Satz von Caratheodory und seine Korollare: Radon,
Helly, Shapley-Folkman (Proseminar)

Speakers: David Barth, Benno Wendland

In the last talk, we saw that every element in the convex hull of a set A in Rn can be
expressed as convex combination of points of A (Theorem 2.2.2). How many points do we need
at most in the convex combination? Caratheodory’s theorem says: n + 1. You will use this
fact to prove a number of surprising results for convex sets: Radon’s theorem (a set of at least
n+ 2 points can be partitioned in two sets whose convex hulls intersect) and Helly’s Theorem
(a family of convex sets such that any n+1 of them intersect has a common intersection point).
This has also application to economics via the Shapley–Folkman Theorem: The arithmetic
mean of a large number of sets contained in the unit ball is approximately convex.
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Roadmap: Recall Theorem 2.2.2, prove Theorems 2.2.4, 2.2.5 and 2.2.6, 7.1.1, 7.1.2. If
time permits, discuss Theorem 7.1.3 alternatively prove [Ber, Proposition 5.7.1] (Shapley-
Folkman Theorem). Deduce the following corollary: Let Q1, . . . , Qd be subsets of the unit
ball of Rn and consider their arithmetic mean Q := 1

d(Q1 + . . . + Qd). Then every point in
the convex hull of Q is at distance at most n/d to a point in Q. Hence, this distance goes to
zero as d goes to infinity.

3 Topologische Eigenschaften von konvexen Mengen (Prosem-
inar)

Speakers: Lukas Hemberger, Anne Kollmar

In this talk, you will discuss some important topological properties of convex sets. You will
prove that a convex set A always has non-empty interior ri(A) in the affine space generated
by it and give a geometric characterization of ri(A). You will introduce the notion of distance
between sets and show that for every closed convex set C and every point x in Rn there is a
unique point y on C with minimal distance from x. Fun fact: A theorem of Motzkin (which
we do not cover in the seminar) says that the closed subsets of Rn having this property are
exactly the convex ones!

Roadmap: Definition of relative interior of a set and of relative boundary [Page 37]. Give
a couple of examples. Definition of affine basis. Theorem 1.3.9 and Corollary 1.3.10 with
proof. Baricentric coordinates. Theorem 2.3.1 with proof. Lemma 2.3.3 and Theorem 2.3.4
with proof. Theorem 2.3.6 and 2.3.8 with proof. Corollary 2.3.10 without proof. Definition
of distance to a set and proof of Lipschitz condition (page 45). Theorem 1.9.1 and 1.9.4 with
proof. Theorem 2.4.1 with proof.

4 Trennung von konvexen Mengen und Stützebenen (Semi-
nar)

Speakers: Jannik Simianer, Laura Wamsler

In this talk, you will show that two convex sets can be separated by a hyperplane exactly
when their relative interiors are disjoint. Two interesting consequences of this fact: Closed
convex sets are the intersection of all the closed half spaces containing them. Every convex set
has a non-trivial supporting hyperplane at every point in the relative boundary. This gives us
back the intuitive picture that convex regions in R2 lies on one side of the lines tangent to their
boundary. A fact that we do not cover in the seminar: Existence of supporting hyperplanes
characterizes convex sets. In other words, if a set with non-empty interior admits a supporting
hyperplane at each of its boundary points, then it is convex!

Roadmap: Corollary 2.4.2 with proof. Corollary 2.4.3 without proof (draw a picture).
Theorem 2.4.4 with proof. Notions of separation. Theorem 2.4.6 with proof. Corollary 2.4.8
with proof. Lemma 2.4.9 with proof. Theorem 2.4.10 with proof. Corollary 2.4.11 with proof.
Definition of (non-trivial) support hyperplane. Theorem 2.4.12 with proof. If there is time,
Example 2.4.13.
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5 Extrempunkte und der Satz von Krein-Milman (Seminar)

Speakers: Celine Lißmannm, Valentin Sumser

For familiar convex sets like cubes or pyramids, we intuitively know, what a k-dimensional
face is. You will generalize this intuition to arbitrary convex set and see how one can recon-
struct a closed convex set by taking the convex hull of its primitive faces. You will show then,
that primitive faces are either flats or half-flats. Thus, you will derive a very important result
of Krein–Milman: Every compact convex set is the convex hull of its 0-dimensional faces.

Roadmap: [Ch. 2.6] Definition of face, k-face and extreme points with the formula just
above Example 2.6.1. All results from Theorem 2.6.2 to Theorem 2.6.16 with proof but skip
Corollary 2.6.9. Explain the example illustrated in Figure 2.10.

6 Konvexe Funktionen einer Variable (Seminar)

Speakers: Jonas Stähle, Jingyi Zhang

In this talk, we make the acquaintance of convex functions f : Rn → R. They satisfy

f(λx+ µy) ≤ λf(x) + µf(y), ∀x, y ∈ Rn, λ, µ ≥ 0, λ+ µ = 1. (6.1)

As we will discover in Talk 9, these are exactly the functions with convex epigraph {(x, y) ∈
Rn × R | f(x) ≤ y}. In this talk, you will give geometric properties of convex functions
on the real line, namely when n = 1. You will further discuss analytic properties of these
functions. Are they continuous or even differentiable? What can be said in that case, about
their derivatives? You will see that a central player in these questions is the support of f at
a point x which you can interpret as the support hyperplane of the epigraph (see Talk 4) at
the point (x, f(x)) under cover.

Roadmap: Present the definitions and theorems (with proof) of Chapter 5.1.

7 Die Jensen-Ungleichung und ihre Verwandten (Seminar)

Speakers: Leona Gerlinger, Barbara Riehl

You will see how many classical inequalities such as the one between the geometric and
arithmetic mean can be proved applying (6.1) (or better a swift generalization of it called
Jensen inequality) to a given convex function. In this way you get, for instance, Hölder and
Minkowski inequality that perhaps you know from analysis. More in general, you will consider
the sequence of weighted means of order t and show that they are increasing in t. Finally, you
will introduce log-convex functions of which we see an important example in the next talk.

Roadmap: Present the definitions and theorems (with proof) of Chapter 5.2. Right after
the proof of Hölder and Minkowski, give immediately also the proof of the integral version
of these inequalities. For Hölder you can see Theorem 5.3.1 in the next section. Define log-
convex functions and prove that the sum and the product of log-convex functions is log-convex
[Ch. 5.3].
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8 Die Gamma-Funktion und der Satz von Artin (Seminar)

Speakers: Felix Rugel, Luis Elvis Schneck

Euler’s gamma function Γ is a famous log-convex function generalizing the factorial of
a natural number. It plays a prominent role in number theory and complex analysis. You
will show some important properties of the Gamma function and prove a theorem of Artin
(called also Bohr-Mollerup Theorem in the literature) saying that Γ is the only function
satisfying such properties. In passing, you will establish the Gauß formula for Γ. Artin’s
theorem enables one to prove some interesting identities about Γ, one of which is the Gaussian
integral

´
R e

−x2
dx =

√
π. This integral plays a central role in the Stirling’s formula about

the asymptotic expansion of the factorial.

Roadmap: Present all the results with proofs from the definition of the gamma function
on page 208 to the proof of Stirling’s formula on page 215. Mention that Γ gives a formula
for the volume ωn of the n-dimensional unit ball: ωn = πn/2/Γ(n/2 + 1) [Bar]. This will be
used in Talk 14. Only if you have time, you can give the proof following [Bar, Lemma 3.4].

9 Konvexe Funktionen mehrerer Variablen I: Epigraph und
Stetigkeit (Seminar)

Speakers: Amelie Haberzettl, Leonie Rick

We venture in the realm of convex functions of several variables. You will establish the
promised relationship between convex functions and their epigraph and use it to show that
the supremum of a family of convex functions is convex. A central result that you will prove
is the existence of a support of a convex function at a point using what we saw in Talk 4. As
an intermezzo you will discuss the special class of positively homogeneous convex functions
and use them to reprove Minkowski’s inequality. In the last part, you will show that convex
functions are locally Lipschitz and, hence, continuous.

Roadmap: Present the definition and theorems in Chapter 5.4. Leave the proof of Theorem
5.4.3 and of Theorem 5.4.2 as exercises. When giving the definition of support at a point,
observe explicitly that the set of supports is a closed convex subset of the space of affine
transformations from Rn to R. Present just Theorem 5.5.1 and its proof. In the statement,
change the last sentence to ”Then f is locally Lipschitz and, in particular, continuous on
X”. Observe indeed that the last inequality of the proof shows that f is Lipschitz in the ball
B[x0; r].

10 Konvexe Funktionen mehrerer Variablen II: Differenzier-
barkeit (Seminar)

Speakers: Kevin Reiber, Luise Schneider

You generalize the result about differentiability that we saw in Talk 6 to the case of convex
functions in several variables. The two milestone results that you will meet are that a function
with unique support at a point is differentiable at that point and that a twice differentiable
function is convex if and only if its Hessian is semipositive definite.
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Roadmap: Present all the definitions and theorems (with proofs) of Chapter 5.5 except
Theorem 5.5.1, which has already been covered in the previous talk.

11 Eine Brücke zwischen konvexen Mengen und Funktionen:
die Stützfunktion (Seminar)

Speakers: Christian Reibold, Ahmad Seeno

You will discover a nice connection between compact convex sets C ⊂ Rn and positively
homogeneous convex functions h : Rn → R. Namely, you will associate to C its support
function hC : hC(u) tells you how ”tall” C is in direction u ∈ Rn. You will see that C 7→ hC
is a bijection and explore its algebraic properties. In the last part of the talk, you will
switch topic and prove a result needed in the next talk about matrix inequalities: Important
examples of convex sets C are given by the set of solutions of systems of linear equations and
inequalities such as C = {x ∈ Rn | Ax = b, x ≥ 0} and your task will be to characterize the
extreme points of C.

Roadmap: Present the first part of Chapter 5.6 until Theorem 5.6.5 including proofs.
Present Chapter 4.4 up to Theorem 4.4.2 with the included proof.

12 Matrix-Ungleichungen (Seminar)

Speakers: Emma Behringer, Max Zoller

You will use the theory of convex functions to prove two remarkable inequalities about
the determinant of a square matrix of dimension n. Minkowski inequality says that the
positively homogeneous function A 7→ − n

√
detA is convex on the space of positive definite

matrices. Hadamard inequality tries to answer the question: How large can the determinant
of a matrix whose entries have absolute value smaller than 1 be? Hadamard inequality yields
the upper bound nn/2. It is remarkable that for many values of n, it is not known if a matrix
with the given property exists whose determinant is exactly nn/2.

Roadmap: Present Chapter 5.8 until Theorem 5.8.6 with proofs. In the statement of Theo-
rem 5.8.4 add that equality holds if and only if v1, . . . , vn are eigenvectors. Present Minkowski
inequality before Hadamard inequality. Add to the statement of the first Hadamard inequal-
ity that equality holds if and only if the columns of A are pairwise orthogonal. The second
inequality is an equality if and only if A is diagonal. Observe that Hadamard’s inequality
implies the bound |detA| ≤ nn/2 where A belongs to the set S of matrices for a matrix whose
entries have absolute value smaller than one. Using page 42 in [AZ], state the Hadamard’s
determinant problem and observe that the maximum of the determinant on S is achieved by a
matrix whose entries have values in the set {−1,+1}. If time permits and you are interested,
you can define Hadamard’s matrices and present some of their fascinating properties using
the discussion starting from equation (6) on page 43 of [AZ].
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