Abgabe am Dienstag, dem 4. Juli 2017 in der Vorlesung

Auf diesem Aufgabenblatt betrachten wir n Massen m_1, \ldots, m_n die sich auf der reellen Gerade \mathbb{R} bewegen. Wenn q_j die Position der j-ten Masse bezeichnet, dann sind die Bewegungsgleichungen durch $m_j\ddot{q}_j=-\frac{dU}{dq_j}$ gegeben, wobei das Potential U gegeben ist durch $U(q)=\sum_{1\leq i< j\leq n}V_{ij}(q_i-q_j)$ für Funktionen $V_{ij}:\mathbb{R}\to\mathbb{R}$. Sei $W(x):=e^{-x}$ für $x\in\mathbb{R}$. Im folgenden betrachten wir der Einfachheit halber nur den

Fall $m_j = 1$ und $V_{ij} := W$ für i = j - 1 und $V_{ij} := 0$ für $i \neq j - 1$.

Aufgabe 1. (Toda Gitter)

- a) Zeigen Sie, dass dieses System durch die Hamiltonsche Funktion $H(q,p) = \frac{1}{2}|p|^2 +$
- $\sum_{j=1}^{n-1} e^{q_j q_{j+1}} \text{ gegeben ist.}$ b) Sei $a_j := \frac{1}{2} e^{(q_j q_{j+1})/2}$ für $j = 1, \dots, n-1$ und $b_j := -\frac{1}{2} p_j$ für $j = 1, \dots, n$. Zeigen Sie, dass die Differentialgleichungen dann die folgende Form haben (mit $a_0 = a_n = 0$):

$$\dot{a}_j = a_j(b_{j+1} - b_j)$$
 für $j = 1, \dots, n-1$ und $\dot{b}_j = 2(a_j^2 - a_{j-1}^2)$ für $j = 1, \dots, n$.

c) Seien L und B die $n \times n$ -Tridiagonalmatrizen

$$L := \begin{bmatrix} b_1 & a_1 & 0 & \dots & 0 \\ a_1 & b_2 & a_2 & & \vdots \\ 0 & a_2 & & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & a_{n-1} \\ 0 & 0 & \dots & a_{n-1} & b_n \end{bmatrix} \text{ und } B := \begin{bmatrix} 0 & a_1 & 0 & \dots & 0 \\ -a_1 & 0 & a_2 & & \vdots \\ 0 & -a_2 & 0 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & a_{n-1} \\ 0 & 0 & \dots & -a_{n-1} & 0 \end{bmatrix}$$

Beweisen Sie, dass die Gleichungen aus 2b) ausgedrückt werden können als

$$\frac{dL}{dt} = BL - LB =: [B, L].$$

- d) Benutzen Sie $a_j>0$ um zu zeigen, dass L n verschiedene reelle Eigenwerte hat. e) Es sei U eine Lösung von $\frac{dU}{dt}=BU$ und $U(0)=\mathbb{1}$. Zeigen Sie, dass UBU^{-1} zeitunabhängig ist.
- f) Folgern Sie, dass die symmetrischen Polynome σ_k in den Eigenwerten von L Integrale des Systems sind, deren Ableitungen überall linear unabhängig sind für $k=1,\ldots,n$.
- g^*) Zeigen Sie, dass die Eigenwerte von L in Involution zueinander sind.
- h) Folgern Sie daraus, dass auch die symmetrischen Funktionen σ_k in Involution zueinander sind.